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Abstract
When learning is used to inform decisions about
humans, such as for loans, hiring, or admissions,
this can incentivize users to strategically modify
their features, at a cost, to obtain positive pre-
dictions. The common assumption is that the
function governing costs is exogenous, fixed, and
predetermined. We challenge this assumption,
and assert that costs emerge as a result of deploy-
ing a classifier. Our idea is simple: when users
seek positive predictions, this creates demand for
important features; and if features are available
for purchase, then a market will form, and compe-
tition will give rise to prices. We extend the strate-
gic classification framework to support this notion,
and study learning in a setting where a classifier
can induce a market for features. We present an
analysis of the learning task, devise an algorithm
for computing market prices, propose a differen-
tiable learning framework, and conduct experi-
ments to explore our novel setting and approach.

1. Introduction
Strategic classification (Hardt et al., 2016; Brückner et al.,
2012) considers learning in a setting where users can strate-
gically manipulate their features to obtain positive predic-
tions. This applies to tasks such as loan approval, job hiring,
school admissions, insurance claims, and welfare benefits,
in which the interests of users (e.g., getting the loan or being
hired) may not be aligned with the system’s learning objec-
tive of maximizing accuracy. The primary goal of strategic
learning is to train classifiers that are robust to such respon-
sive user behavior, an idea that has gained much recent
traction (see Sec. 1.1 for a partial list of related work).

A core assumption of strategic classification is that feature
manipulation is costly, i.e., that modifying x to some other
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x′ incurs a cost to the user. These costs are typically mod-
eled via a cost function c(x, x′) that underlies user decisions,
and hence governs strategic behavior. The vast majority of
the literature considers costs as predetermined and fixed;
even if unknown to the learner, costs are still assumed to
simply ‘exist’. But where do costs come from, what form
do they take, and how do they come to be? Challenging the
conventional assumption of exogenous costs, our works sets
out to propose and study alternative cost mechanisms.

One such alternative, and the focus of our paper, is the idea
that costs can materialize through market forces: the clas-
sifier creates demand, suppliers set prices, and users pay
for items or services that aid them in securing positive pre-
dictions. As an example, consider university admissions,
which often rely on standardized test scores (e.g., SAT).
Since these affect acceptance decisions, students are incen-
tivized to improve their scores; this, in turn, has created a
(billion-dollar) market for preparation courses. We posit that
the price of such courses is determined by the importance
of standardized tests as a feature in the decision rule for
admission: if a policy update changes the relative weight of
test scores, then prices should adjust accordingly.1 Note that
such changes also affect who will—and even who can—take
such costly courses. This, in turn, can affect the eventual
composition of admitted students. If a learned classifier is
to be used to inform such decisions, then learning must be
aware of, and accountable for, the market it fosters.

Our paper formalizes this idea and applies it to the frame-
work of strategic classification. When users seek positive
predictions, this creates demand for features that are im-
portant for classification; and if features are available for
‘purchase’ from sellers, then a competitive market is formed.
The cost of obtaining features is then determined by their
market price, which is reflective of their market value, and
users can purchase any bundle of features whose price is
within their budget. Crucially, prices are not given nor pre-
determined; rather, they depend on the learned classifier
through how it shapes demand, as it relates to the entire data
distribution. This means that to obtain a strategically robust
classifier, learning must be able to anticipate the market it
induces. We refer to this as market-aware classification. To

1For broader discussion on changes in SAT policy as they relate to
strategic behavior see Liu & Garg (2021).
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facilitate learning in this setting, we (i) define ‘a market for
features’, as it relates to the learning task; (ii) characterize
an appropriate notion of price equilibrium; and (iii) study
the task of learning strategic classifiers that induce markets.

Learning in our market setting admits two key challenges.
First, since market prices rely on the aggregate demand of
all users, the behavior of users becomes dependent through
the market mechanism. This is in sharp contrast to the stan-
dard setting in which users respond independently and the
objective decomposes over training examples. As we show,
this can have a stark effect on learning, since even points that
lie far from the decision boundary can still have a significant
impact on market prices, and hence on the behavior, of oth-
ers. Fortunately, a useful property of equilibrium prices is
that if the market is efficient, then prices reflect all relevant
information. In our setting, this implies that conditioned
on prices, the objective does decompose over users. This
allows us to adapt standard techniques for strategic learning
with (independent) user responses to handle (dependent)
market-induced cost functions. Our second challenge is
therefore to compute market prices effectively and as part
of the training pipeline. For this, we first give an algorithm
for computing prices exactly, and show that it is efficient.
We then propose a differentiable variant of the algorithm
that computes ‘smooth’ prices, which enables end-to-end
optimization of the entire objective using gradient methods.

Using our approach, and via both synthetic and semi-
synthetic experiments, we proceed to explore the effects of
induced markets on learning and its outcomes, Our main re-
sults here are twofold. First, we show that markets can give
rise to complex behavioral patterns that differ significantly
from the conventional strategic setting. Under a fixed cost
function (e.g., some norm), whether a point will move or
not depends only on its distance from the decision boundary.
Conversely, since market prices are adaptive, the cost-
effectiveness of moving for any given point depends on the
aggregate demand induced by the particular classifier. This
means that which points move and which don’t can follow
highly irregular patterns, and in some cases counterintuitive.
One example is that ‘raising the bar’ on acceptance by
increasing the threshold—a common approach to combat
strategic behavior—can cause more points to cross. Another
surprising outcome is that unseparable data can become
separable. This can occur when (i) budgets correlate with
labels, and (ii) prices discriminate against low-budget users.

This drives our second result, which is that budgets play
a distinctive role in shaping learning outcomes. Our frame-
work makes a distinction between what users have (i.e.,
their features) and their economic stature (via their budget).
Here we show that learning tends to favor users with larger
budgets. The mechanism for this is indirect: if the classifier
separates the data well but in a way that negative points

hold most of the aggregate budget, then prices will be
low, negative points will cross the decision boundary—and
accuracy will be reduced. Thus, since classifiers gain power
over the induced market, maximizing accuracy will often
be achieved by learning classifiers under which positive
predictions are indirectly associated with high budgets.
This raises natural questions regarding socioeconomic
equity—an important yet underexplored notion of fairness.

1.1. Related work

Strategic classification. The field of strategic classifica-
tion (Brückner et al., 2012; Hardt et al., 2016) has gained
much recent interest. This has led to many advances both in
theory (Sundaram et al., 2021; Zhang & Conitzer, 2021) and
in practice (Levanon & Rosenfeld, 2021). The original for-
mulation includes several strong assumptions, in particular
regarding costs, which subsequent works have challenged
or relaxed. One line of research considers learning under
unknown (but nonetheless fixed) costs, including in the on-
line (Dong et al., 2018; Ahmadi et al., 2021), multi-round
batch (Lechner et al., 2023), and one-shot (Rosenfeld &
Rosenfeld, 2024) settings; under personalized costs (Lech-
ner et al., 2023; Shao et al., 2024) and for general manipu-
lation graphs (Ahmadi et al., 2023; Cohen et al., 2024). A
related thread relaxes assumptions on user-side information,
but focuses on uncertainty regarding the classifier rather
than costs (Ghalme et al., 2021; Bechavod et al., 2022; Bar-
sotti et al., 2022). Another assumption is that users respond
independently; this has been relaxed by injecting depen-
dencies through the utility function in a ranking task (Liu
et al., 2022), or through the model class by making use of a
network structure over users (Eilat et al., 2023). In a recent
work, Hossain et al. (2025) augment the cost function to
include externalities, which entail dependencies. Our work
proposes that user behavior becomes dependent through a
market mechanism in which demand, and therefore prices,
derive from the classifier.

Learning and markets. A large literature considers mar-
kets for data (e.g., Agarwal et al., 2019; Ghorbani & Zou,
2019; Chen et al., 2022) or trained models (e.g., Chen et al.,
2019; Huang et al., 2023). A recent line of work studies
competition between platforms or service providers (Ben-
Porat & Tennenholtz, 2017; 2019; Guo et al., 2022; Ja-
gadeesan et al., 2023; 2024; Shekhtman & Dean, 2024;
Einav & Rosenfeld, 2025). Here learning is used to elicit
user preferences, e.g. towards making useful recommen-
dations (Hron et al., 2023; Eilat & Rosenfeld, 2023). In
contrast, our setting considers how learning creates a mar-
ket, where the commodity is features. The idea that features
affect demand has been considered in Nahum et al. (2024),
but for market decongestion via feature selection and in a
different setting. Closer to ours in spirit, Hardt et al. (2022)
measure the power of learning to shape outcomes through
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predictions that cause a distribution shift. However, they
target a general performative setting in which neither a mar-
ket nor user incentives are explicitly modeled. Epasto et al.
(2018) study data-driven algorithms for mechanism design
(e.g., auctions) in which rational agents can misreport infor-
mation (e.g., bid untruthfully). Interestingly, they conclude
that learning a mechanism is possible if misreporting bears
a cost to users—as in strategic classification.

