
Published as a conference paper at ICLR 2024

EMPIRICAL LIKELIHOOD FOR FAIR CLASSIFICATION

Pangpang Liu
Mitchell E. Daniels, Jr. School of Business
Purdue University
West Lafayette, IN 47907, USA
liu3364@purdue.edu

Yichuan Zhao
Department of Mathematics and Statistics
Georgia State University
Atlanta, GA 30303, USA
yichuan@gsu.edu

ABSTRACT

Machine learning algorithms are commonly being deployed in decision-making
systems that have a direct impact on human lives. However, if these algorithms
are trained solely to minimize training/test errors, they may inadvertently discrim-
inate against individuals based on their sensitive attributes, such as gender, race
or age. Recently, algorithms that ensure the fairness are developed in the machine
learning community. Fairness criteria are applied by these algorithms to measure
the fairness, but they often use the point estimate to assess the fairness and fail
to consider the uncertainty of the sample fairness criterion once the algorithms
are deployed. We suggest that assessing the fairness should take the uncertainty
into account. In this paper, we use the covariance as a proxy for the fairness and
develop the confidence region of the covariance vector using empirical likelihood
(Owen, 1988). Our confidence region based fairness constraints for classification
take uncertainty into consideration during fairness assessment. The proposed con-
fidence region can be used to test the fairness and impose fairness constraint using
the significance level as a tool to balance the accuracy and fairness. Simulation
studies show that our method exactly covers the target Type I error rate and effec-
tively balances the trade-off between accuracy and fairness. Finally, we conduct
data analysis to demonstrate the effectiveness of our method.

1 INTRODUCTION

Machine learning methods are increasingly used in various domains to assist human decision-
making. However, concerns have been raised about the fairness of these algorithmic decision-
making methods. To address this issue, recent studies have proposed mechanisms to ensure the
fairness of algorithmic decision systems. One such measure of fairness proposed by Zafar et al.
(2017) is the covariance between sensitive attributes and the distance between the subjects’ feature
vectors and the decision boundary of the classifier. Zafar et al. (2019) introduced the covariance
measure of decision boundary unfairness to design classifiers that are free of disparate impact and
disparate mistreatment, while Nanfack et al. (2021) extended this method to decision trees. Other
methods to address fairness concerns include Rényi correlation proposed by Baharlouei et al. (2020),
cross-covariance operator used by Pérez-Suay et al. (2017) to measure the dependence between pre-
dictions and sensitive variables, and equalized correlations proposed by Woodworth et al. (2017)
as fairness constraints. However, these methods often estimate the dependence between sensitive
variables and predictions by point estimates, and do not consider the uncertainty of the estimation.
Moreover, some measures of fairness are not dimensionless, making it difficult to set the threshold
of the fairness constraint.

We have found solutions to these issues through the use of empirical likelihood (EL). This non-
parametric method does not require assumptions about the underlying distribution and has been
applied in many problems (Kallus & Uehara, 2019; Karampatziakis et al., 2020; Dai et al., 2020;
Alemdjrodo & Zhao, 2022; Liu & Zhao, 2023b). In this work, instead of focusing on finding a
new fairness criterion, we adopt the covariance as a tractable proxy to measure the fairness (Zafar
et al., 2017), and study the problem of group fairness, which focuses on reducing the difference of
favorable outcomes proportions among different sensitive groups. The covariance measure can han-
dle both discrete and continuous sensitive attributes. Using EL, we develop a confidence region for

1



Published as a conference paper at ICLR 2024

the fairness criterion. By using EL-based confidence region, we can consider the uncertainty of the
estimation of dependence between the sensitive variable and the predictions, which is not possible
with methods that rely solely on point estimates. We utilize the significance level (α ∈ [0, 1]) as a
threshold of the fairness constraint, which is dimensionless and provides a clear way to assess the
fairness. By the confidence region, we can assess the fairness of features by checking whether 0 is
included in the confidence region with Type I error rate controlled, and impose the fair constraint
by constructing the domain of the parameters of interest such that 0 is included in the confidence
region of the covariance vector. We do not need to set the threshold of the covariance vector, and
hence the dimension of covariance has no effect on our method. In our algorithm, we balance the
trade-off between the accuracy of the estimation of the parameters and the fairness constraints by
the significance level. In the simulation studies, our method performs good in terms of the coverage
probability and the average length of the confidence interval of the covariance. Also, our method
performs better than the method in Zafar et al. (2017) in regard to the trade-off between the accuracy
and fairness in some cases. In the real data analysis, we show that our method is robust to distribu-
tion shifts and can achieve simultaneous fairness by considering discrete and continuous features as
protected attributes. A summary of our contributions is as follows.

(1) We propose an EL-based estimator of covariance, and establish that its limiting distribution fol-
lows the standard χ2 distribution. This conclusion does not require assumptions about the under-
lying distribution. Based on this limiting distribution, we can construct a confidence region for the
covariance between sensitive attributes and the decision boundary, which can be used in statistical
hypothesis test for group fairness.

