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Abstract
We study the role of contextual information in
the online learning problem of brokerage between
traders. In this sequential problem, at each time
step, two traders arrive with secret valuations
about an asset they wish to trade. The learner
(a broker) suggests a trading (or brokerage) price
based on contextual data about the asset and the
market conditions. Then, the traders reveal their
willingness to buy or sell based on whether their
valuations are higher or lower than the brokerage
price. A trade occurs if one of the two traders
decides to buy and the other to sell, i.e., if the
broker’s proposed price falls between the smallest
and the largest of their two valuations. We design
algorithms for this problem and prove optimal the-
oretical regret guarantees under various standard
assumptions.

1. Introduction
Inspired by a recent stream of literature (Cesa-Bianchi et al.,
2021; Azar et al., 2022; Cesa-Bianchi et al., 2024b; 2023;
Bolić et al., 2024; Bernasconi et al., 2024; Bachoc et al.,
2024), we approach the bilateral trade problem of brokerage
between traders through the lens of online learning. When
viewed from a regret minimization perspective, bilateral
trade has been explored over rounds of seller/buyer interac-
tions with a broker with no prior knowledge of their private
valuations. Similarly to Bolić et al. (2024), we focus on
the case where traders are willing to either buy or sell (pos-
sibly short; see Section 1.1), depending on whether their
valuations for the asset being traded are above or below the
brokerage price.
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This setting is especially relevant for over-the-counter (OTC)
markets. Serving as alternatives to conventional exchanges,
OTC markets operate in a decentralized manner and are
a vital part of the global financial system.1 In contrast to
centralized exchanges, the lack of strict protocols and reg-
ulations delegates to brokers the responsibility of bridging
the gap between buyers and sellers, who may not have direct
access to one another. In addition to facilitating interactions
between parties, brokers leverage their contextual knowl-
edge and market insights to determine appropriate pricing
for assets. By examining factors such as supply and demand,
market trends, and other asset-specific information, brokers
aim to propose prices that reflect the true market value of
the asset being traded. This price discovery process is a
crucial aspect of a broker’s role, as it helps ensure efficient
transactions by accounting for the unique circumstances sur-
rounding each asset. Additionally, in many OTC markets,
as in our setting, traders choose to either buy or sell depend-
ing on the contingent market conditions (Sherstyuk et al.,
2020). This behavior is observed across a broad range of
asset trades, including stocks, derivatives, art, collectibles,
precious metals and minerals, energy commodities like gas
and oil, and digital currencies (cryptocurrencies).

We propose a contextual version of the online brokerage
problem, that is of significant practical interest given that the
broker often has access to meaningful information about the
asset being traded and the surrounding market conditions
before having to propose a trading price. This information
might help the broker to propose more targeted trading
prices by inferring (an approximation of) the current market
value of the corresponding asset, and ignoring it could be
extremely costly in terms of missing trading opportunities.

Although an extensive amount of work has been done on
non-contextual bilateral trade problems (including broker-
age problems), the existing literature on the more realistic
contextual versions of these problems is scarce (see Sec-
tion 1.3). The main reason for the slower development of
contextual results is the higher complexity of these settings
and the impossibility of simply adapting non-contextual al-

1In the US alone, the value of assets traded in OTC markets
exceeded a remarkable 50 trillion USD in 2020, surpassing cen-
tralized markets by more than 20 trillion USD (Weill, 2020). This
growth has been steadily increasing since 2016 (www.bis.org,
2022).
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gorithmic ideas and analyses to their contextual counterparts.
We aim to fill this gap in the online learning literature on
bilateral trade to guide brokers in these contextual scenarios.

1.1. Setting

In the following, the elements of any Euclidean space are
treated as column vectors and, for any real number x, y, we
denote their minimum by x∧y and their maximum by x∨y.

Online protocol. We study the following problem.

At each time t ∈ N,

○ Two traders arrive with private valuations Vt,Wt ∈
[0,1] about an asset they want to trade.

○ The broker observes a context ct ∈ [0,1]d and proposes
a trading price Pt ∈ [0,1].

○ The two bits I{Pt ≤ Vt}, I{Pt ≤Wt} (i.e., the willing-
ness of each trader to buy or sell) are revealed to the
broker.

○ If the price Pt lies between the lowest valuation Vt∧Wt

and highest valuation Vt∨Wt (meaning the trader with
the minimum valuation is ready to sell2 at Pt and the
trader with the maximum valuation is eager to buy at
Pt), the asset is bought by the trader with the highest
valuation from the trader with the lowest valuation at
the brokerage price Pt.

Market value. At any time t ∈ N, the context ct is related
to the traders’ valuations Vt,Wt via the hidden market value
of the asset: a number mt ∈ [0,1] that satisfies the two
assumptions below, which are assumed to hold throughout
the whole paper.

The first assumption (Assumption 1.1) states that an un-
known linear relation exists between the unknown market
value mt and the corresponding context ct the broker ob-
serves before proposing a trading price.

Assumption 1.1 (Market values and contexts). There exists
ϕ ∈ [0,1]d, unknown to the broker, such that, for each t ∈ N,
it holds that mt = c⊺tϕ.

The second assumption accounts for variability due to per-
sonal preferences or individual needs of the traders by mod-
eling traders’ valuations as zero-mean perturbations of the
market values.

Assumption 1.2 (Market values and valuations). There
exists an independent sequence of random variables

2We remark that in most markets, traders are allowed to sell
assets they do not currently own (short-selling; see, e.g., the classic
Black & Scholes 1973). For this reason, we do not need to assume
that traders entering the market own a unit of the asset.

ξ1, ζ1, ξ2, ζ2, . . . such that, for each t ∈ N, it holds that
E[ξt] = 0 = E[ζt] and Vt =mt + ξt and Wt =mt + ζt.3

Contexts. We model the sequence of contexts c1, c2, . . .
as a deterministic [0,1]d-valued sequence (possibly gener-
ated by an adversarial environment with knowledge of the
broker’s algorithm) that is initially unknown but sequen-
tially discovered by the broker. As a consequence, note
that the sequence of market values m1,m2, . . . can change
arbitrarily (and even adversarially) from one time step to
the next.4

Gain from trade and Regret. Consistently with the ex-
isting bilateral trade literature, the reward associated with
each interaction is the sum of the net utilities of the traders,
known as gain from trade. Formally, for any p, v,w ∈ [0,1],
the utility of a price p when the valuations of the traders are
v and w is

g(p, v,w) ∶= ( v ∨w − p
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

buyer’s net gain

+ p − v ∧w
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

seller’s net gain

)I{v ∧w ≤ p ≤ v ∨w
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a trade happens

}

= (v ∨w − v ∧w) I{v ∧w ≤ p ≤ v ∨w}.

The aim of the learner is to minimize the regret with respect
to the best not-necessarily-linear function of the contexts,5

defined, for any time horizon T ∈ N, as

RT ∶= sup
p⋆∶[0,1]d→[0,1]

E[
T

∑
t=1
(GFTt(p⋆(ct))−GFTt(Pt))] ,

where we let GFTt(p) ∶= g(p, Vt,Wt) for all p ∈ [0,1], and
the expectation is taken with respect to the randomness in
(ξt, ζt)t∈N and, possibly, the internal randomization used to
choose the trading prices (Pt)t∈N.

1.2. Challenges and contributions

Under the assumption that the traders’ valuations are un-
known linear functions of d-dimensional contexts perturbed
by zero-mean noise with time-variable densities bounded by

3We remark that we are not assuming that the two processes
(ξt)t∈N and (ζ)t∈N are i.i.d., and in fact the distributions of these
random variables may change adversarially over time.

4Note that, mathematically, being competitive against a se-
quence of deterministic contexts is essentially the most general
achievement that can be obtained, covering, in particular, the
widespread and interpretable setting of i.i.d. random contexts as a
special case.

5Although the market value is a linear function of the contexts,
we remark that it is not necessarily true that the price p⋆ that maxi-
mizes the total expected gain from trade is also a linear function
of the contexts, let alone that this function is the linear function
that maps contexts to market values! One of the contributions of
this work is to prove that this is true under the assumption that the
noise distributions admit bounded densities (Lemma 2.1), but it
becomes false when this assumption is lifted (Example 5.1).
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Bounded density General

2-bit feedback
√
LdT T

Full feedback Ld lnT T

Table 1. Summary of our results.

some L, we make the following contributions (see Table 1
for a summary).

1. We prove a key structural result (Lemma 2.1) with
two crucial consequences. First, Lemma 2.1 shows
that posting the (unknown) market value as the trading
price would maximize the expected gain from trade.6

Second, it proves that the loss paid by posting a sub-
optimal price is at most quadratic in the distance from
the market value.