2. Setup
Strategic classification. In standard strategic classification,
users are described by features x ∈ Rd, and have binary
labels y ∈ {0, 1}. Given a sample set of pairs (x, y) drawn
iid from some unknown joint distribution D, the goal in
learning is to find a classifier h from some model class H
whose predictions ŷ = h(x) obtain high expected accuracy
on future samples. Our focus will be on linear classifiers,
hw,τ (x) = sign(w⊤x+τ). The challenge in strategic learn-
ing is that users can ‘game’ the system by manipulating their
features to obtain positive predictions. In particular, given
the classifier h, users are assumed to be rational and there-
fore modify their features via the best-response mapping:

∆h(x) = argmax
x′

h(x′)− c(x, x′) (1)

where h(x′) ∈ {±1} is their utility gained from prediction
outcomes on the modified input, and c(x, x′) is a cost
function that governs the costs of changing x to any other x′.
The goal is then to learn a classifier h that is robust to such
strategic responses, and the strategic learning objective is:

argmin
h∈H

ED

[
1{y ̸= h(xh)}

]
, xh = ∆h(x) (2)

Market setting. Our setting builds on the above to allow
for the formation of a market for features. To generally
enable transactions, we require two additional structural
assumptions. First, we assume features describe tangibles;
this means that each x[i] ≥ 0, and that a larger value means
having ‘more’ of feature i. Second, we assume each user
has an (individualized) monetary budget b ≥ 0, which limits
the amount they are willing to spend (or, equivlently, the
value they attribute to obtaining a positive prediction). This
extends the joint distribution to be over tuples (x, b, y) ∼ D.

Apart from these, the only distinction of our setup is that we
use a particular cost function to express market costs. We
will make use of linear costs (Hardt et al., 2016); given a
vector p = (p1, . . . , pd) ≥ 0 and for δ = x′ − x, define:

cp(x, x
′) = cp(δ) = δ⊤p (3)

If we consider δ as a bundle of features, then we can in-
terpret p as a vector of prices, where each pi is the price
of purchasing one unit of feature i. We assume that users

can buy features (but cannot sell), so that δ ≥ 0; together
with p ≥ 0, this ensures cp(δ) ≥ 0 always.2 Rather than
assuming prices are fixed and given, our main innovation is
to let p be determined by forces of supply and demand.

Sellers and market prices. Our setting assumes there are
d distinct sellers, s1, . . . , sd, where each seller si sells fea-
ture i exclusively and can determine its price pi. The goal of
each seller is to maximize her expected revenue, defined as:

ri(p) = pi ·ED[δi(x;p)] (4)

where δi is the amount of feature i purchased by user x at
prices p. We consider a setting of unlimited supply (e.g.,
as in digital goods) and in which users can purchase any
real quantity of any feature, δi ∈ R+ ∀i ∈ [d].

Note revenue to seller si depends not only on its pi, which
it controls, but also on all other prices, p−i, which are
set by other sellers. As such, we will assume that prices
reach equilibrium, denoted p∗ = (p∗1, . . . , p

∗
d), which is

revenue-maximizing in the sense that no seller si can
improve her own revenue by changing pi, given that all
other prices remain fixed. We refer to p∗ as ‘market prices’,
and will define them precisely in Sec. 3. A crucial point
is that market prices depend on the joint demand for all
features, aggregated over all users. This, in turn, is shaped
by the choice of classifier, as we describe next.

Classifiers that induce markets. Since by Eq. (1) utility
to users derives from their prediction ŷ = h(x), any user
x who is classified as negative (i.e., has h(x) = 0) will be
interested in purchasing additional features δ = (δ1, . . . , δd)
if this results in flipping her prediction to h(x+δ) = 1. The
demand set of a user therefore includes all δ for which:

w⊤(x+ δ) + τ ≥ 0 and δ⊤p ≤ b (5)

Overall demand is then given by aggregating all such δ over
the collection of all users, and market prices p∗ are set by
sellers to maximize revenue under this global demand set.

Notice how demand, and therefore prices, depend on the in-
teraction between the data distribution (i.e., all pairs (x, b))
and the classifier h (via w and τ ). In this sense, we get that
each choice of classifier induces a market. We will hence-
forth use ph := p∗(h;D) to denote the classifier-dependent
equilibrium prices that govern user responses in the market.

Strategic learning objective. Given a sample set S =
{(xi, bi, yi)}mi=1 drawn iid from D, we will be interested
in learning a classifier that maximizes expected accuracy
under the market it induces. This requires us to anticipate
how users will respond: for a given h, plugging Eq. (3) into

2Note this circumvents an artifact of linear costs, made apparent
in Hardt et al. (2016), which is that points can move ‘for free’ in
any direction (and hence to any distance) that is orthogonal to w.
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Figure 1: Strategic classification under market costs. (A) In the standard setting with predetermined norm costs, each
classifier h induces a fixed region of points that will cross (light grey). (B) In our market setting, points have budgets b
(circles), and their distance to h determines their demand δ (dashed lines). (C) Demand for all users is projected onto a single
demand space (top) and then normalized by budgets (bottom), over which revenue-maximizing prices ph are computed. (D)
Under market costs, points move if their budget permits buying sufficient features, and do not move otherwise. (E) A different
classifier h′ creates different demand, and therefore induces different prices ph′

. This can result in different points moving.

Eq. (1) gives the market best-response mapping:

∆market
h (x, b) = x+ δx,

δx = argmax
δ≥0

h(x+ δ)− 1

b
cph(δ) (6)

which satisfies budget constraints implicitly. Given Eq. (6)
can be interpreted as each user having individualized costs
cx(δ) =

1
b cph(δ). Nonetheless, a crucial point is that when

h is learned, individual best-responses ∆market
h (x, b) be-

come dependent on all other users, since ph depends on the
distribution D through the learned h. Thus, users respond
as a collective—not independently. Fig. 1 illustrates the
process in comparison to standard strategic classification.

Given Eq. (6), our strategic learning objective is:

argmin
h∈H

ED

[
1{y ̸= h(xh)}

]
, xh = ∆market

h (x, b) (7)

which in practice we will replace with an appropriate empir-
ical proxy (Sec. 4). Note h is a function of features alone—
and not of budgets; thus, we assume budgets are observed
at train time, but at test time are private to users, and affect
their computation of xh. This makes ∆market

h a special case
of the generalized response model proposed in Levanon &
Rosenfeld (2022) which supports private information, albeit
with cross-user dependencies (which are unsupported).

3. Market Prices: Analysis and Algorithm
Optimizing Eq. (7) requires the ability to anticipate how
users respond to the market. By Eq. (6), this can be achieved
by computing induced prices ph. Our first task is therefore
to compute market prices for a given h. We begin with ana-
lyzing the market, and then give an exact pricing algorithm.

How users respond to prices. Given a classifier h and a
general price vector p, how will users behave? To gain in-
sight, we will first consider the case of w > 0, and later gen-
eralize. Notice that computing xh in Eq. (6) can be broken

down into three steps: First, compute ŷ = h(x), and pro-
ceed only if ŷ = −1. If so, then second, find the least-costly
δ that gives a positive prediction, this by solving the LP:3

δ∗ = argmin
δ≥0

δ⊤p s.t. w⊤(x+ δ) + τ = 0 (8)

Third, apply xh = x+ δ∗ iff budget permits, i.e., δ⊤∗ p ≤ b.

To understand δ∗, consider a change of variables in Eq. (8)
using zi = δiwi. The LP can now be rewritten as:

argmin
z≥0

d∑
i=1

pi
wi

zi s.t.
d∑

i=1

zi = κx (9)

where the constant κx = −w⊤x − τ is non-negative for
relevant points (i.e., having ŷ = −1). This provides an
alternative interpretation: the user must allocate κx mass
across features, using z, to minimize total cost-per-value,
where ‘values’ correspond to entries of w. This has a simple
solution, which is to set zi = κx if i attains the minimal
ratio pi/wi, and 0 otherwise. If multiple features attain the
minimum, then these features are substitutable, and so any
allocation of z among them is equivalently optimal. In other
words, users will purchase only the most cost-effective
features, but are indifferent within this set of features.

How prices adjust to demand. Given the above, we
next consider how sellers should set prices. Notice how by
Eq. (9), all user decisions depend on the ratios pi/wi, and
differ only in the constant κx. Since all users buy only the
most cost-effective features, any si whose ratio is not min-
imal will receive zero market share. Sellers therefore com-
pete over who attains the minimal pi/wi. Since sellers in our
setting have no capacity constraints or production costs, we
assume sellers have foresight and so coordinate to prevent

3Since users minimize costs, we can use an equality constraint.

4



Learning Classifiers That Induce Markets

Algorithm 1 Exact empirical market prices

1: input: classifier hw,τ , sample set S = {(xi, bi, yi)}mi=1

2: initialize: r = 0 (revenue), U = 0 (total units sold)
3: for i = 1, . . . ,m do
4: ui ← dist+(xi;h)
5: ūi ← ui/bi
6: (ū(1), . . . , ū(m))← sort(ū1, . . . , ūm)
7: for i = 1, . . . ,m do
8: pi ← 1/ū(i)

9: U ← U + ū(i)

10: if piU > r then
11: r ← piU
12: p̂← pi
13: return: p̂ = p̂ · w/∥w∥

price collapse.4 This gives the equilibrium condition:

∀ i ∈ [d],
pi
wi

= ρ∗ > 0 (10)

for ρ∗ that admits maximal total revenue, r =
∑

i ri. This
implies a tight connection between the classifier and prices:

Proposition 1. Let h(x) = sign(w⊤x+ τ), then there exist
equilibrium market prices p∗ that are proportional to w:

p∗(h;D) = ρ∗ · w (11)

for some ρ∗ ∈ R+ which also depends on h and D.

The particular equilibrium in Eq. (11) will become highly
useful for our method in Sec. 4. Interestingly, for the
purpose of learning, prices can be computed as in Eq. (11)
even if some entries in w are negative. This is because for
every h there exists a price vector p′ ≥ 0 such that (i) p′

is an equilibrium price, and (ii) outcomes under p∗ and p′

are the same, i.e., the same set of points cross. Intuitively,
this is due to items being exchangeable; see Appendix A.1.

Computing empirical market prices. Given a classifier h
and sample set S = {(xi, bi, yi)}mi=1, we will be interested
in computing revenue-maximizing market prices. Because
we only have a sample at hand, our goal will be to compute
optimal empirical market prices p̂. Applying Eq. (11) to the
empirical distribution over S, we get that p̂ = ρ̂w for the
scalar ρ̂ which maximizes total empirical revenue, denoted
r̂. This is highly useful, since the problem of computing
equilibrium for the empirical market under a given h reduces
to optimizing over scalars ρ ∈ R.

