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Abstract—The problem of hidden periodicity in three
dimensions is to recover frequency vectors ω1, . . . ,ωN ∈
[0, 2π)3 using finitely many samples of the exponential
sum f(n)=

∑N
j=1 aj exp (−i⟨ωj ,n⟩), where a1, . . . , aN ∈

C\{0} and n ∈ Z3. Inspired by the approaches developed
in [11], [30], we consider specifically constructed polyno-
mials, which are called Prony-type polynomials, and show
that the frequency vectors ω1, . . . ,ωN can be recovered
via a set of common zeros of such polynomials. By em-
ploying Cantor tuple functions, we position the method of
Prony-type polynomials within the spectrum of sampling
requirements between the methods proposed in [21], [22].
While the Prony-type polynomial method demands more
samples than the approach in [22], numerical experiments
indicate that it exhibits greater stability in the presence
of noisy data.
Index Terms—Prony’s method, exponential sums, Prony-
type polynomials, super-resolution, common zeros

I. INTRODUCTION

The super-resolution problem or the problem of hid-
den periodicity is a fundamental problem in digi-
tal signal processing with many practical applica-
tions [7], [14], [17] and is to find the set frequency
vectors ω1,ω2, · · · ,ωN ∈ [0, 2π)

d and parameters
a1, a2, . . . , aN ∈ C\{0} out of finitely many samples
of the exponential sums

f(n) =

N∑
j=1

aj exp (−i⟨ωj ,n⟩), (1)

where n = (n1, . . . nd) ∈ Zd=Z× . . .×Z and the
product ⟨ωj ,n⟩ = ωj,1n1 + . . .+ ωj,dnd.
The univariate SR problem has been considered ini-
tially by G. R. de Prony in 1795 [1], where it has
been shown that the hidden periodicity can be found
via analyzing the zeros of the so-called Prony polyno-
mial. This approach has been named Prony’s method.
Recently, the SR problem in general – and Prony’s
method in particular – has garnered significant atten-
tion, leading to the development of various approaches
for finding solutions. On the one hand, several tech-
niques have been introduced to enhance the stability of
Prony’s method (see [3], [4], [11]). Recently, in [25],
[32], exponential analysis was reformulated as a Padé

approximation problem, allowing parameter recovery
even in cases of small separation distances.
On the other hand, efforts have been made to extend
Prony’s method to the multidimensional case. Among
these, the first comprehensive generalization was in-
troduced in [21], which employs kernel basis analysis
of the multilevel Toeplitz matrix of moment data. This
method requires at least (2N + 1)d samples, with d
representing the dimension.
In contrast, the algorithms in [16], [20], [22] take a
different approach, relying on function sampling along
multiple lines within a hyperplane. This transformation
reduces the problem to a univariate setting, which
can then be addressed using classical one-dimensional
techniques. A related study in [26] explores the prob-
lem on a hyperbolic cross, demonstrating that Prony’s
problem with N frequency vectors can be solved with
at most (d+ 1)N2 log2d−2 N function evaluations.
Besides, less than ten years ago, several authors [13],
[19] considered the SR problem from the perspective of
an atomic measure recovery problem in light of convex
optimization. Hereupon, the generalization to higher
dimensions on the torus has been considered in [23],
[27], [28], [31].
Nevertheless, the stability of numerical solutions in the
case of noisy data still has a lot of open questions,
especially when the number of parameters increases.
As it has been shown in [11], [30], stability can
be achieved by incorporating orthogonal polynomial
approaches and autocorrelation sequences.
In this work, we generalize the line of methods pro-
posed in [6], [11], [30] to the three-dimensional case
by considering Prony-type polynomials. We show that
the parameters z1, . . . , zN can be recovered as a set
of common zeros of a particular set of Prony-type
polynomials and illustrate a stable behavior of the
method in the noisy data case.
The outline of this paper is as follows. In Section II,
we fix the notation and recall basic concepts related
to the multivariate polynomials. In Section III we
define Prony-type polynomials in three dimensions,
introduce the method of Prony-type polynomials, and
prove the main result of this paper. Numerical results



are provided in Section IV.

