
The Art of Asking: Prompting Large Language Models for
Serendipity Recommendations

Anonymous Author(s)

ABSTRACT
Serendipity means an unexpected but valuable discovery. Its elusive
nature makes it susceptible to modeling. In this paper, we address
the challenge of modeling serendipity in recommender systems
using Large Language Models (LLMs), a recent breakthrough in
AI technologies. We leveraged LLMs’ prompting mechanisms to
convert a problem of serendipity recommendations into a problem
of formulating a prompt to elicit serendipity recommendations. The
formulated prompt is called SerenPrompt. We designed three types
of SerenPrompt: discrete with natural words, continuous with train-
able tokens, and hybrid that combines the previous two types. In
the meanwhile, for each type of SerenPrompt, we also designed two
styles: direct and indirect, to investigate whether it is feasible to di-
rectly ask an LLM a question on whether an item is a serendipity, or
we should breakdown the question into several sub-questions. Ex-
tensive experiments have demonstrated the effectiveness of Seren-
Prompt in generating serendipity recommendations, compared to
the state-of-the-art models. The combination of the hybrid type
and the indirect style achieves the best performance, with relatively
low sacrifice to computational efficiency. The results demonstrate
that natural words and virtual tokens, as building blocks of LLM
prompts, each have their own advantages. The better performance
of the indirect style speaks to the effectiveness of decomposing the
direct question on serendipity.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Serendipity, Large LanguageModels, recommendationmodels, prompt
learning

ACM Reference Format:
Anonymous Author(s). 2018. The Art of Asking: Prompting Large Lan-
guage Models for Serendipity Recommendations. In Proceedings of Make
sure to enter the correct conference title from your rights confirmation emai
(Conference acronym ’XX). ACM, New York, NY, USA, 10 pages. https:
//doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Serendipity means an unexpected but valuable discovery. As early
as 1997, Gup [6] expressed his concern about the “end of serendip-
ity" in the digital world, recalling with the fondness his childhood
experiences coming across interesting tidbits of information while
flipping encyclopedia pages. Gup’s concerns are echoed by others
in more recent studies (e.g., [18, 21, 23]). The sense that the online
environment is increasingly determined promotes a widespread
feeling that serendipity is threatened.

Even with today’s deep learning models, modeling serendipity
is difficult due to the elusive nature of serendipity. The element of
unexpectedness in serendipity means surprise and accident, which
are susceptible to modeling and prediction. The recent rise of Large
Language Models (LLMs), especially ChatGPT, has brought global
excitement about what AI could do for humans. LLMs begin taking
on surprising emergent abilities when they reach a certain size. In
line with Anderson’s well-known suggestion that “more is differ-
ent” [1], LLMs appear to go through a form of phase transition,
bringing about new capacities for which they were not explicitly
trained. In this paper, we investigated whether LLMs have such
emergent capacities that are helpful for serendipity recommenda-
tions, a long-standing research challenge in recommender systems
research community.

Since last year, initial efforts have been made to explore the po-
tential of LLMs as a promising technique for the next generation
recommender systems, due to the fact that recommender systems
could be regarded as question answering (QA) systems: given a
question of a user’s previous preferences, the system generates an
answer about this user’s future preferences. In addition, recom-
mender systems typically contain a large amount of text informa-
tion, such as user reviews, item descriptions, which aligns with
the data format of an LLM. Specifically, we will leverage LLMs’
prompting mechanism, the new paradigm compared to the
pre-training and fine-tuning paradigm for a language model,
to convert the problems of serendipity recommendations
into problems of formulating prompts, to elicit serendipity
recommendations. The resulting prompts are called SerenPrompt.
We experimented with discrete prompts with manually selected
natural words, continuous prompts with trainable tokens during
a lightweight model training, and hybrid prompts that combine
natural words and trainable tokens.

Equally importantly, serendipity is a difficult concept to study
due to its elusive and subjective nature. Most studies on serendip-
ity have decomposed the concept into a few more tangible sub-
concepts, such as diversity, novelty, coverage, unexpectedness, sur-
prise, interestingness, value, and relevance. Very few studies have
studied serendipity as a whole concept. Since LLMs are believed
to be an "encyclopedia", containing comprehensive knowledge of
human society through extensive pre-training, we would like to
investigate whether it is feasible to directly ask an LLM a question

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

on whether an item is a serendipity, or we should decompose the
question into several sub-questions on the sub-concepts of serendip-
ity.

The major contribution of this paper is three-fold:

• the design of SerenPrompt with three types and two styles, as
the first work exploring how to prompt LLMs for serendipity
recommendations

• the decomposition of the task of recommending serendip-
ity into two sub-tasks: recommending the unexpected and
recommending the relevant

• a computational approach to "calculate" the ground truth of
unexpectedness for the core pre-training task, avoiding a
tedious human labeling process

2 RELATEDWORK
This project draws on several research lines. We will review these
areas in the following subsections.

2.1 The Concept of Serendipity and Its
Distinction with Diversity and Novelty

The word "serendipity" is used to describe the process of making un-
expected discoveries by accident. In the early 2000s, serendipity was
first introduced to the context of recommender systems to broaden
users’ selections and increase their satisfaction [7]. While perceived
as valuable, serendipity is also seen as elusive, unpredictable, and
hard to control to be used [3]. Although there is some disagreement
as to the precise nature of serendipity, all accounts agree that the
following two aspects are central: an unexpected chance and a
relevant discovery. These two aspects have informed us on
the design of SerenPrompt.

It is worth distinguishing between serendipity, diversity, and
novelty because they share some common characteristics. We be-
lieve diversity increases the chance of serendipity, but not every
diversified piece is serendipitous: only those unexpected and rele-
vant items are serendipity. As to novelty, it means being new and
unknown, not necessarily unexpecting or surprising. In contrast,
serendipity suggests how strongly an item violates an expectation.
Therefore, it is worth clarifying that, different from many other
studies (e.g., [2, 10, 27]), we do not use diversity and novelty as
the sub-concepts of serendipity. In this paper, we interpret and
operationalize the concept of serendipity using two sub-concepts:
unexpectedness and relevance.

2.2 Deep Learning Models for Serendipity
Recommendations

Since 2018, a few information retrieval researchers have attempted
to build deep learning models for serendipity recommendations. Ex-
amples are SerRec [20], HAES [13], DESR [27], NSR [27], PURS [12],
and SNPR [28]. These conventional deep learning efforts collec-
tively demonstrate the potential of neural networks in representing
users’ serendipity needs. However, these studies’ serendipity defini-
tions varied in order to leverage various existing recommendation
datasets and avoid collecting the direct ground truth on serendipity,
making both the models and the results not sufficiently system-
atic or generalizable. In addition, the conventional deep learning

models’ limited sequence representation capacity and limited nat-
ural language understanding capability make their performance
as a recommendation model not ideal, especially for those com-
plex and multi-step recommendation tasks including serendipity
recommendations. Therefore, in this paper, we investigated the po-
tential of LLMs as recommendation models for this long-standing
challenging task of serendipity recommendations.