(2) We formulate the fairness constraint using a confidence region, where the significance level α ∈
[0, 1] serves as the fairness threshold. This approach is more practical than dimensional fairness
thresholds proposed in previous literature. The significance level α, which ranges from 0 to 1
as mentioned above, can be easily determined in practice. This approach allows us to measure
the fairness of both categorical and continuous features, and our algorithm can handle multiple
sensitive features simultaneously to achieve the fairness. By incorporating uncertainty into the
fairness measurement, our confidence region makes the fairness criterion more robust and reliable.

(3) Our work introduces a new direction for fairness constraints. We consider uncertainty when as-
sessing and imposing fairness, which is often neglected in existing fairness criteria. Our frame-
work can be extended to other fairness criteria, such as Rényi correlation (Baharlouei et al., 2020).
We provide a discussion of applying EL to general fairness measures in Section 6.

The remainder of this paper is organized as follows. In Section 2, we review related work. In
Section 3, we review the covariance as a fairness constraint, and develop the confidence region for
the covariances by EL and present the EL framework for fairness. In Section 4, simulation studies
are conducted to evaluate our method and compare it with other method. In Section 5, we assess
our method by real data analysis. In Section 6, we conclude our work and discuss some potential
extensions. The proofs and additional results are included in the appendix.

2 RELATED WORK

At a high level, our approach develops a confidence region for the fair criteria with the covariance as
a proxy of fairness. Our framework enables auditors to assess and enforce fairness in a statistically
principled manner, and can be used for statistical inference on group fairness.

Previous literature has studied statistical inference for group fairness by deriving limiting distribu-
tions of relevant statistics. However, these limiting distributions contain unknown values, rendering
hypothesis tests impractical. For instance, Besse et al. (2018) showed that an estimator of disparate
impact converges to a standard normal distribution that can be used to test for group disparate im-
pact. However, the test statistic includes the unknown covariance. Similarly, Si et al. (2021) tested
for group fairness using optimal transport projections and studied the asymptotic behavior of the
projection distance, but the limiting distribution contains unknown values. Taskesen et al. (2021)
developed a limiting distribution based on the concept of Wasserstein projection for testing group
fairness, but this distribution also contains unknown values.

It is worth noting that some literature has studied inference for individual fairness. Maity et al.
(2021) developed the mean of the ratio of two loss functions as a test statistic for individual fairness.
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However, the test statistic is not well-defined when the classifier correctly classifies. They thus used
the ratio of means (instead of the mean of the ratio) as a test statistic, which is not guaranteed to
have a limiting distribution. Similarly, Xue et al. (2020) found that the asymptotic distribution for
individual fairness depended on an unknown parameter.

Previous hypothesis testing methods have been problematic in practice, as the test statistics or lim-
iting distributions have not been well-defined. Researchers have thus resorted to plugging estimates
into the limiting distributions, making the tests inaccurate. Our approach, on the other hand, em-
ploys empirical likelihood ratio, which has a limiting standard χ2 distribution and does not include
any unknown values. As such, it can serve as a reliable test statistic for group fairness.

3 STATISTICAL FRAMEWORK

In this section, we first provide a brief overview of using covariance as a fairness constraint in
previous literature, and highlight its limitations. Then, we introduce our proposed method, which
constructs a confidence region for the covariance vector using empirical likelihood, and uses it as a
fairness constraint.

3.1 REVIEW OF COVARIANCE FAIRNESS CONSTRAINT

The covariance has been used as a proxy for fairness in previous literature (Zafar et al., 2017; 2019;
Zink & Rose, 2020). In this section, we provide a brief overview of fair classification with covariance
constraints, and highlight some of the issues that arise when working within this framework.

In binary classification problems, the goal is to find a mapping between feature vectors x ∈ Rd

and class labels y ∈ {−1, 1}. For margin-based classifiers, this typically involves constructing a
decision boundary in the feature space that separates features based on their class labels. Let θ ∈ Θ
be the parameters of interest, and dθ(x) ∈ R be the distance from the feature vectors to the classifier
decision boundary. Our objective is to find θ that results in a fair classifier. The main idea is adding
a constraint during the model training process. Let s ∈ Rm be the set of sensitive attributes, such as
age or gender, and L(θ) be the loss function. We denote σθ ∈ Rm as the covariance vector between
s and dθ(x), and define µs = E(s) and µθ = E(dθ(x)). By the definition of covariance, we have

σθ = E{(s− µs)[dθ(x)− µθ]}.
Note that σθ contains m elements, each of which corresponds the covariance between each sensitive
feature and the classifier decision boundary. Let {xi, si, yi}ni=1 be independent and identically
distributed samples. The sample version of σθ is

σ̂θ =
1

n

n∑
i=1

(si − s̄)[dθ(xi)− d̄θ],with s̄ =
1

n

n∑
i=1

si and d̄θ =
1

n

n∑
i=1

dθ(xi). (1)

Zafar et al. (2017) estimated the parameters θ of the decision boundary by minimizing the loss
function over the training set, subject to fairness constraints. Specifically, they solved the following
optimization problem,

min
θ∈Θ

L(θ) s.t.
1

n

n∑
i=1

(si − s̄)dθ(xi) ≤ c,
1

n

n∑
i=1

(si − s̄)dθ(xi) ≥ −c, (2)

where c ∈ Rm is the covariance threshold. The fairness constraint in (2) uses the covariance thresh-
old c ∈ Rm to limit the covariance between sensitive attributes and the decision boundary, thereby
balancing fairness and accuracy.

