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ABSTRACT

Geospatial understanding is a critical yet underexplored dimension in the devel-
opment of machine learning systems for tasks such as image geolocation and spa-
tial reasoning. In this work, we analyze the geospatial representations acquired
by three model families: vision-only architectures (e.g., ViT), vision-language
models (e.g., CLIP), and large-scale multimodal foundation models (e.g., LLaVA,
Qwen, and Gemma). By evaluating across image clusters, including people, land-
marks, and everyday objects, grouped based on the degree of localizability, we
reveal systematic gaps in spatial accuracy and show that textual supervision en-
hances fine-grained geospatial representations. Our findings suggest the role of
language as an effective complementary modality for encoding spatial context and
multimodal learning as a key direction for advancing geospatial AI.

1 INTRODUCTION

Vision models have undergone tremendous progress in the last decade, driven by advances in con-
volutional neural network (CNN) architectures (Simonyan & Zisserman, 2014; He et al., 2016) and
Vision Transformers (ViT) (Dosovitskiy et al., 2021). These models are capable of capturing high-
level, transferable representations that can be utilized in zero-shot scenarios via their embeddings
and be adapted through fine-tuning for specific downstream tasks. Specifically, ViTs benefit from
the scalability of Transformers (Vaswani et al., 2017) and enable the development of foundation
models across multiple data modalities and application domains.

Recent advances such as CLIP (Radford et al., 2021) include multimodal models that integrate text
and vision to learn joint representations within a shared latent space. Another line of research focuses
on vision-language models (VLMs), which integrate text and image inputs through a two-stage
training pipeline: an initial phase using paired text-image data, followed by instruction tuning (Liu
et al., 2024; Bai et al., 2025; Kamath et al., 2025). These models typically employ a frozen vision
encoder alongside a language model, enabling multimodal understanding and generation.

Vision models increasingly demonstrate the ability to internalize diverse meta information around
the world, raising the question of whether they also encode geolocation—even without explicit
geospatial supervision. Their internal representations are shaped by architecture, pretraining, and
fine-tuning, yet remain difficult to interpret (Ghiasi et al., 2022). This challenge is further amplified
in emerging VLMs, where multimodal complexity obscures the mechanisms by which knowledge is
encoded. Such opacity can lead to unintended outcomes, including geographic disparities (Moayeri
et al., 2024). To improve fairness and transparency, we examine the capacity of vision-only and
vision-language models to encode implicit geospatial information (Figure 1) by asking the following
question: To what extent do these models internalize global location knowledge as an emergent
property of their training and fine-tuning pipelines?

Learning geospatial representations via supervised training has already been explored by Vi-
vanco Cepeda et al. (2023). Following on their work, we are interested in investigating what kinds of
geospatial features are learned during training without additional supervision. For text-based large
language models (LLMs), Gurnee & Tegmark (2024) and Godey et al. (2024) have shown that spe-
cific neurons and layers within LLMs implicitly encode latitude and longitude information and that
this capacity scales with increasing model size.
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Figure 1: Schematic illustration showing that editing the geospatial representations (through dimen-
sion swapping) changes the perceived geolocation during token generation of VLMs. We demon-
strated this finding on Qwen2.5-VL-3B with the methodology described in Section 4.5.

Embeddings from pretrained LLMs can also be used to create geospatial embeddings from
geolocation-related prompts, as shown in LLMGeovec (He et al., 2025), where its representations
improve performance on various downstream tasks requiring geospatial understanding. Addition-
ally, Roberts et al. (2024) has shown that VLMs have spatial reasoning capabilities, being able to
complete a variety of tasks through zero-shot settings. We extend these results by focusing on how
ViT models separate images spatially in their learned latent space and exploring how these models
learn geospatial representations.

Our main contributions are as follows.

• We investigate the emergence of geospatial representations learned by vision-only archi-
tectures, vision-language models, and large-scale multimodal foundation models, finding
that the latter two groups exhibit substantially stronger geospatial structure.

• We evaluate the performance of different model representations using layer-wise probing
for geospatial location prediction. We find that vision-only models tend to exhibit stronger
representations on their last layer, while VLMs have better geospatial representations on
the early layers of their language model block.

• We show that prompting VLMs allows the geospatial information to be propagated to the
latter layers, in some cases leading to an increase in representation quality.

2 RELATED WORKS

2.1 VISION-BASED MODELS

ViTs emerged as a paradigm shift in computer vision, adapting Transformers (Vaswani et al., 2017)
to image data by segmenting images into tokenized patches with positional embeddings (Dosovit-
skiy et al., 2021). The initial ViT model demonstrated that large-scale supervised pretraining on im-
age classification tasks could yield transferable representations across domains. Researchers have
also explored self-supervised approaches to vision. One such method is the masked autoencoder
(MAE) (He et al., 2022), which trains models to reconstruct randomly masked image patches. This
objective encourages the extraction of semantically rich features that can be effectively adapted to
downstream tasks via fine-tuning.

2
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As an alternative to self-supervised pretraining, Caron et al. (2021) proposed a self-distillation
framework named DINO. This approach enables the model to learn invariant representations across
multiple augmented views of the same image, resulting in linearly separable features that implic-
itly capture semantic structures such as object boundaries and regions. Building upon this founda-
tion, DINOv2 (Oquab et al., 2023) extends this methodology by incorporating the IBOT loss (Zhou
et al., 2021), a patch-level objective. This integration facilitates scalable pretraining, enhancing the
model’s capacity to learn fine-grained visual representations from large-scale unlabeled datasets.