2.3 LLMs for Recommendation Models
Technically, there are three main ways to leverage LLMs for recom-
mendation tasks: pre-training, fine-tuning, and prompting. Practi-
cally, both pre-training and fine-tuning an LLM need heavy compu-
tational resources, usually not immediately available in academia.
Prompting therefore becomes the popular access to LLMs, to adapt
a recommendation task into a question answering task or a lan-
guage generation task, instead of the other way around during the
pre-training and fine-tuning process.

Prompting is the new paradigm for adapting LLMs to specific
downstream tasks. A prompt refers to a text template that serves
as the input of LLMs. Prompting enables LLMs to unify different
downstream tasks into language generation tasks [5]. Generally,
the types of prompts can be categorized as discrete and continu-
ous [16]. Discrete prompts consist of natural words, relying heavily
on human experiences to craft. Although discrete prompts have
succeeded in many tasks, handcrafted prompts may be with costs
and not globally optimal. Continuous prompts introduce learn-
able prompt tokens to automatically search for the best prompt
templates. In the following paragraph, we will briefly review the
recent efforts of using the prompting techniques (both discrete and
continuous) for recommendation tasks.

A straightforward prompting approach is discrete prompting.
For instance, Liu et al. [15] employ ChatGPT and propose separate
task descriptions with a few demonstrations (examples) tailored to
different types of recommendation tasks, such as top-K recommen-
dations, rating predictions, and explanation generation. In contrast
to discrete prompts, continuous prompting employs learnable to-
kens (vectors or text embeddings) as a prompt. For instance, Wu et
al. [26] apply contrastive learning to capture user representations
and apply them into prompt tokens. In addition to directly using
pre-calculated embeddings, continuous prompts can also be learned
using the current task-specific loss function. For example, Zhang et
al. [29] adopt randomly initialized continuous prompts and optimize
them with respect to a recommendation loss function. Compared to
discrete prompts, continuous prompts are more flexible for tuning
on a continuous space but at the cost of explainability [8].

Those efforts mentioned above demonstrate the promising po-
tential of prompting LLMs for recommendation tasks. All of those
efforts are for the conventional accuracy-oriented recommenda-
tions. In this paper, we would like to investigate the feasibility of
LLMs for serendipity-oriented recommendations, a more complex
and challenging task. We believe LLMs have a huge potential for
this task because of their stronger sequence representation capacity
and language understanding ability.

The Art of Asking: Prompting Large Language Models for Serendipity Recommendations Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Large Language Model

𝐼, 𝐷, 𝑄(𝐻𝑢, 𝑖)

Large Language Model

𝐻! 𝑖

𝑷𝟏𝒊 … [𝑷𝒏𝟒
𝒊]𝑷𝟏

𝑯𝒖 …[𝑷𝒏𝟑
𝑯𝒖]

Transformer Encoder

Large Language Model

Transformer Encoder

𝑷𝟏𝑰 …[𝑷𝒏𝟏
𝑰] 𝑷𝟏

𝑸 … [𝑷𝒏𝟐
𝑸]

𝒚.𝒖,𝒊

(a) prompting an LLM using a discrete prompt (b) prompting an LLM using a continuous prompt (c) prompting an LLM using a hybrid prompt

: tunable : frozen : virtual tokens : natural words

Update

𝑰 𝑷𝒂𝒓𝒕	𝒐𝒇	𝑸

Yes
No

80%
LLM Output

20%

𝐼 𝑄(𝐻𝑢, 𝑖)

𝒚.𝒖,𝒊Yes
No

80%
LLM Output

20%

Update
𝒚.𝒖,𝒊

Yes
No

80%
LLM Output

20%

𝑷𝒂𝒓𝒕	𝒐𝒇	𝑸

Figure 1: Three types of prompting an LLM for serendipity recommendations

3 SERENPROMPT: PROMPTING AN LLM FOR
SERENDIPITY RECOMMENDATIONS

We believe a serendipity recommendation problem, like any other
recommendation problem, is amatching problem. Let 𝐼 = {𝑖1, 𝑖2, . . . ,
𝑖 |𝐼 | } represents the set of items, and 𝐻𝑢 = {𝑖𝑢1 , 𝑖

𝑢
2 , . . . , 𝑖

𝑢
𝑛 } represents

a history of interacted items for the user 𝑢. The goal is to find a
model𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔(·) to predict a matching probability score 𝑦𝑢,𝑖 that
the item 𝑖 (𝑖 ∈ 𝐼) is a serendipity to the user 𝑢 with a history 𝐻𝑢 .
The process could be represented as:

�̂�𝑢,𝑖 =𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 (𝐻𝑢 , 𝑖) (1)

To convert the serendipity recommendation problem to a prompt
to an LLM, we need to include the user information𝐻𝑢 and the item
information 𝑖 in the prompt. Commonly, a well-designed prompt
for an LLM contains three parts: a task description, a few demon-
strations (examples), and an input question. The task description
defines a task and introduces the related concepts. The demon-
strations provide some task and solution examples for the LLM to
better understand the task. The input question directly asks the
question. In our case, given a task description 𝐼 , a demonstration set
𝐷 = {(𝑑1, 𝑑2, ..., 𝑑𝑘 }, and the input question 𝑄 , which includes the
current user 𝑢’s history 𝐻𝑢 and item 𝑖’s information, the prediction
𝑦𝑢,𝑖 generated from LLMs can be formulated as follows:

𝑦𝑢,𝑖 = 𝐿𝐿𝑀 (𝐼 , 𝐷,𝑄 (𝐻𝑢 , 𝑖)) (2)

We are interested to knowwhat kind of prompt templates benefit
the performance of serendipity recommendations. To this end, we
designed three types of templates, as shown in Figure 1: 1)
discrete with natural words, 2) continuous with vector tokens
to search for the best prompt, and 3) hybrid that combines
the discrete and continuous templates.

3.1 Prompting LLMs via Discrete Templates
As the most common type of prompts, discrete templates formulate
the prompts using natural language. We designed two styles of
discrete templates. One style is direct: directly asking whether an
item is a serendipity. The second style is indirect, asking whether
an item is unexpected and relevant, and then inferring whether it
is a serendipity.