2. In our problem, the prices we post directly affect the
two bits of information we retrieve (2-bit feedback).
We note that this information is so scarce that it is not
even enough to reconstruct bandit feedback. We solve
this challenging exploration-exploitation dilemma by
proposing an algorithm (Algorithm 1) that decides to ei-
ther explore or exploit adaptively, based on the amount
of contextual information gathered so far, and prove
its optimality by showing a

√
LdT lnT regret upper

bound (Theorem 3.1) and a matching (up to a
√
lnT )√

LdT lower bound (Theorem 3.2).

3. To compare and contrast the impact of our realistic
2-bit feedback in online contextual brokerage, we in-
vestigate the rates that could be achieved if the traders’
valuations were revealed at the end of any interaction
(full feedback); for this problem, we prove that the op-
timal achievable rate is exponentially faster: of order
Ld lnT , by proving matching regret upper and lower
bounds (Theorems 4.1 and 4.2).

4. Finally, we investigate the necessity of the bounded
density assumption: by lifting this assumption, we
show that the problem becomes unlearnable (Theo-
rem 5.2), even under full feedback.

We stress that, in all our results, the dependence on all
relevant parameters is tight. In contrast, as we discuss in
Section 1.3, most related works on bilateral trade obtain (at
best) a matching dependence in the time horizon only.

6This implies, in particular, that in our contextual setting where
market prices are functions of contexts, the benchmark in the
regret definition is the total expected reward of the best arbitrary
sequence of prices, a benchmark that would be unattainable in
similar problems (like standard adversarial bandits). This is one
of the many differences between contextual and non-contextual
settings.

1.3. Related Works

Our work extends the recent research on online learning
algorithms for bilateral trade, in particular, Cesa-Bianchi
et al. (2021); Azar et al. (2022); Cesa-Bianchi et al. (2024b;
2023; 2024c); Bernasconi et al. (2024), for non-contextual
problems where sellers and buyers have definite roles. The
stochastic case, where sellers’ and buyers’ valuations are
i.i.d. across time, is studied in Cesa-Bianchi et al. (2021;
2024b). They obtain a

√
T regret rate in the full-feedback

setting. For the two-bit feedback case, they prove a lin-
ear worst-case lower bound, but it turns out that a tight
regret rate of T 2/3 is possible, by assuming independence
and uniformly bounded density for the sellers’ and buyers’
valuations. The adversarial setting is the topic of several
works. In the worst-case, it is unlearnable as shown in Cesa-
Bianchi et al. (2021; 2024b). Nevertheless, more favor-
able results exist under various relaxations. Cesa-Bianchi
et al. (2023; 2024c) consider the adversarial case where
the adversary is forced to be smooth, i.e., the sellers’ and
buyers’ valuation distributions are allowed to change adver-
sarially over time, but these distributions admit uniformly
bounded densities. In the full-feedback case, they prove a
tight

√
T regret rate. In the two-bit feedback case, while

the problem is still unlearnable, they allow the learner to
use weakly budget-balanced mechanisms, yielding a sur-
prisingly sharp T 3/4 regret rate. We remark that in all the
two-bit feedback upper bounds requiring a bounded density
assumption discussed above, there are no corresponding
lower bounds with a sharp dependence on the density bound.
Azar et al. (2022) consider the α-regret objective, weaker
than the regret. In the full-feedback case, they prove a tight
2-regret rate of

√
T . In the two-bit feedback case, while

learning is impossible in general, they allow the learner to
use weakly budget-balanced mechanisms, enabling to re-
cover a 2-regret of order T 3/4. No matching lower bound is
provided. Bernasconi et al. (2024) further relax the notion
of weak budget-balance by proposing the notion of global
budget-balance. Under global budget-balance, they provide
a tight regret rate of

√
T in the full-feedback case, and a

regret rate of T 3/4 in the two-bit feedback case, without a
matching lower bound.

Gaucher et al. (2025) investigated a noisy linear contextual
version of the bilateral trade problem, where the authors
obtain a tight regret bound (up to logarithmic factors) in the
time horizon of order T 2/3 under 2-bit feedback, with mis-
matching dependence on the dimension and on the bounded
density parameter in the lower bound. Even though their al-
gorithm can be adapted to our setting (via the reduction that
sets the seller’s valuation as the minimum and the buyer’s as
the maximum of the traders’ valuations), their regret guar-
antees (that would anyway be worse than our

√
T ) are lost

because they require that, conditioned to the context, the
seller is independent of the buyer, which is not the case
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in the reduction because, in general, the minimum of two
random variables is not independent of the maximum of the
same two random variables.

The brokerage problem in online learning has been in-
troduced by Bolić et al. (2024) in a simpler i.i.d. and
non-contextual setting. There, the authors study the non-
contextual version of our trading problem with flexible sell-
ers’ and buyers’ roles, with the further assumption that the
sellers’ and buyers’ valuations form an i.i.d. sequence. Un-
der the M -bounded density assumption, they obtain tight
M lnT and

√
MT regret rates in the full-feedback and two-

bit feedback settings, respectively. If the bounded density
assumption is removed, they show that the learning rate
degrades to

√
T in the full-feedback case and the problem

turns out to be unlearnable in the two-bit feedback case.
We remark that, interestingly, under the bounded density
assumption, we are able to achieve the same regret rates in
the contextual version of this problem without requiring that
traders share the same valuation distribution, while, without
the bounded density assumption, the contextual problem is
unlearnable even under full feedback.

The non-contextual brokerage problem has also been re-
cently studied with a different reward function aiming at
maximizing the total volume of trades (Cesari & Colomboni,
2025).

Our linear assumption appears commonly in the literature
on digital markets, particularly in problems like pricing and
auctions. In Cohen et al. (2016; 2020), the authors first
address a deterministic setting, then a noisy one with known
noise distribution where they obtain a regret rate of order
T 2/3 without presenting a lower bound. The deterministic
case has also been investigated in Lobel et al. (2017; 2018);
Leme & Schneider (2018; 2022); Liu et al. (2021).

The case of noisy linear functions has been studied in Xu &
Wang (2021); Badanidiyuru et al. (2023); Fan et al. (2024);
Luo et al. (2024); Chen & Gallego (2021); Javanmard &
Nazerzadeh (2019); Bu et al. (2022); Shah et al. (2019) with
guarantees limited to parametric or semi-parametric noise
settings, while the recent work of Tullii et al. (2024) has
given the first near-tight T 2/3 analysis of the non-parametric
noise case.

The only work addressing contextual brokerage is Bachoc
et al. (2025), which considers a non-parametric variant of
our setting and derives tight (albeit considerably slower)
regret bounds. Notably, their Theorem 5, combined with our
Theorem 3.1 and Theorem 4.1, yields 2-regret guarantees
against oracle policies that know the traders’ valuations
before setting prices.

Another rich related field explored in its many variants
(Hanna et al., 2023; Slivkins et al., 2023; Leme et al., 2022;
Foster et al., 2021; 2019; Zhou et al., 2019; Kirschner &

Krause, 2019; Metevier et al., 2019; Foster & Krishna-
murthy, 2018; Kannan et al., 2018; Oh & Iyengar, 2019; Hu
et al., 2020; Neu & Olkhovskaya, 2020; Wei et al., 2020;
Krishnamurthy et al., 2020; Luo et al., 2018; Krishnamurthy
et al., 2021) is contextual linear bandits. In its standard
form, at the beginning of each round, an action set is re-
vealed to the learner, and the assumption is that the reward
(which equals the feedback) is a linear function of the ac-
tion selected from the action set. Instead, in our setting,
the market price is a linear function of the context, while
the rewards are linked to the price the learner posts by the
non-linear gain from trade function. Moreover, in contrast
to contextual bandits, in our 2-bit feedback model, the feed-
back differs from and is not sufficient to compute the reward
of the action the learner selects at every round. For these
reasons, existing theoretical results from contextual linear
bandits do not directly apply to our problem. Nevertheless,
note that techniques from contextual linear bandits are rel-
evant to our problem, for instance, the use of the elliptical
potential lemma (proof of Theorem 3.1).

Previously to online learning contributions, a fair amount of
literature addressed game-theoretic and best-approximation
aspects of bilateral trade. We refer in particular to the
landmark work of Myerson and Satterthwaite (Myerson
& Satterthwaite, 1983), as well as Colini-Baldeschi et al.
(2016; 2017); Blumrosen & Mizrahi (2016); Brustle et al.
(2017); Colini-Baldeschi et al. (2020); Babaioff et al. (2020);
Dütting et al. (2021); Deng et al. (2022); Kang et al. (2022);
Archbold et al. (2023). We also refer to Cesa-Bianchi et al.
(2024b) for an analysis of the references above.