2.2 VISION-LANGUAGE MODELS

A turning point for vision models has been the integration of language for learning shared represen-
tations. Pioneering work like CLIP jointly trained a vision encoder and a language encoder to align
their representations using a large corpus of web-scraped image-caption pairs (Radford et al., 2021).
Subsequent research, such as SIGLIP (Zhai et al., 2023), expanded CLIP by replacing softmax loss
with a sigmoid objective, decoupling performance from batch size and allowing for improved scal-
ability. These models are fundamental and are applied as the core vision-encoder for many of the
vision-language foundation models presented in our work.

Foundation VLMs utilize specialized training pipelines. For example, LLaVA-1.5 (Liu et al., 2024)
employs a two-stage training process, first aligning a frozen CLIP visual encoder with an LLM on
image-text pairs, and then fine-tuning the model on a GPT-generated instruction-following dataset to
enhance its conversational and reasoning abilities. Qwen2.5 (Bai et al., 2025) follows a similar pro-
cess, pretraining on image-text pairs and then performing additional supervised fine-tuning (SFT)
and direct preference optimization (DPO) to structure instruction-following data. Gemma 3 (Ka-
math et al., 2025) leverages a frozen SIGLIP vision encoder, a pretraining stage similar to previous
models, and a post-training stage that includes knowledge distillation from a larger instruction-tuned
model and alignment with human feedback via SFT and reinforcement learning with human feed-
back (RLHF).

3 METHODS

3.1 MODELS

To examine how geolocation capabilities emerge in vision models without explicit supervision, we
curated a diverse set of architectures spanning multiple modalities and training paradigms. Our
selection includes both (i) vision-only encoders, i.e., ViT (Dosovitskiy et al., 2021), ViT Masked
Autoencoder (He et al., 2022), and DINOv2 (Oquab et al., 2023) and (ii) vision–language models,
i.e., CLIP (Radford et al., 2021), LLaVA-1.5 (Liu et al., 2024), Qwen2.5 (Bai et al., 2025), and
Gemma 3 (Kamath et al., 2025), representing supervised and self-supervised approaches. For each
model family, we evaluated at least two size variants to assess the influence of scale on learned
geospatial representations. Additional information about these models is given in Appendix A.

3.2 DATASET

To build our dataset, we sampled images from established benchmarks, including YFCC100M and
Google Landmarks. We provide the details below.

Yahoo Flickr Creative Commons 100 Million (YFCC100M) (Thomee et al., 2016). We used a
4M-image subset from the MediaEval 2016 Placing Task competition (Choi et al., 2016), obtained
via Kaggle1. This dataset is a diverse collection of Flickr-sourced images spanning natural scenes,
urban environments, and everyday objects with location data. To analyze localizability across se-
mantic categories, we partitioned this subset via unsupervised clustering. First, we extracted image
embeddings with ResNet-152 (He et al., 2016) pretrained on ImageNet (Deng et al., 2009), then
we applied principal component analysis (PCA) to retain the top-100 components explaining the
highest variance and performed k-means clustering (Han et al., 2022). Among 19 tested k values
(k = 10, 15, . . . , 100), we selected k = 40 using the elbow method (Thorndike, 1953), with manual
inspection confirming semantic coherence. The resulting clusters captured meaningful categories,

1https://www.kaggle.com/datasets/habedi/large-dataset-of-geotagged-images
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including people, objects, cliffs, landscapes, and buildings. Complete clustering details are provided
in Appendix B.

Google Landmarks (Weyand et al., 2020). This dataset contains over 5M photographs of glob-
ally recognized landmarks and tourist sites (e.g., Eiffel Tower, Mount Fuji) that are available in
public data sources. We hypothesize that such iconic scenes may have been encountered during
model pretraining, contributing to their high localizability. It also contains non-localizable images,
such as particularly close-up shots of people or animals, and generic textures such as soil, which lack
distinctive geospatial cues. In our experiments, we use a subset of 580k images2, hereafter referred
to as the Landmarks dataset, with geolocation coordinates extracted from OpenStreetMap.

3.2.1 SAMPLING

Across all datasets, the geospatial distribution of images was imbalanced, skewed toward major
cities in Europe and North America. To mitigate this bias, we partitioned the globe into non-
overlapping geocells based on global administrative area boundaries and iteratively merged regions
with insufficient samples. We merged geocells hierarchically. First within regions (GID 1), then
across regions of the same country (GID 0). To avoid oversampling, each geocell was defined
to include at least one complete GID 2 (city-level) administrative unit, even in dense areas like
Paris. These geocells were then used to balance the YFCC100M and Landmarks dataset by select-
ing 5,000 images per source, with at most five images per geocell. For the Landmarks dataset, we
also excluded duplicate images of the same landmark to ensure diversity.

3.3 PROBING

To examine whether the evaluated models encode geospatial information, we perform linear prob-
ing (Alain & Bengio, 2017), a standard mechanistic interpretability technique for Transformer ar-
chitectures (Gurnee & Tegmark, 2024; Kim et al., 2025). Transformers (Vaswani et al., 2017)
consist of sequential blocks that iteratively refine token representations within the residual stream
x(l) ∈ Rt×dmodel , where dmodel is the hidden dimension of each evaluated model, as an input with
t tokens is propagated through the l-th Transformer block (Elhage et al., 2021). This refinement is
achieved through successive multi-head attention (MHA) and multi-layer perceptron (MLP) layers
with residual connections. These layers are often paired with normalization, of which the formula-
tion is omitted for brevity:

h
(l)
attn = x(l) +MHA

(
x(l)

)
(1)

h
(l)
mlp = MLP

(
h
(l)
attn

)
(2)

x(l+1) = h
(l)
attn + h

(l)
mlp (3)