3.1.1 Discrete Style 1: Direct. This is the direct way to ask an LLM
whether a candidate item is a serendipity to a user. As in Table 1 for
this Style, the task description 𝐼 contains the definition of serendip-
ity and the task requirement. In the demonstration set 𝐷 , we expect
the LLM learns from the representative examples to better un-
derstand the task, similar to the idea of providing some additional
task-specific training instances in a supervised machine learning ap-
proach. We provide both serendipity (positive) and non-serendipity
(negative) examples. For the input question 𝑄 , we include the user
information 𝐻𝑢 and the candidate item information 𝑖 . Specifically,
𝐻𝑢 is a series of item names that have been interacted by the user
𝑢. 𝑖 is just the candidate item name. In addition to 𝐻𝑢 and 𝑖 , 𝑄 also
limits the answer format to be binary: "Yes" or "No" on whether the
candidate item is a serendipity to this user, in order to prevent the
LLM from being verbose or digressing.

3.1.2 Discrete Style 2: Indirect. This style prompts an LLM to break-
down the task of serendipity recommendations into two sub-tasks:
judging whether an item is unexpected and then whether the item is
relevant. Therefore, as in Table 1 for this Style, the task description 𝐼 ,
in addition to defining serendipity, further provides the definitions
of being unexpected and being relevant in the recommendation
context. Accordingly, the demonstration set 𝐷 contains examples
of serendipity items satisfying both conditions: being unexpected
and being relevant. The input question 𝑄 is similar to that of Dis-
crete Style 1, but with an extra requirement to consider those two
conditions when answering the question. Through this way, the
serendipity recommendation task is converted into two question
answering tasks.

The two styles above are to exploit both the direct and the indi-
rect knowledge contained in an encyclopedia-like LLM through a
series of predefined natural language prompts and the pre-specified
possible answer words (yes or no). This is the core philosophy of the
prompt learning paradigm, i.e., predicting an answer word from the
LLM’s vocabulary, as if the task-specific prompts had been inserted
into the large corpus for training the LLM.

On the other hand, these manually designed templates, though
with well-crafted statements, are obviously not exhaustive for all
possible designs. Therefore we will use some virtual tokens to
search for a few more template designs using the the continuous
prompting approach.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

Table 1: Discrete prompt templates for serendipity recommendations

LLM Input

Task Description 𝐼
Serendipity means an unexpected but relevant discovery to a user. Given a user’s history, please answer “Yes” or “No”
on whether a candidate item is a serendipity to the user.

Demonstration Set 𝐷

Here are some demonstrations:
Discrete Demo 1: Given a user 𝑢1 with a history 𝐻𝑢1 (a series of item names), 𝑖𝑐𝑎𝑛𝑑 is a serendipity to this user 𝑢1.
Style 1: ...
Direct Demo k: Given a user 𝑢𝑘 with a history 𝐻𝑢𝑘

, 𝑖′
𝑐𝑎𝑛𝑑

is not a serendipity to this user 𝑢𝑘 .
Input Question𝑄 Given a user 𝑢 with a history 𝐻𝑢 , could you answer whether the candidate item 𝑖 is a serendipity to this user 𝑢?

Expected LLM Output
"Yes" or "No"

LLM Input

Task Description 𝐼

Serendipity means an unexpected but relevant discovery to a user. Being serendipity means being both unexpected
and relevant. In recommendation tasks, being unexpected means the items are unlikely to be recommended to a
user given this user’s history. Meanwhile, being relevant means the items are closely related to a user’s history.
Given a user’s history, please answer "Yes" or "No" on whether a candidate item is a serendipity to the user. You need
to consider both the unexpectedness and relevance aspects.

Discrete

Demonstration Set 𝐷

Here are some demonstrations:
Style 2: Demo 1: Given a user 𝑢1 with a history 𝐻𝑢1 , 𝑖𝑐𝑎𝑛𝑑 is both unexpected and relevant to this user 𝑢1.
Indirect Therefore, it is a serendipity to this user 𝑢1.

Demo 2: Given a user 𝑢2 with a history 𝐻𝑢2 , 𝑖
′
𝑐𝑎𝑛𝑑

is relevant but not unexpected to this user 𝑢2.
Therefore, it is not a serendipity to this user 𝑢2.
...
Demo k: Given a user 𝑢𝑘 with a history 𝐻𝑢𝑘

, 𝑖′′
𝑐𝑎𝑛𝑑

is neither unexpected nor relevant to this user 𝑢𝑘 .
Therefore, it is not a serendipity to this user 𝑢𝑘 .

Input Question𝑄
Given a user 𝑢 with a history 𝐻𝑢 , could you answer whether the candidate item 𝑖 is a serendipity to this user 𝑢?
You need to consider both the unexpectedness and relevance aspects.

Expected LLM Output
"Yes" or "No"

3.2 Prompting LLMs via Continuous Templates
Different from the discrete prompts, continuous prompts use learn-
able tokens (vectors) in the task description 𝐼 and the input question
𝑄 . The two sets of learnable tokens can be generated by inputting
the original natural words of 𝐼 and 𝑄 through neural network
layer(s) added in front of the LLM. The token generation process
could be described as follows:

𝑓 (𝐼 ,𝑄) → [𝑃 𝐼1] ...[𝑃
𝐼
𝑛1]; [𝑃

𝑄

1] ...[𝑃𝑄𝑛2] (3)

where 𝐼 and 𝑄 are the natural words of the task description and
the input question. 𝑓 (·) is the added neural network layer(s), to
map the natural words into two sets of tokens of [𝑃 𝐼1]...[𝑃

𝐼
𝑛1] and

[𝑃𝑄1] ...[𝑃𝑄𝑛2] respectively. 𝑛1 and 𝑛2 are their numbers of tokens.
Compared with the discrete prompts, the demonstration set 𝐷 is
not included since 𝑓 (·) can be trained by training instances, which
essentially play the role of providing additional demonstrations
to the LLM. Therefore the continuous prompts are all tokens, as
in Table 2. Previous research shows that Transformers [25] are
effective in mapping or encoding text into vectors. Therefore, in
this paper, we selected the Transformers as 𝑓 (·).

This way, the continuous prompts provide more freedom
by adding learnable tokens in search of the best prompts,
although it may introduce some uncertainties and cost some
explainability. Similar to the discrete prompts, we designed two
styles: direct and indirect, corresponding to the direct question

Table 2: Continuous prompt templates for serendipity rec-
ommendations

LLM Input
Task Description 𝐼 [𝑃 𝐼

1] [𝑃 𝐼
2] ...[𝑃 𝐼

𝑛1]
Input Question𝑄 [𝑃𝑄

1][𝑃𝑄

2]...[𝑃𝑄
𝑛2]

Expected LLM Output
"Yes" or "No"

on serendipity and the indirect questions on unexpectedness and
relevance.