Finally, we point out that Amin et al. (2013); Golrezaei
et al. (2019) address pricing problems related to brokerage
and bilateral trade, and account for strategic aspects in this
context.

2. Structural and Technical Results
We begin by presenting a structural result whose economic
interpretation is as follows: even if the broker does not know
the traders’ valuation distributions, if these valuations can
be modeled as zero-mean noisy perturbations with bounded
densities of some market value, then the best price to post
to maximize the expected gain from trade is precisely the
(unknown and time-varying) market value, and the cost
of posting a suboptimal price is at most quadratic in the
distance from the market value.

In particular, this generalizes a similar result appearing in
Bolić et al. (2024), which can be applied only under the
further assumption that, at any time step, the traders’ val-
uations have the exact same distribution. We argue that
this assumption might be overly strong and not capture real-
life behavior. This is because traders might have private
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preferences or contingent needs that are not known by the
broker; they could be more or less volatile, have differently
skewed opinions, have valuations with arbitrarily different
tail behavior, etc. Instead, we merely assume that, at any
time step, traders’ valuations are, on average, equal to the
market price (which is how market prices are essentially
determined in real life) but allow for arbitrarily different
(hidden and time-varying) distributions. This relaxation of
the assumption comes at the expense of a more subtle proof.
The mathematical reason for the added difficulty is that,
under the same-distribution assumption, many of the terms
appearing in the proof simplify due to symmetries, while,
in our case, a different approach is needed to recover all the
properties needed for our result (which we are able to obtain
without introducing any new assumptions).

This structural result is the key to unraveling the intricacies
of the noisy contextual setting, and it is what ultimately
allows us to obtain tight regret guarantees in all settings,
distinguishing ours from similar contextual bilateral trade
and pricing works.

Lemma 2.1. Suppose that V and W are two [0,1]-valued
independent random variables, with possibly different den-
sities bounded by some constant L ≥ 1, and such that
E[V ] = E[W ] =∶ m. Then, for each p ∈ [0,1], it holds
that

0 ≤ E[g(m,V,W ) − g(p, V,W )] ≤ L ∣m − p∣2 .

Due to space constraints, we defer the technical proof of
this lemma to Appendix A.1.

As an immediate corollary of Lemma 2.1, we obtain the
following important result that upper bounds the regret in
terms of the sum of the squared distances between the prices
the algorithm posts and the actual market values.

Corollary 2.2. Consider the contextual brokerage problem
introduced in Section 1.1. If the valuations admit densities
bounded by a constant L ≥ 1, then, for any time horizon
T ∈ N, we have

RT = E [
T

∑
t=1
(GFTt(c⊺tϕ) −GFTt(Pt))]

≤
T

∑
t=1

1 ∧ (LE [∣Pt − c⊺tϕ∣2]) .

Proof. Given that for each t ∈ N and each p ∈ [0,1] it holds
that GFTt(p) ∈ [0,1], we have supp∈[0,1]E[GFTt(p) −
GFTt(Pt)] ≤ 1 , and hence, recalling that mt = c⊺tϕ and

that E[Vt] =mt = E[Wt], we also have, for each T ∈ N,

RT = sup
p⋆

T

∑
t=1

1 ∧ (E[g(p⋆(ct), Vt,Wt)] −E[g(Pt, Vt,Wt)])

(○)=
T

∑
t=1

1 ∧ (E[g(c⊺tϕ,Vt,Wt)] −E[g(Pt, Vt,Wt)])

(∗)=
T

∑
t=1

1 ∧E[[E[g(c⊺tϕ,Vt,Wt) − g(p, Vt,Wt)]]
p=Pt

]

(○)
≤

T

∑
t=1

1 ∧ (LE[∣Pt − c⊺tϕ∣
2]) ,

where the supremum in the first equality is over all func-
tions p⋆∶ [0,1]d → [0,1], (○) is a directed consequence of
Lemma 2.1, and (∗) follows from the Freezing Lemma
(Cesari & Colomboni, 2021, Lemma 8).

We conclude this section by presenting the following tech-
nical lemma, which will be used in the analyses of our
Algorithms 1 and 2 to control the behavior of the estimators
we employ. Its proof is deferred to Appendix A.2.

We write, for any l ∈ N, 1l for the l-dimensional identity
matrix. Also, for any positive definite matrix A ∈ Rl×l, we
define ∥⋅∥A ∶Rl → [0,∞), v ↦

√
v⊺Av.

Lemma 2.3. Let s, l ∈ N. Let Z1, . . . , Zs be an inde-
pendent sequence of [0,1]-valued random variables. Let
a1, . . . , as ∈ [0,1]l. Let ψ ∈ [0,1]l. Suppose that, for
each r ∈ [s] it holds that E[Zr] = a⊺rψ. Define fs ∶=
[a1 ∣ ⋯ ∣ as]. Define Hs ∶= [Z1 ∣ ⋯ ∣ Zs]. Define
ψ̂s ∶= (fsf⊺s + l−11l)−1fsH⊺s . Then, if a ∈ [0,1]l, we have
that

E[∣a⊺ψ̂s − a⊺ψ∣
2
] ≤ ∥
√
2a∥

2

(∑s
r=1 ara⊺r+l−11l)

−1 .

3. Learning in Contextual Brokerage
In this section, we introduce an algorithm (Algorithm 1)
for the contextual brokerage problem for which we prove
regret guarantees of order Õ(

√
LdT). The key feature of

the algorithm’s design is a deterministic rule that decides to
either explore or exploit based on the amount of information
gathered along the various context directions (see the defini-
tion of bt on Line 4). When the algorithm explores, it posts
a price drawn uniformly in [0,1] to obtain an unbiased esti-
mate of the current market value. When it exploits, it posts
the scalar product of the context and the current estimate
of the unknown weight vector ϕ built using the information
retrieved during exploration rounds.

Theorem 3.1. If the learner runs Algorithm 1 and the
traders’ valuations admit a density bounded by L ≥ 1, then,
for any time horizon T such that LT ≥ 2d ln(1+2d(T −1)),
it holds that RT ≤ 1 + 6

√
LdT lnT .
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Algorithm 1
1: Post P1 uniformly at random in [0,1], and observe
D1 ∶= I{P1 ≤ V1}

2: Let b1 ∶= 1, let x1 ∶= [c1], let Y1 ∶= [D1] and compute
ϕ̂1 ∶= (x1x⊺1 + d−11d)−1x1Y ⊺1

3: for time t = 2,3, . . . do
4: Observe context ct and define bt ∶=

I{∥
√
2ct∥

2

(xt−1x
⊺
t−1+d−11d)−1

>
√

2d ln(1+2d(T−1))
LT

}
5: if bt = 1 then
6: Post Pt uniformly at random in [0,1], and observe

Dt ∶= I{Pt ≤ Vt}
7: Let xt ∶= [xt−1 ∣ ct], let Yt ∶= [Yt−1 ∣ Dt] and

compute ϕ̂t ∶= (xtx⊺t + 1d)−1xtY ⊺t
8: else
9: post Pt ∶= c⊺t ϕ̂t−1 and let xt ∶= xt−1, Yt ∶= Yt−1,

and ϕ̂t ∶= ϕ̂t−1
10: end if
11: end for

Proof. Without loss of generality we assume that T ≥ 2.
Note that for any t ∈ N, if bt = 1, then

E[Dt] = P[Pt ≤ Vt]

= ∫
1

0
P[u ≤ Vt]du = E[Vt] = E[c⊺tϕ + ξt] = c⊺tϕ . (1)

Now, fix t ≥ 2. Let s ∶= ∑t−1
i=1 bi be the total number of

exploration steps done before time step t. Define recursively
time steps τ(1), . . . , τ(s) as follows: let τ(1) = 1 and, for
all n ∈ [s − 1], define τ(n + 1) ∶= min{i ∈ [t − 1] ∣ i ≥
τ(n) + 1, bi = 1}. Now, for each n ∈ [s], define Zn ∶=
Dτ(n). Notice that Z1, . . . , Zs are well defined because for
each n ∈ [s] we have that bτ(n) = 1. Define l ∶= d. For
each n ∈ [s], define an ∶= cτ(n). Let ψ ∶= ϕ and a ∶= ct.
Notice that, by Equation (1), if j ∈ [s] is odd, then E[Zj] =
E[Dτ(j)] = c⊺τ(j)ϕ = a

⊺
jψ. Then, with the same notation of

Lemma 2.3, we can apply Lemma 2.3 to obtain

E[∣c⊺t ϕ̂t−1 − c⊺tϕ∣2] = E[∣a⊺ψ̂s − a⊺ψ∣2]

≤ ∥
√
2a∥

2

(∑s
j=1 aja

⊺
j+l−11l)

−1

= ∥
√
2ct∥

2

(∑s
n=1 cτ(n)c⊺τ(n)+d−11d)

−1

= ∥
√
2ct∥

2

(∑t−1
i=1 bicic

⊺
i+d−11d)

−1 = ∥
√
2ct∥

2

(xt−1x⊺t−1+d−11d)−1

where the last step follows by definition of xt−1.