Although t varies across vision models, downstream tasks typically rely on a single summary rep-
resentation. Usually, the [CLS] token is used in vision models and the final token representation in
VLMs. We fit ridge regression models to predict latitude and longitude (in degrees) from layer-wise
token summary representations. We report the models’ predictive performance using the coeffi-
cient of determination (R2). Formally, given hidden representations A(l) ∈ Rn×dmodel from layer
l, number of samples n, and hidden dimension dmodel, the regression weights W ∈ Rdmodel×2,
corresponding to the two-dimensional targets (latitude and longitude), are estimated as:

Ŵ = argmin
W

∥∥Y −A(l)W
∥∥2
F
+ λ

∥∥W∥∥2
F
. (4)

Here, ∥ · ∥F denotes the Frobenius norm, and λ > 0 is the regularization hyperparameter controlling
the strength of the L2 penalty on W. In all of our experiments, λ is chosen for each probe using
Leave-One-Out cross-validation (Golub et al., 1979).

2https://huggingface.co/datasets/visheratin/google_landmarks_places
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Figure 2: Model performance measured by coefficient of determination R2 across all models. The
x-axis shows image clusters based on the YFCC100M dataset and the Google Landmarks dataset,
and y-axis lists the models compared. Higher R2 values (darker colors in the heatmap) indicate
better geolocation-prediction accuracy across clusters.

4 EXPERIMENTS

4.1 PERFORMANCE ON GEOLOCATION INFORMATION PREDICTION

We perform layer-wise probes on all the evaluated models and report the geolocation prediction
performance in Figure 2. We find that models trained jointly on text and images exhibit measurable
geospatial representations: the R2 values reach up to 0.8 for Landmarks and streets (cluster 28),
while the average R2 is above 0.4 for the larger models, suggesting some degree of geospatial repre-
sentations across image types. The average R2 for vision-only models, on the other hand, is mainly
below 0.3. Among vision-only models, performance improves with model size, with the DINOv2-
giant model (1B parameters) achieving the best result. This observation suggests that, when trained
on a scale, geospatial representation can be learned from images alone. When compared with VLMs,
DINOv2-giant is outperformed even by the much smaller CLIP-base model, suggesting the effec-
tiveness of language pretraining in implicitly learning geospatial representations.

The cluster-wise performance presented in Figure 2 indicates that the relative difficulty of each clus-
ter in YFCC100M remains consistent across various model architectures. For instance, the streets
cluster, building cluster, and the Landmarks dataset consistently show higher R2 across models,
while the objects cluster contains little information that can serve as clues for geo-localization. In-
terestingly, the signs and text clusters, show a degree of localizability for VLMs not observed for
vision-only models.

Figure 3 shows image samples positioned according to their R2 values for the largest model of each
model family. Highly localizable images tend to be famous landmarks, e.g., pyramids, and open
spaces with pieces of architecture or nature. Meanwhile, close-ups of objects and food images are
the least localizable. Notice that for CLIP, the cluster of figures that contain signs achieves a notable
degree of localizability.
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dinov2-giant

vit-large

vit-mae-large

Figure 3: Image samples across the localizability spectrum, separated by R2. For each row, the
geolocation prediction performance of a different model is shown. For example, in the first row, it
is seen that ViT-MAE-large achieves a low R2 across all images, while, in the last row, LLaVA-
1.5-7B-HF achieves various R2 levels across different clusters and datasets. For high-performing
models, highly localizable landmarks usually achieve the highest performance.

4.2 GEOSPATIAL REPRESENTATIONS ACROSS LAYERS

To investigate where geospatial representation emerges within model architectures, we analyze
probe performance across layers for both vision-only and multimodal models. In vision models
such as ViT and DINOv2, geospatial representations tend to develop progressively with increasing
layer depth, as evidenced by a consistent rise in probe R2 values across all settings (see Figure 4(a)).
For VLMs, however, an interesting observation emerges: the R2 values increase only up to a cer-
tain point before stagnating, and in the case of Gemma, the R2 values decrease throughout the later
layers, regardless of image characteristics. This likely reflects the model’s tendency to deprioritize
geographic signals in the absence of a textual prompt, thus neglecting spatial information not es-
sential for text generation. A similar, though less pronounced, effect is observed in LLaVA, where
geolocation signals diminish as the image transitions into the language modeling component.

4.3 STEERING THE MODELS VIA TEXT PROMPTS

In prior experiments, we observed that the geospatial information in the model residuals, particularly
VLMs, degrades over layers without a textual prompt. This leads to, in some extreme cases, for
example, Gemma, a negative R2, suggesting that there is no linear mapping from the model residuals
to geolocation coordinates.

To check if this effect occurs because of the absence of a textual prompt related to geospatial in-
formation, we prompt the models with the query “Guess the latitude and longitude of this image.
Answer only with the coordinate tuple (lat, long)”. Figure 4(b) shows the per-layer R2 of VLMs
when prompted this way. We observe that, in this setting, R2 does not decrease as drastically for
Gemma and LLaVA. In fact, for LLaVA, it starts increasing over the textual layers. Interestingly,
for Qwen the performance drastically increases, leading to R2 as high as 0.88 for the Landmarks
dataset. This effect suggests that textual and image representations of geospatial representation
might be entangled in the model’s latent space, especially when activated using textual prompts
related to geospatial tasks.