3.2.1 Continuous Style 1: Direct. This Style trains 𝑓 (·) to learn the
tokens for the direct question on serendipity. The input of 𝑓 (·), 𝐼 ,
and 𝑄 , will be the same as Discrete Style 1 as in Table 1. During
the learning process, the LLM is frozen, and only the parameters
of 𝑓 (·) are updated through the loss values between the model
answers and the ground truths. We adopted the commonly used
cross-entropy loss function to train 𝑓 (·).

𝐿𝑠𝑒𝑟𝑒𝑛 (Θ) = − 1
|S |

∑︁
(𝑢,𝑖) ∈S

𝑦𝑢,𝑖 𝑙𝑜𝑔 (�̂�𝑢,𝑖) (4)

where Θ is the set of the learnable parameters of 𝑓 (·). S denotes
the set of training instances for serendipity. |S| denotes the size of
training instances. 𝑦𝑢,𝑖 is the predicted probability on "Yes" or "No".
𝑦𝑢,𝑖 is the ground truth value.

The Art of Asking: Prompting Large Language Models for Serendipity Recommendations Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

3.2.2 Continuous Style 2: Indirect. In this Style, we did not directly
learn 𝑓 (·) for the prompt tokens for the question of serendipity.
Instead, we first pre-trained 𝑓 (·) with two pre-training tasks, and
then fine-tuned it for the question on serendipity. The pre-train and
fine-tune process is expected to learn better token representations
of LLM prompts for serendipity recommendations. The two pre-
training tasks are: learning a prompt representation to ask whether
a candidate item is unexpected to a user; and learning a prompt
representation to ask whether a candidate item is relevant to a user.
Specifically, the 𝐼 and 𝑄 for the first pre-training task are:

𝐼 : "Unexpectedness means something that surprises somebody
because the person is not expecting it. In recommendation tasks, being
unexpected means the items are unlikely to be recommended to a user
given this user’s preferences. Given a user’s history, please answer
"Yes" or "No" on whether the candidate item is unexpected to the user."

𝑄 : "Given a user with a history 𝐻𝑢 , could you answer whether the
candidate item 𝑖 is unexpected to this user 𝑢?"

Similar to Continuous Style 1, during the pre-training process
for this first pre-training task, the LLM is frozen, and only the
parameters of 𝑓 (·) are updated through the loss values between
the model answers and the ground truths on unexpectedness. We
adopted the commonly used cross-entropy loss function similar to
Continuous Style 1. The 𝐼 and 𝑄 for the second pre-training task
are similar to the first pre-training task. The only change is from
about unexpectedness to about relevance.

To pre-train 𝑓 (·) with the two different pre-training tasks, a com-
monly used approach is sequentially training it with the two tasks.
It may cause 𝑓 (·) to "remember" only the second task and "forget"
the first task [11, 24]. Therefore, we constructed a mixed two-task
dataset to pre-train 𝑓 (·) simultaneously. The mixed dataset sampled
the training instances for the two pre-training tasks respectively
and then mixed them in one dataset. That way, the pre-training
process is able to strike a balance between the two tasks. Consider-
ing that two pre-training tasks may not contribute equally to the
final vector representation, a sampling ratio 𝑒

𝑙
was experimented

to control the proportion of the two tasks in the mixed two-task
dataset.

After being pre-trained, 𝑓 (·) is expected to obtain some "prior
knowledge" on serendipity. We further fine-tuned 𝑓 (·) using the
direct training instances on serendipity. The process is the same
with the training task in Continuous Style 1.

Although continuous templates are more flexible compared to
discrete ones, the quality of the generated tokens highly relies on
the selection of 𝑓 (·) and the training instances. More importantly,
these tokens are randomly initialized, which may introduce some
uncertainties and noises [29]. Therefore we further propose a hybrid
prompt, which is a mixture of natural words and virtual tokens.
We expect this type of prompt is able to provide stable input to the
LLMs while controlling the level of uncertainties and noises.

3.3 Prompting LLMs via Hybrid Templates
In a hybrid prompt with both natural words and virtual tokens, we
need to decide on what part(s) of the prompt should use natural
words and what part(s) should use virtual tokens. One principle
we used is that if a part is information-rich, and natural
words for it may not be sufficiently expressive, we will use

virtual tokens. If a part needs to provide precise knowledge
to the LLM without introducing any uncertainty, we will go
with natural words. Therefore, we selected the 𝐻𝑢 and 𝑖 elements
in the input question 𝑄 to be the virtual tokens, because they (a
series of names) may not contain the rich information needed by
the LLM to recommend serendipity. In contrast, the task descrip-
tion 𝐼 and the remaining part of 𝑄 used natural words, since they
reduce uncertainty and provide useful background knowledge. For
the virtual tokens parts, we learned a mapping function 𝑚(·) to
project the natural words of 𝐻𝑢 and 𝑖 to two sets of virtual tokens
[𝑃𝐻𝑢

1] ...[𝑃𝐻𝑢
𝑛3] and [𝑃𝑖1] ...[𝑃

𝑖
𝑛4]:

𝑚(𝐻𝑢 , 𝑖) → [𝑃𝐻𝑢

1] ...[𝑃𝐻𝑢
𝑛3]; [𝑃𝑖1] ...[𝑃

𝑖
𝑛4] (5)

Similar to the continuous prompts, we do not have the demon-
stration set 𝐷 in the prompts since the training instances for𝑚(·)
play the role of providing additional demonstrations. Similar to the
discrete and continuous prompts, we also designed two styles for
the hybrid prompt templates.

3.3.1 Hybrid Style 1: Direct. This style trains 𝑚(·) to generate
token representations for a direct question of serendipity. As in
Table 3 for this Style, the task description 𝐼 is the same with Discrete
Style 1. The input question 𝑄 is also the same with Discrete Style 1
except that we replaced 𝐻𝑢 and 𝑖 with virtual tokens.

To learn the optimal virtual tokens, we froze the LLM’s parame-
ters and only optimized𝑚(·) by calculating the loss values between
the model answers and the ground truths on serendipity. We used
the cross-entropy loss function.

3.3.2 Hybrid Style 2: Indirect. Similar to Continuous Style 2, in this
Style as in Table 3, we do not directly learn the tokens for the direct
question of serendipity. Instead, we first pre-trained the tokens
with those two pre-training tasks, and then fine-tuned them for the
question of serendipity.

4 EXPERIMENTS
4.1 Construction of Ground Truths
In this paper, for continuous and hybrid prompts, we need the
ground truth data to train, pre-train, or fine-tune the Transformer
encoders added to the LLMs. For discrete prompts, we need the
ground truth data to provide various positive and negative demon-
strations. Specifically, we need three types of ground truth: serendip-
ity, unexpectedness, and relevance.