By Eq. (11) we can find market prices in the direction of w.
The demand of a user is the (directional) distance from x
to the decision boundary of h, measured in ‘units’ u ∈ R+.

4This is essentially Bertrand’s paradox, for which we invoke the
folk theorem to enable the formation of cooperative equilibrium.

Observation 1. Let h and S, then for a given user x, and
for any ρ ∈ R, her demand under prices p = ρw is:

u = dist+(x;h) = max

{
0,−w⊤x+ τ

∥w∥

}
(12)

Here the max over 0 ensures that demand is considered only
for relevant users, i.e., for which h(x) = −1. This transition
to units of demand lays the ground for our algorithm.

Exact aglorithm. Algorithm 1 provides pseudocode for
an algorithm that efficiently computes the optimal (scalar)
prices ρ̂ for given h and S. Our key observation is that
it suffices to work with units-per-budget, defined as ūi =
ui/bi for each user xi. The first steps are therefore to project
demand onto w, obtain all ui, and normalize by bi to get ūi.
Correctness of the algorithm follows from the next result:

Theorem 1. Given (uni-dimensional) demand {(ui, bi)}mi=1,
the revenue-maximizing price is ρ̂ = ū−1

i∗ for some i∗ ∈ [m].

Proof. It suffices to show that the set of all local maxima
of revenue (as a function of ρ = u−1) correspond exactly
to the set of points {ū−1

i }mi=1. Assume w.l.o.g. that ū−1
i are

ordered. Then for any interval (ū−1
i , ū−1

i+1), revenue is linear
in ρ; this is since for all ρ in this interval, the set of users
that purchase are precisely j = 1, . . . , i, each purchasing uj

units at price ρ. Next, notice that at any ρ = ū−1
i , increasing

ρ infinitesimally causes i to not purchase, since she can no
longer afford her required units ui at budget bi, and revenue
exhibits a sharp drop. Thus, revenue is discontinuous peice-
wise linear with increasing segments between the u−1

i .

Fig. 2 illustrates the structure of revenue as a function of
price. Thm. 1 implies that it suffices to compute r at prices
ρi = 1/ūi for all i ∈ [m], choose the maximizing i∗, and set
ρ̂ = ρi∗ . We will henceforth refer to the user i∗ as the price
setter. Sorting by ūi makes this process efficient: at price pi,
the set of point who purchase are precisely j for which ūj ≤
ūi. Since revenue at i is piU = pi

∑
ūj≤ūi

ūj , we can up-
date U on the fly as a cumulative count of total units bought,
and multiply by price, giving runtime of O(m logm).

One interesting observation is that prices are agnostic to
scale: if we multiply demand (or budgets) for all users by
a constant, then prices will scale inversely (proportionally).
Such "change of currency" has no effect on user responses.

4. Learning Approach
We now turn to the question of how to learn an accurate
classifier on the market distribution it induces. Our general
approach will be to follow the empirical risk minimization
framework and replace the expected risk in Eq. (7) with an
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Figure 2: Empirical revenue as a function of price. Rev-
enue increases before each ū−1

i and drops immediately after,
implying the argmax is attained at some i∗ ∈ [m] (Thm. 1).

empirical proxy objective over the sample set S, namely:

argmin
h∈H

1

m

m∑
i=1

ℓ(xh
i , yi;h)+λR(g), xh

i = ∆market
h (xi, bi)

(13)
Here ℓ is a surrogate loss (e.g., hinge), R is an (optional) reg-
ularization term with coefficient λ, and responses ∆market

h

are defined w.r.t. empirical market prices, p̂ = p∗(h;S).

Challenges. There are several challenges to optimizing
Eq. (13). First, as in standard strategic classification, ∆ is an
argmax operator, which is non-differentiable and even dis-
continuous. Second, in our market setting, the objective no
longer decomposes over examples, since how each xi moves
now depends on all points in S through p̂. Third, prices p̂ de-
pend not only on the data, but are also a function of h, which
is the target of optimization. Finally, it is unclear what are
appropriate choices for ℓ and R since strategic learning often
requires using specialized proxy losses and regularizers.

Approach. Our solution will be to replace ∆market
h with a

differentiable proxy that permits to take gradients ‘through
the market’. First, notice that conditioned on prices, user
updates xh

i become independent; this is precisely role prices
play in any efficient market. Next, we define ℓ. While there
are no known strategic losses for linear costs—even with
fixed parameters—surprisingly we show it is possible to
adapt the strategic hinge (Levanon & Rosenfeld, 2022):

ℓs-hinge(x, y;h) = max{0, 1− y(w⊤x+ τ +2∥w∥)} (14)

which applies to fixed 2-norm costs. Although our costs
are linear, since we work with market prices of the form
p = ρw, users are modelled as moving towards the decision
boundary. Thus, because prices adapt to the classifier
h, users respond to (directional) market prices ph ‘as if’
projected onto h, in the same manner as under (symmetric)
2-norm costs. Note ℓs-hinge penalizes all points according to
the maximal moving distance of 2 (for y ∈ {±1}), which
is the same for all users. The key difference in our setting
is that users have individualized maximal distances: for a

given ρ, this is the amount of units that each user i can buy,
namely bi/ρ. This gives our proposed market hinge loss:

ℓm-hinge(x, y;h, ρ) = max{0, 1− y(w⊤x+ τ +
b

ρ
∥w∥)}

(15)
A primary benefit of ℓm-hinge is that it does not include ∆ ex-
plicitly. Furthermore, it requires only the scalar market price
ρ (which depends on h). Our final step is to replace ρ with
a differentiable market price ρ̃ as a smooth approximation.
This is achieved by making Algo. 1 itself differentiable—for
full details see Appendix. C. The relation between the
market hinge and the 0-1 loss is explored in Appendix B.1.

5. Learning in Markets: Exploratory Insights
In this section we use synthetic experiments to demonstrate
the basic mechanics underlying how learning creates mar-
kets, and how induced markets affect learning outcomes. As
we show, such effects can be quite stark. We begin with ques-
tions regarding fixed h, and then consider h that are learned.

5.1. Typical market behavior

Given a classifier h, how will the market respond? Let q be
the distribution over demand-budget pairs (u, b) induced by
h. By Sec. 3, q fully determines prices. For our following
analysis we will focus on q that are simple, parametric, and
well-behaved. We first consider uniform budgets, and then
move to heterogeneous budgets that vary across users.

Uniform budgets. When b = 1 for all users, and so ū = u,
users are naturally ‘ordered’ by their demand. From Sec. 3,
this means that if u∗ is the revenue-maximizing point (i.e.,
the price setter), then all users with u ≤ u∗ move, and all
others do not. This is similar to the standard setting (with
fixed costs and uniform budget), only that the threshold on
who will move is now adaptive (u∗) rather than fixed (τ ).

Since only the closest users on the negative side of h move,
the main question here is how many of them will be deemed
as sufficiently close by the market. Fig. 3 shows revenue
curves for several demand distributions, depicting the subset
of negatively-classified points, p(x | ŷ = 1). Here we use
various parameterizations of the expressive Beta family,
scaled to [1, 10]. The figure also shows for each distribution
the price setter u∗ and the percentage of points that cross
(i.e., all u ≤ u∗). Although the distributions are quite
diverse in shape, market prices are typically low, and price-
setters lie mostly in extreme upper quantiles. As a result,
almost all points cross, with over 95% in most cases. This
effect is robust across many distributions—see Appx. A.2.

To gain some intuition as to the underlying reason, the
following result provides a simple sufficient condition:

Theorem 2. Let qf (u) be a demand distribution with pdf
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Figure 3: Demand and price setters. Demand distributions q(u) for various Beta distributions and b = 1. Shown are pdfs
and revenue curves. Note how revenue-maximizing points (‘price setters’) are extreme, suggesting that almost all points cross.
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Figure 4: Demand under varying budgets. When budgets b decrease as demand for units u grows, price setting points
become less extreme. However, this effect is mild, and only very high inequity (Gini≈1) helps to suppress mass crossing.

f(u). Then if the function f(u)u is either strictly increasing,
decreasing, or unimodal, it holds that:

1. There is a unique revenue-maximizer u∗.

2. Let umax = argmaxu f(u)u, then u∗ ≥ umax.

Since f(u)u is unimodal under any log-concave f , Thm. 2
applies to many known distribution classes.5 Appendix A.3
includes a proof and an in depth analysis of some examples.

Correlated budgets. When users vary in budgets (and
so u ̸= ū), this can be thought of as ‘distorting’ demand
by scaling units as u 7→ 1

bu. Note this means that far-away
points can now be closer, and close points can move far
away, depending on b. Potentially, this can lead to less
extreme price setters if the distribution becomes concen-
trated around smaller values; this effect occurs mildly
for Beta(0.5, 2) in Fig. 3, which is left-skewed. Because
demand is now over ū = u/b, then if we think of b as a
function of u, demand will be skewed if b is sub-linear in u,
since this will “push” larger ū increasingly further. If this
negative correlation is sufficiently strong, then market prices
should be higher, and we can expect fewer points to cross.
Fig. 4 shows revenue, prices, prices-setters, and the per-
centage of crossers for b = u−α with α ∈ {0, 1, 2, . . . , 32}.
Here we use Gaussian u scaled to [1, 2], so that bmin = 1
for the smallest u, and bmax = 2−α for the largest. Results
show that increasing α does shift the price setter, and
reduces the number of crossers. However, this requires α
to be large, and even for α = 16, 30% of points still move.