However, this approach has several limitations. Firstly, the value of 1/n
∑n

i=1(si − s̄)dθ(xi) de-
pends on the samples, while c is fixed. Consequently, this method fails to account for the uncer-
tainty in the covariance estimation in the fairness constraint. Secondly, since the covariance is not
scale-free and c is a m dimensional vector, determining the threshold c that balances accuracy and
fairness becomes difficult. Thirdly, when c = 0 and dθ(x) = θ⊤x, the constraint reduces to a
system of m equations and d parameters, which can possibly only have solutions θ = 0 if m ≥ d.
Lastly, the confidence region of the covariance vector is not constructed, and statistical inference
is not addressed in this existing framework. To address these limitations, we propose a confidence
region-based fairness constraint for classification using empirical likelihood.
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3.2 EMPIRICAL LIKELIHOOD FOR COVARIANCE

In this section, we develop the confidence region for the covariance vector σθ by empirical likeli-
hood. Empirical likelihood is used to construct generalized likelihood ratio test statistics and cor-
responding confidence regions without specifying parametric models for the data. Comprehensive
reviews about empirical likelihood can be found in Owen (2001) and Liu & Zhao (2023a).

We apply the EL method based on influence functions, which avoids the involvement of nuisance
parameters and achieve a limiting distribution without any unknown quantities. For a fixed θ, by
Equation (1), simple algebra yields that

√
n(σ̂θ − σθ) =

√
n

{
1

n

n∑
i=1

(si − s̄)[dθ(xi)− d̄θ]− σθ

}

=
1√
n

n∑
i=1

{(si − µs)[dθ(xi)− µθ]− σθ} −
√
n(s̄− µs)(d̄θ − µθ)

=
1√
n

n∑
i=1

{(si − µs)[dθ(xi)− µθ]− σθ}+ op(1).

(3)

In the last equation, the second term is op(1) because
√
n(s̄ − µs) = Op(1) and

√
n(d̄θ − µθ) =

Op(1) by the central limit theorem. Equation (3) implies that the i-th influence function of σ̂θ is
(si−µs)[dθ(xi)−µθ]−σθ. Motivated by Zheng et al. (2012), we construct the empirical likelihood
ratio at σθ based on the estimated influence function as follows,

R(σθ) = sup
p1,...,pn

{
Πn

i=1(npi)

∣∣∣∣ n∑
i=1

pi = 1,

n∑
i=1

pi(si − s̄)[dθ(xi)− d̄θ] = σθ, pi ≥ 0

}
, (4)

where pi is the probability placed on the i-th sample. Using the Lagrange multiplier method to solve
(4), we obtain

pi =
1

n

1

1 + λ⊤{(si − s̄)[dθ(xi)− d̄θ]− σθ}
,

where λ is the Lagrange multiplier. Hence, the empirical log-likelihood ratio can be obtained as
follows,

−2 logR(σθ) = 2

n∑
i=1

log{1 + λ⊤[(si − s̄)[dθ(xi)− d̄θ]− σθ]}, (5)

where λ satisfies
1

n

n∑
i=1

(si − s̄)[dθ(xi)− d̄θ]− σθ

1 + λ⊤{(si − s̄)[dθ(xi)− d̄θ]− σθ}
= 0. (6)

Now, we establish the Wilk’s theorem for the empirical likelihood ratio as follows (Zheng et al.,
2012).

Theorem 3.1 Under conditions C1-C4 in Appendix A, for a fixed θ, at the corresponding true value
σθ, we have

−2 logR(σθ)
D−→ χ2

m,

where χ2
m is the chi-squared distribution with m degrees of freedom, and D−→ denotes the conver-

gence in distribution.

Theorem 3.1 provides the asymptotic property of the log-empirical likelihood ratio. The limiting
distribution of −2 logR(σθ) is a standard χ2 distribution without any unknown quantities. In con-
trast, previous fairness literature (Besse et al., 2018; Xue et al., 2020; Si et al., 2021) derived the
limiting distributions that contain unknown quantities, which can reduce the accuracy of statistical
inference when the estimates of the unknown parameters are used.

We derive the confidence region of σθ based on Theorem 3.1 for a fixed θ. The EL confidence
region with (1− α) confidence level for σθ at a given θ is constructed as

IEL(σθ) = {σ̃ ∈ Rm : −2 logR(σ̃) ≤ χ2
m(α)}, (7)

where χ2
m(α) is the upper α-quantile of χ2

m. Equation (7) can be used to impose a fairness constraint
during the model training process and forms the basis for the fairness inference.

4



Published as a conference paper at ICLR 2024

3.3 FAIRNESS VIA EMPIRICAL LIKELIHOOD

In this section, we develop a novel framework to address the limitations of previous methods and
achieve the fairness in classification. We formulate the EL-based fairness framework. Our frame-
work can be used for statistical inference and as well for imposing fairness constraint during the
model training process.