For serendipity, we used SerenLens [4], an existing large-scale
ground truth dataset on serendipity books, as the base dataset.
We further converted this base into an instruction format that is
compatible with the LLM prompt and output formats, in order to
serve as the training instances for the Transformer encoders as well
as demonstrations in discrete prompts. In total, we obtained 5,114
training instances.

For unexpectedness, we did not have any existing base dataset to
convert. Therefore, we propose a computational approach to "cal-
culate" the ground truth of unexpectedness, avoiding the tedious
human labeling process. In Psychology, unexpectedness is defined
as violation of expectation [19]. We propose a computational op-
erationalization of this definition. Specifically, we first calculated
the conditional likelihood of seeing an item given a user’s history

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

Table 3: Hybrid prompt templates for serendipity recommendations

LLM Input

Task Description 𝐼
Serendipity means an unexpected but relevant discovery to a user. Given a user’s history,

Hybrid Direct Serendipity Task please answer “Yes” or “No” on whether a candidate item is a serendipity to the user.
Style 1: Prompt Input Question𝑄

Given a user 𝑢 with a history [𝑃𝐻𝑢
1] ...[𝑃𝐻𝑢

𝑛3], could you answer whether the candidate
item [𝑃𝑖

1] ...[𝑃𝑖
𝑛4] is a serendipity to this user 𝑢?

Expected LLM Output
"Yes" or "No"

LLM Input

Task Description 𝐼

Unexpectedness means something that surprises somebody because the person is not expecting
it. In recommendation tasks, being unexpected means the items are unlikely to be
recommended to a user given this user’s preferences, usually represented by the user’s history.

Pre-Training Task 1 Given a user’s history, please answer "Yes" or "No" on whether the candidate item is unexpected
(Unexpectedness) to the user.

Prompt Input Question𝑄
Given a user 𝑢 with a history [𝑃𝐻𝑢

1] ...[𝑃𝐻𝑢
𝑛3], could you answer whether the candidate

item [𝑃𝑖
1] ...[𝑃𝑖

𝑛4] is unexpected to this user 𝑢?
Expected LLM Output

"Yes" or "No"
LLM Input

Task Description 𝐼

Relevance means something being closely connected or related to the current topic of interest.
In recommendation tasks, being relevant means the items are closely related to a user’s

Hybrid Pre-Training Task 2 preferences, usually represented by the user’s history. Given a user’s history, please answer "Yes"
Style 2: (Relevance) or "No" on whether the candidate item is relevant to the user.
Indirect Prompt Input Question𝑄

Given a user 𝑢 with a history [𝑃𝐻𝑢
1] ...[𝑃𝐻𝑢

𝑛3], could you answer whether the candidate
item [𝑃𝑖

1] ...[𝑃𝑖
𝑛4] is relevant to this user 𝑢?

Expected LLM Output
"Yes" or "No"
LLM Input

Task Description 𝐼
Serendipity means an unexpected but relevant discovery to a user. Given a user’s history,

Fine-Tuning Task please answer “Yes” or “No” on whether a candidate item is a serendipity to the user.
(Serendipity) Input Question𝑄

Given a user 𝑢 with a history [𝑃𝐻𝑢
1] ...[𝑃𝐻𝑢

𝑛3], could you answer whether the candidate
Prompt item [𝑃𝑖

1] ...[𝑃𝑖
𝑛4] is a serendipity to this user 𝑢?

Expected LLM Output
"Yes" or "No"

of interacted items. We then used a low level of such conditional
likelihood as a high level of unexpectedness. Therefore, the level of
unexpectedness of an item 𝑖 to a user with a history𝐻𝑢 is calculated
as:

𝑢𝑛𝑒𝑥𝑝 (𝑢,𝑖) = −𝑙𝑜𝑔 𝑝 (𝑖 |𝐻𝑢) (6)
where the negative sign is to indicate the opposite relationship
between the cognitional likelihood and the level of unexpectedness.
The logarithm function is to smooth the larger values. Using the
Law of Total Probability, the conditional probability in Equation 6
could be rewritten as:

𝑢𝑛𝑒𝑥𝑝 (𝑢,𝑖) = −𝑙𝑜𝑔 𝑝 (𝑖 |𝐻𝑢) = −𝑙𝑜𝑔
∑︁

𝑖𝑢 ∈𝐻𝑢

𝑝 (𝑖 |𝑖𝑢)𝑝 (𝑖𝑢 |𝐻𝑢) (7)

where 𝑖𝑢 is a user’s historically interacted item in𝐻𝑢 , 𝑝 (𝑖𝑢 |𝐻𝑢) is
the occurring probability of 𝑖𝑢 in𝐻𝑢 , and 𝑝 (𝑖 |𝑖𝑢) could be calculated
as:

𝑝 (𝑖 |𝑖𝑢) = 𝑛 (𝑖, 𝑖𝑢)∑
𝑖∈𝐼 𝑛 (𝑖, 𝑖𝑢)

(8)

where the numerator 𝑛(𝑖, 𝑖𝑢) is the co-occurrence count for an item
𝑖 and 𝑖𝑢 in all users’ histories. The denominator is the sum of such
co-occurrence count over each item 𝑖 in the item set 𝐼 . All of the

components on the right side of this Equation 7 could be calculated
from a dataset. After calculating all the items’ 𝑢𝑛𝑒𝑥𝑝 (𝑢,𝑖) values for
the user 𝑢 with the history 𝐻𝑢 , we selected the items with the top
values as the user’s unexpected items (positive cases) and the items
with the bottom values as the expected items (negative cases). We
applied this approach to the Amazon Review Data [17] to calculate
the level of unexpectedness between a book and a user. In total, we
obtained 46,920 user-book pairs (the positive and negative pairs
combined) and used them as the base to reformat according to
the LLM prompt and output requirements to serve as the training
instances or demonstrations.

For relevance, we used the Amazon Review Data [17] again and
followed the common practice in the recommendation research
community: the observed interaction between a user and a book
establishes a relevance label for this user-book pair. Other user-
book pairs with no observed interactions are deemed as irrelevance.
We obtained more than 100 million cases (user-book pairs). We
sampled them according to the sampling ratio (𝑒

𝑙
) (mentioned in

Section 3.2.2) with respect to the unexpectedness dataset. We then
reformatted the sampled cases into training instances or demon-
strations.