5This includes: Normal, uniform, exponential, logistic, Laplace,
Gamma, Beta, Weibull, Gumbel, Rayleigh, and Chi2 distributions.

Implications. If h is such that most points are able to
move, then this can have dire implications on predictive
performance. Because learning generally aims to separate
points by their class y, for any moderately accurate classifier
the majority of points that will participate in the market (i.e.,
have ŷ = 0, and therefore u > 0) will be negative (y = 0).
This means that for classifiers with high pre-market accu-
racy, we can expect performance to drop to as low as ∼50%
after the market forms. This ill effect can be somewhat mit-
igated if budgets correlate with distance to h, but only if in-
equity is extremely high within negative points. Fig. 4 (right)
shows the relation between the ratio of crossers and inequity
in budgets, measured in Gini units, as a function of α; in our
example, high accuracy is possible only when the gap be-
tween the lowest and highest budgets is an extreme 232-fold.

5.2. Market-aware thresholds

Strategic movement by negative points is harmful to accu-
racy; but positive points that move are actually helpful since
they correct the classifier’s mistakes. In standard strategic
classification, a useful strategy that exploits this idea is to
‘raise the bar’ by increasing τ for a given h = hw,τ . Un-
fortunately, this idea does not easily transfer to a market
setting, because prices adapt to changes in τ . Nonetheless,
varying τ for a given h can still have a positive effect.

Our next construction allows to accommodate for changes
in τ . Let h, and w.l.o.g. assume h = hw,0. Define p(z)
as the induced distribution of distances z from points x to
the decision boundary of h. For any τ , we can express the
marginal over units as qτ (u) = p(z | z ≤ τ). We can now
ask how τ shapes demand. Our next example sets p(z) to be
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Figure 5: Varying threshold. For a mixture distribution
of two class-conditional Gaussians, p(x | y) = N (yµ, σ),
varying the threshold τ results in surprising outcomes under
induced market responses. For uniform budgets (top left),
there is no good solution. When inequity in budgets b is mod-
erate (top right), accuracy jumps to 1 once a critical point is
reached. When it is low (bottom left), this occurs only at a
small interval. Increased inequity distorts the demand distri-
bution, at some point enabling accuracy ≈ 1 (bottom right).

a mixture of two class-conditional Gaussians p(z | y), where
p(z | y = 0) is scaled to [−1, 0) and p(z | y = 1) is scaled
to (0, 1]. In terms of accuracy, we would like τ to cause
points from p(z | y = 1) to move, and from p(z | y = 0)
to stay unchanged. Fig. 5 shows prices, accuracy, and the
ratio of crossers per class for the range τ ∈ [−1, 5]. When
budgets are uniform (b = 1), no threshold obtains accuracy
above 55% despite the data being separable. This is be-
cause increasing τ causes prices to decrease and remain low
enough so that almost all points cross; essentially the same
effect of Sec. 5.1. However, when b negatively correlates
with z—even mildly—then it becomes possible to achieve
high accuracy: for b that increases linearly with z from
bmin = 1 to bmax = 5, we see that once τ ≈ 0.75, accuracy
abruptly jumps from ∼0.5 to ∼0.95. This is because at
this threshold, the price setter shifts from being an extreme
point of p(z | y = −1) to an extreme point of p(z | y = 1)
(see ridgeline plot). Note that this holds for any τ ≥ 0.75;
here the adaptivity of prices plays in favor of learning and
provides robustness to the choice of τ .6 Interestingly, for
a smaller bmax = 3, we get that accuracy is high only for
τ ∈ [1, 2]; once τ becomes too large, the price returns to be
set by an extreme negative point.

Fig. 5 (bottom right) reveals an interesting phenomenon:
as inequality varies, the price setter jumps from an extreme
point of one cluster to that of another. We hypothesize this

6This is in contrast to standard strategic classification which re-
quires a particular τ and can be highly sensitive to its choice.

1 0 1
x2

2

1

0

1

2

x 1
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y = + 1
y = 1
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h (x)
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Figure 6: Market classifiers. Consider a distribution where
x1 enables class separation, and x2 is uninformative of y.
A naïve classifier that uses only x1 is unable to prevent neg-
ative points from crossing, and attains low accuracy (left).
In contrast, a market-aware classifier that uses x2 is able to
capitalize on the variation in budgets to classify well (right).

clustering behavior applies widely—see Appendix B.3.

5.3. Market-aware classifiers

In terms of the market, control over h allows the learner
to ‘choose’ which demand distribution q to work with: the
choice of w determines p(z), and τ induces q(u). This gives
learning much power over which users will be in the market,
as well as which of them will cross. Interestingly, an hw,τ

that is effective on the induced market need not be accurate
on raw data (x, y) ∼ D. For example, w can focus weight
on features that are entirely uninformative of y. Our next
construction demonstrates an extreme version of this idea.

Let d = 2, and consider (x1, x2) ∼ D composed of per-
feature class-conditional Gaussians D(xi | y). The first
feature is x1 ∼ N (µy, σ), which allows to separate the
classes (we use µ = 1 and σ = 0.15). The second fea-
ture is x2 ∼ N (0, σ), i.e., has the same distribution under
both classes, as so is by definition inseparable. We set
D(y = 0) = 0.75 and D(y = 1) = 0.25. Here we let b
depend on labels as b = 1+4y. Fig. 6 shows the behavior of
two classifiers on this data: hnaive which uses only x1 (left),
and hmarket which uses only x2 (right). The idea of hnaive

follows that of Sec. 5.2: separate the raw data well, and then
tune τ on the market. Here we see that this approach breaks
down completely: the best it can achieve is 0.29 accuracy,
since it cannot prevent the bulk of negatives from crossing.
In contrast, hmarket exploits the market to create separability
over the otherwise ineffective x2. This is the optimal market-
aware classifier. The correlation between b and y results in
a demand distribution q which clusters the positive ū close
to h, and pushes negative ū sufficiently far. This results in
almost only positive points crossing, and accuracy reaches
0.96. In Appendix B.4 we show this effect can be even more
extreme. Note learning will not always tend to favor h in
which labels and budgets correlate—see Appendix B.2.
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6. Experiments
We now turn to demonstrate how our market-aware strategic
learning framework performs empirically on real data with
simulated market behavior. We use two datasets common
and publicly available datasets and adapt them to our strate-
gic market setting: (i) the adult dataset, showed here, and
using capital_gain feature as a proxy for budgets b; and
(ii) the folktables dataset, deferred to Appendix B.5. For
further details see Appendix. D.1. Code is publicly available
at https://github.com/BML-Technion/MASC.

Setup. Our method of market-aware strategic classification
(MASC) optimizes the proxy objective proposed in Eq. (13)—
see Appendix D.3 for details. We compare to two baselines:
(i) naïve, a conventional non-strategic classifier; and (ii)
strat, a strategic classifier that anticipates user responses
(to fixed prices) but does not account for how the market
adapts.7 The latter is done by training naïve, computing
optimal prices p, setting w = p, and then optimizing τ to
maximize accuracy on a held-out set. We measure short-
term performance on current prices p (short) and long-
term performance after prices re-equilibrate at ph (long).
We also show the accuracy of naïve on non-strategic data
(for which it is consistent) as a benchmark.

Our main question regards the effect of budget distribution
on learning and its outcomes. The distribution of budgets
b as found in the data is highly skewed, with a ratio of
bmin to bmax of approximately 1:1000, which depicts a state
of high inequality. To balance this, we consider the ef-
fects of redistributing budgets to attain lower inequality,
achieved by rescaling budgets to reduced ranges [1, 2α] for
α = 2, . . . , 10, where the largest value of αtrue = 210 ≈
1000 matches the original data (star marker). For each such
k, we measure test accuracy, welfare (normalized by total
budget), and social burden (Milli et al., 2019) (normalized
by total budget of positives). We also measure the ratio of
positive points that move (high is good) and of negative
points that don’t (low is good). All results are averaged over
10 random splits, and we report mean and standard errors.

Results. Fig. 7 shows results across budget redistributions
at different inequity scales bmax

bmin
= 22, . . . , 210. In terms of

accuracy (left), all methods improve as budget gaps increase,
but at different rates. MASC clearly outperforms naïve by a
large margin. It also outperforms strat in the long term for
almost all scales α > 24 (which includes αtrue) and shows
similar performance for the lowest scales. Interestingly,
this is where strat reveals a large gap between short-term
performance (for which it is optimized) and long-term out-
comes (as a result of prices adapting to updated demand).

Fig. 7 (top right) depicts the percentage of users that cross
per class. Note the abrupt drop in negative crosses at α ≈ 24,

7This draws on the idea of the main algorithm in Hardt et al. (2016).
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Figure 7: Results on adult. (Left:) Accuracy across re-
duced budget inequity scales, relative to the data’s original
highly skewed scale of bmax

bmin
≈ 210 (star). (Right:) For

MASC, per-class ratio of crossers (top; high is good for y = 1,
low is good for y = 0), welfare, and social burden (bottom).

which matches the sharp performance increase for MASC.
This shows that larger scales make it possible to find a clas-
sifier for which negative points are mostly unable to cross.
A possible explanation is our clustering hypothesis: once
accuracy is sufficiently high, the price setter jumps from an
extreme negative point (under which almost all points move)
to an extreme positive point (under which mostly positives
move). In terms of social outcomes, welfare (normalized)
begins reasonably high, but reduces to ∼ 0.5, and does not
fully recover. Burden remains flat until scale 24, and then
gradually rises, but remains relatively low throughout.