To conduct statistical inference for fairness, we utilize the confidence region defined in Equation
(7). We test for fairness by checking whether 0 is included in IEL(σθ) for statistical inference.
If 0 ∈ IEL(σθ), i.e., −2 logR(0) ≤ χ2

m(α), it means that 0 is in the (1 − α) confidence region
of σθ, and correspondingly, the linear dependence between the sensitive features and the decision
boundary is not significant at the α significance level.

To obtain a fair classifier, we can impose the fairness constraint during the training process by find-
ing the decision boundary parameter θ such that 0 is included in IEL(σθ). Our approach differs
from previous literature as we reduce the uncertainty associated with the point estimate by incor-
porating the confidence region into the training process. To find the optimal decision boundary
parameters that satisfy the fairness constraint, we minimize the corresponding loss function L(θ)
over the training set under the fairness constraints given by the following optimization problem,

min
θ∈Θ,λ∈Rm

L(θ) s.t. 2

n∑
i=1

log{1 + λ⊤(si − s̄)[dθ(xi)− d̄θ]} ≤ χ2
m(α),

1

n

n∑
i=1

(si − s̄)[dθ(xi)− d̄θ]

1 + λ⊤(si − s̄)[dθ(xi)− d̄θ]
= 0.

(8)

The constraint in (8) is obtained by plugging σθ = 0 into the equations (5) and (6). Intuitively, as
the value of α decreases, the corresponding χ2

m(α) increases, resulting in a looser fairness constraint
and higher accuracy of parameter estimation. Conversely, a larger α value leads to a stricter fairness
constraint, but lower accuracy of parameter estimation. In the extreme case α = 0, IEL(σ) becomes
the entire space Rm, which means there is no fairness constraint. Thus, the significance level α
can serve as a trade-off indicator between accuracy and fairness, and unconstrained model can be
viewed as a special case of our method. Note that the constraint in (2) is symmetric, while the
constraint in our framework is asymmetric, which contains more information. Our framework uses
the covariance as a fairness proxy, and it can be easily extended to other fair criteria by developing
a confidence region for those criteria using EL. We present the use of our approach with the binary
logistic regression in Appendix B as an example.

4 SIMULATION

In this section, we evaluate our method by simulation studies. We first examine the limiting distri-
bution provided in Theorem 3.1 empirically by the coverage probability and the confidence interval.
Then, we explore the trade-off between the accuracy and fairness using our method and compare it
with the method in Zafar et al. (2017) by experiments.

4.1 COVERAGE PROBABILITY AND CONFIDENCE INTERVAL

In this section, we examine the limiting distribution from Theorem 3.1 in terms of the coverage prob-
ability and the confidence interval. We consider a linear decision boundary dθ(x) = θ1x1 + θ2x2,
with θ = (θ1, θ2)

⊤. One sensitive feature s ∈ R is continuous and follows a Gaussian distribution
N(0, 2), while x1 and x2 are both from the Gaussian distribution N(0, 1). The covariance between
s and x1 is 1/2, the covariance between s and x2 is 1, and the covariance between x1 and x2 is 0.
The sample size n varies from 100 to 1200, and we evaluate the confidence interval for the covari-
ance σθ between s and dθ(x) using EL at α = 0.05, under four scenarios: θ = (1/4, 1/3)⊤ with
σθ = 11/24, θ = (1/2, 2/3)⊤ with σθ = 11/12, θ = (2, 1)⊤ with σθ = 2, and θ = (3, 2)⊤ with
σθ = 7/2. We repeat each experiment 2000 times, and present the coverage probability (CP), the
average lower bound (LB), the average upper bound (UB) and the average length (AL) of confidence
interval for σθ in Table 1. The results for the scenarios, θ = (2, 1)⊤ with σθ = 2, and θ = (3, 2)⊤

with σθ = 7/2 are shown in Appendix C.
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Table 1: Coverage probability and confidence interval

θ = (1/4, 1/3)⊤ θ = (1/2, 2/3)⊤

n CP LB UB AL CP LB UB AL
100 0.935 0.330 0.621 0.291 0.935 0.661 1.243 0.582
200 0.941 0.363 0.570 0.207 0.941 0.726 1.139 0.413
500 0.943 0.396 0.527 0.131 0.943 0.791 1.053 0.262
800 0.947 0.408 0.512 0.104 0.947 0.816 1.023 0.207
1200 0.944 0.417 0.501 0.085 0.944 0.834 1.003 0.169

The results in Table 1 indicate that the coverage probabilities under different scenarios are close
to 0.95. Under different scenarios, the true values of σθ are between the lower bound and the
upper bound at different sample size n, and the average length for σθ decreases as the sample
size n increases. In summary, our EL-based method provides reliable confidence intervals for the
covariance.