The Art of Asking: Prompting Large Language Models for Serendipity Recommendations Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

4.2 Backbone LLMs
We chose two open-source LLMs for the implementation of Seren-
Prompt: Flan-T5 (the 11B version) and Llama 2 (the 13B version).
They are two different representative open-source LLMswith strong
performance on various tasks. Flan-T5 (the 11B version) is an en-
hanced version of T5 that has been fine-tuned in a series of tasks.
It has comparable performance in many language tasks to much
larger models, such as PaLM (the 62B version). Structurally, it has
both Transformer encoders and decoders. On the other hand, Llama
2 (the 13B version) is an enhanced version of Llama 1 developed by
Meta, with stronger performance. Structurally, it only has Trans-
former decoders. These two models are the two representative LLM
structures.

4.3 Evaluation Metrics and Baseline Models
Since serendipity is relatively rare compared to non-serendipity
in the ground truth datasets, we adopted a recall-based metric,
Hit Ratio (HR). HRseren@k measures the proportion of times the
serendipity item is retrieved in the top-k position (1 for yes and 0
otherwise). In order to take the rank information into consideration
and assign higher weights on higher ranks, I propose another met-
ric called Serendipity-Based Normalized Discounted Cumulative
Gain (NDCGseren) based on the well-known metric Normalized
Discounted Cumulative Gain (NDCG). NDCGseren@k is calculated
as:

𝑁𝐷𝐶𝐺𝑠𝑒𝑟𝑒𝑛@𝑘 =

𝑘∑︁
𝑖=1

𝑠𝑒𝑟𝑒𝑛𝑑𝑖𝑝𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 (1 𝑜𝑟 0)
𝑙𝑜𝑔2 (𝑖 + 1) (9)

For bothHRseren@k andNDCGseren@k, a higher value indicates
a better performance.

To evaluate the performance of the series of SerenPrompt, we
selected the following two groups of representative baseline rec-
ommendation models. The first group consists of one randomness-
based method and four well-known deep learning recommendation
models for serendipity: RAND, DESR [14], PURS [12], SNPR [28],
and SerenEnhance [4].

The second group is two well-known deep learning recommen-
dation models for relevance tasks: SASRec [9] and BERT4Rec
[22]. Both of the two groups of models are state-of-the-art deep
learning models published in top venues in recent years.

4.4 Experiment Setups
For the continuous and hybrid prompts, 80% of the data in SerenLens
was used for training 𝑓 (·) or𝑚(·) and the rest 20% was for testing.
Since discrete prompts do not have a training process, we directly
used the testing set for evaluations. For all discrete prompts, we
use 10 demonstrations with 5 positive ones and 5 negative ones.
For Continuous Style 2 and Hybrid Style 2 prompts, we pre-trained
the virtual tokens on the mixed two-task dataset sampled from the
UnexpectedBooks and the RelevantBooks datasets. For all prompts,
for each user in the test set, we held one serendipity item as the
testing positive sample, and then paired it with 99 non-serendipity
items that were randomly sampled from the dataset as the negative
samples. We compared the LLM prompted by SerenPrompt with the
baseline models using the metrics (HRseren@k and NDCGseren@k).
For all models, we adopted 5-fold cross-validation to evaluate the
performance. We trained our models using the Adam optimizer. We

set the learning rate 0.001, the hidden dimension 128, the dropout
rate 0.2, and the regularizer decay 0.001 for all the models. Other
model-specific hyper-parameters either followed their original stud-
ies or were adjusted for the training performance in this study. We
reported the results using the optimal hyper-parameter settings. In
addition, for fair comparisons, we set the head number of the multi-
head attention 2 for the models involving Transformers: SASRec,
BERT4Rec, SNPR, SerenEnhance, and LLMs with SerenPrompt.

5 EXPERIMENT RESULTS
5.1 Hyperparameter Analysis
The core hyperparameters of SerenPrompt are the numbers of the
virtual tokens (i.e., 𝑛1, 𝑛2, 𝑛3, and 𝑛4) and the sampling ratio (𝑒

𝑙
) be-

tween the unexpectedness and relevance tasks in the mixed dataset
in the pre-training stage for both the continuous and the hybrid
prompts. We investigated the effects of changing these hyperpa-
rameters on the recommendation performance.
Numbers of the virtual tokens. Following the study of [29], we
adopted a coarse hyperparameter training strategy, which makes
𝑛1 = 𝑛2 and 𝑛3 = 𝑛4. We chose 𝑛1, 𝑛2, 𝑛3, and 𝑛4 from the set of
values {1,2,3,4,5} and explored the optimal settings with the best
HRseren@10. As shown in Figure 2a, for the continuous prompts, as
𝑛1 or 𝑛2 increases, the performance of SerenPrompt increases first
and decreases then. When 𝑛1 = 𝑛2 = 2, HRseren@10 reaches the
highest values for both Flan-T5 and Llama 2. The results indicate
that both too few and too many tokens will result in ineffective
prompts. Too few tokens may lack sufficient task information, while
too many tokens may suffer from noisy and ambiguous information.

(a) Continuous templates (b) Hybrid templates

Figure 2: The recommendation performances of SerenPrompt
using different numbers of virtual tokens

For the hybrid prompts, as shown in Figure 2b, when𝑛3 = 𝑛4 = 1,
HRseren@10 reaches the highest value for both Flan-T5 and Llama
2. That means only one token is sufficient to represent the user or
the candidate item. We also observe that as the number of virtual
tokens increases, the performance of the LLMs with SerenPrompt
keeps decreasing. Compared with the continuous prompts, the
hybrid ones require fewer virtual tokens. Therefore, in the following
subsections, we will only report the results of SerenPrompt with
𝑛1 = 𝑛2 = 2 and 𝑛3 = 𝑛4 = 1 where applicable.
Sampling ratio of the two-task dataset. Using the optimal num-
bers of virtual tokens, we further investigated the effects of differ-
ent 𝑒

𝑙
. As illustrated in Figure 3, Flan-T5 and Llama 2 have similar

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

Table 4: The performance comparison of different SerenPrompts and baseline models on the serendipity recommendation
task. The reported number is the average of 5 folds. The best results in each column are bolded and the second best results are
underlined. ∗ denotes that our proposed model has statistically significant differences with all of the seven baseline models
under a two-tailed t-test with p < 0.05.