7. Discussion
The use of learned models to inform decisions about hu-
mans has become common practice. But when those very
humans also take interest in prediction outcomes, conven-
tional learning tools no longer necessarily apply. This paper
advances the idea that when users seek to obtain certain
predictions, learning inevitably becomes a driver of demand.
When this creates an opportunity for profit, it is only natural
to expect that a market will form. Learning classifiers that
induce markets poses unique challenges as a learning task.
Our paper takes a first step to address these, and so targets a
particular market setting and pursues a basic understanding
of it. But there is of course a plethora of other market set-
tings to explore at this new intersection of machine learning
and markets. Nonetheless, the idea that learning can drive
economic outcomes has broader implications to consider.
One example is the question of how learning influences
social welfare, as it relates e.g. to market efficiency. An-
other example is the question of information asymmetry and
the capacity of learning to exploit its informational advan-
tage. Given the growing influence of learning on our lives,
such questions merit careful thinking and much deliberation.
Our hope is therefore not only to spark interest, but to also
motivate discussion on these important and timely topics.
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Impact Statement
Our paper sets out to study the interplay between learning
classifiers and the markets this process can facilitate. We
believe that the impact of prediction on economic outcomes
can be significant and widespread when machine learning
tools are used in social contexts. In the market model we
propose, the choice of classifier is modeled as affecting both
users and sellers: it inadvertently determines who must in-
vest to be classified as positive (i.e., receive the loan or get
the job), what this will cost, and which sellers will profit.
These forces arise naturally through how the market coor-
dinates supply and demand. But whereas the mechanics
of conventional markets are well understood both in theory
and practice, we believe that the role of learning in mar-
kets, and the impact that learning can have, has so far been
insufficiently explored.

An understanding of how learning creates and affects mar-
kets can be used to advance efficient and fair trade, foster
equal opportunity, and promote social welfare. It can also
be used to gain insight as to how learning-driven markets
should be regulated and by what means. But such knowl-
edge and tools should be used with care, as they can poten-
tially serve to drive markets to undesired outcomes. One
example is economic inequity, which can be exacerbated by
learning, as our results suggest can happen. Another exam-
ple is information asymmetry: Our stylized market model
assumes perfect information and efficient prices. But in a
reality where learned models have access to an unparalleled
amount of data—certainly more than is accessible to users or
sellers—the learning system gains a distinct informational
advantage. It is widely recognized that such settings can
lead to the exploitation of consumers and even to market
collapse (e.g., Akerlof, 1978). We hope that our work serves
to encourage fruitful discussion on these important topics.

It is also important to note that the market model we study is
simple and draws on many assumptions, such as unlimited
supply, a fixed number of exclusive sellers, and no external-
ities. Results regarding market outcomes, both theoretical
and empirical, should therefore be taken under this light. At
the same time, we hope this motivates researchers in both
machine learning and economics to deepen our understand-
ing of learning and markets in broader and more realistic
economic settings.
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A. Market prices – additional theoretical and empirical results
A.1. Equilibrium prices

Consider some classifier h = hw,τ , and assume there exists some i ∈ [d] for which wi > 0. W.l.o.g. let i = 1. The
following result states that computing market outcomes under h can be done by (i) projecting demand onto the direction of
w (i.e., by computing distances from negatively classified points to the decision boundary of h), (ii) computing a (scalar)
revenue-maximizing price ρ⊥, and (iii) moving points iff b > ρ⊥. This suggests that even for w with some negative entries,
market outcomes can be computed "as if" users move directly towards h, i.e., as determined by "prices" p⊥ = ρ⊥ · w.

The idea is to show that outcomes are mostly invariant to the actual direction in which points move. Because features are
substitutable, we can artificially constrain purchases to a single feature (here, x1) and maintain the same outcomes. This
results from the same user taking on the role of prices setter irrespective of the chosen direction of movement.

Proposition 2. Given h, let ρ1 by the revenue-maximizing price assuming there is demand only for feature x1, i.e., points
can only buy x1 and therefore only move along this dimension. Define p1 = (ρ1, 0, . . . , 0). Then:

1. Total revenue will be the same under p⊥ and p1.

2. The same set of users will cross h under p⊥ and p1.

Proof. The ℓ2 distance of a point x to the hyperplane defiend by h is given by:

u =

∣∣∣∣w⊤x+ τ

||w||

∣∣∣∣
Contrarily, the distance of a point to a hyperplane in the direction of x1 alone is:

u1 =

∣∣∣∣w⊤x+ τ

w1

∣∣∣∣
which we think of u1 as units of demand in the direction of x1. Together, we get the relation:

u = u1 |w1|
||w||

Plugging the above into the definition of maximal revenue gives:

r = argmax
i

bi
ui

∑
j:

bj
uj

≥ bi
ui

uj

= argmax
i

bi

u1
i
|w1|
||w||

∑
j:

bj

u1
j

|w1|
||w||

≥ bi

u1
i

|w1|
||w||

u1
j

|w1|
||w||

= argmax
i

bi
u1
i

∑
j:

bj

u1
j

≥ bi
u1
i

u1
j

= r1

where r1 is the total revenue when only purchases of x1 are permitted. The equality holds since scaling does not change the
argmax, and by multiplying both sides of the inequalities in the summation by |w1|

∥w∥ . Thus, total revenue remains the same.

Note also that by switching from u to u1, albeit scaling, the summation is taken over the same set of points. In other words,
a different direction might entail a different currency, but the market will maintain its operation. Thus, the set of points that
move also remains the same.
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For a given w, one implication is that for any direction i in which wi > 0, the corresponding pi is an equilibrium price.
When multiple such i exist, any pi is an equilibrium price. When w > 0 in all entries, p∗ is also an equilibrium price. Our
result above states that market outcomes are equivalent under any of these prices, and so in principle we are free to work
with any of them. The second convenient implication is that even for w having negative entries, and for which p∗ is not
well-defined, we can nonetheless work with p⊥.

A minor comment is that although we assume only that items and prices are positive (and not w), it is possible to constrain
w > 0 as part of the learning algorithm. Another possibility is to permit negative prices: these can be interpreted as paying
to reduce x (e.g., pay the gym to lose weight), but requires constraining xh ≥ 0 (or permitting negative x). For wi = 0, we
can interpret this as seller i not permitted (or able) to sell at all.

A.2. Expected prices

In Sec. 5.1 we have empirically shown that for many ‘natural’ distributions over demand, there is: (i) a unique revenue-
maximizing point u∗, and (ii) this point tends to materialize at extreme quantiles of the distribution. Here we show
that this phenomenon holds more broadly. Fig. 8 shows pdf-s, revenue curves, and price setters for a wide range of
parameterizations of the Beta distribution. These include symmetric, left-skewed, right-skewed, concave, bell-shaped, and
uniform distributions. For all distributions considered, the price setter is at least in the 80-th percentile, and typically much
more extreme.
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revenue
argmax
pdf
crossers% 99%
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Beta(0.5,2)

82%
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83%

Beta(0.5,8)

96%

Beta(1,0.5)

99%

Beta(1,1)

91%

Beta(1,2)
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92%
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97%
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Figure 8: Price setters are extreme across a wide range of Beta distributions.

A.3. Theoretical insight

To complement the observations above, this section aims to provide a theoretical underpinning for the questions of (i)
when do unique revenue-maximizing prices exists, (ii) why is this prevalent across many natural distributions, and (iii) how
extreme are price setters (e.g., in terms of quantiles). We begin with some general claims and sufficient conditions, and then
present some examples of particular distribution classes which we analyze in depth.
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A.3.1. ANALYZING REVENUE

Consider a continuous distribution over (univariate) revenue defined by a pdf f(u). We assume that f has support on [0, t]
for t ∈ R+ ∪ {∞}, and consider uniform budgets b = 1 for all users. This is made w.l.o.g.—see below. Recall that expected
revenue r(u; f) is defined as the sum of demands of all users u′ ≤ u, divided by u. This can be rewritten as:

r(u; f) =
1

u
Eu[u

′|u′ ≤ u] =
1

u

∫ t

0

f(u′) · 1{u′ ≤ u} · u′du′ =
1

u

∫ u

0

f(u′) · u′du′

To determine whether the expected revenue has a maximum, we compute the derivative of r(u; f) with respect to u:

r′(u; f) =
d

du
r(u; f) =

1

u
f(u) · u− 1

u2

∫ u

0

f(u′) · u′ du′ = f(u)− 1

u2

∫ u

0

f(u′) · u′ du′

Denote by u∗ the revenue maximizer w.r.t. f (if such exists). That is, u∗ = argmaxur(u; f). The following observations
will be useful:

Observation 2. If r′(u; f) > 0 through 0 ≤ u ≤ t, then u∗ is unique and is attained at t.

Observation 3. If r′(u; f) < 0 through 0 ≤ u ≤ t, then u∗ is unique and is attained at 0.

Setting r′(u; f) = 0, we find:

f(u) =
1

u2

∫ u

0

f(u′) · u′du′

f(u)u2 =

∫ u

0

f(u′) · u′du′

A.3.2. PROOF OF THEOREM 2

Theorem 2 states that sufficient conditions for the existent of a unique argmax for expected revenue are that f(u)u is either
strictly increasing, strictly decreasing, or strictly unimodal. We now turn to its proof.

Proof. Denote by D(u) the function D(u) = f(u)u. We split the proof to two distinct cases:

Case I: D(u) contains one maxima point. Let û denote the maxima point of D(u), meaning that û = argmaxu D(u).
For u ∈ [0, û], D(u) is increasing, and for u ∈ [û, t], D(u) is decreasing. Therefore, for 0 < u1 < u2 < û, it holds that
D(u1) = f(u1)u1 < f(u2)u2 = D(u2). Thus, for all u < û:

D(u)u = f(u)u2 >

∫ u

0

f(u′)u′, du′

This implies:

r′(u; f) = f(u)− 1

u2

∫ u

0

f(u′)u′, du′ > 0

If f(u) is continuous on [0, t], then r′(u; f) is also continuous on [0, t]. Therefore, if no u satisfies f(u)u2 =
∫ u

0
f(u′)u′ du′,

then r′(u; f) > 0 throughout [0, t]. By observation 2, u∗ = t maximizes the revenue of the distribution.