4.2 TRADE-OFF BETWEEN ACCURACY AND FAIRNESS

In this section, we investigate the trade-off between accuracy and fairness, and compare our ap-
proach with the method in Zafar et al. (2017). To facilitate the comparison, we employ the settings
proposed by Zafar et al. (2017). We generate 2000 binary class labels uniformly at random and
assign a 2-dimensional feature vector to each label by drawing samples from two distinct Gaussian
distributions: p(x|y = 1) = N([2; 2], [5, 1; 1, 5]) and p(x|y = −1) = N([−2;−2], [10, 1; 1, 3]).
We use x′ = [cos(ϕ),− sin(ϕ); sin(ϕ), cos(ϕ)]x as a rotation of the feature vector x, and draw
the one-dimensional sensitive attribute s from a Bernoulli distribution, p(s = 1) = p(x′|y =
1)/[p(x′|y = 1) + p(x′|y = −1)]. The value of ϕ controls the correlation between the sensitive
attribute and the class labels. We choose ϕ = π/3, α = 0.05.

Table 2: Trade-off between model performance and fairness

Zafar et al. (2017) EL-based fairness
c/α ACC F1 p% DP EO ACC F1 p% DP EO LB UB

0 0.825 0.827 92.308 -0.029 0.083 0.847 0.845 68.959 0.188 0.366 0.199 0.474
0.1 0.842 0.840 78.548 0.094 0.240 0.843 0.843 81.346 0.065 0.207 -0.069 0.188
0.2 0.840 0.838 73.734 0.124 0.299 0.842 0.842 83.077 0.050 0.188 -0.084 0.171
0.3 0.843 0.841 68.821 0.190 0.366 0.840 0.841 83.654 0.050 0.182 -0.093 0.159
0.4 0.847 0.845 68.959 0.188 0.366 0.833 0.834 87.016 0.025 0.142 -0.101 0.150
0.5 0.847 0.845 68.959 0.188 0.366 0.835 0.836 87.604 0.011 0.135 -0.107 0.142
0.6 0.847 0.845 68.959 0.188 0.366 0.833 0.835 89.368 -0.004 0.116 -0.113 0.135
0.7 0.847 0.845 68.959 0.188 0.366 0.832 0.833 89.941 -0.016 0.109 -0.118 0.129
0.8 0.847 0.845 68.959 0.188 0.366 0.830 0.832 90.533 -0.016 0.103 -0.123 0.123
0.9 0.847 0.845 68.959 0.188 0.366 0.827 0.829 91.716 -0.016 0.090 -0.127 0.117

We partition the data into a training set (70%) and a test set (30%) and fit a logistic model (Appendix
B). We use accuracy (ACC), F1-score (F1) as the performance metrics of the model, p%-rule1 (p%),
demographic disparity (DP) and equal opportunity (EO) as the fairness metrics. Table 2 displays
the relationship between the model performance and fairness at various fairness thresholds using the
method in Zafar et al. (2017) and our method EL-based fairness. The first column in Table 2 is the
parameter c for Zafar et al. (2017) and the parameter α for our method. The results are calculated
from the test data, and for our method, we also calculate the lower bound (LB) and the upper bound
(UB) of the covariance. We draw the following conclusions from Table 2:

(1) For the method in Zafar et al. (2017), the threshold c is defined in (2). As c increases, the model
becomes more accurate but less fair. As c surpasses 0.4, accuracy and fairness remain stable,

1According to the p%-rule (Biddle, 2005), the ratio between the proportion of subjects with a certain sen-
sitive attribute value assigned the positive decision outcome and the proportion of subjects without that value
who receive the positive outcome should not be less than p/100. The 80%-rule is generally used in practice
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Figure 1: Training on one state (ID (state) evaluation) and testing on other 49 states (OOD evalua-
tion) for the income task. The x-axis represents the accuracy. Top 2 lines: The y-axis represents the
demographic disparity. Bottom 2 lines: The y-axis represents the equal opportunity.

indicating that 0.4 is an upper bound for c as a trade-off indicator in this scenario. As c can take
any non-negative value, finding a suitable threshold in practice is challenging.

(2) For our approach, we use the significance level α to balance the accuracy and fairness. The value
of α varies from 0 to 1, which is easy to control. When α = 0, the model is unconstrained, and 0 is
not between the lower bound and the upper bound. As α increases, the model becomes more fair
but generally less accurate. The results show that α balances the accuracy and fairness effectively.
Our method provides the confidence interval, which can be used in statistical inference.

(3) Because of the existence of the trade-off between the performance and fairness, a model is deemed
superior if it achieves a better performance and a higher fairness than others. Our method achieves
better model performance and higher fairness than the method in Zafar et al. (2017) in the follow-
ing cases: α = 0.1 vs. c = 0.3, α = 0.2 vs. c = 0.1, and α = 0.3 vs. c = 0.2, α = 0.1 vs.
c = 0.1, α = 0.1 vs. c = 0.2, and α = 0.2 vs. c = 0.2. Table 2 reveals no cases in which the
method in Zafar et al. (2017) performs better.

5 DATA ANALYSIS

In this section, we conduct experiments to assess the efficacy of our method using real data. Firstly,
we apply our method on the ACS PUMS datasets (Ding et al., 2021), which encompass distribution
shifts, and we find our method is robust to distribution shifts. Secondly, we consider multiple sensi-
tive attributes of the German credit dataset (Dua & Graff, 2019) and show that our method achieves
simultaneous fairness.