HRseren@1 HRseren@5 HRseren@10 NDCGseren@5 NDCGseren@10

Serendipity

RAND 1.15% 4.51% 9.16% 0.028 0.043
DESR 6.25% 23.02% 36.67% 0.144 0.178
PURS 5.76% 22.60% 32.20% 0.139 0.170
SNPR 7.46% 24.09% 38.81% 0.149 0.192
SerenEnhance 9.81% 30.49% 45.63% 0.329 0.364

Relevance SASRec 6.13% 25.33% 41.37% 0.157 0.209
BBERT4Rec 8.03% 27.02% 41.79% 0.166 0.214

Flan-T5

Discrete Style 1 4.65% 17.83% 31.17% 0.105 0.142
Discrete Style 2 5.19% 18.88% 32.51% 0.111 0.148
Continuous Style 1 6.03% 28.96% 34.48% 0.159 0.186
Continuous Style 2 8.32% 31.29% 41.94% 0.262 0.273
Hybrid Style 1 5.91% 23.34% 39.66% 0.145 0.178
Hybrid Style 2 13.65%∗ 34.60%∗ 47.31%∗ 0.354∗ 0.398∗

Llama 2

Discrete Style 1 3.85% 15.38% 33.36% 0.101 0.135
Discrete Style 2 4.16% 16.18% 34.46% 0.107 0.145
Continuous Style 1 5.13% 23.67% 35.53% 0.127 0.164
Continuous Style 2 8.64% 26.43% 37.50% 0.188 0.218
Hybrid Style 1 5.68% 17.69% 34.54% 0.115 0.152
Hybrid Style 2 11.38%∗ 33.85%∗ 46.15%∗ 0.332∗ 0.374∗

(a) Continuous templates (b) Hybrid templates

Figure 3: The recommendation performances of SerenPrompt
using the two-task dataset with different sampling ratios

trends for either continuous or hybrid prompts. When 𝑒
𝑙
= 50

50 ,
HRseren@10 reaches the highest performance for both the prompts.
The results indicate that a two-task dataset with an equal amount
of training instances for the unexpectedness and relevance tasks is
most effective to provide balanced "prior knowledge" on serendipity.
In the following subsections, we will only report the results using
𝑒
𝑙
= 50

50 where applicable.

5.2 Overall Performance Comparison
From Table 4, we know that the hybrid template with the pre-
training and fine-tuning process (Hybrid Style 2: Indirect) achieves
the best performance among all the baseline models and the other

types of SerenPrompt. In general, the LLMs prompted by the con-
tinuous templates and hybrid templates obtain a better perfor-
mance than discrete templates. It suggests that compared to natural
words, virtual tokens are more powerful in expressing a prompt for
serendipity recommendations.

In addition, no matter which type of SerenPrompt, Style 2’s per-
formance is better than Style 1. The results prove the effectiveness
of the decomposition of serendipity. Breaking down the direct ques-
tion on serendipity into two sub-questions on unexpectedness and
relevance is more helpful for the LLM to recommend serendipity.

It is interesting to note that prompting LLMs via discrete tem-
plates, which do not involve any model training, obtain a perfor-
mance close to the other serendipity-oriented deep recommenda-
tion models (e.g., DESR, PURS, and SNPR). The results demonstrate
the power of LLMs. They only need a task description and a few
demonstrations to be on a par with the state-of-the-art baseline
models. They are able to get around of the need of massive ground
truth data. The potential offers many avenues for not only serendip-
ity recommendations, but all kinds of recommendations in general.

5.3 Template Efficiency
Since the LLMs contain billions of parameters, the efficiency of
prompting LLMs via SerenPrompt is another critical evaluation for
serendipity recommendations. To compare the efficiency among
different prompt templates, we calculated the average inference
time of the LLM on 1 instance. We tested all the templates on the
testing set of SerenLens dataset with 8 NVIDIA Tesla V100S GPUs.
We kept all the hyperparameter settings the same for each template.
The results are shown in Table 5.

The Art of Asking: Prompting Large Language Models for Serendipity Recommendations Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Figure 4: Top-5 recommendation lists generated by different types and styles of prompts

Table 5: Prompt efficiency comparison

HRseren@10 Inference Time
in seconds

Flan-T5

Discrete Style 1 31.17% 5.57s
Discrete Style 2 32.51% 8.90s
Continuous Style 1 34.48% 0.38s
Continuous Style 2 41.94% 0.40s
Hybrid Style 1 39.66% 1.09s
Hybrid Style 2 47.31% 2.85s

Llama 2

Discrete Style 1 33.36% 20.14s
Discrete Style 2 34.46% 21.68s
Continuous Style 1 35.53% 4.16s
Continuous Style 2 37.50% 3.63s
Hybrid Style 1 34.54% 17.66s
Hybrid Style 2 46.15% 21.51s

We observe that the continuous templates for both Flan-T5 and
Llama 2 have the least inference time while the discrete templates
have the most. The results indicate that templates with more virtual
tokens and fewer natural words improve the LLM’s efficiency. In
addition, the hybrid templates obtain the best recommendation per-
formance onHRseren@10with relatively lower sacrifice to inference
time, achieving a good compromise between the two conflicting
goals: performance and efficiency.

5.4 A Case Study
To have an intuitive understanding of the model results, we selected
an example user to showcase the recommendation results using
different types and styles of prompts. As shown in Figure 4, there
is a user interested in the books with topics of women, urban life,
and romance according to her or his history. We also find that

this user had a serendipity experience on finding a book titled The
Awakening: A Vampire Huntress Legend as in his or her written
review:

"I haven’t picked up a good vampire novel in quite a while...I really
didn’t have high expectations for this novel or any others in this genre.
What a surprise to discover that a Philadelphia Sistah has written a
bona fide, nail-biting vampire novel that is equal if not better than
Anne Rice, et al."

This book is a fantasy book with the romance and horror ele-
ments in it. It is not the usual type of this user. As shown in Figure 4,
only the hybrid prompts with both styles and the Continuous Style
2 prompts were able to recommend this book in their top-5 recom-
mendation list (as highlighted in the red box). The discrete prompts
with both styles tend to recommend books more closely following
this user’s history, such as romance and health books. The contin-
uous and the hybrid prompts are bolder and more deviating from
the user’s usual type.

6 CONCLUSIONS
In this paper, we investigated the potential of prompting LLMs to
obtain serendipity recommendations. We designed three types of
prompts: discrete, continuous, and hybrid, to investigate the expres-
siveness or effectiveness of natural words and virtual tokens used
in prompts for serendipity recommendations. Meanwhile, for each
type, we also designed two styles: direct and indirect, to investigate
whether it is feasible to ask a direct question on serendipity or it is
better to breakdown the direct question into two sub-questions. Ex-
tensive experiments have shown that the combination of the hybrid
type and the indirect style achieves the best performance with rela-
tively low sacrifice to computational efficiency, and outperforms
all of the state-of-the-art baseline models.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

REFERENCES
[1] Philip W Anderson. 1972. More Is Different: Broken symmetry and the nature of

the hierarchical structure of science. Science 177, 4047 (1972), 393–396.
[2] Li Chen, Yonghua Yang, Ningxia Wang, Keping Yang, and Quan Yuan. 2019. How

serendipity improves user satisfaction with recommendations? a large-scale user
evaluation. In The World Wide Web Conference. 240–250.

