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ABSTRACT

Solving mathematics problems has been an intriguing capability of language mod-
els, and many efforts have been made to improve reasoning by extending reason-
ing length, such as through self-correction and extensive long chain-of-thoughts.
While promising in problem-solving, advanced long reasoning chain models ex-
hibit an undesired uni-modal behavior, where trivial questions require unneces-
sarily tedious long chains of thought. In this work, we propose a way to allow
models to be aware of inference budgets by formulating it as utility maximiza-
tion with respect to an inference budget constraint, hence naming our algorithm
Inference Budget-Constrained Policy Optimization (IBPO). In a nutshell, models
fine-tuned through IBPO learn to “understand” the difficulty of queries and allo-
cate inference budgets to harder ones. With different inference budgets, our best
models are able to have a 4.14% and 5.74% absolute improvement (8.08% and
11.2% relative) on MATH500 using 2.16x and 4.32x inference budgets respec-
tively, relative to LLaMA3.1 8B Instruct. These improvements are approximately
2x those of self-consistency under the same budgets.

1 INTRODUCTION

Complex reasoning has been an intriguing ability of large language models (LLMs), with applica-
tion in for example mathematical problem-solving (Cobbe et al., 2021; Hendrycks et al., 2021b;
Lightman et al., 2023) or coding (Chen et al., 2021; Austin et al., 2021; Hendrycks et al., 2021a),
which does not only require nature language comprehending but also logical and critical “thinking”.
An observation merged in the LLM reasoning literature is that longer reasoning traces often leads to
improved reasoning soundness and correctness. The seminal work of chain-of-thought (CoT) (Wei
et al., 2022) is an excellent example of how enriching reasoning details, by decomposing reason-
ing traces into steps, improves its problem-solving capability. CoT has been considered a standard
technique in reasoning, recent works extend CoT by allow LLMs to expand its reasoning steps,
by for example CoT with more steps (Jin et al., 2024) (as explicitly required by instruction), self-
reflection/correction (Madaan et al., 2024; Zelikman et al., 2022; Yan et al., 2024; Qu et al., 2024),
multi-turn reasoning (Kumar et al., 2024) or multi-agent debate (Liang et al., 2023; Pham et al.,
2023) (as a heterogeneous case of multi-turn). It was conjectured that scaling the test-time compute
or the reasoning length unleashes LLMs’ potential for reasoning (Snell et al., 2024), which has been
empirically verified by recent hype of ultra-long reasoning models, such as OpenAI-o1 (Jaech et al.,
2024) and DeepSeek-R1 (DeepSeek-AI et al., 2025). We’ll later categorizes these type of responses
as (standard) CoT responses, extended responses, and (ultra-)long responses, respectively.

While scaling reasoning length is promising, advanced long reasoning-chain models show an un-
desired uni-modal behavior that trivial questions may require unnecessarily tedious long reasoning
trace, an example is shown in Appendix A. This uni-modal behavior creates unnecessarily higher in-
ference costs and increased carbon footprints (Henderson et al., 2020; Anthony et al., 2020). To par-
tially address this, we study how to enable multi-modal behavior for reasoning models in a way the
length of reasoning traces are automatically adjusted according to the hardness level of the queries.

∗Work done at Meta.
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From the aspect of query-adaptive reasoning length, some heuristic methods (e.g. Aggarwal et al.,
2023; Xu et al., 2024a; Wang et al., 2024) have been making effort towards better token efficiency,
by which is meant better accuracy with (hopefully) less token overhead. We take a reinforcement
learning (RL) perspective, where the accuracy gain over the token overhead is nothing but a non-
differentiable objective to be optimized. One could, for instance, take the negative response length
or a metric of this sort as an intrinsic reward (Chentanez et al., 2004; Pathak et al., 2017). However,
balancing the intrinsic and extrinsic (accuracy) rewards can be challenging (Liu et al., 2021), and be
vulnerable to reward hacking (Pan et al., 2022; Skalse et al., 2022; Karwowski et al., 2023).

Instead explicit modeling the length of responses, we take a more abstract formulation, where
we consider labeling each response y with an unique group label Gi : i ∈ JGK for total num-
ber of G groups, so that the union of these disjoint groups exactly form the response space
∪iGi = Y . For example G could be the group of CoT responses (with standard length) or ex-
tended responses. We could then impose an density constraint on each or a set of groups, by caping
Ex∼µEy∼π(x)[1{y∈Gi}] ≤ qi for some prompt distribution µ and some response distribution π(x),
induced from LLMs, conditioned on a prompt x. This naturally formulates a constrained RL (Garcıa
& Fernández, 2015; Altman, 2021) problem. Also this group definition is motivated by the resource-
allocation literature (Chenery & Kretschmer, 1956; Ibaraki & Katoh, 1988; Karlin, 2003), from the
optimization and econometric communities, which have been later applied in many machine learn-
ing applications (e.g. Zemel et al., 2013; Badanidiyuru et al., 2018). This generalization allows
potential broader application of our algorithm as discussed in Section 6. We’ve now set our goal:

A constrained RL framework controlling how response groups {Gi} are distributed.

Therefore, one could control how responses of different lengths (which are supposed to belong
to different groups) are distributed. Our rationale of algorithm design is given in Section 2, de-
rived from an optimization perspective but ended as a very simple generalization of iterative super-
vised fine-tuning (SFT) methods such as reward-ranking fine-tuning (RAFT) (Dong et al., 2023)
and rejection sampling fine-tuning (RFT) (Ouyang et al., 2022; Touvron et al., 2023), see details
in Section 3. Given the motivation of our algorithm, we call the resulted algorithm as Inference
Budget-Constrained Policy Optimization (IBPO).

Paper structure. Section 2 present the derivation of our algorithm from an optimization view,
resulting in a simple weighted iterative SFT update. Section 3 provides further details on practical
implementation, including the base algorithm and the reward design. Section 4 introduces some
experimental settings. The empirical results of our IBPO are presented in Section 5. And Section 6
concludes our work with limitations, broader impact, and further discussions.

2 ALGORITHM DESIGN

Problem setup. To make the notation compact, we take the bandit notation (or the sequence-level
notation), commonly used in LLMs (Ziegler et al., 2019; Rafailov et al., 2024), especially in pref-
erence modeling, that suppresses the transition probabilities and the token-level rewards, and see a
response as a whole. In particular, a policy π : X → ∆(Y) takes a prompt x ∈ X and draw a
response a1 ◦ a2 · · · ◦ aT =: y ∈ Y from the produced probability simplex ∆(Y), where ◦ denotes
concatenation, ai ∈ V corresponds to the i-th token drawn from the vocabulary V , and T is the max-
imum length. A LLM is a parametric policy πθ ∈ Πθ ⊆ Π, where Πθ and Π are the parametric and
non-parametric policy space respectively. Let J (π;µ, r) or sometimes J (π) be a general objective,
defined by a bounded reward function r : X × Y → [−Rmax, Rmax], and a prompt distribution
µ ∈ ∆(X ). Also, we define µΩ as an empirical distribution induced from Ω, a set of prompts.

As aforementioned, we define G disjoint groups Gi such that ∪iGi = Y and Gi ∩ Gj = ∅ for
all i ̸= j. Each response y ∈ Y is attached to exactly one group, in the sense that y ∈ Gi for
some i. In the context of LLM reasoning, without loss of generality, we consider two groups for
brevity: G◦ and G+, corresponding to regular-length CoT responses and extended responses (with
low and high inference costs), respectively. To conclude the formulation of constrained RL with
resource allocation constraints, we could in general define the feasible set as a convex polytope,
ΦG := {π : ExEy∼π(x)[1{y∈Gi}] ≤ qi for all i}, that caps the total density mass of each group
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Gi by qi. In our setting, we only need to cap the total mass of extended responses to optimize the
inference efficiency, posing a half-space Φ+ := {π : ExEy∼π(x)[1{y∈G+}] ≤ q+} for some q+ > 0.

Background. With the bandit setup, our setting draw a lot connections to the online learning lit-
erature, especially online/bandit convex optimization (Hazan et al., 2016; Slivkins et al., 2019),
although we optimize a fixed function the training data is however collected in an online fash-
ion. In the sense of distributing resources across groups, it is connected to for example knapsack
bandits (Badanidiyuru et al., 2018) and statistical parity (Zemel et al., 2013), aka group fairness.
Although the definition of groups and optimization programs could be different. This allocation
optimization point of view allows us to further extend our method to broader LLM applications. To
the end of policy optimization with constraints, common techniques include projection (Zinkevich,
2003; Flaxman et al., 2004; Bubeck et al., 2015; Yang et al., 2020), Lyapunov-based (Chow et al.,
2018; Cayci et al., 2022), or Lagrangian methods (Ray et al., 2019).