4.4 ISOLATING GEOSPATIAL-SPECIFIC COMPONENTS FROM EMBEDDINGS

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a)

0 10 20 30 40
0.2

0.0

0.2

0.4

0.6

0.8

1.0

R²

dinov2-giant

0 5 10 15 20
0.2

0.0

0.2

0.4

0.6

0.8

1.0
clip-vit-large-patch14

0 5 10 15 20
0.2

0.0

0.2

0.4

0.6

0.8

1.0
vit-mae-large

landmarks
signs
objects
food
streets
cliffs

0 20 40 60
Layer

0.2

0.0

0.2

0.4

0.6

0.8

1.0

R²

Te
xt

 la
ye

rs
Qwen2.5-VL-7B-Instruct

0 20 40 60
Layer

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Te
xt

 la
ye

rs

gemma-3-4b-pt

0 20 40
Layer

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Te
xt

 la
ye

rs

llava-1.5-7b-hf

(b)
0 10 20 30 40 50 60

Layer
0.2

0.0

0.2

0.4

0.6

0.8

1.0

R²

Te
xt

 la
ye

rs

Qwen2.5-VL-7B-Instruct

0 10 20 30 40 50 60
Layer

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Te
xt

 la
ye

rs

gemma-3-4b-pt

0 10 20 30 40 50
Layer

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Te
xt

 la
ye

rs

llava-1.5-7b-hf landmarks
signs
objects
food
streets
cliffs

Figure 4: Probe R2 performance by layer of the models for different clusters and datasets with vary-
ing levels of localizability. (a) R2 performance when no textual prompt is given. (b) R2 performance
when adding a textual prompt to the input asking the model to predict the image geolocation. The
R2 is kept stable throughout the last layers when compared to the decaying performance observed
in the non-prompting setup.
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Figure 5: Probe predictive performance R2

as a function of the retained feature propor-
tion p, illustrating the capacity of the embed-
ding subspace needed to reach the maximum
R2 for both vision-only and VLMs. Higher
values of p correspond to a larger subset of
the latent representation.

The linear probes operate on high-dimensional rep-
resentations. In our experiments, the five selected
models have dmodel of 768 for CLIP-ViT-large,
1,024 for LLaVA-1.5, 2,048 for Qwen2.5-VL-3B,
3,584 for Qwen2.5-VL-7B, and 1,536 for DINOv2-
giant. To explore how latent space contributes
to geospatial information, we fit ridge regression
probes using only a proportion of the original dimen-
sions p ∈ {0.1, 0.2, . . . , 1.0}, selecting the top p di-
mensions ranked by the absolute coefficients of the
trained probe.

We report the predictive performance in terms of
R2 in Figure 5 as a function of the retained fea-
ture proportion p, showing that R2 increases with p
and saturates well before using the entire feature set.
Across all models, we find that p≈ 0.4 (about 40%
of dimensions) are sufficient to recover nearly the
maximum R2, indicating that geospatial information
is concentrated in a compact subset of dimensions
rather than uniformly distributed throughout the em-
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beddings. For Qwen2.5-VL variants, specifically, 90% of their best predictive performance is still
observed using only the top 10% of the features.

4.5 STEERING THE MODEL GENERATION THROUGH REPRESENTATION SWAPPING

We examine the possibility of steering the text generated by a multimodal foundation model by
swapping the top p feature dimensions related to geospatial reasoning. In this case study, the geospa-
tial location in the predicted text should be changed, leaving other semantic information unchanged.
We use Qwen2.5-VL-3B, an open-weight VLM that supports a targeted intervention in its residual
stream or the additive hidden state passed through the transformer layers. As illustrated in Figure 1,
given a source image and a target image, we replace the top geospatially relevant feature dimen-
sions of the source residual-stream summary with the corresponding coordinates from the target,
and evaluate the resulting changes in the generated text.

Let t⋆ be the last non-padding input token (the summary token for Qwen2.5-VL-3B), and let
x
(1)
source, t⋆ , x

(1)
target, t⋆ ∈ Rdmodel be the layer-1 residual-stream vectors for source and target images,

respectively. Given g ⊆ {1, . . . , dmodel} as the index set of geospatially informative dimensions
(with proportion p = |g|/dmodel) and its complement gc = {1, . . . , dmodel} \ g, we intervene by
replacing the source residual with the target residual on the dimensions in g as follows:

x̃
(1)
source,t⋆ = x

(1)
source,t⋆ ⊙ 1gC + x

(1)
target,t⋆ ⊙ 1g, (5)

where ⊙ denotes the element-wise Hadamard product and 1g an indicator vector with entries 1 for
indices in g and 0 elsewhere. For brevity, we omit explicit indexing of the selected dimensions g.
We then continue the forward pass from layer 2, . . . , L using x̃

(1)
source to decode the output text.

We show an example in which we can successfully steer the model in Figure 1. By swapping 50%
of geospatial representations from an image of the Step Pyramid of Djoser with the geospatial repre-
sentation from an image of the Trevi Fountain, the model generates the following output text: “The
image depicts the Step Pyramid, Rome, Italy”, altering the location of the pyramid from Saqqara
to Rome. Even though our experiments show the possibility of successfully steering the model, we
observed that as the text generated becomes longer, the generation becomes unstable. In some cases,
the model starts to generate repetitive text or descriptions that mix the source and target locations.
These results open future avenues for investigating how geospatial representations are coupled with
representations related to other types of information during text generation. We discuss more details
in Appendix F.

4.6 DOWNSTREAM TASK PERFORMANCE

Finally, we inspect how the quality of geospatial representations may influence downstream task
performance, as these models are usually finetuned for specific downstream applications. For this
analysis, we investigate a task that requires geospatial awareness: country identification.

Table 1: Finetune performance for the country identifi-
cation task.