II. NOTATIONS

A. Problem Formulation

Let N ∈ N be an integer, a1, a2, . . . , aN ∈ C\{0}
and ωj = (ωj,1, . . . , ωj,d) ∈ [0, 2π)

d with ωj ̸= ωk

for j ̸= k, j, k=1, . . . , N . Let us consider a function
f : Zd → C of the form

f(n) =

N∑
j=1

aj exp (−i⟨ωj ,n⟩), (2)

where n = (n1, . . . , nd) ∈ Zd and ⟨ωj ,n⟩ =
ωj,1n1+ . . .+ωj,dnd. The function f is called an
N -sparse multivariate exponential sum with the
pairwise distinct frequency vectors ω1,ω2, . . . ,ωN

and coefficients a1, a2, . . . , aN .
It is convenient to use the following notation for the
exponent vectors

exp (−iωj) = (exp(−iωj,1), . . . , exp(−iωj,d))

= (zj,1, . . . , zj,d) = zj , j = 1, . . . , N.

This together with the multi-index notation znj =
zn1
j,1 . . . , znd

j,d for n=(n1, . . . , nd) ∈ Nd allows us to
rewrite the exponential sum (2) in a little bit more
compact form as follows

f(n) =

N∑
j=1

ajz
n
j . (3)

In representation (3), the elements z1, . . . , zN ∈ Td =
T×· · ·×T, where T={z ∈ C : |z|=1}, are called pa-
rameters of the exponential sums f . In such a way,
instead of dealing with detecting the frequency vec-
tors ω1,ω2, . . . ,ωN one can consider an analogous
problem and search for the parameters z1, . . . , zN .
Once the parameters zj are detected, the coefficients
of a1, . . . , aN can be computed by simply solving a
linear system of equations.

B. Monomials and Cantor functions

In this subsection based on [10], [18], we recall
some notations and definitions related to multivari-
ate monomials. For a tuple of non-negative integers
k = (k1, k2, . . . , kd) ∈ Zd

+ and a multivariate com-
plex variable z = (z1, z2 . . . , zd) we use multi-index
notations

zk = zk1
1 . . . zkd

d , (4)

⟨z,k⟩ = ⟨k, z⟩ = z1k1 + · · ·+ zdkd

and αz=(αz1, αz2, · · · , αzd), for any real num-
ber α ∈ R. The product (4) is called a monomial
in variables z1, . . . , zd and the sum of exponents
|k| = k1 + . . . , kd is called the total degree of the
monomial zk.

Let α=(α1, . . . , αd) and β=(β1, . . . , βd) be elements
of Zd

+; we say that α is greater than β with respect to
the Graded Lexicographic Order (Grlex) α >grlex β, if
|α| > |β| or |α|=|β| and in the vector difference α−β
the leftmost nonzero entry is positive. Accordingly, we
say that a monomial zα is greater than a monomial zβ

with respect to the Grlex, zα >grlex zβ, if α >grlex β.
For every n ∈ Z+ there is the fixed number of
monomials zk,k ∈ Zd

+, of the total degree equal to n.
Having fixed the Grlex monomial order, one gets also
the limited number of monomials of the total degree
less than or equal to n [18], namely, #{zk : |k| =
n} =

(
n+d−1

n

)
and #{zk : |k| ≤ n} =

(
n+d
n

)
.

Besides, due to the Grlex, all monomials can be placed
into one row of ordered monomials. Enumerating we
get the following

1︸︷︷︸
0

, z1,︸︷︷︸
1

. . . , zd,︸︷︷︸
d

. . . zn1 ,︸︷︷︸
(n+d

n ),

zn−1
1 z2,︸ ︷︷ ︸

(n+d
n )+1,

. . . , (5)

zn−i
1 zi2︸ ︷︷ ︸

(n+d
n )+i,

. . . , znd ,︸︷︷︸
(n+d

n )+(n+d−1
n )−1,

zn+1
1 ,︸ ︷︷ ︸

(n+1+d
n+1 )

. . .

The one-to-one correspondence between the set of all
monomials zk and between the set of nonnegative
integers, i.e. numbers of positions that these monomials
take in the row of ordered monomials (5) is provided
by the Cantor tuple function and its inverse. From
now on we focus on the three-dimensional case, that
is d = 3, and consider the Cantor tuple function

c(k1, k2, k3) =

(k1+k2+k3)
3+3(k1+k2+k3)

2+3(k2+k3)
2+2k1+5k2+11k3

6

that maps the integer grid, Z3
+, onto the set of

nonnegative integers Z+, by assigning to each vec-
tor k = (k1, k2, k3) ∈ Z3

+ the nonnegative integer
c(k1, k2, k3) ∈ Z+, see, e.g., [2]. Herewith, there exist
the inverting Cantor functions

l1, l2, l3 : Z+ → Z+,

such that the Cantor map is one-to-one [12], that is for
all N, k1, k2, k3 ∈ Z+ it holds that

c
(
l1(N), l2(N), l3(N)

)
≡ N,

and lj(c(k1, k2, k3)) = kj ,

for j = 1, 2, 3. For convenience, we will denote the
vector of inverse Cantor functions by

l(N) =
(
l1(N), l2(N), l3(N)

)
∈ Z3

+.