Non-parametric space Π. In our case, our goal is to solve:

maxπθ∈Πθ
J (πθ) s.t. πθ ∈ Φ+ (1)

where Πθ is the parameterized policy space. Solving (1) is however intractable due to the LLM
parameterized policy space Πθ. A common practice is alternating gradients between reward max-
imization and constraint satisfaction. For example in Lagrangian methods such as TRPO/PPO-
Lagrangian (Ray et al., 2019), one could do alternating update πθ and the Lagrangian multiplier. An-
other workaround is to first obtain a solution π⋆ in the non-parametric policy space Π := ∆(X ×Y),
aka tabular representations, and project π⋆ onto the parameteric one Πθ, as a technique used in many
(constrained) RL works (Peters et al., 2010; Montgomery & Levine, 2016; Zhang et al., 2020).

The advantage of working in the non-parametric space Π is: solving maxπ∈Π J (π) s.t. π ∈ Φ+ is
easy, on the conditions that (i) J (π) is concave in π so that it is a convex program, and (ii) sampling
and evaluating the reward function r(·, ·) and the cost indicator 1{·} are cheap. The condition (i) is
sometimes true, for instances: bandit objective (Slivkins et al., 2019); the LP formulation (Manne,
1960; Denardo, 1970; Nachum & Dai, 2020; Nachum et al., 2019), and (relative) entropy regularized
RL (Ziebart, 2010; Haarnoja et al., 2017; 2018) objectives are concave in occupancy measure ρ.
However, in rare case condition (ii) holds, RL works (Haarnoja et al., 2018; Peng et al., 2019; Zhang
et al., 2020) often resort to value function approximation, making it is easy, for discrete action
space, to evaluate Q-values (or alternatively advantages) for all actions for a specific state. It is then
tractable to obtain closed-form solution (optimal w.r.t. the value/advantage approximations) in Π.
Once an optimal policy π⋆ is found, one could then project it onto Πθ through (reverse) information
projection θ = argminθ KL(π⋆∥πθ) (often done approximately by taking gradient steps).

Stochastic optimization. With a LLM, it is obviously intractable to sample and evaluate the reward
function r(x, y) for all (x, y) ∈ X ×Y , similarly for the cost indicator 1{·}. To avoid the training of
additional value models for LLMs (Snell et al., 2022; Yu et al., 2023), which can create significant
overhead in terms of memory usage, implementation complexity, and training stability, we consider
a stochastic optimization. The stochastic counterpart as described in (2) solves an approximate π̂⋆

using a manageable number of samples rather than directly solving the optimum π⋆, still, in Π:

π̂⋆(X,Y) ∈ argmaxπ∈Π Ĵ (π;X,Y) := 1
nm

∑n
i

∑m
j [π(yij |xi)r(xi, yij)]

s.t. π ∈ Φ̂+(X,Y) :={π :
∑

i

∑
j [π(yij |xi)

(
1{yij∈G+} − q+

)
] ≤ 0}

(2)

where X ∈ Xn is a vector of n sampled prompts and Y ∈ Yn×m is a matrix of responses, with m

responses for each of the n prompts; we explicitly write Ĵ with the conventional expected reward
maximization for notational convenience, though alternative objectives are not restricted.

Since the empirical problem (2) is a convex program with small size, it is now manageable. Combing
with the projection step, we could write the program as a bi-level stochastic optimization:

πθ=argminπθ∈Πθ
Ex

[
KL(π̂⋆

X,Yθ
∥πθ)[x]

]
s.t. π̂⋆

X,Yθ
∈argmaxπ∈Π∩Φ̂+(X,Yθ)

Ĵ (π;X,Yθ) (3)

where Yθ∼πθ(X), hence π̂⋆ is indirectly a function of θ.

Practical update. For general bi-level optimization problems, iteratively solving the upper and
lower-level problems by alternatively fixing one while optimizing the other could be expen-
sive (Zhang et al., 2024). We’ve however already setup a manageable inner problem, making it
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Table 1: SFT methods from our optimization view. (w)-XE denotes (weighted) cross-entropy loss.
RM stands for reward model. Binary reward indicates correctness. π̂⋆ are (unnormalized) weights.

ALGO loss L reward r feasible set Φ weight/acceptance π̂⋆

(Iterative) SFT XE constant Π constant
RFT weighted XE binary Π 1{r(x,y)=1}
RAFT (Best-of-N ) weighted XE RM Π 1{r(xi,y)=maxj r(xi,yij)}

Ours weighted XE Section 3 (2) (2)

easy to solve for example using convex solvers. One could therefore do iterative gradient updates
on the upper level while directly solving the lower-level at each iteration:

θ′=θ − α∇θEx∼µX

[
KL(π̂⋆

X,Yθ
∥πθ)[x]

]
s.t. π̂⋆

X,Yθ
∈argmaxπ∈Π∩Φ̂+(X,Yθ)

Ĵ (π;X,Yθ) (4)

where θ and θ′ are the parameters of current and next iteration, respectively; and the projection step
is also done with samples (X,Yθ) of the current iteration.

Note that π̂⋆ is indirectly a function of θ through the samples (X,Yθ). The gradient
∇θKL(π̂⋆

X,Yθ
∥πθ) hence requires differentiation through π̂⋆

X,Yθ
, meaning differentiate through an

argmax operator, which can in principle be achieved through implicit differentiation (Amos &
Kolter, 2017; Lorraine et al., 2020). However, to avoid additional implementation and computation
overhead, instead we use the semi-gradient ∇θKL(SG{π̂⋆

X,Yθ
}∥πθ), where SG{·} is a stop gradient

operator. This stop-gradient trick is quite common in many ML applications (Sutton, 2018; Foerster
et al., 2018; Chen & He, 2021), leading to the update:

θ′ = θ − α∇θEx∼µX

[
KL(SG{π̂⋆

X,Yθ
}∥πθ)[x]

]︸ ︷︷ ︸
approximate projection / weighted SFT

s.t. π̂⋆
X,Yθ

∈argmaxπ∈Π∩Φ̂+(X,Yθ)
Ĵ (π;X,Yθ)︸ ︷︷ ︸

optimization for weight
(5)

The semi-gradient ∇θKL(SG{π̂⋆}∥πθ)[xi]=−
∑

j π̂
⋆(yij |xi)

∂
∂θ logπθ(yij |xi) is a weighted SFT up-

date (via π̂⋆). This observation creates a simple update with negligible implementation overhead.

Discussion. The update rule ended up aligning many iterative weighted SFT algorithms, such as
RAFT (Dong et al., 2023) and RFT (Ouyang et al., 2022; Touvron et al., 2023). In hindsight, our
algorithm is motivated by the observation that these extremely successful algorithms can be inter-
preted as projecting empirical solutions onto a parametric space. Consequently, it is reasonable to
use the empirical estimate in (2), as RAFT and RFT have demonstrated strong practical performance
despite the inherent bias introduced by the non-linearity of these estimations. Since it is essentially
generalizes SFT by re-weighting a sample pair (xi, yij) by π̂⋆(yij |xi), at each iteration based on the
solution of an optimization problem π̂⋆, we create a Table 1 to outline the corresponding interpreta-
tion for some iterative SFT methods, from this optimization point-of-view.

The “inner” optimization for RFT/RAFT is trivial, as it assigns π̂⋆(y|x)=1 to accepted responses or
to the response with the highest reward model score, respectively. Formulating these methods as op-
timization doesn’t offer much benefits. However, this perspective provides flexibility for future work
to extend our framework, allowing for feasible sets and weighting tailored to specific applications.

3 PRACTICAL IMPLEMENTATION

Yet, as we are working in an algorithm-agnostic fashion, we are now ready to select a specific RL
algorithm, define its corresponding objective J , and specify a reward function r.