Suppose there exists a point u∗ such that:

f(u∗)u∗2 =

∫ u∗

0

f(u′) · u′ du′.

First, it follows directly that u∗ ≥ û, since for u < û, it holds that r′(u; f) > 0. Second, referring to Figure 9, for each
ϵ > 0, moving to u∗+ ϵ increases area 1 and decreases area 3. Area 2 changes as well but is mutual to both terms. Therefore,
in the range (u∗, t], the following inequality holds:

f(u)u2 <

∫ u

0

f(u′) · u′ du′
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Figure 9: Areas 1 and 2 contribute to
∫ u∗

0
f(u′)u′ du′,

while areas 2 and 3 yield f(u∗)u∗2. At u = u∗, we have∫ u∗

0
f(u′)u′ du′ = f(u∗)u∗2, which implies that area 1

equals area 3. Furthermore, for each ϵ > 0, shifting to u∗+ϵ
increases area 1 and decreases area 3. Area 2 also changes
but remains common to both terms. Thus, for each ϵ > 0,
at uϵ = u∗ + ϵ, it follows that

∫ uϵ

0
f(u′)u′ du′ > f(uϵ)u

2
ϵ .

This implies that within the range (u∗, t], the derivative r′(u; f) < 0. Consequently, u∗ is the unique revenue maximizer by
definition.

Case II: D(u) contains no maximum point. If D(u) is strictly increasing over [0, t], it follows that f(u)u2 >∫ u

0
f(u′)u′ du′ for all u ∈ [0, t]. Consequently, r′(u; f) > 0 for all u, which, by Observation 2, indicates that the

unique revenue maximizer is u∗ = t. Moreover, in this case argmaxu D(u) = t, meaning that u∗ = argmaxu D(u)

Conversely, if D(u) is strictly decreasing over [0, t], it follows that f(u)u2 <
∫ u

0
f(u′)u′ du′ for all u ∈ [0, t]. Consequently,

r′(u; f) < 0 for all u, which, by Observation 3, indicates that the unique revenue maximizer is u∗ = 0. Moreover, in this
case argmaxu D(u) = 0, meaning that u∗ = argmaxu D(u).

We note that the proof can be easily extended to distribution in the range [a, t], for a > 0. The changes to the original proof
are minor, and include modifying the lower limit of the integration. For distributions in range [a,∞], the proof is valid too,
as long as D(u) is strictly increasing, decreasing, or unimodal.

The proof also give a lower bound on u∗ in terms of f :

Corollary 1. Under all conditions of Thm. 2, it holds that u∗ ≥ û.

The following examples show this relation explicitly for two classes of distributions: Beta, and uniform.

A.3.3. EXAMPLE: BETA DISTRIBUTION

Based on Theorem 2, we establish the following result about Beta distributions:

Theorem 3. For every a, b > 0, let f(u) denote the probability density function (PDF) of the Beta distribution Beta(a, b),
defined on the interval [0, 1]. Then, the function D(u) = f(u) · u is either strictly increasing or strictly unimodal.

The following theorem implies that every Beta distribution has a unique revenue maximizer, which is confirmed empirically
over different Beta distributions in Figure 8.

Proof. The PDF of Beta(a, b) is given by:

f(u) = Ka,bu
a−1(1− u)b−1,

where Ka,b > 0 is a normalization constant that depends only on a and b. Thus, D(u) = f(u) · u = Ka,bu
a(1− u)b−1.

We will show that D(u) is either strictly increasing, or strictly unimodal. First, compute the derivative of D(u) w.r.t. u:

d

du
D(u) = Ka,b

[
aua−1(1− u)b−1 − ua(b− 1)(1− u)b−2

]
Simplifying the expression gives:

d

du
D(u) = Ka,bu

a−1(1− u)b−2 [a(1− u)− u(b− 1)]
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and setting d
duD(u) = 0, we solve:

Ka,bu
a−1(1− u)b−2 [a(1− u)− u(b− 1)] = 0

The solutions are:
u1 = 0, u2 = 1, u3 =

a

a+ b− 1

Here, u1 exists if a > 1, and u2 exists if b > 2 (otherwise, they are undefined due to the powers of ua−1 and (1− u)b−2).
Since the Beta distribution is defined on [0, 1] and D(u1) = D(u2) = 0, we focus on u3. For u3 ∈ [0, 1], it must hold that
b > 1.

Next, observe that for all u < u3, the term a(1 − u) − u(b − 1) > 0. Therefore, D′(u) > 0 and D(u) increases in this
range. The proof now splits into two cases:

Case 1: u3 /∈ [0, 1]. In this case, D(u) is strictly increasing over the interval [0, 1], because D′(u) > 0 throughout [0, 1]
and the proof is complete.

Case 2: u3 ∈ [0, 1]. For u3 < u < 1, the term a(1− u)− u(b− 1) < 0. Therefore, D′(u) < 0 and D(u) decreases in this
range. Thus, u3 is the sole maximum point of D(u), which implies that D(u) is strictly unimodal, as required.

As shown in the proof of Theorem 2, if D(u) is strictly increasing, the revenue maximizer occurs at the right edge of the
distribution, which in this case is at u = 1. If D(u) is strictly unimodal, we know that the revenue maximizer is greater than
the maximum point of D(u). In this case, the maximum point is a

a+b−1 (noting that b > 1 in this scenario).

Moreover, the maximum point of a Beta distribution with parameters a, b is given by argmaxu f(u) =
a−1

a+b−2 . For b > 1,
we obtain:

a

a+ b− 1
>

a− 1

a+ b− 2
,

which implies that the percentile of argmaxu D(u) is greater than the percentile of argmaxu f(u), and both are smaller
than the percentile of u∗.

This analysis provides an intuition for the unequivocal empirical results shown in Figure 8, which demonstrate that the
revenue maximizer is at least in the 80th percentile (and typically even higher). To conclude, under this family of distributions,
when they induce individual demands for a feature under a uniform budget, a large percentage of users will be able to afford
purchasing the amount of the feature they need.

A.3.4. EXAMPLE: UNIFORM DISTRIBUTION

We now perform a similar analysis for the uniform distribution over the range [0, t], where t > 0. The PDF of this distribution
is constant for all u: f(u) = 1

t . Consequently, D(u) = f(u)u = 1
tu is a strictly increasing function of u. By Theorem 2,

the revenue maximizer for this distribution is the right edge of the range, which is t.

We can extend this result to the uniform distribution over the range [a, b].
Theorem 4. For any a, b > 0, let f(u) denote the probability density function (PDF) of the uniform distribution over [a, b].
Then, the revenue maximizer is unique and occurs at b.

Proof. The PDF of the uniform distribution is constant for all u: f(u) = 1
b−a . The function r(u; f) is therefore given by:

r(u; f) =
1

u

∫ u

a

f(u′) · u′ du′ =
1

u

∫ u

a

1

b− a
· u′ du′ =

1

u(b− a)

∫ u

a

u′ du′

Evaluating the integral:

r(u; f) =
1

u(b− a)

[
u2

2
− a2

2

]
=

1

2(b− a)
u− a2

2(b− a)

1

u

Next, compute the derivative of r(u; f) with respect to u:

r′(u; f) =
1

2(b− a)
− a2

2(b− a)
·
(
− 1

u2

)
=

1

2(b− a)
+

a2

2(b− a)

1

u2
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Figure 10: Empirical revenue curves r̂ for different sam-
ples Si featuring different revenue-maximizing points u∗.
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Figure 11: The effect on price of adding a single point to
a fixed sample. Original sample points shown on x-axis.

Since both terms are positive for all u ∈ [a, b], it follows that r′(u; f) > 0 for all u ∈ [a, b]

By Observation 2, the revenue maximizer is unique and occurs at the right edge of the range, which is b.

A.4. Empirical prices

Our analysis above considers expected prices defined over a demand distribution. But in practice, learning must work with
finite samples, and therefore with empirical markets. We begin by investigation some features of empirical markets, revenue,
and prices, and then make the connection to population markets with expected revenue and prices.

A.4.1. THE PRICE-REVENUE LANDSCAPE

Thm. 1 states that the revenue-maximizing price ρ̂ is always some u−1
i ; hence, we can instead think of revenue as a function

of inverse prices 1
ρ = u, measured in demand units. This is useful since we can now consider directly how changes in the

demand set affect revenue, and through it, the optimal price.

Fig. 10 plots empirical revenue r̂(S) for three different samples Sj of size m = 10 with units ui scaled to span [1, 10]:

Note that revenue always begins at 1
m for the smallest ui since only one unit is sold (to one user) at price ρ = 1. From here,

however, outcomes can differ considerably across samples, in terms of the shape of the revenue curve, the location and index
of the price setter i∗, and the optimal price ρ̂.

This raises the question: how sensitive are market prices to variation in demand? For this, we take a sample u1, . . . , um, and
measure how prices change due to adding a single new point u0. Fig. 11 shows the outcome of this process for a fixed select
demand set of size m = 5 and for an increasing value of an additional point u0 ∈ [1, 10] (x-axis):

The ui are shown in color and positioned on the x-axis. The revenue curve includes segments colored according to the
matching price setter, with turquioise (and yellow highlight) indicating that the price setter is u0. As can be seen, the value
of u0 has a stark effect on market prices: even though it is increased gradually, prices jump at discrete points whenever
the price-setter i∗ changes. Generally, prices are down-trending, and i∗ appear in increasing order of ui—but this is not
necessary, as prices can also jump up, and some si can be price-setters more than once.