Being t arbitrarily chosen, we have that for each t ∈ [T ]
such that t ≥ 2,

E[∣c⊺t ϕ̂t−1 − c⊺tϕ∣2] ≤ ∥
√
2ct∥

2

(xt−1x⊺t−1+d−11d)−1
.

Hence, leveraging Corollary 2.2 and the previous inequality,
for any T ∈ N, we have that

RT ≤
T

∑
t=1

1 ∧ (LE [∣Pt − c⊺tϕ∣2])

≤
T

∑
t=2
(1 − bt)LE [∣c⊺t ϕ̂t−1 − c⊺tϕ∣2] +

T

∑
t=1
bt

≤ L
T

∑
t=2
(1 − bt) ∥

√
2ct∥

2

(xt−1x
⊺
t−1+d−11d)−1

+
T

∑
t=1
bt

≤
√

2LdT ln(1 + 2d(T − 1)) +
T

∑
t=1
bt ,

where in the last step we used the definition of the b1, . . . , bT .
Now, given that LT /(2d ln(1 + 2d(T − 1))) ≥ 1, using the
convention 0/0 = 0,

T

∑
t=2
bt =

T

∑
t=2

bt ∥
√
2ct∥

2

(xt−1x
⊺
t−1+d−11d)−1

∥
√
2ct∥

2

(xt−1x
⊺
t−1+d−11d)−1

≤
√

LT

2d ln(1 + 2d(T − 1))

⋅
T

∑
t=2

1 ∧ bt ∥
√
2ct∥

2

(∑t−1
s=1 bscsc⊺s+d−11d)−1

≤
¿
ÁÁÀ 2LT

d ln(1 + 2d(T − 1))

⋅
T−1
∑
t=1

1 ∧ ∥bt+1ct+1∥2(∑t
s=1(bscs)(bscs)⊺+d−11d)−1

=∶ (∗).

Using the elliptical potential lemma (Lattimore &
Szepesvári, 2020, Lemma 19.4), we obtain

T

∑
t=1
bt ≤ 1 + (∗)

≤ 1 +
√

2LT /(d ln(1 + 2d(T − 1))) ⋅ 2d ln(1 + 2d(T − 1))

= 1 + 2
√

2LdT ln(1 + 2d(T − 1)) .

Hence, if d < T /2, this implies that RT ≤ 1 +
3
√
2LdT ln (1 + 2d(T − 1)) ≤ 1 + 6

√
LdT lnT . On the

other hand, if d ≥ T /2, then, since L ≥ 1, we obtain, again,
RT ≤ T ≤ 1 + 6

√
LdT lnT .

We conclude this section by stating a matching (up to log-
arithmic terms) worst-case Ω(

√
LdT) regret lower bound

for any algorithm, proving the optimality of Algorithm 1.

At a high level, the proof of this result is based on first build-
ing a sequence of contexts defined as a common element
of the canonical basis of Rd during each one of d blocks of

6
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T /d consecutive time steps. Then, in each block, we use a
non-contextual lower bound construction leading to a regret
of at least

√
LT /d for each block, and conclude the proof

by summing over blocks. For more details on the proof of
this result, see Appendix C.2.

Theorem 3.2. There exist two numerical constants a, b > 0
such that, for any L ≥ 2 and any time horizon T ≥
max(4, adL3,2d), there exists a sequence of contexts
c1, . . . , cT ∈ [0,1]d such that, for any algorithm α for
the contextual brokerage problem, there exists a vector
ϕ ∈ [0,1]d and two zero-mean independent sequences
(ξt)t∈[T ] and (ζt)t∈[T ] independent of each other such that,
if we define Vt ∶= c⊺tϕ + ξt and Wt ∶= c⊺tϕ + ζt, then for
each t ∈ [T ] it holds that c⊺tϕ ∈ [0,1], Vt and Wt are
[0,1]-valued random variables with density bounded by L,
and the regret of α on the sequence of traders’ valuations
V1,W1, . . . , VT ,WT satisfies RT ≥ b

√
LdT .

We remark that the previous lower bound holds even for
algorithms that have prior knowledge of the sequence of
contexts c1, c2, . . . and that Theorem 3.1 shows that Algo-
rithm 1 matches the optimal

√
LdT rate (up to a

√
lnT

factor) even without this a-priori knowledge.

4. Full Feedback
In this section, we discuss a “full feedback” version of the
contextual brokerage problem to understand how the limited
feedback the broker has normally access to impacts the
regret. In this version, the valuations Vt andWt are revealed
at the end of each time step t.

For this problem, we modify Algorithm 1 in two ways to
leverage the higher-quality feedback. First, the new algo-
rithm never explores (it does not need to), i.e., bt ∶= 0 for all
t. Second, the algorithm uses different (and better) unbiased
estimators of mt in the columns of Yt: the valuations Vt and
Wt. The resulting algorithm is Algorithm 2, for which we
prove an optimal logarithmic worst-case regret: an exponen-
tial improvement with respect to what is achievable under
the classic 2-bit feedback.

Algorithm 2
1: Observe context c1, post P1 ∶= 1/2, and receive feed-

back V1, W1

2: Let x1 ∶= [c1 ∣ c1], let Y1 ∶= [V1 ∣ W1], and compute
ϕ̂1 ∶= (x1x⊺1 + d−11d)−1x1Y ⊺1

3: for time t = 2,3, . . . do
4: Observe context ct, post Pt ∶= c⊺t ϕ̂t−1, and receive

feedback Vt, Wt

5: Let xt ∶= [xt−1 ∣ ct ∣ ct], Yt ∶= [Yt−1 ∣ Vt ∣ Wt], and
compute ϕ̂t ∶= (xtx⊺t + d−11d)−1xtY ⊺t

6: end for

Theorem 4.1. Consider the full-feedback version of the
contextual brokerage problem. If the learner runs Algo-
rithm 2 and the traders’ valuations admit a density bounded
by L ≥ 1, then, for any time horizon T ∈ N, it holds that
RT ≤ 1 + 4Ld lnT .

Due to space constraints, we defer the proof of this result to
Appendix B.1.

We conclude this section by stating a matching worst-case
Ω(Ld lnT ) regret lower bound for any algorithm in the
full-feedback case, proving the optimality of Algorithm 2.

The result is proved similarly to that of Theorem 3.2: first,
in each one of d blocks of T /d consecutive time steps, we
play a fixed context defined as a common element of the
canonical basis of Rd. Then, in each block, we use a non-
contextual lower bound construction leading to a regret of
at least L ln(T /d) for the block, and conclude the proof by
summing over blocks. For more details on the proof of this
result, see Appendix C.1.
Theorem 4.2. There exist two numerical constants a, b > 0
such that, for any L ≥ 2 and any time horizon T ≥
max(4, adL5,2d), there exists a sequence of contexts
c1, . . . , cT ∈ [0,1]d such that, for any algorithm α for the
full-feedback version of the contextual brokerage problem,
there exists a vector ϕ ∈ [0,1]d and two zero-mean indepen-
dent sequences (ξt)t∈[T ] and (ζt)t∈[T ] independent of each
other, such that if we define Vt ∶= c⊺tϕ+ξt andWt ∶= c⊺tϕ+ζt,
then for each t ∈ [T ] it holds that c⊺tϕ ∈ [0,1], Vt and Wt

are [0,1]-valued random variables with density bounded by
L, and the regret of α on the sequence of traders’ valuations
V1,W1, . . . , VT ,WT satisfies RT ≥ bLd lnT .

We remark that the previous lower bound holds even for
algorithms that have prior knowledge of the sequence of
contexts c1, c2, . . . and that Theorem 4.1 shows that Algo-
rithm 2 matches the optimal Ld lnT rate even without this
a-priori knowledge.