Reward function. Since we are working on mathematical problem-solving, a ground-truth reward
could be obtained through string matching (Cobbe et al., 2021; Hendrycks et al., 2021b) of the
model’s solution against the ground truth solution, yielding a binary reward function rmatch : X ×
Y → {0, 1} that indicates correctness. On top of the binary reward, we define our reward r∆ as the
reward margin. To formally construct the margin, we first define the expected reward of a set G such
that r̄π(x,G) := Ey∼π[rmatch(x, y) | y ∈ G]. We then define the reward margin r∆ as the reward
advantage of a group G against all other groups Y \ G:

r∆(x, y ∈ G) := r̄π(x,G)− r̄π(x,Y \ G) (6)
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Table 2: An example of OPTIuB compared to OPTcgpo-(7)- with tie broken randomly, resulting in poten-
tially non-unique π̂⋆. This table shows several such π̂⋆ solutions but not all. KL is omitted for brevity.
Given the rewards below we have r̄(x1,G◦)= r̄(x1,G+)= r̄(x2,G+)=1 and r̄(x2,G◦)=0.5. Suppose the
cap q+=0.5, allowing at most 50% of accepted responses are extended y∈G+. For a solution matrix π̂⋆,
1 and 0 represent accepted and rejected response, respectively.

prompt responses r(x, y) r∆(x, y) π̂⋆
1 = OPTcgpo

† π̂⋆
2 = OPTcgpo

‡ π̂⋆ = OPTIuB
♯

x1 (easy) y11, y12 ∈ G◦
(
1 1
1 1

)
0

(
0 0
1 0

) (
0 0
0 1

) (
1 0
0 0

)
y13, y14 ∈ G+ 0

x2 (hard) y21, y22 ∈ G◦
(
1 0
1 1

)
-0.5

(
1 0
0 0

) (
0 0
1 0

) (
0 0
1 0

)
y23, y24 ∈ G+ 0.5

† CGPO case 1: for x2 (hard), y21 ∈ G◦ is accepted even though G+ has higher expected reward r̄(x2,G+);
‡ CGPO case 2: y14 and y23 are both accepted, which exceeds the density budget q+ = 0.5;
♯ Ours: accepts y11 and y23 to maximize margin, r∆(x2, y23)=0.5, while adhering to the density cap q+ = 0.5.

We have r∆(x, y∈G+)= r̄π(x,G+)−r̄π(x,G◦), in our case, and similarly for G◦. r∆ may appear odd
for not counting the correctness of individual y. This is handled subsequently.

RL objective. For the learning algorithm, our choice is Constraint Generative Policy Optimiza-
tion (CGPO) (Xu et al., 2024b), which is designed for multi-objective constrained optimization
of LLMs. The choice is driven by implementation considerations: CGPO’s modular constraint-
handling design makes it straightforward to incorporate additional constraints, such as the group
density constraint in our case. CGPO in a nutshell can be viewed as a generalized Best-of-N (BoN),
though depending on the specific CGPO settings. It operates by defining a feasible set Ξ over the
sample space X × Y , which are designed to capture constraint adherence for, e.g. correctness, fac-
tuality, and safety (Xu et al., 2024b). In short, (x, y) /∈ Ξ will be rejected. In the context of math
reasoning, the objective of CGPO can be summarized as:

max
π

ExEy∼π[r(x, y)] s.t.
∑

y[π(y|x)1{y∈Ξx}] ≥ 1 for all x

where Ξx:={y :rmatch(x, y)=1︸ ︷︷ ︸
correctness

}∩{y :K̂L(y;x, πref)≤KLmax︸ ︷︷ ︸
empirical KL

} (7)

This objective essentially optimizes reward over the feasible sets Ξx such that feasible response y is
correct and within an KL range of KLmax, where the KL constraint is measured using point estimate
of the (forward) KL defined as K̂L(y;x, πref) := log π(y|x)− log πref(y|x).

Resulted update. Recap our update is defined as θ′ = θ − α∇θEx∼µX

[
KL(SG{π̂⋆

X,Yθ
}∥πθ)[x]

]
subject to π̂⋆

X,Yθ
∈ argmaxπ∈Π∩Φ̂+(X,Yθ)

Ĵ (π;X,Yθ). And we have now defined the RL objec-
tive J and the margin reward function r∆. We are now ready to put everything together:

π̂⋆
X,Yθ

∈ argmaxπ Ĵ∆(π;X,Yθ) :=
1

nm

∑n
i

∑m
j [π(yij |xi)r∆(xi, yij)]

s.t. π ∈ Π ∩ Φ̂+(X,Yθ) and
∑

y∈Yθ
[π(y|x)1{y∈Ξx}]≥1 for all x∈X︸ ︷︷ ︸

shorthanded as OPTIuB (inference under budget)

(8)

In addition, as CGPO is a generalization of BoN (with tie breaking randomly), π̂⋆ will be a pure
strategy, meaning at most one y will be accepted for each x, for subsequent projection (SFT).

Intuition. Behind this update our intuition can be verbally interpreted as: If a prompt x is hard,
the margin of extended responses r∆(x, y ∈ G+) = r̄π(x,G+) − r̄π(x,G◦) is likely to be large for
y ∈ G+. Therefore π̂⋆ will more likely to assign positive weight to an extended response y ∈ G+ so
that the objective receive larger margin reward. In contrast, if a query x is simple, r∆(x, y ∈ G+)
is likely to be small. Hence π̂⋆ will possibly assign positive weight to regular responses y ∈ G◦, so
that one could save some density budget for harder queries. See a concrete example in Table 2.

Reward models. Note that the original CGPO has reward models for BoN ranking. We intentionally
excludes reward models, in our OPTIuB formulation as shown in (8), to highlight our methodological
contributions, by decoupling reward modeling efforts. Nonetheless, using reward models remains
possible. To avoid introducing additional notation, we elaborate verbally: OPTIuB essentially selects
either group G+ or G◦ for a query x. Within a group G, all responses receive the same r∆(x,G),
leaving it possible to further rank responses within each group using reward models.
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Algorithm 1 Inference Budget-Constrained Policy Optimization (IBPO)

Require: prompts D, batch size n, num of responses m, init policy π0=πref , max iters T , cap q+
1: for t = 1, . . . , T do
2: prompt sampling & response generation: Xn ∼ µD, Yn×m

θ ∼ πθt(X)

3: evaluate correctness & empirical KL: Rn×m
c = rmatch(X,Y), K̂L

n×m
= K̂L(Y;X, πref)

4: if CGPO (i.e. w/o IuB) then
5: solve BoN ((7)): π̂⋆

X,Yθ
∈OPTcgpo(X,Yθ,Rc,K̂L)

6: end if
7: if IBPO (i.e. w/ IuB) then
8: solve margin maximization ((8)): π̂⋆

X,Yθ
∈OPTIUB(X,Yθ,Rc,K̂L,q+)

9: end if
10: grad step: −

∑
i

∑
j π̂

⋆
X,Yθ

(yij |xi)
∂
∂θ log πθ(yij |xi)

∣∣
θ=θt

11: end for

Implementation & solvers. A pseudo-code of our IBPO with OPTIuB is listed in Algorithm 1. The
key change is replacing the constrained reward ranking OPTCGPO with a general optimization prob-
lem, in our case the margin maximization under budget denoted as OPTIuB. The OPTIuB problem is a
(integer) linear program that could be solved by off-the-shelf solvers, such as CPLEX (Cplex, 2009),
Gurobi (Gurobi Optimization, LLC, 2024), or SciPy (Virtanen et al., 2020) which is our choice.

4 NAÏVE CONSTRUCTION OF G+

Yet we work on abstract G◦ and G+. This section gives the details of our constructions of extended
length responses, i.e. the group G+. Developing long reasoning models is beyond the scope of this
work, as our focus is on the constrained optimization of LLMs. Our constructions are for demon-
strative purpose only. Due to the intricate details and the space limit, we defer the full version of this
section to Appendix B, including details of prompting, dataset construction, training pipelines, etc.

Figure 1 provides examples of our constructions. In a nutshell, we use the step CoT (SCoT) format
from Dubey et al. (2024) as G◦, and construct a sequential voting (SV) response as G+. SV serves as
a unimodal baseline to demonstrate the performance of our construction. Adaptive SV (ASV) gen-
erates a mixture of SCoT and SV responses, allowing us to optimize its ability to adaptively choose
between the two. For further details about the constructions, refer to Figure 1 and Appendix B.

Notations., we use LLaMA to refer to instruction-tuned LLaMA 3.1 8B (Dubey et al., 2024). ASV-
SFT-α denotes ASV models that are supervise fine-tuned with a coefficient α (see Appendix B).
ASV-IuB-q+ refers to ASV models optimized by our Algorithm 1 with a budget constraint q+.