III. PRONY-TYPE POLYNOMIALS

Let f : Z3
+ → C be an N -sparse exponential sum

in three dimensions with parameters z1, . . . , zN and
coefficients a1, a2, . . . , aN ∈ C\{0}

f(n) =

N∑
j=1

ajz
n
j . (6)



Since f depends on n, we consider f as a three-
dimensional sequence f(n). Let us remark, that fur-
ther in the paper the number N ∈ Z+ will always
denote the number of parameters in (6). In the two-
dimensional case using f we build an analog of the
Toeplitz matrix mentioned in the Prony algorithm.
Namely, let us consider the matrix

TN =
(
fl(k)−l(j)

)N−1

k,j=0

which we call the multivariate Toeplitz matrix of f -
samples. The index set of the elements of TN we
denote by

IN=
{
i ∈ Z3

+ : i = l(k)− l(j), k, j = 0, . . . , N − 1
}
.

For the same N ∈ Z+, we denote by

ẑN =
(
zl(j)

)N−1

j=0

the row vector of monomials that obviously consists
of the first N monomials from the row of ordered
monomials (5).
The next object we consider is some set of elements
from the integer grid DN ⊂ Z3

+ defined in the
following way:

DN=
{
l(j) : j=N, . . . , N+l3(N)+

(
|l(N)|+ 2

|l(N)|

)}
.

(7)
The set DN is called the degree set of f , and it
consists of exponents we will use further for con-
structing Prony-type polynomials. For all vectors m =
(m1,m2,m3) ∈ DN , let us denote by

fN,m =
(
fm−l(j)

)N−1

j=0

the column vectors called the column vectors of addi-
tional samples. The set of indices of the vectors fN,m

for all m ∈ DN we denote by

I+N =
{
i ∈ Z3

+ : i = m− l(j), (8)
m ∈ DN , j = 0, . . . , N − 1} ,

which we call an additional index set.

Definition III-.1. Given an N -sparse exponential sum
f , we define Prony-type polynomials (PTPs) as deter-
minants of the following block matrices:

Pm
N (z) =

1

det TN

∣∣∣∣∣∣∣∣
TN fN,m

ẑN zm

∣∣∣∣∣∣∣∣ ,
for all m∈DN . From the cardinality of DN , it fol-
lows that there are exactly l3(N) +

(|l(N)|+2
|l(N)|

)
+ 1

polynomials Pm
N for the N -sparse f . The Prony-type

polynomials can have different total degrees.

Here, we want to underline the difference between the
Prony-type polynomials and those proposed in [24].

The use of the Cantor tuple function is crucial for
the Prony-type polynomials. The Cantor tuple function
allows the construction of a set of polynomials with
the parameters z1, . . . , zN as the set of their common
zeros using a smaller number of samples than [24], as
our main result shows below.

((a)) Step 0: N = 4 ((b)) Step 1: N = 5

((c)) Step 2: N = 6 ((d)) Step 3: N = 7

((e)) Step 4: N = 8 ((f)) Step 5: N = 9

((g)) Step 6: N = 10 ((h)) New start: N = 10

Fig. 1: Illustration of sets of initial monomials for an
N -sparse exponential sum for PTPs Pm

N ,m ∈ DN .

Theorem III-.1. Let f : Z3
+ → C be an N -sparse

exponential sum of the form

f(n) =

N∑
j=1

aj exp (−i⟨ωj ,n⟩) =
N∑
j=1

ajz
n
j ,

with coefficients aj ∈ C\{0} and parameters zj ∈
T3, j=1, . . . , N . Besides, let DN be the degree set
as in (7) and Pm

N be the corresponding Prony-type



polynomials defined in (III-.1) for all m ∈ DN .
If the parameters zj are pairwise distinct, then the
parameters zj , j = 1, . . . , N, form the set of common
zeros of the polynomial set PN={Pm

N : m ∈ DN}.