5.1 ROBUST TO DISTRIBUTION SHIFTS

We leverage the ACS PUMS datasets, which explicitly encompass distribution shifts, where the
distribution of the test dataset differs from the training dataset. We study the performance of our
method under the geographic distribution shift, where we train a model on one state and test it
on another as Ding et al. (2021) did. This dataset is accessible through the “folktables” Python
package. In our experiments, we construct a logistic model (Appendix B) for the income prediction
task: predicting income above 50000. The dataset encompasses 10 features along with a single label
denoting income above 50000. The size of the training dataset varies from 4713 to 195665.
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We designate race as the sensitive attribute. In Table 3 and Figure 1, we present the accuracy (ACC),
demographic disparity (DP), and equal opportunity (EO) metrics with respect to race, for the income
prediction. Each figure includes two crucial facets: the in-distribution (ID) results, signifying the
training outcomes, and the out-of-distribution (OOD) results, indicating the performance across 49
other states during testing. The insights derived from these experiments are as follows.

(1) Figure 3 in Ding et al. (2021) underscores a marked separation between the in-distribution and
out-of-distribution results. This divergence signifies a severe violation in model accuracy and
demographic parity. In contrast, our results in Figure 1, depict OOD outcomes distributed around
the ID results in a random pattern under the demographic parity and equal opportunity metrics.
This pronounced alignment strongly signifies the robustness of our method to distribution shifts.

(2) Table 3 presents the evaluations for α = 0.05 and α = 0.5 using our method. The ID outcomes
denote training results, while the OOD represents the averaged evaluations across the 49 states
during testing. A comparison between the ID and OOD results reveals small fluctuations, thereby
underlining the robustness of our approach under distribution shifts. Intriguingly, the variation be-
tween α = 0.05 and α = 0.5 elucidates a consistent trend: higher fairness at the cost of marginally
reduced accuracy. This consistent pattern reaffirms the efficacy of the underlying balancing role
of α. Table 4 shows the results without fairness constraint. Upon comparing the results presented
in Table 3 and Table 4, we find our method leads to a decrease in both DP and EO in most cases
at a minor cost to accuracy.

Table 3: Results using our method

α = 0.05 α = 0.5
ID (training) OOD (test) ID (training) OOD (test)

State ACC DP EO ACC DP EO ACC DP EO ACC DP EO
CA 0.7254 0.2008 0.2309 0.7287 0.2073 0.2120 0.7243 0.1991 0.2279 0.7284 0.2034 0.2123
TX 0.7348 0.2195 0.2637 0.7346 0.1982 0.2085 0.7335 0.2195 0.2621 0.7340 0.1905 0.1988
DE 0.7324 0.2515 0.2865 0.7396 0.2895 0.2930 0.7286 0.2176 0.2780 0.7383 0.2665 0.2619
NV 0.7209 0.2193 0.2230 0.7334 0.1781 0.1796 0.7167 0.1944 0.2076 0.7319 0.1657 0.1542
KY 0.7468 0.1591 0.1802 0.7225 0.1046 0.1405 0.7456 0.1444 0.1523 0.7194 0.0831 0.1287
FL 0.7403 0.2157 0.2517 0.7315 0.1655 0.1789 0.7383 0.2115 0.2454 0.7301 0.1587 0.1743
MO 0.7466 0.1479 0.2178 0.7260 0.1242 0.1532 0.7460 0.1435 0.2063 0.7233 0.1024 0.1407
NE 0.7346 0.0224 0.1153 0.7168 0.0713 0.1206 0.7311 -0.0137 0.0417 0.7128 0.0436 0.1096

5.2 MULTIPLE SENSITIVE ATTRIBUTES

In this section, we evaluate the performance of our proposed method on a real-world dataset, con-
sidering two sensitive features simultaneously. Specifically, we use the German credit dataset (Dua
& Graff, 2019), which contains 1000 instances of bank account holders and is commonly used for
risk assessment prediction. Each sample is described by 13 categorical, 7 numerical, and 1 binary
attribute. Two sensitive attributes, gender and age, are considered in the evaluation. While previous
studies have binarized the age feature by thresholding at 25 as in Kamiran & Calders (2009), we

Table 4: Results without constraint

ID (training) OOD (test)
State ACC DP EO ACC DP EO
CA 0.7559 0.1996 0.2641 0.7296 0.3867 0.3156
TX 0.7538 0.2529 0.3355 0.7424 0.3374 0.3749
DE 0.7382 0.2760 0.3334 0.7419 0.3410 0.3540
NV 0.7477 0.2798 0.3011 0.7400 0.3547 0.4019
KY 0.7540 0.2375 0.3306 0.7388 0.2732 0.3408
FL 0.7565 0.2982 0.3698 0.7419 0.2944 0.3287
MO 0.7511 0.1915 0.2664 0.7375 0.2582 0.3321
NE 0.7439 0.2386 0.4966 0.7345 0.2542 0.3507
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(a) Covariance contour under unconstrained model (b) Covariance contour under constrained model

Figure 2: The 95% confidence region for constrained model and unconstrained model. The x-axis is
the covariance between age and the decision boundary. The y-axis is the covariance between gender
and the decision boundary. The red line represent covariance contour at 95% confidence level.

avoid this step to preserve the information contained in the continuous age feature. To avoid the
effect of sample size on the confidence region, we split the dataset into equal training and test sets.