5 EVALUATION OF IBPO W/ OPTIuB

This section shows: (i) SV is a valid construction with reasonable improvement (Table 3) and scales
as good as majority vote (MV, aka self-consistency (Wang et al., 2022)) (Figure 2a & 2b); (ii) ASV-
SFT does not achieve good efficiency (Figure 2a & 2b) as SFT does not optimize it as an optimization
objective; (iii) ASV-IuB optimized by IBPO achieves better efficiency (Figure 2a & 2b), adherence
to constraints (Figure 2c), and allocation of inference to harder quires (Figure 2e & 2f).

5.1 ABSOLUTE IMPROVEMENT (TABLE 3)

“Baselines”. To put SV/ASV in comparison with other baselines in literature, we gather several
baselines from the self-correction literature as essentially these methods increase inference length,
though not extensively as Jaech et al. (2024). The results in Table 3 are mainly gathered from Qu
et al. (2024); Kumar et al. (2024). The self-correction baselines often admit a multi-turn structure,
similarly to the multi-trial construction of SV. We therefore include a column of inference cost
measured by number of turns/trials for a rough comparison. The SFT comparators we include are
(reproduced) Self-Refine (Madaan et al., 2024), STaR (Zelikman et al., 2022), S3C (Yan et al.,
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SV Prompt (Simplified)

You are asked to give at most eight diverse
solutions in different way, without referenc-
ing to the previous trials.
If a solution occurs three times, it is consid-
ered as a consensus and will be used as the
final answer.

ASV Prompt (Simplified)

For medium and hard level problems, you
are asked to give at most eight diverse so-
lutions in different way, without referencing
to the previous trials.
For easy level problems, you are allowed
only one attempt, which will be considered
your final answer.

Voting Response G+ (SV, ASV Case 1)

[TRIAL] ## Step 1: ... steps omitted
The final answer is: A1 . [/TRIAL]

[TRIAL] ## Step 1: ... steps omitted
The final answer is: A2 . [/TRIAL]

[TRIAL] ## Step 1: ... steps omitted
The final answer is: A1 . [/TRIAL]

[TRIAL] ## Step 1: ... steps omitted
The final answer is: A1 . [/TRIAL]

The answer A1 has occurred three times,
and is considered as a consensus.
The final answer is A1 . I hope it is correct.

Non-Voting G◦ (ASV Case 2)

[TRIAL] ## Step 1: ... steps omitted
The final answer is: A1 . [/TRIAL]
Terminated due to difficulty level.

Table 3: Comparison of approaches on their im-
provements versus base models. †, ‡, †† indicate
results duplicated from Qu et al. (2024); Yan et al.
(2024); Kumar et al. (2024), respectively. ∗ indi-
cates our methods/constructions and the improve-
ments are relative to LLaMA model.

approach pass@1 improv. turns/trials
per response

SFT/Prompting-based

SV-SFT∗

LLaMA 56.8 5.54 5.67x
ASV-SFT-1∗

LLaMA 55.6 4.43 5.74x

SFT-RISE†

setting 1 (table 1 of †) 5.5 -0.3 5x
setting 2 (table 1 of †) 5.0 0.0 5x

SFT-SCoRe††
setting 1 (table 1 of ††) 54.2 1.8 2x
setting 2 (table 1 of ††) 55.0 0.0 2x

RISE†

LLaMA2 Base 1.4 -0.5 5x
+ boosting 5.5 0.0 5x

S3C‡

not studied
LLaMA3-8B 33.14 2.56
Mistral-7B 25.48 1.44
DeepSeek-Math-Base-7B 41.40 3.18
Qwen2-Math-7B 51.76 0.44

Self-Refine†
Base 1.9 0.0 3x
GPT-3.5 36.5 -3.2 3x
Mistral-7B 7.1 -0.4 3x
Eurus-7B-SFT 9.0 -3.3 3x

STaR††

setting 1 (table 1 of ††) 54.0 0.4 2x
setting 2 (table 1 of ††) 41.2 -14.2 2x

Online Iterative/RL

ASV-IuB-q+∗

q+ = 25% 54.2 2.94 2.24x
q+ = 50% 55.4 4.14 2.16x
q+ = 75% 57.0 5.74 4.32x

RISE†

+ Iteration 1 9.7 3.4 5x
+ Iteration 2 10.4 4.6 5x

SCoRe††
Gemini 1.5 Flash 64.4 4.4 2x
+ more turns (fig. 8††) ≈66 ≈6 5x-10x

Figure 1: Example of prompts and responses. For G◦, we use standard step CoT (SCoT). To con-
struct G+, the model is prompted to sequentially generate up to 8 trials encapsulated within the
special tokens [TRIAL] and [/TRIAL], followed by a consensus answer. The SV prompt instructs
the model to output only voting responses, allowing us to later evaluate its performance and show
that it is a reasonable construction. The ASV prompt asks the model to decide whether to output a
voting or non-voting response, facilitating our further optimization of budget allocation in Section 5.

2024), SFT-RI and SFT-SCoRe, where SFT-RI and SFT-SCoRe are SFT comparators implemented
in Recursive Introspection (RI) (Qu et al., 2024) and SCoRe (Kumar et al., 2024) respectively.

ASV experiments. SV-SFT follows our training setup of Exp 1.2 in Table 7 (Appendix B). ASV-
SFT-α follows our Exp 2.1 setup and is an adaptive baseline, meaning model decide whether to vote
or not for a query. We report ASV-SFT-1 only as it is empirically the best ASV-SFT-α baseline,
though still fall short in terms of efficiency. The ASV-IuB-q+ experiments, initialized from ASV-
SFT-1, are our RL-tuned adaptive models, optimized by IBPO with OPTIuB as inner optimization.

7



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

(a) performance of last checkpoints

(b) best ones (steps in parentheses)

(c) vote ratio of correct responses
(train set)

(d) vote response ratio (test set)

(e) vote % by difficulty (q+=50%)

(f) vote % by difficulty (q+=25%)

Figure 2: Col 1: Comparison of pass@1 (maj@N for MV) against the average trials per response
(x-axis). OSS refers to LLaMA. The interpolation between OSS and SV-SFT (aligning with MV)
is a hypothetical efficiency boundary. ASV-SFT shows lower efficiency relative to this boundary,
whereas ASV-IuB consistently achieves better efficiency (above the boundary). Col 2: Voting re-
sponse ratio versus training steps. Dashed line denotes the budget q+. On the training set, ASV-IuB
follows the budget constraints exactly. Due to distribution shift, the constraint on testing set is not
entirely exact, but still it is noticeable that the voting ratio follows the order of 75%≻ 50%≻ 25%.
Col 3: ASV-IuB enables the model to dynamically allocate voting budget to harder problems.

Observations. We would like to emphasize that the comparison in Table 3 is not intended to demon-
strate that SV outperforms SFT-based self-correction or that our ASV-IuB surpasses RL-based self-
corrections. These efforts are orthogonal, as our focus is on constrained optimization. As observed,
our SFT constructions—SV-SFT and ASV-SFT-1 achieve a clear improvement in pass@1 with high
inference costs (5+ times the number of trials). The ASV-IuB-q+ formulation, particularly with
q+ = {50%, 75%}, shows significant improvement while reducing costs by 4.14% at 2.16× and
5.74% at 4.32×. This performance is on par with SCoRe, a state-of-the-art RL-based self-correction
method. Note that the performance of ASV-IuB-q+ is reported using the best checkpoints. Results
from the last checkpoint are shown in Figure 2a. In addition, training curves are presented in Ap-
pendix F, which shows consistent improvements. As a somewhat tangential yet potentially intriguing
observation, it is evident that prompting-based and SFT-based methods struggle with both absolute
improvement (Table 3) and efficiency (Figure 2), supporting the conjecture that SFT alone does not
enable self-correction (Huang et al., 2023; Kumar et al., 2024). This observation is also partially
supported by concurrent work (DeepSeek-AI et al., 2025), which suggests that such self-correction
emerges automatically during RL rather than manually created by prompting or SFT.

5.2 EFFICIENCY, BUDGET ADHERENCE & ALLOCATION

Table 3 shows that our ASV-IuB-q+ models achieve results comparable to RL-based self-correction
models, simply by inference budget management. In this subsection, we extend our discussion on:
(i) performance-budget efficiency, (ii) constraint satisfaction, and (iii) inference budget allocation.