Proof. Similarly to [30], using the multilinearity
of determinants, one can show that the parameters
z1, z2, . . . , zN belong to the set of common zeros
of the Prony-type polynomials Pm

N , m ∈ DN , i.e.
Pm
N (zj) = 0, for all j=1, . . . , N, and all m ∈ DN .

This shows that N is a lower bound for the number of
common zeros of the polynomial set PN .
Therefore, to prove the statement of the theorem, we
need to show that N is also an upper bound for
the number of common zeros of the set of Prony-
type polynomials PN={Pm

N (z) : m ∈ DN}. We will
employ the results from Gröbner basis theory and the
residue rings [10] to prove this. Namely, to find an
upper bound for the number of common zeros, one
needs to look at the leading terms of the polynomials
from PN and collect all monomials that are less than
leading terms of PN according to the fixed monomial
Grlex order, see Fig 1. We denote this set of monomials
by W . If the cardinality of W , i.e., #W , is finite, then
the set of common zeros of PN is discrete and the
number of common zeros of PN is upper-bounded by
#W , for more details see [10], [30].

Theorem III-.1 leads to the following PTP algorithm
for N -sparse exponential sums, see Algorithm 1, which
is situated in terms of the sampling budget between the
methods proposed in [21], [22].

Algorithm 1: PTP algorithm
Data:

• Number of 3D frequencies N ∈ N
• Samples f(n), for n ∈ IPTP (N) = IN ∪ I+N

begin
• Set up PN = {Pm

N (z) : m ∈ DN}
• Compute common zeros of the PTP

V(PN ) = {z1, . . . , zN}
Result: Frequencies {ω1, . . . ,ωN}

IV. NUMERICAL EXPERIMENTS

In this section, we test numerically Algorithm 1 in
case of noise corruption and compare the obtained
results with the method [22]. The PTP algorithm was
implemented in Wolfram Mathematica with a working
precision of 50 digits. In our numerical computation,
we used only four (e.g, the first four) Prony-type poly-
nomials Pm

N , m∈D†
N : = {l(j) : j=N, . . . , N + 3} in

order to find the common zeros, which allows for more
numerical efficiency. We compare the performance of

Fig. 2: The behavior of the reconstruction error for
Experiment 1 (PTP and MNS) and Experiment 2 (PTP-
Sym and MNS-Sym).

this numerical PTP algorithm to the method of the Min-
imal Number of Samples (MNS) [22] with the sampling
direction ∆ = (1, 0, 0), the shift vector δ1 = (0, 1, 0)
and δ2 = (0, 0, 1) (see [22]), and precision of 50 digits.
For this, we consider the following two experiments.
Experiment 1. For the first experiment, we have
considered the 6-sparse exponential sum

f(n) =

6∑
j=1

aj exp (−i⟨ωj ,n⟩) + ε(n), n ∈ Z3,

with complex coefficients aj ∈ C\{0}, pairwise dis-
tinct frequency vectors ωj ∈ [0, 2π)

3
, j=1, . . . , 6,

and additive noise of the form ε(n) = ϵ eiφ with
a random absolut value ϵ uniformly distributed in
[1× 10−η, 9× 10−η], η=3, . . . , 15 and a random an-
gle φ uniformly distributed in [0, 2π). In our nu-
merical experiments, we use sets of twenty ran-
domly generated coefficients and frequency vectors
{(aj ,ωj), j=1, . . . , 6}. We consider the ℓ2-norm er-
ror, ∆ωj=∥ωj − ω̃j∥2, j=1, . . . , 6, where ω̃j is
the corresponding recovered frequency vector, and
compute the average of the maximal deviations
∆=maxj=1,...,6(∆ωj) over twenty settings.
Experiment 2. For the experiment, we have considered
the symmetric 6-sparse exponential sum

f(n) =

3∑
|j|=1

aj exp (−i⟨ωj ,n⟩) + ε(n),

with complex coefficients aj ∈ C\{0}, pairwise dis-
tinct frequency vectors ωj ∈ [0, π)

3 and additive noise
ε(n) of the same nature as in Experiment 1. Here,
we also used the data of twenty randomly generated
collections of coefficients aj and frequency vectors ωj

with the property a−j = aj and ω−j = −ωj for all
j=1, 2, 3 and present the maximal deviation in terms
of the ℓ2-norm.
The results of Experiments 1 and 2 are shown in
Figure 2. As we can observe, the PTP method enjoys
more stability in both experimental settings.
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