[3] Allen Foster and Nigel Ford. 2003. Serendipity and Information Seeking: an
Empirical Study. Journal of Documentation 59, 3 (2003), 321–340.

[4] Zhe Fu, Xi Niu, and Li Yu. 2023. Wisdom of Crowds and Fine-Grained Learning
for Serendipity Recommendations. In Proceedings of the 46th International ACM
SIGIR Conference on Research and Development in Information Retrieval. 739–748.

[5] Tianyu Gao, Adam Fisch, and Danqi Chen. 2021. Making Pre-trained Language
Models Better Few-shot Learners. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing. 3816–3830.

[6] Ted Gup. 1998. Technology and the End of Serendipity. The Education Digest 63,
7 (1998), 48.

[7] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T Riedl.
2004. Evaluating collaborative filtering recommender systems. ACM Transactions
on Information Systems (TOIS) 22, 1 (2004), 5–53.

[8] Wenyue Hua, Yingqiang Ge, Shuyuan Xu, Jianchao Ji, and Yongfeng Zhang. 2023.
UP5: Unbiased Foundation Model for Fairness-aware Recommendation. arXiv
preprint arXiv:2305.12090 (2023).

[9] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE International Conference on Data Mining (ICDM). IEEE,
197–206.

[10] Denis Kotkov, Joseph A Konstan, Qian Zhao, and Jari Veijalainen. 2018. Inves-
tigating serendipity in recommender systems based on real user feedback. In
Proceedings of the 33rd Annual ACM Symposium on Applied Computing. 1341–
1350.

[11] Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang.
2017. Overcoming catastrophic forgetting by incremental moment matching.
Advances in neural information processing systems 30 (2017).

[12] Pan Li, Maofei Que, Zhichao Jiang, Yao Hu, and Alexander Tuzhilin. 2020. PURS:
Personalized Unexpected Recommender System for Improving User Satisfaction.
In Fourteenth ACM Conference on Recommender Systems. 279–288.

[13] Xueqi Li, Wenjun Jiang, Weiguang Chen, Jie Wu, and Guojun Wang. 2019. HAES:
A new hybrid approach for movie recommendation with elastic serendipity.
In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management. 1503–1512.

[14] Xueqi Li, Wenjun Jiang, Weiguang Chen, Jie Wu, Guojun Wang, and Kenli Li.
2020. Directional and explainable serendipity recommendation. In Proceedings of
The Web Conference 2020. 122–132.

[15] Junling Liu, Chao Liu, Renjie Lv, Kang Zhou, and Yan Zhang. 2023. Is ChatGPT
a Good Recommender? A Preliminary Study. arXiv preprint arXiv:2304.10149
(2023).

[16] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-Train, Prompt, and Predict: A Systematic Survey of
Prompting Methods in Natural Language Processing. Comput. Surveys 55, 9
(2023), 1–35.

[17] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based recommendations on styles and substitutes. In Proceedings of
the 38th ACM International Conference on Research and Development in Information
Retrieval (SIGIR). ACM, 43–52.

[18] William McKeen. 2006. The Endangered Joy of Serendipity. St. Petersburg Times
(2006).

[19] Wulf-Uwe Meyer, Rainer Reisenzein, and Achim Schützwohl. 1997. Toward a
process analysis of emotions: The case of surprise. Motivation and Emotion 21, 3
(1997), 251–274.

[20] Gaurav Pandey, Denis Kotkov, and Alexander Semenov. 2018. Recommending
serendipitous items using transfer learning. In Proceedings of the 27th ACM
international conference on information and knowledge management. 1771–1774.

[21] Victoria L Rubin, Jacquelyn Burkell, and Anabel Quan-Haase. 2011. Facets of
Serendipity in Everyday Chance Encounters: a Grounded Theory Approach to
Blog Analysis. Information Research 16, 3 (2011).

[22] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder repre-
sentations from transformer. In Proceedings of the 28th ACM International Confer-
ence on Information and Knowledge Management (CIKM). ACM, 1441–1450.

[23] Jennifer Thom-Santelli. 2007. Mobile Social Software: Facilitating Serendipity or
Encouraging Homogeneity? IEEE Pervasive Computing 6, 3 (2007), 46.

[24] Ruthvik Vaila, John Chiasson, and Vishal Saxena. 2020. Continuous learning in a
single-incremental-task scenario with spike features. In International Conference
on Neuromorphic Systems 2020. 1–4.

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. 30 (2017).

[26] Thomas Wang, Adam Roberts, Daniel Hesslow, Teven Le Scao, Hyung Won
Chung, Iz Beltagy, Julien Launay, and Colin Raffel. 2022. What Language Model
Architecture and Pretraining Objective Works Best for Zero-Shot Generalization?.
In Proceedings of the 39th International Conference on Machine Learning. PMLR,
22964–22984.

[27] Yuanbo Xu, Yongjian Yang, En Wang, Jiayu Han, Fuzhen Zhuang, Zhiwen Yu,
and Hui Xiong. 2020. Neural serendipity recommendation: Exploring the balance
between accuracy and novelty with sparse explicit feedback. ACM Transactions
on Knowledge Discovery from Data (TKDD) 14, 4 (2020), 1–25.

[28] Mingwei Zhang, Yang Yang, Rizwan Abbas, Ke Deng, Jianxin Li, and Bin Zhang.
2021. SNPR: A Serendipity-Oriented Next POI Recommendation Model. In Pro-
ceedings of the 30th ACM International Conference on Information & Knowledge
Management. 2568–2577.

[29] Zizhuo Zhang and BangWang. 2023. Prompt Learning for News Recommendation.
In Proceedings of the 46th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 227–237.

	Abstract
	1 Introduction
	2 Related Work
	2.1 The Concept of Serendipity and Its Distinction with Diversity and Novelty
	2.2 Deep Learning Models for Serendipity Recommendations
	2.3 LLMs for Recommendation Models

	3 SerenPrompt: Prompting an LLM for Serendipity Recommendations
	3.1 Prompting LLMs via Discrete Templates
	3.2 Prompting LLMs via Continuous Templates
	3.3 Prompting LLMs via Hybrid Templates

	4 Experiments
	4.1 Construction of Ground Truths
	4.2 Backbone LLMs
	4.3 Evaluation Metrics and Baseline Models
	4.4 Experiment Setups

	5 Experiment Results
	5.1 Hyperparameter Analysis
	5.2 Overall Performance Comparison
	5.3 Template Efficiency
	5.4 A Case Study

	6 Conclusions
	References