Model Test Acc. Val. Loss Train Loss

ViT-MaE-large 0.15 3.35 2.344
ViT-large 0.23 3.17 1.346
DINOv2-large 0.29 2.55 0.009
DINOv2-giant 0.32 2.78 0.001
CLIP-large 0.36 2.39 0.009

Using the landmarks dataset, we extract
country information for each picture and
then subsample the dataset so that at
most 100 pictures are selected for each
country. Then, we finetune one large
model from each studied vision-only fam-
ily (ViT-MaE,ViT, and DINOv2) in addi-
tion to CLIP-ViT-large and DINOv2-giant
(for the full details, see Appendix G). The
models are chosen such that all take the
same inputs and have similar model size,
making the results comparable. We report
the results of each model in Table 1. We observe that the performance of the models follows the
order of R2 obtained for our probe analysis, with ViT-MaE having the worst performance, while
CLIP has the best performance. This corroborates the hypothesis that the presence of geospatial
representations in the models is desirable for their use in downstream tasks.
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5 DISCUSSION

Our findings demonstrate that the training methodology is crucial for learning geospatial repre-
sentations in vision-only models and VLMs, as demonstrated in Figure 2. Models that incorpo-
rate textual supervision consistently achieve the best performance. Vision-only models improve
with scale; larger models like DINOv2-giant outperform both DINOv2-large and DINOv2-base. In
contrast, VLMs do not exhibit a clear correlation between model scale and probing performance.
This suggests that supervision signals, particularly language, are a primary factor in learning strong
geospatial representations in these models.

The optimal layer for extracting geospatial representations depends on the model family and the
presence of a textual prompt. In many geolocation applications, the input image is given without a
textual prompt (Figure 4(a)). For these cases, vision-only models perform best when using represen-
tations from their deepest layers. However, for VLMs, choosing which geospatial representation to
use is not clear and varies between models. Across models, the layers immediately after the textual
stream consistently achieve good performance. With a textual prompt, the performance in VLMs
remains more stable across the post-textual layers (Figure 4(b)).

The results of our analysis have direct implications for model selection and methodology in a range
of geospatial applications. For current pipelines that use traditional vision-only models and small
datasets, leveraging representations from VLMs can significantly improve performance. As these
representations are implicitly learned from vast datasets, they serve as strong representations for
sample-efficient pipelines involving fine-tuning cases where labeled data are scarce. Moreover, our
work highlights multimodal learning as a critical direction to build world models, which could be
used to improve our understanding of complex social problems and empower new technologies.

Finally, the growing capability of these models poses significant privacy risks and fairness impli-
cations. Malicious actors could exploit these models to extract precise location data from images,
enabling stalking and threats against individuals. The potential for mass surveillance is also a se-
rious concern, where governments and corporations could likewise track individuals’ locations and
behaviors through their photos. These ethical risks underscore the need for robust regulatory policies
that mandate transparency in model use and enforce explicit user consent to ensure safe deployment.

6 CONCLUSION

This study demonstrated that textual supervision significantly enhances geospatial representations
in vision-language models. Through a systematic analysis of vision-only architectures, VLMs, and
large-scale multimodal foundation models, we studied how geospatial understanding emerges across
model families. Through layer-wise probing, we revealed that multimodal models consistently ex-
hibit high performance for images that are localizable. Furthermore, our analysis indicated that a
small subset of hidden dimensions is responsible for encoding critical geospatial features, suggesting
a potential pathway for model steering and editing. In summary, our work demonstrated that multi-
modal learning plays an important role in improving geospatial AI. However, using these models in
real-world settings should include safeguards to protect privacy and ensure fairness. As applications
involving location-aware image understanding—such as environmental monitoring, urban planning,
and disaster response—continue to grow, this use case is expected to become increasingly important.
Future research could explore how these models handle other types of images, such as satellite data.

REPRODUCIBILITY STATEMENT

The code for reproducing our results is available through an anonymous repository for validation3,
and all datasets used in this study are publicly accessible.
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Nathan Godey, Éric de la Clergerie, and Benoı̂t Sagot. On the scaling laws of geographical repre-
sentation in language models. arXiv preprint arXiv:2402.19406, 2024.

Gene H Golub, Michael Heath, and Grace Wahba. Generalized cross-validation as a method for
choosing a good ridge parameter. Technometrics, 21(2):215–223, 1979.

Wes Gurnee and Max Tegmark. Language models represent space and time. In The Twelfth Inter-
national Conference on Learning Representations, 2024.

Jiawei Han, Jian Pei, and Hanghang Tong. Data mining: concepts and techniques. Morgan kauf-
mann, 2022.

Junlin He, Tong Nie, and Wei Ma. Geolocation representation from large language models are
generic enhancers for spatio-temporal learning. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 39, pp. 17094–17104, 2025.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin,
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A MODEL DETAILS

Details about the models evaluated in this work are given in Table 2.

To extract the inner representations of the model, for the probing experiments we use a single image
as input and no prompt in the VLMs; then we conduct a single forward pass over the entire model,
extracting all residuals x(l) for the last token for both the vision and the text components when
applicable. A similar setup is adopted for the prompting experiments, but with added prompt tokens.
Since we are not interested in generating text, we use no specific parameters (e.g., temperature)
for the VLMs for the probing experiments. For the generation experiments, we use a very low
temperature (0.0001) to reduce randomness.