5. Beyond Bounded Densities
In this final section, we investigate the general case where
the traders’ valuations are not assumed to have a bounded
density. We begin with the following (perhaps counterin-
tuitive) counterexample showing that, in general, posting
the market value can be highly suboptimal if the goal is to
maximize the gain from trade.
Example 5.1. Let V and W be two independent uniform
random variables on {0, 1

5
,1} and m ∶= E[V ] = E[W ] =

2/5. Then argmaxp∈[0,1]E[g(p, V,W )] = 1/5 ≠ m, and
E[g(1/5, V,W )] −E[g(2/5, V,W )] = 2 ⋅ ( 1

5
− 0) ⋅ 1

9
> 0.

The phenomenon illustrated by the previous counterexample
is the key to proving our final result: the unlearnability, in
general, of the brokerage problem (even when full feedback

7
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is available). Specifically, we exploit the fact that, in general,
the optimal price at time t depends not only on the market
value mt = c⊺tϕ but also on properties of the adversarial
and time-varying distributions of the perturbations ξt and ζt,
which make it impossible to compete against the benchmark
in our regret definition.
Theorem 5.2. There exists a sequence of contexts
c1, c2, ⋅ ⋅ ⋅ ∈ [0,1]d and a vector ϕ ∈ [0,1]d, such that for any
algorithm α for the full-feedback version of the contextual
brokerage problem, there exists an independent sequence
of zero mean random variables ξ1, ζ1, ξ2, ζ2, . . . , such that
if the valuations of the traders at time t are Vt = c⊺tϕ + ξt
and Wt = c⊺tϕ + ζt, then c⊺tϕ ∈ [0,1], Vt,Wt are [0,1]-
valued random variables, and the regret of α on the se-
quence of traders’ valuations V1,W1, . . . , VT ,WT satisfies
RT ≥ 1

32
T .

We remark that the previous unlearnability result holds
even for algorithms that have prior knowledge of the se-
quence of contexts c1, c2, . . . and, strikingly, of the vector
ϕ, that is, even for algorithms that know the entire sequence
m1,m2, . . . of market prices in advance!

Proof. Assume that d ≥ 2 (for the case d = 1, the following
proof can be adapted straightforwardly by defining ϕ = 1
and ct = 1/2 + εt, where εt is an arbitrary small sequence
of biases). Let (at)t∈N be a sequence of distinct elements
in [0,1] and, for all t ∈ N, let ct ∶= (at,1 − at,0,0, . . . ,0).
Notice that (ct)t∈N is a sequence of distinct elements in
[0,1]d. Define ϕ ∶= (1/2,1/2,0,0, . . . ,0). Notice that for
each t ∈ N it holds that c⊺tϕ = 1/2. Let ε ∈ (0,1/16). For any
θ ∈ {0,1}, consider the following probability distribution

µθ ∶= ( 14 + (1 − 2θ)ε) δ− 1
2
+ 1

2
δf(θ) + ( 14 − (1 − 2θ)ε) δ 1

2

where f(θ) ∶= 2(1 − θ)ε − 2θε and for any a ∈ R, δa
is the Dirac’s delta probability distribution centered in
a. Consider an independent family of random variables
(ξt,θ, ζt,θ)t∈N,θ∈{0,1} such that for any t ∈ N and any θ ∈
{0,1}, we have that both ξt,θ and ζt,θ are random variables
with common distribution µθ. Notice that for each t ∈ N
and each θ ∈ {0,1} we have that E[ξt,θ] = 0 = E[ζt,θ].
Define, for each t ∈ N and each θ ∈ {0,1}, the ran-
dom variables Vt,θ ∶= c⊺tϕ + ξt,θ and Wt,θ ∶= c⊺tϕ + ζt,θ.
Notice that these are [0,1]-valued random variables and
that (Vt,θ,Wt,θ)t∈N,θ∈{0,1} is an independent family. Now,
for each θ ∈ {0,1} and each t ∈ N, let p ↦ Gθ

t (p) ∶=
g(p, Vt,θ,Wt,θ) and

p#(θ) ∈ argmaxp∈[0,1]E[Gθ
t (p)] ,

which does exist because the function [0,1] → [0,1], p ↦
E[Gθ

t (p)] is upper semicontinuous (this can be proved, e.g.,
as in Cesa-Bianchi et al. 2024b, Appendix B) and defined
on a compact set. Furthermore, note that the previous def-
inition is independent of t because, for any θ ∈ {0,1}, the

pairs (Vt1,θ,Wt1,θ) and (Vt2,θ,Wt2,θ) share the same dis-
tribution for every t1, t2 ∈ N. Fix a learning algorithm for
the full-feedback contextual brokerage problem, fix a time
horizon T ∈ N, and notice that since the contexts c1, c2, . . .
are all distinct, it follows that

max
θ1,...,θT ∈{0,1}T

sup
p⋆∶[0,1]d→[0,1]

E[
T

∑
t=1
(Gθt

t (p
⋆(ct)) −Gθt

t (Pt))]

= max
θ1,...,θT ∈{0,1}T

T

∑
t=1

⎛
⎝

sup
p∈[0,1]

E[Gθt
t (p)] −E[G

θt
t (Pt)]

⎞
⎠

= max
θ1,...,θT ∈{0,1}T

T

∑
t=1

E [Gθt
t (p

#(θt)) −Gθt
t (Pt)] =∶ (#) .

Now, consider an i.i.d. family of Bernoulli random variables
(Θt)t∈N with parameter 1/2, independent of the whole fam-
ily (Vt,θ,Wt,θ)t∈N,θ∈{0,1}. We have that

(#) ≥
T

∑
t=1
(E[GΘt

t (p
#(Θt))] −E[GΘt

t (Pt)]) =∶ ($).

Now, for each t ∈ [T ], we see that

E[GΘt
t (p

#(Θt))] = E[E[GΘt
t (p

#(Θt)) ∣ Θt]]

= E[ max
p∈[0,1]

E[GΘt
t (p) ∣ Θt]]

and long but straightforward computations show that, for
each p ∈ [0,1], it holds that the conditional expectation
E[GΘt

t (p) ∣ Θt] is equal to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
4
+ ε(1 − 2Θt) if 0 ≤ p < 1

2
− 2Θtε + 2(1 −Θt)ε ,

3
8
+ 2ε2 if p = 1

2
− 2Θtε + 2(1 −Θt)ε ,

1
4
− ε(1 − 2Θt) if 1

2
− 2Θtε + 2(1 −Θt)ε < p ≤ 1 ,

from which it follows that

max
p∈[0,1]

E[GΘt
t (p) ∣ Θt] =

3

8
+ 2ε2 .

On the other hand, for each t ∈ [T ], leveraging the freezing
lemma (Cesari & Colomboni, 2021, Lemma 8), we have
that

E[GΘt
t (Pt)] = E[E[GΘt

t (Pt) ∣ Pt]] = E[[E[GΘt
t (p)]]

p=Pt

]

= E[[1
2
E[GΘt

t (p) ∣ Θt = 0] +
1

2
E[GΘt

t (p) ∣ Θt = 1]]
p=Pt

]

and again, tedious but straightforward computations show

8
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that, for each p ∈ [0,1], it holds that

1
2
E[GΘt

t (p) ∣ Θt = 0] + 1
2
E[GΘt

t (p) ∣ Θt = 1]
= 1

4
(I{p < 1

2
− 2ε} + I{ 1

2
+ 2ε < p})

+ ( 5
16
+ ε

2
+ ε2) (I{p = 1

2
− 2ε} + I{p = 1

2
+ 2ε})

+ ( 1
4
+ ε) I{ 1

2
− 2ε < p < 1

2
+ 2ε}

≤ 5
16
+ ε

2
+ ε2 .

We conclude that ($) ≥ T
16
+ (ε2 − ε

2
)T ≥ T

32
, from which

it follows that there exists θ1, . . . , θT ∈ {0,1} such that

sup
p⋆∶[0,1]d→[0,1]

E[
T

∑
t=1
(Gθt

t (p
⋆(ct)) −Gθt

t (Pt))] ≥
T

32
.

6. Conclusions
Motivated by the real-life desideratum to exploit prior infor-
mation on the traded assets, we investigated the noisy linear
contextual online learning problem of brokerage between
traders without predetermined seller/buyer roles. We pro-
vided a complete picture with tight regret bounds in all the
proposed settings, achieving tightness (up to log terms) in
all relevant parameters.

Our work stands on the classic interpretation of the mar-
ket value of an asset as the average opinion of the market
participants. An alternative perspective, which we leave
open for future research, is when, instead, assets have an
“inherent value”, and traders’ valuations are systematic bi-
ases or strategic deviations around this quantity. In this case,
this inherent value would not be the average of the traders’
valuations, and new techniques will be required to analyze
this setting.