Performance-budget efficiency. In Figure 2a and 2b, we visually assess the performance-budget
efficiency, compared to a hypothetical efficiency boundary. This boundary is an interpolation be-
tween OSS LLaMA model and SV-SFT. It is reasonable to consider it as a hypothetical boundary
for two reasons: (i) OSS and SV-SFT are two extremes of ASV-IuB-q+, corresponding to the cases
of q+ = 0 and q+ = 1 respectively; and (ii) this interpolation achieves an increase comparable to
MV, if not slightly better. The SFT version of ASV is generally much worse than the boundary,
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as SFT alone does not optimize resource allocation as a mathematical objective. For ASV-IuB-q+
optimized by IBPO, we report both the last and best checkpoint results in Figure 2a and Figure 2b,
respectively. Our formulation achieves, in general, better performance-budget efficiency, except
q+ = 75% in Figure 2a. We will extend our discussion on this unsuccessful case soon.

Constraint satisfaction. We then evaluate how effectively the constraints are enforced. In Figure 2c,
the budget constraints are successfully maintained during training for q+ = {25%, 50%, 75%}.
Due to distribution shifts, exact adherence to these constraints is not expected on the test set.
Nevertheless, Figure 2d demonstrates that constraints are still upheld at the end of training for
q+ = {25%, 50%}, and the ratio of voting responses follows the order 75% ≻ 50% ≻ 25%.
(Figure 2c illustrates that our model meets the budget constraints for the set of correct responses.
The constraints also hold for all responses, see Appendix F.)

Difficulty-adaptive allocation. We have show improved efficiency and adherence to constraints, we
would like to further validate the intuition of our design: that more challenging problems may require
longer reasoning steps, whereas simpler problems can be resolved with just SCoT responses. Ideally,
the model should allocate more voting responses to problems with higher difficulty levels. To this
end, we use the difficulty levels from the metadata of Hendrycks MATH and plot the ratio of voting
responses for each difficulty level. Figure 2f and 2e illustrates that for both q+ = {25%, 50%},
more challenging problems, such as those at levels 4 and 5, receive a higher allocation of budgets.
This allocation pattern is particularly evident for the case of q+ = 25%, where only 2% of level 1
problems receive voting responses.

Discussion on the unsuccessful case. There is one unsuccessful case in Figure 2a: the last check-
point of ASV-IuB-75%, which falls on the hypothetical boundary rather than above it. This outcome
is arguably expected, as observed in Figure 2d, where ASV-IuB-75% outputs almost exclusively
voting responses at the end of training. As a result, this model is not adaptively allocating resources,
and thus no improvement in efficiency is anticipated. This unsuccessful case is hence caused by the
distribution shift between the training set and the testing set. It is possible that scaling the train-
ing set—given that our training set DRL contains approximately 10k prompts, which is relatively
small—will make the testing set more likely to be in-distribution and thereby alleviate such issue.

6 CONCLUSION & DISCUSSIONS

We derived a constrained policy optimization framework, IBPO, from an optimization perspective,
resulting in a simple weighted SFT update that resembles successful iterative SFT algorithms such
as RFT and RAFT. In each iteration, the optimal weight is obtained by solving an (integer) linear
program. The practical implementation of IBPO is build on top of CGPO, and is evaluated on a math
reasoning task with inference budget constraints. Empirical evaluations show that our framework
enables the model to adhere to constraints and dynamically allocate the inference budget.

Batch optimization & solver time. Since we solve an optimization problem per iteration (i.e. per
mini-batch), limited computational resources can result in smaller sample sizes for the inner opti-
mization problem, leading to larger variance. This issue can be mitigated through “sample accumu-
lation”, accumulating samples across multiple consecutive steps, similar to gradient accumulation
practice in LLMs. A pseudo-code for sample accumulation can be found in Appendix D. In addi-
tion, though integer linear programming is NP-hard (Vazirani, 1997), the number of variables in our
batch-level optimization is typically small, resulting in minimal computational overhead. Refer to
the wall-time plot for the SciPy solver in Appendix D for details.

Broader applications. Our framework has only been evaluated with inference in math, the resource
allocation problem however has far-reaching implications within the ML community. As a result,
our framework can be potentially extended to further applications. For instance, a potential applica-
tion is statistical parity (Zemel et al., 2013), aka group fairness. In this context, one could consider
attributing responses to their respective social groups, and cap the density of responses that cor-
respond to socially privileged groups, to encourage more inclusive and equitable responses across
different demographics. Another potential application is the balanced expert activation in mixture of
experts (Jacobs et al., 1991; Shazeer et al., 2017; Lepikhin et al., 2020) systems, which is sometimes
achieved by adding an auxiliary balancing loss (Wei et al., 2024). Alternatively, this balance can be
possibly achieved by enforcing a minimal activation density for each expert. This may help to pre-
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vent over-reliance on a subset of experts, and thus enhancing the overall robustness and efficiency.
We leave the exploration of broader applications and their implementations as future directions.
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A MOTIVATING EXAMPLE

Figure 3 is an example that advanced reasoning model spent more than enough time on a trivial
problem.

Figure 3: A long reasoning-chain model spent more than enough inference time on a trivial problem.

B FULL VERSION OF SECTION 4: ACRONYMS, NAÏVE CONSTRUCTION OF
G+ & TRAINING PIPELINES

Yet we work on abstract groups G◦ and G+. In this section, we present the details of our con-
structions of extended length responses, i.e. the extended group G+. However developing long
reasoning models is beyond the scope of this work, as our focus is on the constrained optimization
of LLMs. Our constructions are for demonstrative purpose only. Due to the intricate details involved
in prompts, datasets, and training pipelines, this section may appear somewhat dense. To make it
more approachable, we have structured our writing in a way that readers can, if they wish, focus on
the broader ideas without delving deeply into the specifics of constructions. A TL;DR version of
this section is provided below.

TL;DR. We construct two types of illustrative extended responses: Sequential Voting (SV) and
Adaptive Sequential Voting (ASV). Figure 4 visually explains how these constructions are imple-
mented. The goal of the SV is to establish a baseline that generates only responses in G+, thereby
serving as an uni-modal comparator. SV scales roughly as well as vanilla majority voting (MV), aka
self-consistency (Wang et al., 2022). In contrast, ASV outputs a mixture of responses of y ∈ G◦
and y ∈ G+. This allows the model to adaptively decide which type of response to produce based
on the query. The goal of ASV is to further enable IBPO optimization, as IBPO implicitly assumes
the model generates both regular and extended-length responses. In Section 5, we show that ASV
optimized by IBPO, achieves better allocation of the inference budget.

B.1 CONSTRUCTION OF SEQUENTIAL VOTE

Acronyms. For clarity, we explicitly define key terms to hopefully resolve any potential ambiguities.
Response: A response refers to a sequence generated until a terminal token is encountered. For
precision, we sometimes refer to these as voting responses or SCoT responses, as illustrated in
Figure 4, after introducing our sequential voting baselines. Trial: A trial denotes a solution instance,
which is demarcated by the special tokens [TRIAL] . . . [/TRIAL], as shown in the voting response
example in Figure 4. While a voting response contains multiple trials, a SCoT response or a non-
voting response contains exactly one trial, as also depicted in Figure 4.
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SCoT Prompt + Cond.

Solve the following math problem efficiently
and clearly:
- For simple problems (2 steps or fewer):
Provide a concise solution with minimal expla-
nation.
- For complex problems (3 steps or more):
Use this step-by-step format:
## Step 1: [Concise description]
[Brief explanation and calculations]
## Step 2: [Concise description]
[Brief explanation and calculations]
...
Regardless of the approach, always conclude
with:
Therefore, the final answer is:
$\\boxed{answer}$. I hope it is correct.
Where [answer] is just the final number or ex-
pression that solves the problem.
[Condition Description]
Problem: {{ problem }}

SCoT Response

## Step 1: ... steps omitted
The final answer is: A1 . I hope it is correct.

SV Cond.

You are asked to give at most eight diverse so-
lutions in different way, without referencing to
the previous trials.
Each trial should be contained in a separate
[TRIAL] trial solution [/TRIAL] block.
If a solution occurs three times, it is considered
as a consensus and will be used as the final an-
swer.
If there is no consensus, use the solution from
the most plausible trial.

ASV Cond.

For medium and hard level problems, you are
asked to give at most eight diverse solutions in
different way, without referencing to the previ-
ous trials.
Each trial should be contained in a separate
[TRIAL] trial solution [/TRIAL] block.
If a solution occurs three times, it is considered
as a consensus and will be used as the final an-
swer.
If there is no consensus, use the solution from
the most plausible trial.
For easy level problems, you are allowed only
one attempt, which will be considered your fi-
nal answer.