We train a logistic model (Appendix B) on the dataset, using both gender (binary) and age (con-
tinuous) as protected attributes. Without considering fairness constraints, the model achieves an
accuracy of 0.742. When we apply our EL-based fairness constraint, the accuracy decreases slightly
to 0.732. Figure 2 shows the 95% confidence region under the constrained and unconstrained mod-
els, respectively. We observe that, without the fairness constraint, the covariance vector (0, 0)⊤ falls
outside the 95% confidence region, while with the fairness constraint, the covariance vector (0, 0)⊤
falls within the 95% confidence region. This suggests that our method effectively achieves a higher
level of fairness while maintaining a reasonable level of accuracy.

6 DISCUSSION

In this paper, we propose a confidence region for the covariance vector between the sensitive features
and classifier decision boundary by empirical likelihood. Our method can be used in statistical
inference for the group fairness, and imposing a fairness constraint in the process of training model.
We can also develop the confidence region of the covariance vector by jackknife empirical likelihood
(Jing et al., 2009). Recall that σ̂θ = 1/n

∑n
i=1(si−s̄)[dθ(xi)−d̄θ]. We define the jackknife pseudo

values σ̂j = nσ̂θ − (n − 1)σ̂
(−j)
θ of σθ for j = 1, · · · , n, where σ̂

(−j)
θ is calculated by removing

the j-th element. Then the jackknife EL ratio at σθ is defined as

RJ(σθ) = max

[
Πn

j=1(npj) :

n∑
j=1

pjσ̂j = σθ,

n∑
j=1

pj = 1, pj ≥ 0

]
,

where pj is the probability placed on the j-the element. Notably, the logarithm of the jackknife EL
ratio, denoted as −2 logRJ(σθ), may be proved to converge to the χ2

d distribution. In this paper, we
use the covariance as a fairness criterion. However, covariance is not a perfect fairness criterion. We
can apply EL to other non-linear fairness criteria, such as the cross-covariance operator (Pérez-Suay
et al., 2017), equalized correlations (Woodworth et al., 2017), the Rényi correlation (Baharlouei
et al., 2020) and the Hirschfeld-Gebelein-Rényi maximum correlation coefficient (Mary et al., 2019).
Some valuable references of adapting our framework to non-linear measures are Qin & Lawless
(1994); Kremer et al. (2022); Nabi et al. (2022). If the empirical estimating equation contains non-
i.i.d. elements, we can develop the confidence region of the fairness measures by using jackknife
empirical likelihood (Jing et al., 2009; Zhao et al., 2015; Li et al., 2016; Sang et al., 2020; Matsushita
& Otsu, 2020; Liu & Zhao, 2023a). We can also tackle fairness concerns by incorporating the prior
information using Bayesian empirical likelihood (Lazar, 2003; Chaudhuri et al., 2017; Zhao et al.,
2020) and Bayesian jackknife empirical likelihood (Cheng & Zhao, 2019).
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A PROOF OF THEOREM 3.1

For ease of expressing the conditions needed to derive the limiting distribution of the empirical
log-likelihood ratio, we denote the true parameters as

vθ = (σ⊤
θ ,µ

⊤
s , µθ)

⊤ ∈ R2m+1,

the correspond generic values as

v = (σ⊤,µ⊤
1 , µ2)

⊤ ∈ R2m+1,

and 2m+ 1 functions as

Hθ(s,x;v) =

(
sdθ(x)− µ1µ2 − σ

s− µ1

dθ(x)− µ2

)
.

To establish theoretical results, we assume that the following conditions hold.

C1. EHθ(s,x;v) ̸= 0 for v ̸= vθ.
C2. Hθ(s,x;v) has continuous first-order derivative with respect to v.
C3. There exist a neighborhood V of vθ and an integrable function M(s,x) with

E[M(s,x)] < ∞ such that

sup
v∈V

∥Hθ(s,x;v)∥3 ≤ M(s,x), sup
v∈V

∥∥∥∥∂Hθ(s,x;v)

∂v⊤

∥∥∥∥ ≤ M(s,x).

C4. E∂Hθ(s,x;vθ)/∂v
⊤ is non-degenerate and E[Hθ(s,x;vθ)Hθ(s,x;vθ)

⊤] is positive
definite.

The condition C1 ensures vθ is identifiable. The conditions C1-C4 guarantee Hθ(s,x;vθ) is well
defined. We define gi(σ) = (si − s̄)[dθ(xi)− d̄θ]− σ. The proof of Theorem 3.1 is similar to the
argument of Zheng et al. (2012). To prove Theorem 3.1, we need the following three lemmas from
Zheng et al. (2012).

Lemma A.1 (Lemma A.1. Zheng et al. (2012)) Under the conditions C1–C4, we have that

max
1≤i≤n

gi(σθ) = op(
√
n).