Finally, we highlight that there are many other online
learning problems in digital markets whose contextual ver-
sion is still open, such as market making (Cesa-Bianchi
et al., 2025), first-price auctions with unknown costs (Cesa-
Bianchi et al., 2024a), trading-volume maximization (Cesari
& Colomboni, 2025), and optimal taxation (Cesa-Bianchi
et al., 2025).
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A. Missing Proofs of Structural and Technical Results (Section 2)
In this section, we provide the missing proofs of our structural and technical results.

A.1. Proof of Lemma 2.1

We denote by F (resp., G) the cumulative distribution function of V (resp., W ). For each p ∈ [0,1], from the Decomposition
Lemma in (Cesa-Bianchi et al., 2024b, Lemma 1), it holds that

E[(W − V )I{V ≤ p ≤W}] = F (p)∫
1

p
(1 −G(λ))dλ + (1 −G(p))∫

p

0
F (λ)dλ ,

E[(V −W )I{W ≤ p ≤ V }] = G(p)∫
1

p
(1 − F (λ))dλ + (1 − F (p))∫

p

0
G(λ)dλ .

Hence, for each p ∈ [0,1],

E[(W − V )I{V ≤ p ≤W}] = F (p)∫
1

p
(1 −G(λ))dλ + (1 −G(p))∫

p

0
F (λ)dλ

= F (p) (m − ∫
p

0
(1 −G(λ))dλ) + ∫

p

0
F (λ)dλ −G(p)∫

p

0
F (λ)dλ

= ∫
p

0
F (λ)dλ + (m − p)F (p) − pG(p) +G(p)∫

p

0
(1 − F (λ))dλ + F (p)∫

p

0
G(λ)dλ

= ∫
p

0
(F +G) (λ)dλ + (m − p) (F +G) (p) −G(p) (m − ∫

p

0
(1 − F (λ))dλ) + (F (p) − 1)∫

p

0
G(λ)dλ

= ∫
p

0
(F +G)(λ)dλ + (m − p)(F +G)(p) − (G(p)∫

1

p
(1 − F (λ))dλ + (1 − F (p))∫

p

0
G(λ)dλ)

= ∫
p

0
(F +G)(λ)dλ + (m − p)(F +G)(p) −E[(V −W )I{W ≤ p ≤ V }] .

Rearranging, it follows that, for each p ∈ [0,1],

E[g(p, V,W )] = E[(W − V )I{V ≤ p ≤W}] +E[(V −W )I{W ≤ p ≤ V }]

= ∫
p

0
(F +G)(λ)dλ + (m − p)(F +G)(p) .

Hence, for any p ∈ [0,1], it holds that

E[g(m,V,W ) − g(p, V,W )] = ∫
m

p
((F +G)(λ) − (F +G)(p))dλ ≥ 0 .

Finally, since F and G are absolutely continuous with weak derivative bounded by L, by the fundamental theorem of
calculus (Bass, 2013, Theorem 14.16) it holds that, for p ∈ [0,1],

E[g(m,V,W ) − g(p, V,W )] = ∫
m

p
∫

λ

p
(F ′ +G′)(ϑ)dϑdλ ≤ 2L∫

m

p
∣λ − p∣dλ = L∣m − p∣2 .

A.2. Proof of Lemma 2.3

By the bias-variance decomposition:

E[∣a⊺ψ̂s − a⊺ψ∣2] = (E [a⊺ψ̂s − a⊺ψ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

bias

)2 +Var[a⊺ψ̂s]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

variance

.

Noting that, for each t ∈ N, it holds that E[H⊺s ] = f⊺s ψ, we have,

E[a⊺ψ̂t − a⊺ψ] = a⊺(fsf⊺s + l−11l)−1fsf⊺s ψ
− a⊺(fsf⊺s + l−11l)−1(fsf⊺s ψ + l−1ψ)

= −a⊺(fsf⊺s + l−11l)−1l−1ψ =∶ (○) ,
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and hence, by the Cauchy-Schwarz inequality applied to the scalar product (α,β) ↦ α⊺(fsf⊺s + l−11l)−1β, by the fact that
(fsf⊺s + l−11l)−1 ⪯ l−11−1l (where, for any two symmetric matrices A1,A2, we say that A1 ⪯ A2 if and only if A2 −A1 is
semi-positive definite), and by the fact that ∥ψ∥22 ≤ l, we can control the bias term as follows

(E[a⊺ψ̂s − a⊺ψ])
2
= (○)2

≤ a⊺(fsf⊺s + l−11l)−1a ⋅ l−1ψ⊺(fsf⊺s + l−11l)−1l−1ψ
≤ a⊺(fsf⊺s + l−11l)−1a ⋅ l−1ψ⊺(l−11l)−1l−1ψ

≤ a⊺(fsf⊺s + l−11l)−1a.

Letting ∆s be the s × s diagonal matrix with vector of diagonal elements given by (Var[Z1], . . . ,Var[Zs]), we have

Var[a⊺ψ̂s] = a⊺(fsf⊺s + l−11l)−1(fs∆sf
⊺
s )(fsf⊺s + l−11l)−1a.

Now, given that Z1, . . . , Zs are [0,1]-valued, we have that ∆s is diagonal with diagonal elements less than 1, and hence
fs∆sf

⊺
s ⪯ fsf⊺s + l−11l, which yields a control on the variance term as follows,

Var[a⊺ψ̂s] ≤ a⊺(fsf⊺s + l−11l)−1(fsf⊺s + l−11l)(fsf⊺s + l−11l)−1a
= a⊺(fsf⊺s + l−11l)−1a .

Putting everything together, we have

E[∣a⊺ψ̂s − a⊺ψ∣2] ≤ 2a⊺(fsf⊺s + l−11l)−1a = 2 ∥a∥2(fsf⊺s +l−11l)−1

= 2 ∥a∥2(∑s
r=1 ara⊺r+l−11l)−1

= ∥
√
2a∥

2

(∑s
r=1 ara⊺r+l−11l)−1

,

where we recall that for any positive definite matrix A ∈ Rl×l and each u ∈ Rl, we have defined ∥u∥A ∶=
√
u⊺Au.

B. Missing Upper Bound Proofs
In this section, we provide all missing proofs of our regret upper bounds.

B.1. Proof of Theorem 4.1

Fix any t ≥ 2. Now, for each n ∈ [t−1], defineZ2n−1 ∶= Vn andZ2n ∶=Wn. Define l ∶= d and s ∶= 2(t−1). For each n ∈ [t−1],
define a2n−1 ∶= cn =∶ a2n. Let ψ ∶= ϕ and a ∶= ct. Notice that, if j ∈ [s] is odd, then E[Zj] = E[V j+1

2
] = c⊺j+1

2

ϕ = a⊺jψ, while

if j ∈ [s] is even, then E[Zj] = E[W j
2
] = c⊺j

2

ϕ = a⊺jψ. Hence, we can apply Lemma 2.3 to obtain

E[∣c⊺t ϕ̂t−1 − c⊺tϕ∣2] = E[∣a⊺ψ̂s − a⊺ψ∣2] ≤ ∥
√
2a∥

2

(∑s
j=1 aja

⊺
j+l−11l)

−1 = ∥
√
2ct∥

2

(2∑t−1
n=1 cnc⊺n+d−11d)

−1

= ∥
√
2ct∥

2

(∑t−1
n=1(

√
2cn)(

√
2cn)⊺+d−11d)

−1 .

Hence, leveraging Corollary 2.2 and the previous inequality, for any T ∈ N, we have that

RT ≤
T

∑
t=1

1 ∧ (LE [∣Pt − c⊺tϕ∣2]) ≤ 1 +
T

∑
t=2
LE [∣c⊺t ϕ̂t−1 − c⊺tϕ∣2] ≤ 1 +

T

∑
t=2
∥
√
2ct∥

2

(∑t−1
n=1(

√
2cn)(

√
2cn)⊺+d−11d)

−1

≤ 1 + 2Ld ln(dd
−1 + 2d(T − 1)

dd−1
) = 1 + 2Ld ln(1 + 2d(T − 1)) ≤ 1 + 2Ld ln(2dT )

where the first inequality of the second line follows from the elliptical potential lemma (Lattimore & Szepesvári, 2020,
Lemma 19.4).

If d < T /2, this implies that RT ≤ 1 + 2Ld ln(2dT ) ≤ 1 + 4Ld lnT . If, instead, d ≥ T /2, then, recalling that L ≥ 1, we
obtain once again that RT ≤ T ≤ 1 + 4Ld lnT , concluding the proof.
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C. Missing Lower Bound Proofs
In this section, we provide all the missing proofs of our lower bounds, starting from that of the full-feedback setting.