A.4.2. WHY PRICES JUMP

One reason for this behavior is that optimal prices may not be unique. The following is an extreme construction in which all
points are revenue-maximizing.
Proposition 3. Let m ≥ 3, and w.l.o.g. assume uniform budgets. Define u1, . . . , um recursively as:

ui = u2 ·
∑

j<i
uj , u2 = 2, u1 = 1

Then for all i > 1, prices ρi = u−1
i attain the same revenue.

Together with Thm. 1, this implies that r̂ is also maximized under all ρi. To see how this lends to price jumps, consider
the minimal case of m = 3. If we slightly decrease u2, then it becomes the unique price-setter; in contrast, if we slightly
increase u2, then u3 becomes the price setter. Thus, small perturbations in u2 can cause prices to jump between ρ2 and ρ3.
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A.4.3. REVENUE FOR LARGE SAMPLES

Our examples above considered mostly very small market sizes. Fortunately, prices tend to be more well-behaved when the
number of samples grows as long as the underlying demand distribution is well-behaved. For example, for u ∼ Beta(0.5, 4),
(and scaled to [1, 10]), Fig. 12 presents revenue curves (left) as well as maximal revenue (top right),and empirical market
prices (bottom right) for samples of increasing size m:
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Figure 12: Revenue and prices for increasing sample size.

As can be seen, despite significant variation under small m, results stabilize as m grows in terms of the revenue curve (left),
its maximum value (top right), and optimal prices (bottom right).

B. Experiments - additional results
B.1. Market hinge loss vs. 0-1 loss

Our proposed m-hinge in Sec. 4 permits both tractable optimization via gradient methods and without the need for explicitly
computing best-responses ∆market

h (x). Due to Levanon & Rosenfeld (2022), it also intends to maximize a generalized notion
of ‘strategic’ margin (although their generalization bounds do not immediately carry to our setting due to dependence across
users in the sample). Here we examine the loss landscape for the m-hinge under a simple 1D example and compare it to the
0-1 loss, which it intends to approximate.

Data as generated as follows. Setting d = 1, we sample each x from a class-conditional distribution x ∼ N (µy, 1). Classes
are balanced with p(y = 0) = p(y = 1) = 0.5. Budgets b are sample uniformly from [1, 8.5] for negative points and from
[8.5, 16] for positive points. This means that b are generally in [1, 16] and correlate with y, and so generally with x, but do
with x given y for either class. We sample 1000 points in each setting.

Fig. 13 illustrates the loss landscape for increasing class mean gaps µ1 − µ0 ∈ {−1, 0, 1, 2, 3}. For a range of thresholds
τ ∈ [−3, 10], each plot shows values of: (i) the 0-1 loss, (ii) the m-hinge with exact empirical prices ρ̂, (iii) the m-hinge
with smoothed empirical prices ρ̃ (using a mild Tsoftsort = 0.1 and large Tsoftmax = 10), (iv) prices, and (v) the price setter
(in percentage from all points, sorted by their x value). Note prices and m-hinge values are scaled to fit the plot.
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Figure 13: Market hinge loss landscape, compared to the 0-1 loss.
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Overall the m-hinge appears to be an adequate proxy for the 0-1 loss. When classes are reasonably distances at µ1 − µ0 = 1
(center), the 0-1 loss decreases gracefully as τ increases. The m-hinge follows closely, but struggles for negative τ due to
large price variation. Once τ reaches ≈ 1, the price setter begins to stabilize at around 60%; from this point on the m-hinge
is well-behaved. For larger gaps (right), there is an abrupt jump in the 0-1 loss once a certain τ is reached. This can be seen
both in prices peaking, and the price setter settling on 50%. The 0-1 becomes very close to 0, and the m-hinge is faithful in
this regard. Again we see that smaller τ are more challenging for the m-hinge, but note how soft prices help smooth the
(non-linear) loss curve and reducing the number of sharp local minima.

Interestingly, even when the class gap is zero or negative (left)—i.e., the positive class lies mostly to the left of the negative
class—the market mechanism enables to obtain low loss values.8 Here overall behavior is smoother for both the 0-1 loss and
the m-hinge, due to smooth behavior of prices and price setters.

B.2. Budgets and labels

Our empirical analysis in Sec. 3 focused on cases where budgets correlate with labels for a given h. While our goal there
was to reveal how the strength and types of correlation can affect market outcomes, it does not imply that learning will
always tend towards classifiers h in which budgets and labels correlate along the direction that h induces (or more precisely,
on distances of negatively-classified points to the decision boundary). Importantly, we note that what matter is not the
correlation between labels and budgets per se, but rather, the relation between labels and the normalized demand—which
results from how budgets ‘morph’ distances to the decision boundary of a given h.

Here we demonstrate market outcomes on an example in which there is no correlation between b and y. As we will see,
what drives the classifier is user features in a way that circumvents dependence on budgets—which in this case, enables
higher accuracy.

Our construction is as follows. Consider features in R2, and denote x = (x1, x2). Points are generated such that each
coordinate is sampled independently. For all points (regardless of class) x1 is drawn from the distribution N (0, 0.4). For
positive points x2 is drawn from N (1, 0.3), and for negative points x2 was drawn from N (−1, 0.3). Note the means of
these distributions match labels, µ = 2y − 1. The base rate is set to p(y = 1) = 0.25. Budgets were determined as:

b(x) = max(0.1, 2.5 · x1 + ϵ), ϵ ∼ N (0, 0.2).

i.e., budgets generally increase with x1, but are noisy, and from above at capped at 0.1. Note that by construction:

• b is correlated with x1, but independent of x2.

• y is correlated with x2, but independent of x1.

We compare two threshold classifiers: h1 which makes use only of x1, and h2 which makes use only of x2. Each was trained
on its respective feature to attain the maximal strategic accuracy on its induced market. Results are shown in Fig. 14:

Figure 14: Revenue and prices for increasing sample size.

8This is surprising because our model class here includes only one-sided thresholds, hτ (x) = 1{x ≥ τ}.
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As can be seen, the classifier h2 (which uses x2; left), yields better accuracy than h1 (which uses x1; right). Crucially, h2

uses only x2, which is independent of b, and so the classifier does not rely on any correlations between labels and budgets
(via distances). Accuracy here is high since positive points are on the positive side of h2, and the market enables only a
subset of negative points to cross. Note that errors are precisely due to those negative points which do move: these are points
with high x1 values, and therefore those with higher budgets that permit cost-effective strategic movement. Conversely,
accuracy for h1 is low because it cannot limit only negative points from crossing. This is because the distribution of budgets
(and distances) is the same for both classes for any choice of threshold.

B.3. The cluster hypothesis

Our results in Sec. 5 demonstrated how for well-behaved demand distributions the price setter tends to be an extreme point.
This was complemented by our theoretical characterization in Appendix A.3. Our conjecture is that the phenomena is
broader, in that when the demand distribution comprises several "clusters", then the price setter will tend to be an extreme
point of one of those clusters. Fig. 15 shows this holds for various mixtures of two Gaussians. We vary the relations between
the Gaussians along several dimensions, such as distance from the decision boundary, gap between means, and variance. For
all considered settings, results show that (i) the price setter is indeed an (almost) extreme point of one of the clusters, and (ii)
the price setter "jumps" between clusters at particular points as we vary the parameters of the setup.
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Figure 15: The cluster hypothesis. We conjecture that when the demand distribution is a mixture of well-behaved
"clustered" distribution, the price setter will be an extreme point of one of the clusters. Varying the relations between clusters
causes the price setter to "jump" from one cluster to the other. Here we vary: the gap between means of the two components
(top), the distance of the entire distribution from the decision boundary (middle), and the variance of each component
(bottom). In each row, the four left plots show example distributions, while the rightmost plot shows the price setter (in
percentage from the sample) for the entire parameter range. Note how each variation shows distinct jumps across clusters.
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Figure 17: Results for the folktables dataset.

B.4. Markets induce separability (further exploration)

Our results in Sec. 5.3 revealed a surprising result: that induced markets can make unseparable data become perfectly
separable. Here we show that this effect can be even more extreme and unintuitive. Consider a univariate mixture distribution
with class-conditional distributions p(x | y) = N (µy, σ). We set σ = 0.15 and will be interested in the effects of varying
µ. We will examine both balanced data (p1 = p(y = 1)) and class-imbalanced data with p1 = p(y = 1) = 0.3. For
budgets, we set b = b1y and show results for b1 ∈ {1, 1.5, 2, 2.5}. Our model class will consist of threshold functions
hτ (x) = 1{x > τ}. Note that we intentionally consider only thresholds that are oriented to classify larger x as positive (i.e.,
the class does not include ‘reverse’ thresholds 1{x < τ}).

Fig. 16 shows accuracies for the optimal threshold classifier across increasing gaps between class-conditional means µ1−µ0.
Note that a negative gap means that the positive distribution generates values that are mostly smaller than the negative
distribution. The plot shows results for the range of budget scales b1, and plot the performance of a non-strategic benchmark
(dashed grey). As expected, the benchmark attains reasonable accuracy when the gap is large, provides p1 accuracy when
the gap is zero (and the two distributions are superimposed), and deteriorates quickly as the gap becomes more negative. But
for market-aware classifiers, this is not the case. For p1 = 0.5 (left), we see that for the larger budgets, accuracy can be 1
even when the gap is negative. For smaller budgets, outcomes under a negative gap can be better than under a positive!
This latter behavior is much more distinct for p1 = 0.3 (right), where for all budget considered, a positive gap enables
significantly lower accuracy than moderate negative gaps allow.

B.5. Main experiment: results on folktables dataset

Here we reproduce our main experiment from Sec. 6 on an additional dataset, building on the folktables data due to Ding
et al. (2021). For the target variable y we use a binarized version of the ‘employment status’ feature (code ESR), budgets we
use the ‘total income’ feature (code PINCP). Appendix D.1.2 includes further details on the data and preprocessing.