Voting Response (SV, ASV Case 1)

[TRIAL] ## Step 1: ... steps omitted
The final answer is: A1 . [/TRIAL]
[TRIAL] ## Step 1: ... steps omitted
The final answer is: A2 . [/TRIAL]
[TRIAL] ## Step 1: ... steps omitted
The final answer is: A1 . [/TRIAL]
[TRIAL] ## Step 1: ... steps omitted
The final answer is: A1 . [/TRIAL]

The answer A1 has occurred three times, and
is considered as a consensus.
The final answer is A1 . I hope it is correct.

Non-Voting Response (ASV Case 2)

[TRIAL] ## Step 1: ... steps omitted
The final answer is: A1 . [/TRIAL]
Terminated due to difficulty level.

Figure 4: Prompt templates. For G◦, we use the SCoT prompt without including an additional
[condition description] and generate a standard SCoT response. For G+, we simply insert the corre-
sponding condition into the [condition description] placeholder to create a new prompt. In the case
of SV, the SV condition is integrated into the prompt, and the model is asked to perform repeated
trials to reach a consensus. The ASV prompt instructs the model to output either a voting response
(case 1) or a non-voting response (case 2), with the decision made by the model itself.

For the description of training and testing details, we use LLaMA and LLaMA-b to denote the
instruction-tuned and base versions of the LLaMA 3.1 8B models (Dubey et al., 2024), respectively.
MATH refers specifically to the training split of the Hendrycks MATH dataset (Hendrycks et al.,
2021b), while the 500-sample subset of the testing split is referred to as MATH500 (Lightman
et al., 2023). SDPO stands for step-DPO (Lai et al., 2024) dataset, a curated step-annotated dataset
from which we retain only the prompts and positive responses (ground truth solutions), excluding
any step signals (see Appendix G for details). It is important to note that while we leverage their
curated dataset, the original SDPO method is not relevant to this work. The SDPO dataset was
chosen because its ground truth responses follow the SCoT format of LLaMA responses, making it
convenient to run supervised fine-tuning (SFT) mixed with LLaMA samples.
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Table 4: Summary of constructed datasets for differ-
ent experimental purposes. DSV, DESSV and DASV uses
the same set of prompts but different prompt/response
templates. QSDPO and AGOLDEN

SDPO are from Lai et al.
(2024) with details deferred to Appendix G. ASV1
and ASV2 correspond to ASV case 1 and 2 (see Sec-
tion B.1) respectively.

Set Tq Ta F Q A
DSV SV SV G QMATH ASAMPLE

MATHDASV1 ASV ASV1

DASV2 ASV ASV2 - QSDPO AGOLDEN
SDPODSCOT SCoT SCoT -

DRL ASV - - QSDPO ∅

Table 5: Stopping conditions.

stopping conditions

SV (i) max 8 trials; (ii) if an answer occurs 3
times.

ASV voting (case 1): (i) max 8 trials; (ii) if an
answer occurs 3 times; non-voting (case
2): exact 1 trial.

Table 6: Prompt and response sources.

Set Query-Response Source

Training QMATH & ASAMPLE
MATH MATH & LLaMA samples

QSDPO & AGOLDEN
SDPO (Lai et al., 2024)

Testing QMATH500 MATH500

Table 7: Training pipelines. For Sec. B.2, we aim to create a demonstration experiment showing that with the same
model (of roughly same math knowledge) SV can achieve reasonable performance-cost efficiency on par with MV.
Sec. 5 further show we can optimize performance-cost efficiency through our IuB generalization of CGPO, where α
in row 2.1 is a coefficient of DASV2.

Exp. Sec. Type Init. Ckpt. Dataset Purpose

1.1 Sec. B.2 SFT LLaMA-b DSV ∪ DSCOT Allow model follow both SV and SCoT prompt.1.2 Sec. 5 SFT LLaMA

2.1 Sec. 5 SFT LLaMA DASV1 ∪ αDASV2 Follow the ASV instruction to let model decide vote or not.
2.2 RL Exp. 2.1 DRL Optimize the capability of dynamic budget allocation.

(a) (Nested) MV measured with number of responses (b) (Nested) MV measured with number of tokens

Figure 5: SV tested on MATH500. MV stands for vanilla majority voting, aka self-
consistency (Wang et al., 2022), with SCoT responses. Nested MV refers to majority voting with
our (early-stopping) SV responses. It is “nested” as each SV response is already a voting, as shown
in Figure 4. The SV method has “clear” gains when performance is measured with the number of
responses. When measured with the number of tokens, SV aligns the performance-cost efficiency of
vanilla MV. This is another indicator that one should worry about token efficiency when measuring
reasoning performance.

Construction details. To be more specific, the naı̈ve sequential voting baselines, as the “expensive”
group G+, have increased inference costs by simply sequentially output multiple trials and find
the sequential majority vote until stop condition met. In particular, the early-stopping sequential
voting (SV) baseline is created to show that such naı̈ve baseline could achieve performance gain,
on par with vanilla majority voting (MV). The adaptive sequential voting (ASV) allows model to
output both SCoT response y◦ and sequential voting response y+, allowing us to further conduct the
budget controll experiments in Section 5.
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• Early Stopping Sequential Vote (SV): For a single response, model are allowed to output at
most 8 trials, and conclude with majority of trials. In addition to the terminal condition of
maximum 8 trials, model will early stop if an answer appears 3 times and this answer will
be considered as the majority answer.

• Adaptive Sequential Vote (ASV): Model is allowed to choose either vote (case 1, i.e. y+)
or not (case 2, i.e. y◦). This baseline is created to further allow model-driven resource
allocation. We later, in Section 5, show that one could optimize the ability of resource
allocation with our IBPO.

Dataset. We define our construction of dataset as a product of a problem set Q, format template of
question Tq and answer Ta, and a response set A, subjected to some filtration F . Formally, a dataset
D is defined as: D := (F ◦Tq ◦Ta)(Q×A), where F removes undesired question-answer pairs, such
as incorrect responses when A are model generated; The templates Tq and Ta collectively transform
each question-answer pair into a specific text format, as shown in Figure 4; Slightly abusing the
notation, the Cartesian product Q×A is used to pair each response with its corresponding question,
defined as: Q× A := {(qi, aij) : ∀i, j}.

Specifically, we summarize the datasets used in subsequent sections in Table 4. For instance, for
SV training, we construct DSV with question set QMATH from Hendrycks et al. (2021b) and LLaMA
generated responses ASAMPLE

MATH using the SV templates defined in Figure 4, subjected to data selection
described in Appendix G.

Training pipelines. We summarize our training pipelines for our toy experiments in Section B.2 and
our IuB experiments in Section 5. For instance, experiment 2.2 (Section 5) in Table 7 is the summary
of our IBPO training, using dataset DRL as constructed in Table 4 and initialized from ASV models
from experiment 2.2. Further details of each training can be found in Appendix G and H.

B.2 PERFORMANCE OF NAIV̈E SEQUENTIAL VOTE

We start by evaluating the performance of SV compared to vanilla MV, following the setup of Exp.
1.1 in Table 7. This toy experiment is designed to demonstrate: (i) SV scales approximately as well
as MV, thereby qualifying it as an example of G+; and (ii) measuring performance based on the
number of responses is inadequate, therefore we later measure performance relative to the number
of tokens/trials in Section 5.

Metrics. The metrics we use are pass@k and majority@k, both of which are widely used in the
literature (Hendrycks et al., 2021b; Wang et al., 2022). We occasionally refer to pass rate as pass@1.
In both metrics, k specifically denotes the number of responses, regardless of the number of trials
per response. Since our voting methods may involve multiple trials, we may use the average number
of trials (as illustrated in Figure 2) on the x-axis for cost-aware comparisons. In addition, we eval-
uate “performance-cost” efficiency by comparing each method’s scaling efficiency to that of MV,
following the comparison in Snell et al. (2024).

As shown in Figure 5a, SV exhibits significant improvements—nearly 10%—in terms of
majority@k when performance is measured by the number of responses. However, this improve-
ment is misleading since each SV response effectively consists of multiple SCoT responses. There-
fore, measuring performance with taking length into consideration provides a more reasonable as-
sessment. As demonstrated in Figure 5b, SV’s scaling performance aligns with that of vanilla MV,
supporting its role as a suitable construction example for G+.
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C SAMPLE RESPONSES

We show a couple of example responses of ASV-IuB-50%, the omitted prompt could be found in
Figure 4.