C.1. Proof of Theorem 4.2

The high-level idea of this proof is to build a reduction to a non-contextual full-feedback lower bound construction (see, e.g.,
the one appearing in Bolić et al. 2024, Theorem 5).

Without loss of generality, we assume that d divides T . In fact, if we prove the theorem for this case, then, by leveraging
that T ≥ 2d and T ≥ 4, the general case follows from

RT ≥ bLd ln(⌊T /d⌋d) ≥
b

2
Ld lnT .

Let n ∶= T /d. Let e1, . . . , ed be the canonical basis of Rd. Define, for all i ∈ [d] and j ∈ [n], the context cj+(i−1)n ∶= ei. We
assume that these contexts are known to the learner in advance and, therefore, we can restrict the proof to deterministic
algorithms without any loss of generality.

Let L ≥ 2, JL ∶= [ 12 −
1

14L
, 1
2
+ 1

14L
], f ∶= I[0, 37 ] + LIJL

+ I[ 4
7 ,1]

, and, for any ε ∈ [−1,1], gε ∶= −εI[ 1
7 ,

3
14
] + εI( 3

14 ,
2
7
]

and fε ∶= f + gε. For any ε ∈ [−1,1], note that 0 ≤ fε ≤ L and ∫
1
0 fε(x)dx = 1, hence fε is a valid density on [0,1]

bounded by L. We will denote the corresponding probability measure by νε, set ν̄ε ∶= ∫[0,1] xdνε(x), and notice that
direct computations show that ν̄ε = 1

2
+ ε

196
. Consider for each q ∈ [0,1], an i.i.d. sequence (Bq,t)t∈N of Bernoulli random

variables of parameter q, an i.i.d. sequence (B̃t)t∈N of Bernoulli random variables of parameter 1/7, an i.i.d. sequence
(Ut)t∈N of uniform random variables on [0,1], and uniform random variables E1, . . . ,Ed on [−ε̄L, ε̄L], where ε̄L ∶= 7

L
,

such that ((Bq,t)t∈N,q∈[0,1], (B̃t)t∈N, (Ut)t∈N,E1, . . . ,Ed) is an independent family. Let φ∶ [0,1] → [0,1] be such that, if
U is a uniform random variable on [0,1], then the distribution of φ(U) has density 7

6
⋅ f ⋅ I[0,1]∖[1/7,2/7] (which exists by

the Skorokhod representation theorem (Williams, 1991, Section 17.3)). For each ε ∈ [−1,1] and t ∈ N, define

Gε,t ∶= (
2 +Ut

14
(1 −B 1+ε

2 ,t) +
3 +Ut

14
B 1+ε

2 ,t) B̃t + φ(Ut)(1 − B̃t) , (2)

Vε,t ∶= Gε,2t−1, Wε,t ∶= Gε,2t, ξε,t ∶= Vε,t− ν̄ε, and ζε,t ∶=Wε,t− ν̄ε. In the following, if a1, . . . , ad is a sequence of elements,
we will use the notation a1∶d as a shorthand for (a1, . . . , ad). For each ε1, . . . , εd ∈ [−1,1], each i ∈ [d], and each j ∈ [n],
define the random variables ξε1∶d

j+(i−1)n ∶= ξεi,j+(i−1)n and ζε1∶d
j+(i−1)n ∶= ζεi,j+(i−1)n. The family (ξε1∶dt , ζε1∶dt )

t∈[T ],ε1∶d∈[−1,1]d
is an independent family, independent of (E1, . . . ,Ed), and for each i ∈ [d] and each j ∈ [n] it can be checked that the
two random variables ξε1∶d

j+(i−1)n, ζ
ε1∶d
j+(i−1)n are zero mean with common distribution given by νεi . For each ε1, . . . , εd ∈

[−1,1], let ϕε1∶d ∶= (ν̄ε1 , . . . , ν̄εd), and for each i ∈ [d] and j ∈ [n], let V ε1∶d
j+(i−1)n ∶= c

⊺
j+(i−1)nϕε1∶d + ξ

ε1∶d
j+(i−1)n and

W ε1∶d
j+(i−1)n ∶= c

⊺
j+(i−1)nϕε1∶d + ζ

ε1∶d
j+(i−1)n. Note that these last two random variables are [0,1]-valued zero-mean perturbations

of c⊺
j+(i−1)nϕε1∶d with shared density given by fεi , and hence bounded by L.

We will show that any algorithm has to suffer the regret inequality in the statement of the theorem if the sequence of
evaluations is V ε1∶d

1 ,W ε1∶d
1 , . . . , V ε1∶d

T ,W ε1∶d
T , for some ε1, . . . , εd ∈ [0,1].

Before doing that, we first need the following. For any ε1, . . . , εd ∈ [−1,1], p ∈ [0,1], and t ∈ [T ] let GFTε1∶d
t (p) ∶=

g(p, V ε1∶d
t ,W ε1∶d

t ).

By Lemma 2.1, we have, for all ε1, . . . , εd ∈ [−1,1], i ∈ [d], j ∈ [n], and p ∈ [0,1],

E[GFTε1∶d
j+(i−1)n(p)] = 2∫

p

0
∫

λ

0
fεi(s)dsdλ + 2(ν̄εi − p)∫

p

0
fεi(s)ds ,

which, together with the fundamental theorem of calculus —(Bass, 2013, Theorem 14.16), noting that p ↦
E[GFTε1∶d

j+(i−1)n(p)] is absolutely continuous with derivative defined a.e. by p ↦ 2(ν̄εi − p)fεi(p)— yields, for any
p ∈ JL,

E[GFTε1∶d
j+(i−1)n(ν̄εi)] −E[GFTε1∶d

j+(i−1)n(p)] = L∣ν̄εi − p∣
2 . (3)

Note also that for all ε1, . . . , εd ∈ [−ε̄L, ε̄L], t ∈ [T ], and p ∈ [0,1] ∖ JL, a direct verification shows that

E[GFTε1∶d
t (p)] ≤ E [GFTε1∶d

t (1/2)] . (4)
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Fix any arbitrary deterministic algorithm for the full feedback setting (αt)t∈[T ], i.e., (given that the contexts c1, . . . , cT are

here fixed and declared ahead of time to the learner), a sequence of functions αt∶ ([0,1] × [0,1])
t−1 → [0,1] mapping past

feedback into prices (with the convention that α1 is just a number in [0,1]). For each t ∈ [T ], define α̃t∶ ([0,1]×[0,1])
t−1 →

JL equal to αt whenever αt takes values in JL, and equal to 1/2 otherwise. Define Z1 ∶= 1+E1

2
, . . . , Zd ∶= 1+Ed

2
.

Now, note the following

sup
ε1∶d∈[−ε̄L,ε̄L]d

d

∑
i=1

n

∑
j=1

E[GFTε1∶d
j+(i−1)n(ν̄εi) −GFTε1∶d

j+(i−1)n(αt(V ε1∶d
1 ,W ε1∶d

1 , . . . , V ε1∶d
j−1+(i−1)n,W

ε1∶d
j−1+(i−1)n))]

(4)
≥ sup

ε1∶d∈[−ε̄L,ε̄L]d

d

∑
i=1

n

∑
j=1

E[GFTε1∶d
j+(i−1)n(ν̄εi) −GFTε1∶d

j+(i−1)n(α̃t(V ε1∶d
1 ,W ε1∶d

1 , . . . , V ε1∶d
j−1+(i−1)nW

ε1∶d
j−1+(i−1)n))]

♠= L sup
ε1∶d∈[−ε̄L,ε̄L]d

d

∑
i=1

n

∑
j=1

E[∣ν̄εi − α̃t(V ε1∶d
1 ,W ε1∶d

1 , . . . , V ε1∶d
j−1+(i−1)n,W

ε1∶d
j−1+(i−1)n)∣

2]

≥ L
d

∑
i=1

n

∑
j=1

E[∣ν̄Ei − α̃t(V E1∶d
1 ,WE1∶d

1 , . . . , V E1∶d
j−1+(i−1)n,W

E1∶d
j−1+(i−1)n)∣

2]

♥
≥ L

d

∑
i=1

n

∑
j=1

E[∣ν̄Ei −E[ν̄Ei ∣ V
E1∶d
1 ,WE1∶d

1 , . . . , V E1∶d
j−1+(i−1)n,W

E1∶d
j−1+(i−1)n]∣

2]