Lemma A.2 (Lemma A.2. Zheng et al. (2012)) Under the conditions C1–C4, we have that
n−1

∑n
i=1 g(σθ)g(σθ)

⊤ converges in probability to Σ as n → ∞, where Σ is the variance-
covariance matrix of g(σθ) .

Lemma A.3 (Lemma A.3. Zheng et al. (2012)) Under the conditions C1–C4, we have that
n−1/2

∑n
i=1 g(σθ) converges in distribution to N(0,Σ) as n → ∞.

By the Lagrange multiplier method, we have

pi =
1

n

1

1 + λ⊤gi(σθ)
,

where λ satisfies m equations given by

h(λ) :=
1

n

n∑
i=1

gi(σθ)

1 + λ⊤gi(σθ)
= 0.

Let λ = ρw where ρ > 0 and ∥w∥ = 1. Let g∗(σθ) = max1≤i≤n ∥gi(σθ)∥. By Lemma A.1, one
has

g∗(σθ) = op(n
1/2). (A.1)

We have
0 = ∥h(ρw)∥
≥ |w⊤h(ρw)|

≥ ρw⊤Σnw

1 + ρg∗(σθ)
− 1

n
w⊤

n∑
i=1

gi(σθ),

(A.2)
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where

Σn =
1

n

n∑
i=1

gi(σθ)gi(σθ)
⊤.

By Lemma A.3, we have 1/nw⊤∑n
i=1 gi(σθ) = Op(n

−1/2). w⊤Σnw ≥ λmin + op(1), where
λmin > 0 is the smallest eigenvalue of Σ. Combining (A.1) and (A.2), it follows that

∥λ∥ = ρ = Op(n
−1/2). (A.3)

Let li = λ⊤gi(σθ). We have

max
i≤i≤n

|li| = Op(n
−1/2)op(n

1/2) = op(1). (A.4)

Combining (6), (A.3) and (A.4), we obtain,

λ = Σ−1
n

[
1

n

n∑
i=1

gi(σθ)

]
+ op(1). (A.5)

Therefore,
n∑

i=1

λ⊤gi(σθ)gi(σθ)
⊤λ =

[
1√
n

n∑
i=1

gi(σθ)

]⊤
Σ−1

n

[
1√
n

n∑
i=1

gi(σθ)

]
+ op(1). (A.6)

Taking Taylor expansion at λ = 0, we get from Equations (A.5) and (A.6)

−2 logR(σθ) = 2

n∑
i=1

log{1 + λ⊤gi(σθ)}

= 2

n∑
i=1

λ⊤gi(σθ)−
n∑

i=1

λ⊤gi(σθ)gi(σθ)
⊤λ+ op(1)

=

[
1√
n

n∑
i=1

gi(σθ)

]⊤
Σ−1

n

[
1√
n

n∑
i=1

gi(σθ)

]
+ op(1).

(A.7)

By condition C3 and Lemma A.1, the last term in (A.7) is op(1). Thus, we have

−2 logR(σθ)
D−→ χ2

m

by using Lemmas A.2 and A.3.

B EXAMPLE

As an example, we present the use of our approach with the binary logistic regression.

Example B.1 Binary Logistic Regression. In a binary logistic regression, the objective is to predict
the binary label y by the features x. The classifier decision boundary is defined as dθ(x) = θ⊤x.
The sensitive vector is denoted by s, and the goal is to ensure fairness with respect to this sensitive
attribute vector. The logistic regression model assumes a probability distribution as follows,

p(y = 1|x,θ) = 1

1 + e−θ⊤x
, p(y = −1|x,θ) = e−θ⊤x

1 + e−θ⊤x
.

The loss function is defined as L(θ) = −
∑n

i=1 log p(yi|xi,θ). Therefore, the fair logistic regres-
sion by EL can be obtained by solving the following problem,

min
θ∈Θ,λ∈Rm

−
n∑

i=1

log p(yi|xi,θ)

s.t. 2
n∑

i=1

log{1 + λ⊤(si − s̄)[θ⊤xi − x̄]} ≤ χ2
m(α),

1

n

n∑
i=1

(si − s̄)(θ⊤xi − θ⊤x̄)

1 + λ⊤(si − s̄)(θ⊤xi − θ⊤x̄)
= 0.
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C COVERAGE PROBABILITY AND CONFIDENCE INTERVAL

Table 5 shows the coverage probability and confidence interval for the scenarios, θ = (2, 1)⊤ with
σθ = 2, and θ = (3, 2)⊤ with σθ = 7/2 .

Table 5: Coverage probability and confidence interval

θ = (2, 1)⊤ θ = (3, 2)⊤

n CP LB UB AL CP LB UB AL
100 0.933 1.352 2.813 1.461 0.936 2.434 4.846 2.413
200 0.943 1.520 2.557 1.037 0.946 2.708 4.421 1.713
500 0.939 1.684 2.341 0.657 0.939 2.978 4.064 1.085
800 0.943 1.747 2.266 0.520 0.945 3.082 3.941 0.859
1200 0.945 1.791 2.215 0.424 0.943 3.155 3.856 0.701
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