All experiments were run on a single Nvidia A100 GPU using the HuggingFace implementation of
each model. The models which only take image as input were run at full precision, while the VLMs
(Gemma, Qwen, and LLaVA) were run in bfloat16 precision.
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Table 2: Models evaluated in this work—ViT (Dosovitskiy et al., 2021), ViT Masked Autoen-
coder (He et al., 2022), DINOv2 (Oquab et al., 2023), CLIP (Radford et al., 2021), LLaVA-1.5 (Liu
et al., 2024), Qwen2.5 (Bai et al., 2025), and Gemma 3 (Kamath et al., 2025)—spanning vision-only
and vision-language modalities with different training paradigms. Each family is evaluated with at
least two size variants to examine the effect of model scale on learned representations.

Model Modality Training Methodology
ViT Vision-Only Supervised pretraining on ImageNet-21k fol-

lowed by fine-tuning on ImageNet-1k.
ViT Masked Autoencoder Vision-Only Self-supervised training using masked autoen-

coding.
DINOv2 Vision-Only Self-supervised learning using a teacher-

student framework.
CLIP Vision-Language Trained on 400M image-text pairs using con-

trastive learning.
LLaVA-1.5 Vision-Language Combines a CLIP-based vision encoder with a

language model via vision-language alignment
followed by instruction tuning.

Qwen2.5 Vision-Language CLIP-based pretraining enhanced with vision-
language alignment and end-to-end instruction
tuning.

Gemma 3 Vision-Language Uses SIGLIP-based vision-text pretraining fol-
lowed by alignment with instruction-tuned lan-
guage models.

B CLUSTERING DETAILS

Given the massive size of the YFCC100M dataset, its content was divided into semantic clusters
for a better and more comprehensive analysis. For this, we started by extracting embeddings from
the final convolutional layer of a ResNet-152 pretrained on ImageNet. Then, the resulting embed-
dings were L2-normalized, reduced to 100 dimensions using PCA, and clustered with a standard
k-means algorithm. In order to choose the optimal k, we tested 19 values (k = 10, 15, . . . , 100),
and following (Thorndike, 1953), computed the within-cluster sum of squares (WCSS) as follows:

WCSS(k) =
∑
i

Di =

N∑
i=1

min
c∈{1,...,k}

∥xi − µc∥2,

which corresponds to the sum of squared distances for each point to its nearest cluster center. The
value of WCSS(k) decreases monotonically as k increases, meaning that the optimal k is not the
one which minimizes WCSS(k), but rather the one at which the decrease plateaus. This point
corresponds to the “elbow” of the curve, which in our case was k = 40.

A complete overview of the resulting clusters can be seen in Figure 6. In total, eight clusters rep-
resented people, including separate clusters for sports, musicians, and children, as well as another
cluster for large gatherings. Another 11 clusters were related to man-made structures and architec-
ture, including different types of buildings, walls, streets, and decorations. Animals were represented
in two groups: one for birds and insects, and the other for larger animals. Eight clusters depicted
different aspects of nature and different landscapes, such as mountains, lakes, beaches, soil, etc. Fi-
nally, seven clusters showed different types of objects, mainly food, drinks, displays, and vehicles.
The remaining three clusters did not appear to exhibit any clear semantic relationship.

For better visualization of the clusters obtained, we projected a small subset of 500 points per cluster
into a 2D-space using Uniform Manifold Approximation and Projection (UMAP) (McInnes et al.,
2018). The generated plot (Figure 7) uses different shades of the same base color to represent clusters
belonging to the same macro-category (people, nature, architecture, objects, animals, and others).
Clusters associated with nature, architecture, and people are tightly grouped and occupy a distinct
region of the latent space, further indicating that our clustering is semantically coherent. The major-
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Figure 6: Random samples for each of the 40 clusters obtained for the YFCC100M dataset.
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Figure 7: 2-Dimensional visualization of the 40 clusters obtained using UMAP and colored accord-
ing to macro-category.

ity of object clusters also lie in a clearly-defined area, though there is some variability depending on
the image background. Notably, cars and signs—traditionally found in urban settings—appear close
to architecture clusters, while general vehicles, e.g., trains and airplanes, appear in between nature
and architecture. The two animal clusters are in a subregion of nature, which is consistent with their
broader photographic context, as these images are typically taken in green areas. One exception is
the “People Outdoors” clusters, which, though grouped together with other people clusters, extend
towards both architecture and nature regions, depending on the broader context of the images.

C DATASET DESCRIPTION

C.1 YFCC100M

The YFCC100M dataset is comprised of approximately 99.2M images published on Flickr between
2004 and 2014 under a Creative Commons license (both commercial and non-commercial). It is a
highly diverse set of photographs that depict natural and urban environments, people, objects, and
everyday events, taken by a mix of professional photographers and casual users. In our experiments,
we used a subset of 4,233,900 images, which preserves the diversity of the original set while offering
reliable geolocation annotations.

The spatial distribution of the data set is highly unbalanced (Figure 8), with the majority of the
samples concentrated in a few key regions. Together, the G7 countries account for more than 57%
of all samples, a figure that rises to 78% with the addition of the rest of the European countries.
Asia is the third most represented continent with close to 500k images (12.1% of the data), more
than half of which are from East Asia. In contrast, Central Asia and the Middle East are particularly
underrepresented, with no country in either region contributing more than 15k samples.