= L

1962

d

∑
i=1

n

∑
j=1

E[∣Ei −E[Ei ∣ V E1∶d
1 ,WE1∶d

1 . . . , V E1∶d
j−1+(i−1)n,W

E1∶d
j−1+(i−1)n]∣

2]

♦
≥ L

1962

d

∑
i=1

n

∑
j=1

E[∣Ei −E[Ei ∣ B 1+Ei
2 ,1+2(i−1)n, . . . ,B 1+Ei

2 ,2(j−1)+2(i−1)n]∣
2]

♣= L

1962

d

∑
i=1

n

∑
j=1

E[∣Ei −E[Ei ∣ B 1+Ei
2 ,1

, . . . ,B 1+Ei
2 ,2(j−1)]∣

2]

= L

982

d

∑
i=1

n

∑
j=1

E[∣Zi −E[Zi ∣ BZi,1, . . . ,BZi,2(j−1)]∣
2]

where ♠ follows from (3) and the fact that α̃t takes values in JL; ♥ from the fact that the minimizer of the L2(P)-distance
from ν̄Ei in σ(V E1∶d

1 ,WE1∶d
1 , . . . , V E1∶d

j−1+(i−1)n,W
E1∶d
j−1+(i−1)n) is E[ν̄Ei ∣ V

E1∶d
1 ,WE1∶d

1 , . . . , V E1∶d
j−1+(i−1)n,W

E1∶d
j−1+(i−1)n] (see,

e.g., (Williams, 1991, Section 9.4)); ♦ follows from the fact that, by Equation (2) and the independence of Ei from
((Bq,t)t∈N,q∈[0,1], (B̃t)t∈N, (Ut)t∈N), the conditional expectation E[Ei ∣ V E1∶d

1 ,WE1∶d
1 , . . . , V E1∶d

j−1+(i−1)n,W
E1∶d
j−1+(i−1)n] is a

measurable function of B 1+Ei
2 ,1+2(i−1)n, . . . ,B 1+Ei

2 ,2(j−1)+2(i−1)n, together with the same observation made in ♥ about the

minimization of L2(P) distance; and ♣ follows from the fact that the sequence (B 1+Ei
2 ,t
)
t∈N

is i.i.d..

Finally, the general term of this last sum is the expected squared distance between the random parameter (drawn uniformly
over [(1 − ε̄L)/2, (1 + ε̄L)/2]) of an i.i.d. sequence of Bernoulli random variables and the conditional expectation of this
random parameter given 2(j − 1) independent realizations of these Bernoullis. A probabilistic argument shows that there
exist two universal constants ã, b̃ > 0 such that, for all j ≥ b̃L4 and each i ∈ [d],

E[∣Zi −E[Zi ∣ BZi,1, . . . ,BZi,2(j−1)]∣
2] ≥ ã 1

j − 1
. (5)

At a high level, this is because, in an event of probability Ω(1), if j is large enough, the conditional expectation E[Zi ∣
BZi,1, . . . ,BZi,2(j−1)] is very close to the empirical average 1

2(j−1) ∑
2(j−1)
s=1 BZi,s, whose expected squared distance from

Z is Ω(1/(j − 1)). For a formal proof of (5) with explicit constants, we refer the reader to Bolić et al. (2024, Appendix B of
the extended arxiv version). Summing over i ∈ [d] and j ∈ [n], we obtain that there exist ε1, . . . , εd ∈ [−1,1]d such that

d

∑
i=1

n

∑
j=1

E[GFTε1∶d
j+(i−1)n(ν̄εi) −GFTε1∶d

j+(i−1)n(α̃t(V ε1∶d
1 ,W ε1∶d

1 , . . . , V ε1∶d
j−1+(i−1)n,W

ε1∶d
j−1+(i−1)n))]

= Ω(Ld lnn) = Ω(Ld lnT ) .
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C.2. Proof of Theorem 3.2

The high-level idea of this proof is to build a reduction to a non-contextual lower bound construction (see, e.g., the one
appearing in Bolić et al. 2024, Theorem 3).

Fix L ≥ 2 and T ∈ N.

We will use the very same notation as in the proof of Theorem 4.2. In particular, the contexts c1, . . . , cT are again the same
as before and declared ahead of time to the learner. We will show that for each algorithm for contextual brokerage with 2-bit
feedback and each time horizon T , if Rε1∶d

T is the regret of the algorithm at time horizon T when the traders’ valuations are
V ε1∶d
1 ,W ε1∶d

1 , . . . , V ε1∶d
T ,W ε1∶d

T , then maxσ1∶d∈{−1,1}d R
(σ1ε,...,σdε)
T = Ω(

√
dLT) if ε = Θ((LT /d)−1/4) and T = Ω(dL3).

Note that for all ε1∶d ∈ [−1,1]d, i ∈ [d], j ∈ [n], and p < 1
2

, if εi > 0, then, a direct verification shows that

E [GFTε1∶d
j+(i−1)n (1/2)] ≥ E[GFTε1∶d

j+(i−1)n(p)] . (6)

Similarly, for all ε1∶d ∈ [−1,1]d, i ∈ [d], j ∈ [n], and p > 1
2

, if εi < 0, then

E [GFTε1∶d
j+(i−1)n (1/2)] ≥ E[GFTε1∶d

j+(i−1)n(p)] . (7)

Furthermore, a direct verification shows that, for each ε1∶d ∈ [−1,1]d and t ∈ [T ],

max
p∈[0,1]

E[GFTε1∶d
t (p)] − max

p∈[ 17 ,
2
7 ]
E[GFTε1∶d

t (p)] ≥
1

50
= Ω(1) . (8)

Now, assume that T ≥ dL3/144 so that, defining ε ∶= (LT /d)−1/4, we have that for any σ1∶d ∈ {−1,1}d, any i ∈ [d] and
any j ∈ [n], the maximizer of the expected gain from trade p↦ E[GFT

(σ1ε,...,σdε)
j+(i−1)n (p)] is at 1

2
+ σiε

196
and hence belongs to

the spike region JL. If σi = 1 (resp., σi = −1), the optimal price for the rounds 1 + (i − 1)n, . . . , in belongs to the region
( 1
2
, 1
2
+ 1

14L
] (resp., [ 1

2
− 1

14L
, 1
2
)). By posting prices in the wrong region [0, 1

2
] (resp., [ 1

2
,1]) in the σi = 1 (resp., σi = −1)

case, the learner incurs a Ω(Lε2) = Ω(
√
L/dT) instantaneous regret by (3) and (6) (resp., (3) and (7)). Then, in order

to attempt suffering less than Ω(
√
L/T ⋅ n) = Ω(

√
LT /d) regret in the rounds 1 + (i − 1)n, . . . , in, the algorithm would

have to detect the sign of σi and play accordingly. We will show now that even this strategy will not improve the regret
of the algorithm (by more than a constant) because of the cost of determining the sign of σi with the available feedback.
Since for any i ∈ [d] and j ∈ [n], the feedback received from the two traders at time j + (i − 1)n by posting a price p is
I{p ≤ V (σ1ε,...,σdε)

j+(i−1)n } and I{p ≤W (σ1ε,...,σdε)
j+(i−1)n }, the only way to obtain information about (the sign of) σi is to post in the

costly (Ω(1)-instantaneous regret by Equation (8)) sub-optimal region [ 1
7
, 2
7
]. However, posting prices in the region [ 1

7
, 2
7
]

at time j + (i − 1)n can’t give more information about σi than the information carried by V (σ1ε,...,σdε)
j+(i−1)n and W (σ1ε,...,σdε)

j+(i−1)n ,
which, in turn, can’t give more information about σi than the information carried by the two Bernoullis B 1+σiε

2 ,2(j+(i−1)n)−1
and B 1+σiε

2 ,2(j+(i−1)n). Since only during rounds 1 + (i − 1)n, . . . , in is possible to extract information about the sign of σi
and, (via an information-theoretic argument) in order to distinguish the sign of σi having access to i.i.d. Bernoulli random
variables of parameter 1+σiε

2
requires Ω(1/ε2) = Ω(

√
LT /d) samples, we are forced to post at least Ω(

√
LT /d) prices

in the costly region [ 1
7
, 2
7
] during the rounds 1 + (i − 1)n, . . . , in suffering a regret of Ω(

√
LT /d) ⋅Ω(1) = Ω(

√
LT /d).

Putting everything together, no matter what the strategy, each algorithm will pay at least Ω(
√
LT /d) regret in each epoch

1 + (i − 1)n, . . . , in for every i ∈ [d], resulting in an overall regret of Ω(
√
LT /d) ⋅ d = Ω(

√
dLT ).
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