Voting Example

Prompt omitted ...
Problem: Compute arcsin

(
− 1

2

)
. Express your answer in radians.

[TRIAL] ## Step 1: Recall the definition of arcsine The function arcsinx is the inverse of the sine
function. It returns the angle whose sine is x.
## Step 2: Use the unit circle to find the angle From the unit circle, we know that sin

(
−π

3

)
= − 1

2
.

## Step 3: Determine the value of arcsin
(
− 1

2

)
Since sin

(
−π

3

)
= − 1

2
, we have arcsin

(
− 1

2

)
= −π

3
.

The final answer is: −π

3
. [/TRIAL]

[TRIAL] ## Step 1: Recall the sine function values for common angles. The sine of π
3

is
√
3

2
.

## Step 2: Use the relationship between sine and arcsine. Given sin(θ) = − 1
2

, we are looking for
arcsin

(
− 1

2

)
.

## Step 3: Identify the angle whose sine is − 1
2

. From the unit circle or trigonometric identities, we
know that sin

(
−π

6

)
= − 1

2
.

## Step 4: Express the answer in radians. Therefore, arcsin
(
− 1

2

)
= −π

6
.

Therefore, the final answer is: −π

6
[/TRIAL]

[TRIAL] ## Step 1: Recall the sine function’s relationship with the unit circle. The sine of an angle in
a right triangle is the ratio of the length of the side opposite the angle to the length of the hypotenuse.
For angles in the unit circle (a circle with radius 1), the sine of an angle is the y-coordinate of the point
where the terminal side of the angle intersects the circle.
## Step 2: Identify the angle with a sine of − 1

2
. From the unit circle, we know that sin

(
π
3

)
= 1

2
.

Since sine is negative in the third and fourth quadrants, and we are looking for an angle whose sine is
− 1

2
, the angle must be in either the third or fourth quadrant.

## Step 3: Determine the angle in the correct quadrant. Considering the unit circle, the reference
angle for π

3
is π

3
itself. Since we are looking for an angle with a sine of − 1

2
, and knowing that sine

is negative in the third and fourth quadrants, the angle we are looking for is in the fourth quadrant
because sin

(
5π
3

)
would indeed be negative.

## Step 4: Calculate the angle. The angle whose sine is − 1
2

is 5π
3

.

Therefore, the final answer is:
5π

3
[/TRIAL]

[TRIAL] ## Step 1: Recall the definition of arcsine The function arcsinx is the inverse of the sine
function. It returns the angle whose sine is x.
## Step 2: Use the sine function to find the angle We want to find the angle whose sine is − 1

2
. We can

use the sine function to find this angle.
## Step 3: Recall common angles and their sines From the unit circle or trigonometric identities, we
know that sin

(
π
6

)
= 1

2
. Since sine is an odd function, sin

(
−π

6

)
= − 1

2
.

## Step 4: Determine the angle Therefore, the angle whose sine is − 1
2

is −π
6

.

Therefore, the final answer is: −π

6
[/TRIAL]

[TRIAL] ## Step 1: Recall the sine function’s values for common angles. The sine function has
well-known values for certain angles. Specifically, sin

(
π
6

)
= 1

2
.

## Step 2: Use the symmetry and periodicity of the sine function. Given that sin
(
π
6

)
= 1

2
, and

knowing that sine is an odd function, we have sin
(
−π

6

)
= − 1

2
. This step utilizes the property of odd

functions where f(−x) = −f(x).
## Step 3: Solve for arcsin

(
− 1

2

)
. Given that sin

(
−π

6

)
= − 1

2
, the angle whose sine is − 1

2
is −π

6
.

This is because the inverse sine function, arcsin, returns the angle whose sine is a given value.

Therefore, the final answer is: −π

6
[/TRIAL]

The answer −π

6
has occured three times and is considered as a consensus. The final answer is −π

6
.

I hope it is correct.
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Non-voting Example

Prompt omitted ...
Problem: If f(x) = 3x−2

x−2
, what is the value of f(−2) + f(−1) + f(0)? Express your answer as a

common fraction.

[TRIAL] ## Step 1: Substitute x = −2 into the function f(x). To find f(−2), substitute x = −2 into
the function:

f(−2) =
3(−2)− 2

−2− 2
=

−6− 2

−4
=

−8

−4
= 2.

## Step 2: Substitute x = −1 into the function f(x). To find f(−1), substitute x = −1 into the
function:

f(−1) =
3(−1)− 2

−1− 2
=

−3− 2

−3
=

−5

−3
=

5

3
.

## Step 3: Substitute x = 0 into the function f(x). To find f(0), substitute x = 0 into the function:

f(0) =
3(0)− 2

0− 2
=

0− 2

−2
=

−2

−2
= 1.

## Step 4: Sum the values of f(−2), f(−1), and f(0). Sum the calculated values:

f(−2) + f(−1) + f(0) = 2 +
5

3
+ 1.

## Step 5: Simplify the sum to express it as a common fraction. To combine the terms into a common
fraction, convert the whole numbers to fractions with a common denominator:

2 +
5

3
+ 1 =

6

3
+

5

3
+

3

3
=

6 + 5 + 3

3
=

14

3
.

Therefore, the value of f(−2) + f(−1) + f(0) is 14
3

.

Therefore, the final answer is:
14

3
[/TRIAL]

Terminated due to difficulty level.

D INTEGER LINEAR PROGRAM SOLVING

We use SciPy MILP solver, available here, to solve an integer LP every iter. Figure 1 is a Pythonic
pseudo-code. And the wall-time consumed could be found in Figure 6. As the problem size is small,
so the computational overhead is negligible.

Figure 6: Wall time (averaged across ranks) spent by solver in seconds.
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1 import numpy as np
2 from scipy.optimize import milp, LinearConstraint, Bounds
3

4 def solve_iub(acceptance, is_vote, budget):
5 """ solves a Inference under Budget (IuB) problem. Parameters:
6 - acceptance: an n x m array where each element is 1 if accepted, 0

otherwise.
7 - is_vote: an n x m array indicating whether response is voting (1)

or non-voting (0).
8 - budget: the fractional budget (q+) constraint for the problem. """
9 n, m = acceptance.shape

10 # calculate pass rates for vote-based and non-vote-based responses
11 vote_pass_rate = np.mean(acceptance * is_vote, axis=1, keepdims=True)
12 sample_pass_rate = np.mean(acceptance * (1 - is_vote), axis=1,

keepdims=True)
13 margin = vote_pass_rate - sample_pass_rate # (n, 1)
14 # flattern acceptance and vote indicator, tile the margin
15 acceptance = np.reshape(acceptance, -1) # (n x m, )
16 is_vote = np.reshape(is_vote, -1) # (n x m, )
17 margin = np.reshape(np.tile(margin, [1, m]), -1) # (n x m, )
18

19 # define the objective function coefficients
20 c = -1 * margin * is_vote + margin * (1 - is_vote)
21 # acceptance constraints: ensure each prompt meets acceptance

criteria
22 A_acceptance = np.eye(len(acceptance))
23 b_acceptance = acceptance
24 # one response per problem constraint (BoN)
25 A_problem = np.zeros((n, n * m))
26 for i in range(n):
27 A_problem[i, i * m:(i + 1) * m] = 1
28 b_problem = np.ones(n)
29 # voting responses budget constraint
30 A_vote_budget = np.where(is_vote == 1, 1, 0).reshape(1, -1)
31 vote_budget = np.round(budget * len(acceptance))
32

33 # combine all constraints into a single matrix
34 A = np.vstack([A_acceptance, A_problem, A_vote_budget])
35 b_lower = -np.inf * np.ones(A.shape[0]) # lower bounds for

constraints
36 b_upper = np.hstack([b_acceptance, b_problem, vote_budget]) # upper

bounds
37 # solve the MILP problem using the defined objective and constraints
38 result = milp(c, integrality=np.ones(len(c)), bounds=Bounds(0, 1),
39 constraints=LinearConstraint(A, b_lower, b_upper))
40 return result

Listing 1: Pythonic code snippet for solving IuB with SciPy: Note that this is for demonstration
purposes, and error-free execution is not guaranteed, due to omitted corner cases.
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E BATCH ACCUMULATION

This is a batch accumulation implementation of Algorithm 1. For brevity, we use OPTIUB as an
example. One could increase the optimization problem size of n ×m to (n · kb) × (m · kr) using
Algorithm 2, where superscripts indicate matrix shape, left subscripts denote accumulation indices
(distinguishing them from element indices).