South America accounts for just over 180k images (4.2% of the data), with a sample distribution that
closely matches that of the continent’s population. The main outliers are Chile, overrepresented in
17% of the data versus 4.5% of the population, and Venezuela, underrepresented at less than 3% of
the samples despite being 6.5% of the total population. Africa contributes with approximately 68k
images (1.6% of the dataset), with only 12 countries represented by more than 1k samples. Finally,
Oceania provides 136k (3.2% of the data) samples, almost entirely from Australia and New Zealand,
which together account for 131k. We note that, although there is some variation, all clusters exhibit
roughly the same imbalance. After sampling, the balance is marginally improved. Of the 200k total
sampled images (5k per cluster), 37k (18.5%) are from Asia, almost 14k (7.0%) are from South
America, 8.9k (4.5%) are from Oceania, and 7.4k (3.7%) are from Africa, while the participation of
G7 countries decreases from 57% to 44%. Figure 9 shows the effects of these improvements, with
our sampling methodology leading to better world coverage than a purely random strategy.
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Figure 8: Spatial distribution of all samples from our subset of YFCC100M.

Figure 9: World Coverage of random sampling (left) and geocells-based sampling (right).

C.2 GOOGLE LANDMARKS

Google Landmarks V2 contains over 5M images of over 200k landmarks across the globe, collected
mostly from Wikimedia Commons4. As the coordinates of images are not typically available on
Google Landmarks, we used a subset of 581,215 geolocalized images from 15,453 different labeled
landmarks. Though photos of relevant sites are expected to be localizable, the dataset also con-
tains some non-localizable images, such as close-up shots of animals in a national park, as well as
paintings and statues.

This data set has a pronounced spatial imbalance, as shown in Figure 10. Samples are mainly con-
centrated in Europe, which alone accounts for over 67% of our subset, followed by Asia (15%),
North America (11%), South America (2.5%), Africa (1.1%), and Oceania (1.0%). Outside of Eu-
rope, samples are disproportionately concentrated in a few major cities, with less populated areas
remaining mostly uncovered. For our experiments, we selected a single random image from each
landmark and proceeded to sample 5k images as outlined in Section 3.2.1. The sampling procedure
preserved the same continent-level spatial bias present in the original dataset, though the concentra-
tion of samples in major cities was reduced.

D LINEARITY OF GEOSPATIAL FEATURES

In our experiments, we focus on the linear probing for geospatial representation in vision-only and
vision-language models, finding that the latter group has internal representations that can be mapped
to real world locations, while the former group is much more limited in this regard. However, it
could be the case that this happens only because vision-only models are representing this kind of
information non-linearly. To explore this possibility, we also train non-linear probes (one hidden
layer MLP regression) to check whether vision-only models may be representing geospatial features
differently.

4https://commons.wikimedia.org/
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Figure 10: Spatial distribution of all samples from our subset of Google Landmarks V2.
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Figure 11: Performance (R2) of each model when using a non-linear probe. The x-axis shows
different clusters of the YFCC100M dataset and the Landmarks dataset, while y-axis shows the
models evaluated.

Figure 11 shows the performance (R2) for the non-linear probes for each model. Using non-linear
probes did not result in a significant increase in R2 for any model, thus strengthening the claim that
vision-language models’ representations encode geospatial information better.

E ABLATION STUDIES

Our probing setup utilizes the summary representation of the input image, that being either the [CLS]
token or the final token representation. However, it could be the case that a geospatial representation
emerges across different tokens corresponding to different image patches. To control for this, we
also train the same probes using the concatenation of the min and max pooling across all tokens as
the inputs for the ridge regression. Figure 12 shows the results across our datasets. It is possible to
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Figure 12: Performance (R2) of each model when using a linear probe and the concatenation of
max and min pooling across input tokens as features. The x-axis shows different clusters of the
YFCC100M dataset and the Landmarks dataset, while y-axis shows the models evaluated.

see that, when compared to the default probing approach, the R2 is actually smaller for the vision-
only models, suggesting that the summary token is adequate as a set of features for the probing
setup.

F ADDITIONAL REPRESENTATION SWAPPING RESULTS

In this section, we show additional examples of location swap results obtained from the methodology
described in Section 4.5. Here, we show that the intervention used the swapping methodology often
leads to other changes in the text, e.g., different place names, mixing characteristics from both
images, especially if the text generated has very different lengths for the source and target images.

Table 3 shows examples of generated text after swapping fraction p dimensions from the source
image with the target image. We observe that some figures have strong features, while others have
easily edited geospatial information. For example, with the same fraction of replaced dimensions,
we can move the Cologne Cathedral to Paris, but we cannot move the Eiffel Tower to Cologne.
Additionally, the St. Peter Cathedral in Vatican overwrites all other information when used as target
image.

G FINETUNING DETAILS

To mitigate the spatial imbalance of our data, which could negatively affect country identification,
we constructed a balanced sampling of Google Landmarks across countries. First, we selected a
single image for each of the 15,453 labeled landmarks. From these, we retained only those belonging
to the 51 countries with over 30 samples, and sampled up to 100 images per country, resulting in a
dataset of 3,992 images.

Using this data, we finetune CLIP-large, ViT-large, ViT-MaE-large and DINOv2 (large and giant)
for classification. All models were trained for 5 epochs with a 70% train, 20% validation and 10%
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Table 3: Results for embedding swapping using varied landmark pictures as source and target
images. The changes are very drastic for some image combinations, despite similar methodology
when implementing the interventions.

Source Image Target Image p Generated Text

0.4

The image depicts the Cologne
Cathedral, also known as the
Cologne Cathedral, located in
Cologne, France

0.4

The image depicts the Cologne
Cathedral, also known as the
Cathedral of Notre-Dame de Paris,
located in the of Paris, France.