Fig. 17 shows the results. Overall trends are similar to those of adult in Fig. 7 from Sec. 6, though there are several notable
distinctions. As in adult, here as well all methods improve with scale, and our MASC approach outperforms others—here
from scale α = 22 and higher. Note that improvement for naïve is more pronounced. One key different is that the
benchmark is not only much higher, but also hard to improve upon even for MASC. This can be explained by the lower ratio
of positive crossers, i.e., even at large scales it is hard to allow positives to cross while preventing negatives (top right).
Another difference is that strat underperforms by a larger margin and across all scales. Note that there is also a larger and
consistent gap between short and long performance, suggesting stronger market adaptation.

C. Differentiable market prices
Our market-aware learning approach replaces exact market prices ρ∗ with a smooth surrogate ρ̃ to enable differentiation.
This is achieved by modifying the exact pricing scheme in Algorithm 1 to be differentiable.

One useful property of Algorithm 1 is that each of its steps can be easily vectorized, and each atomic operation is either
already differentiable, or can be made differentiable using existing smoothing methods. In particular, note that: (i) dist+

is a differentiable operator; (ii) sort can be implemented as a linear operator Π with Πij = 1 if item i is in position j
and 0 otherwise; and (iii) U can be computed using a cumulative sum, implemented as linear operator C with entries
Cij = 1{i ≤ j}. The remaining non-differentiable operations are Π and the argmax for choosing the revenue-maximizing
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point i∗. Thus, if we replace Π with a differentiable softsort operator Π̃ (e.g., using Prillo & Eisenschlos (2020)) and the
argmax with a softmax, then the entire algorithm becomes differentiable. These steps comprise Algorithm 2, which returns
smoothed market prices ρ̃ as an approximation to ρ̂. The final differentiable market price vector can be obtained as p̃ = ρ̃w,
but is unnecessary to compute when using our market hinge loss, which requires only ρ̃. Note both softsort and softmax
operators require setting appropriate temperature parameters.

Algorithm 2 Smoothed empirical market prices

1: input: unit-budeget pairs {(ui, bi)}ni=1 with ui > 0∀i
2: ū = (u1/b1, . . . , un/bn)

3: Π̃← softsort(ū) ▷ approx. sorting matrix
4: uΠ̃ ← Π̃u, ūΠ̃ ← Π̃ū
5: γ ← min ū
6: ū← ū/γ ▷ normalize demand
7: z ← 1/ūΠ̃

8: c← cumsum(uΠ̃)
9: r ← z⊤c

10: ρ̃ = z⊤softmax(r) · γ ▷ de-normalize prices
11: return: ρ̃

Normalization. In practice, we found it useful to normalize ū so that its smallest entry is 1. This is possible since market
prices are insensitive to scale: if ρ̂ is optimal for ū, then for a scaled αū, the solution is 1

α ρ̂. Normalizing ensures that all
temperature parameters (e.g., in softsort and softmax) operate at the same scale across all batches, which is important since
the relation ρ = b/u suggests that even mild perturbations to small u-s can cause large variation in computed prices.

Truncated demand. Recall that demand is determined by the distances of all points the lie on the negative side of h.
In principle, since points on the positive side are assigned u = 0, their presence does not affect prices. However, when
using soft prices, this does have a mild effect. To see this, consider that softsort employs row-wise softmax operations that
replace the argmax used to indicate the sorting position. Since scores for all entries are exponentiated, points with u = 0
now contribute e0 = 1 to the denominator. This biases outcomes, and becomes significant when there are many positively
classified points. We circumvent this problem by simply truncating all points with u = 0 completely from the calculation.

Hyper-parameters. The smoothness of prices can be adjusting via two temperature hyper-parameters: Tsoftsort for the
soft sort operator, and Tsoftmax for the final softmax. In the limit, these recover the exact argsort and argmax operators,
respectively. Varying these temperatures therefore trades off approximation and smoothness (for optimization purposes).

D. Experimental details
D.1. Data and preprocessing

D.1.1. ADULT

Data description. Our main experiment makes use of the adult dataset. This dataset contains features based on
census data from the 1994 census database that describe demographic and financial data. There are 14 features, 8 of
which are categorical and the others numerical. The binary label is whether a person’s income exceeds $50k. The
dataset includes a total of 48,842 entries, 76% of which are labeled as negative. The data is publicly available at https:
//archive.ics.uci.edu/dataset/2/adult.

Preprocessing. To make the data appropriate to our strategic market setting, we took the following steps. First, all rows
with missing values were removed (7.4%). Two features were excluded: native_country, and education, which had
perfect correlation with the numerical feature education_num. The feature capital_gain was not used as input to the
classifier, but rather as the basis of determining budgets. Second, to maintain class balance, 25% of negative examples
were randomly removed. Finally, because behavior in strategic classification applies to continuous features, for our main
experiment we dropped all categorical features. These however were still used for constructing budgets (see below). The
remaining numerical features were normalized.

Budgets. For budgets b, we chose to use the capital_gain feature; of all features, this most closely related to an indication
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of wealth. Unfortunately, only 8.5% (3,561) of the entries in the data contained values that were not 0, 99999, or NaN. As
such, we decided to replace such missing or extreme entries with imputed values, for which we trained two random forest
models (one per class) on the valid subset of the data. Hyper-parameters for this process were chosen using a grid search
with the following parameters: n_estimators ∈ {50, 100, 200}, max_depth ∈ {None, 10, 20, 30}, min_samples_split
∈ {2, 5, 10}, min_samples_leaf ∈ {1, 2, 4}, 5 folds, and R2 scoring. All features were used during imputation. The
normalized RMSE was 0.366 for positives and 0.679 for negatives.

Data splits. We used a train-validation-test split of 70:10:20 and averaged the results over 10 random data splits.

D.1.2. FOLKTABLES

Data description. We reproduce the main experiment of Sec. 6 using folktables as an additional dataset (Ding et al.,
2021)—see Appendix. B.5. The data is publicly available at https://github.com/socialfoundations/folktables.

Features, budgets, and labels. We made use of the following features: ’AGEP’ – age (int), ’SCHL’ – educational
Attainment (ordinal 0-24), ’MAR’ – marital statue (categorical encoded to 1-5), ’RELP’ – religious Affiliation (categorical
1-7), ’ESP’ – employment status of parents (categorical 0-7), ’CIT’ – citizenship status (categorical 1-5). For the target
variable y we used ’ESR’ – employment status, converted into binary "employed" and "not employed". For budgets b, we
used ’PINCP’ – total person’s income (float).

Preprocessing. All features where scaled to [0, 1]. Features that were negatively correlated with y were flipped as
xi 7→ (1− xi). Examples with extreme or outlier budget values (below 50 and above 50,000) where removed.

Data splits. Same as adult.

D.2. Evaluation

Metrics. In addition to accuracy, we measure the following metrics:

• Welfare: Measures the profit (utility minus cost) for all users of the system as:

welfare(h) =
1

B

∑
i

bi1{h(xh
i ) = 1} − c(xi, x

h
i ) (16)

• Social burden: Measures the overall cost required to ensure that all deserving users (i.e., with y = 1) rightfully obtain
positive predictions (ŷ = 1):

burden(h) =
1

B+

∑
i:yi=1

min
x′:h(x′)=1

c(xi, x
′) (17)

Here B =
∑

i bi is the total budgets, and B+ =
∑

i:yi=1 bi is the total budget of the positive examples. Since the different
experimental settings vary considerably in the distribution of budgets as well as its total, normalizing by B and B+ permits
meaningful comparisons across conditions.

D.3. Training, tuning, and optimization

Implementation. All code was implemented in python, and the learning framework was implemented using Pytorch.

Optimization. Our overall approach is to optimize the objective in Eq. (13) using gradient methods. In particular, we use
ADAM with mini-batch updates —see details below. Additional decisions and considerations:

• The softsort and softmax hyper-parameters are intended to facilitate differentiable prices. In general, tuning their
parameters should seek to optimally trade off between how well they approximate ‘hard’ sort and argmax, and
the effectiveness of gradients. However, particular to our market settings, we observed that they also contribute to
smoothing out discontinuities that result from sharp transitions between market states, i.e., cases where a mild change
in prices causes a large change in the number of points that move and cross—which can significantly affect the loss.

• Similarly, we observed that mini-batches also have a smoothing effect on the market. This however related to a different
aspect: Since market prices ρ̂ correspond to the normalized demand of one of the data points ū−1

i , prices in general
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can be sensitive to the particular sample on which they are computed. Another concern if a small change in learned
parameters move some points x from being slightly above the decision boundary to slightly below it. If this occurs,
then this new point has u that is positive but very small, which can affect soft prices (despite our normalization step in
Algorithm 2) through the choice of hyperparameters. Mini-batches help in this regard because they average out the
effect that any single data point may have. They are also helpful in cases when several points ‘compete’ over setting
the price (i.e., entail similarly large revenue) by permitting ρ̃ to express their (weighted) averaged.

Initialization. The model was initialized with the weights and bias term of the naïve model. Notably, initializing it with
randomly generated weights from a normal distribution had minimal impact on the results.

Hyperparameters. We used the following hyperparameters:

• Temperature Tsoftsort for the softsort operator: 0.001

• Temperature Tsoftmax for the softmax operator: 0.01

• Batch size: 500

• Learning rate:

– adult: 0.001 for budget_scale ∈ [1, 32], 0.01 for budget_scale ∈ [64, 1024]
– folktables: 0.001 for all budget scales

• Regularization and coefficient: 0.1

• Epochs: 100 for adult, 1000 for folktables

Hyperparameters were chosen by standard hyperparameter search over a grid of possible combinations and were chosen
based on performance on a validation set along with considerations for reasonable convergance times.
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