Algorithm 2 IBPO with Sample Accumulation
Require: prompt set D, batch size n, num of responses m, init policy π0 = πref , num of iters T , budgets q+
1: for t = 1, . . . , T do
2: for i = 1, . . . , kb do
3: prompt sampling: iX

n ∼ µD
4: for j = 1, . . . , kr do
5: response generation: ijY

n×m ∼ πθt(iX)
6: end for
7: end for
8: prompt accumulation: X̃(n·kb) = [1X, 2X, · · · , kb

X]

9: response accumulation: Ỹ(n·kb)×(m·kr) = [11Y, 12Y, · · · , 1kr
Y; · · · ; kb1

Y, kb2
Y, · · · , kbkr

Y]

10: evaluate correctness and empirical KL: Rmatch = rmatch(X̃, Ỹ) and K̂L = K̂L(Ỹ; X̃, πref)

11: margin maximization: π̂⋆
X̃,Ỹ

∈ OPTIUB(X̃, Ỹ,Rmatch, K̂L, q+) as defined in Eq. (8)

12: gradient update: with −
∑n·kb

i=1

∑m·kr
j=1 π̂⋆

X̃,Ỹ
(yij |xi)

∂
∂θ

log πθ(yij |xi)
∣∣
θ=θt

13: end for

F TRAINING CURVES & FURTHER DISCUSSIONS

Budgets constraints. In Section 5, we show that the constraints hold exactly on the training set,
for responses that are correct. Figure 7b further shows the ratio of voting responses for all online
samples. It’s clear that the constraints also hold.

(a) Voting ratio of correct responses (training set) (b) Voting ratio of all responses (training set)

Figure 7: Voting response ratio versus training steps. Dashed line denotes the budget q+. On the
training set, IuB formulation follows the budget constraints almost exactly for both: (a) correct
responses; (b) all responses.
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CGPO on DRL w/ LLaMA. To further understand the results we presented in Section 5 is benfit
from our budget-aware formulation or from the prompt set of Lai et al. (2024). We further run
CGPO with open-sourced LLaMA model and the SDPO dataset in the SCoT format. Figure 8
compares the training dynamics of CGPO with LLaMA versus our ASU-IuB-q+ experiments. In
general, the SDPO prompt set does not provide much additional knowledge as suggested by the OSS
w/ vanilla CGPO experiment, but ASV-IuB-q+ experiments are able to achieve noticable gain.

Figure 8: Training curves: each point corresponds an evaluation of MATH500 test set, and dashed
line is the pass@1 of LLaMA 8B Instruct.

Controlled setting. Our experiment setting is minimal: we do not use reward models; we use only
an 8B model to generate any set of sampled responses, ASAMPLE. Our RL training set, DRL, contains
only 10k prompts, leaving the setting quite controlled and providing room for improvement through
engineering efforts.

Limitations. Our work is limited in its choice of RL algorithms and applications. While it should be
straightforward to apply our framework to different RL frameworks, additional effort is required to
derive an optimization problem for different application tasks. Future work may include extending
our constrained policy optimization framework to a broader range of LLM applications or scaling
up our experiments.

G DATA CONSTRUCTION

We elaborate on the details of QSDPO, AGOLDEN
SDPO , QMATH, ASAMPLE

MATH , and the filteration function F .

SDPO dataset. Lai et al. (2024) create a dataset (see their Section 3.2) contains 10,795 step-wise
preference pairs, where the winning response is a correct solution, the losing response is incorrect
starting from certain step. For our purpose of SFT and RL training, we do not need losing responses,
hence we create AGOLDEN

SDPO with only wining (correct) responses. The step-formatted response (see an
example below) is the reason we choose the dataset from Lai et al. (2024), as it adhere the SCoT
format of LLaMA models. Therefore, one do not need to worry about potential format changes.

SDPO question-response example

Problem: Sides of a rectangular park are in the ratio 3: 2 and its area is 3750 sq m, the cost of fencing
it at 40 ps per meter is?
## Step 1: Let’s assume the sides of the rectangle are 3x and 2x. The area of the rectangle is the
product of its sides, so we have 3x · 2x = 6x2 = 3750. Solving for x, we get x2 = 3750

6
= 625, so

x =
√
625 = 25.

## Step 2: So the sides of the rectangle are 3x = 3 · 25 = 75 meters and 2x = 2 · 25 = 50 meters.
## Step 3: The perimeter of the rectangle is 2× (75 + 50) = 2× 125 = 250 meters.
## Step 4: The cost of fencing is 40 paise per meter, so the total cost of fencing is 250× 40 = 10000
paise. Since 1 rupee is equal to 100 paise, the cost in rupees is 10000

100
= 100 rupees.

Therefore, the final answer is: 100
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SV dataset for MATH. We also created datasets, DSV and DASV1, for SFT so that a model could
follow the SV instructions. We take DSV as an example and DASV1 could be created similarly. To do
so, we first generate 32 responses per prompt for the entire MATH training split with a temperature
of 1.2 and top-p of 0.9. We then apply our SV templates Tq and Ta to create corresponding SV
question and answer pairs. The procedure of creating a SV response is given by Algorithm 3. While
we have include an example of SV responses in Figure 9, we make it more concrete the SV response
template below,

SV template:
Ta(A1, · · · , Ak,final answer) (if con-
sensus found)

[TRIAL] {A1} [/TRIAL]
[TRIAL] {A2} [/TRIAL]
· · ·
[TRIAL] {Ak} [/TRIAL]
The answer final answer has occurred three
times, and is considered as a consensus.
The final answer is final answer . I hope it is
correct.

SV template:
Ta(A1, · · · , A8,final answer) (if no
consensus found)

[TRIAL] {A1} [/TRIAL]
[TRIAL] {A2} [/TRIAL]
· · ·
[TRIAL] {A8} [/TRIAL]
Maximum trials reached but no consensus
found due to a tie; the most plausible answer
is final answer .

The final answer is final answer . I hope it is
correct.

Figure 9: SV response templates. Left: suppose a consensus is found at k-th answer; Right: no
consensus found. Note the subscript i of Ai only denotes index of answer, Ai and Aj could still
have same final answer for i ̸= j.

Algorithm 3 Creating SV Response for SFT .

Require: template Tq , Ta, a problem Q, a set of shuffled responses {Ai : i = 1, 2, · · · ,K}
1: create prompt: Tq(Q) replace problem placeholder with Q
2: responses = []; final answer = [INVALID ANSWER]; found = False
3: for i = 1, 2, · · · ,K do
4: responses.append(Ai)
5: majority = find majority(responses)
6: majority count = count majority(responses, majority)
7: if majority count == 3 then
8: found = True; final answer = majority; break
9: end if

10: end for
11: if found == False and responses contain correct solution then
12: final answer = random pick a correct solution
13: end if
14: create SV response: Ta(responses, final answer)

We then apply some filtration F to the created dataset. We remove SV responses whose final answers
are incorrect. From the remaining set, we sub-sample 500 question-response pairs. These pairs are
selected from problems that have between 4 and 8 distinct answers out of 32 samples, ensuring
that we construct sequential responses with a diverse trials. The distribution of trial counts and
distinct answer counts are shown in Figure 10. It can be observed that the filtered data is diversely
distributed.
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(a) Distribution of number of trials per re-
sponse

(b) Distribution of number of distinct an-
swers

Figure 10: The distribution of filtered prompt-responses subset, which suggests that the construct
data is generally diversely distributed.

H HYPERPARAMETERS

We list the hyperparameters used for experiments setup 1.2, 2.1, 2.2, as described in Table 7. And
we conduct our experiments with NVIDIA-A100-80Gs. (Please refer to Xu et al. (2024b) for the
definition of some RL-specific hyper-parameters.)

Table 8: Hyperparameters for Experiment setups 1.2, 2.1, and 2.2

Hyperparameter Setup 1.2 Setup 2.1 Setup 2.2

prompt size 11295 11295 10795
number of nodes 4 4 8
learning rate 1e-6 1e-6 5e-7
batch size (per node) 8 16 4
num of steps 1024 2048 240
optimizer AdamW AdamW AdamW
scheduler constant constant constant
packing yes yes -
max sequence length 32768 32768 6144
gradient accumulation 1 2 1

RL-specific params

num generation per prompt 8
max generation length 4096
temperature 1.0
top-p 0.9
KL-threashold 1024
batch accumulation kb 4
response accumulation kr 1
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