0.4 The image depicts the. Peter’s
Basilica, Vatican City.

0.5 The image depicts the Taji Palace,
Rome, Italy.

0.5 The image depicts the Hagou Basil
Mosque, Istanbul, Italy.
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Figure 13: Train and validation loss for model finetuning.

test split using an AdamW optimizer, batch size of 16, and the following learning rates [1 × 105,
2 × 105, 5 × 105, 1 × 104, 2 × 104, 5 × 104], with the best chosen based on validation loss. β1

and β2 were set as 0.9 and 0.999. Figure 13 shows the train and validation loss for the finetuned
models. We can see that CLIP and DINOv2 models achieve their best validation loss within 400
training steps with CLIP’s being overall lower, which also translates to better test accuracy.

H CORRELATION OF INFLUENTIAL WEIGHTS BETWEEN MODELS

Through our probing experiments we obtain a large set of regression coefficients for latitude and
longitude, one pair for each layer and cluster/dataset. Using these coefficients, we investigate to
what extent different types of images are represented similarly in the models’ latent space. Table
4 shows the average pearson correlation between each pair of coefficients and the average R2 for a
given model on its best performing layer overall.

It is possible to see that for all models, correlations are positive, suggesting that some spatial infor-
mation is common for a variety of different image subjects. However, for most of the vision-only
models, the correlation is very weak (ρ < 0.3). Meanwhile, for the models pretrained with language
data, we see that correlations are low (0.3 ≤ ρ < 0.5) to moderate (0.5 ≤ ρ < 0.7), indicating some
shared neurons for geospatial representation across different image types. These correlations get
much higher when we consider only the 40% most important dimensions for predicting coordinates
(see Section 4.5), with CLIP and LLaVA achieving values above 0.7, as shown in Table 5.
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Table 4: Average correlation (ρ) between regression coefficients for different clusters/datasets for
each model. The ± term denotes the 95% confidence interval for the mean.

Model Avg. ρ (Longitude Coef.) Avg. ρ (Latitude Coef.) Avg. R2
ViT-MAE-base 0.115 ± 0.005 0.142 ± 0.007 0.035 ± 0.008
ViT-MAE-large 0.111 ± 0.004 0.143 ± 0.006 0.051 ± 0.010
ViT-base 0.153 ± 0.004 0.164 ± 0.005 0.118 ± 0.020
ViT-large 0.229 ± 0.005 0.231 ± 0.006 0.145 ± 0.020
DINOv2-base 0.294 ± 0.007 0.283 ± 0.006 0.191 ± 0.033
DINOv2-large 0.291 ± 0.006 0.312 ± 0.007 0.236 ± 0.037
DINOv2-giant 0.300 ± 0.005 0.294 ± 0.006 0.262 ± 0.040
CLIP-ViT-base 0.500 ± 0.005 0.410 ± 0.005 0.278 ± 0.034
Qwen2.5-VL-3B-Instruct 0.348 ± 0.004 0.388 ± 0.005 0.344 ± 0.047
Gemma-3-4B-IT 0.372 ± 0.005 0.426 ± 0.005 0.382 ± 0.046
Qwen2.5-VL-7B-Instruct 0.325 ± 0.004 0.373 ± 0.005 0.398 ± 0.049
Gemma-3-12B-IT 0.450 ± 0.005 0.453 ± 0.005 0.419 ± 0.050
Gemma-3-4B-PT 0.378 ± 0.005 0.421 ± 0.005 0.421 ± 0.050
Gemma-3-12B-PT 0.182 ± 0.004 0.224 ± 0.005 0.450 ± 0.055
CLIP-ViT-large 0.587 ± 0.005 0.548 ± 0.006 0.482 ± 0.048
LLaVA-1.5-7B 0.612 ± 0.005 0.573 ± 0.006 0.510 ± 0.049

Table 5: Average correlation (ρ) between the 40% most important regression coefficients for
different clusters/datasets for each model. The ± term denotes the 95% confidence interval for the
mean.

Model Avg. ρ (Longitude Coef.) Avg. ρ (Latitude Coef.) Avg. R2
ViT-MAE-base 0.161 ± 0.006 0.195 ± 0.009 0.035 ± 0.008
ViT-MAE-large 0.153 ± 0.005 0.198 ± 0.007 0.051 ± 0.010
ViT-base-patch16-224 0.230 ± 0.005 0.253 ± 0.007 0.118 ± 0.020
ViT-large-patch16-224 0.351 ± 0.006 0.349 ± 0.008 0.145 ± 0.020
DINOv2-base 0.421 ± 0.008 0.407 ± 0.008 0.191 ± 0.033
DINOv2-large 0.413 ± 0.007 0.440 ± 0.008 0.236 ± 0.037
DINOv2-giant 0.434 ± 0.007 0.425 ± 0.007 0.262 ± 0.040
CLIP-ViT-base-patch32 0.674 ± 0.005 0.586 ± 0.005 0.278 ± 0.034
Qwen2.5-VL-3B-Instruct 0.498 ± 0.004 0.548 ± 0.005 0.344 ± 0.047
Gemma-3-4B-IT 0.399 ± 0.005 0.455 ± 0.005 0.382 ± 0.046
Qwen2.5-VL-7B-Instruct 0.459 ± 0.004 0.521 ± 0.005 0.398 ± 0.049
Gemma-3-12B-IT 0.470 ± 0.004 0.475 ± 0.005 0.421 ± 0.049
Gemma-3-4B-PT 0.416 ± 0.005 0.463 ± 0.005 0.421 ± 0.050
Gemma-3-12B-PT 0.224 ± 0.005 0.275 ± 0.005 0.443 ± 0.055
CLIP-ViT-large-patch14 0.749 ± 0.004 0.718 ± 0.005 0.482 ± 0.048
LLaVA-1.5-7B-HF 0.771 ± 0.004 0.739 ± 0.005 0.510 ± 0.049
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