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Abstract

Wearable AI systems, particularly in Human Activity Recognition (HAR), are
becoming integral to applications in healthcare, security, and personal fitness due
to the widespread adoption of smart devices and wearable technologies. However,
the increasing reliance on machine learning models in HAR introduces significant
risks, especially from poisoning attacks that compromise system reliability and
data integrity. This paper explores the potential of Large Language Models (LLMs)
to detect and sanitize poisoning attacks in wearable AI systems. Building on
ongoing research into integrating LLMs within cyber-physical systems, we focus
on sensor-based interactions with the physical world. Our case study seeks to
answer the following question: How effective are LLMs in detecting and sanitizing
poisoning attacks on human activity sensor data? Through zero-shot learning,
we evaluate the performance of models such as ChatGPT 3.5, ChatGPT 4, and
Gemini, providing insights into the viability of LLMs for real-time defense and
data integrity in wearable AI systems.

1 Introduction

Wearable Artificial Intelligence (AI) systems, particularly in the domain of Human Activity Recogni-
tion (HAR), have become increasingly important in applications such as fitness tracking, healthcare
monitoring, and smart environments. HAR systems process time-series data collected from various
wearable sensors and convert this data into recognizable human activities (e.g., walking, sitting,
standing, jogging). These systems rely on sensors like Inertial Measurement Units (IMUs), gyro-
scopes, accelerometers, and magnetometers embedded in devices such as smartphones and fitness
trackers[14].

Despite their wide-ranging utility, HAR systems face significant vulnerabilities, particularly from
adversarial threats like data poisoning attacks. These attacks involve injecting malicious data into the
system, compromising the system’s reliability and accuracy. For instance, Microsoft’s chatbot Tay
was compromised by a data poisoning attack, where adversaries manipulated the system’s inputs to
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generate harmful outputs [14]. Such attacks can be particularly detrimental in critical applications,
making the detection and mitigation of poisoning attacks a crucial challenge in wearable AI systems.

Traditional methods for detecting data poisoning in HAR systems, such as provenance tracking,
have limitations. These approaches typically rely on large volumes of labeled data and retraining,
which are often impractical in dynamic, real-time environments where immediate responses are
needed. Additionally, the effectiveness of provenance-based detection methods heavily depends on
the availability and accuracy of metadata about data origins. In scenarios where this metadata is
missing, tampered with, or incomplete, these methods fail to effectively segment the data or detect
poisoned samples. Moreover, adversaries can exploit these limitations by developing new strategies
that deviate from the expected patterns of data manipulation, further reducing the adaptability of
these traditional approaches.

Given these limitations, recent advancements in AI have opened new avenues for addressing the
challenges of poisoning attacks. One of the most promising approaches involves leveraging Large
Language Models (LLMs), which have demonstrated significant potential in recognizing human
activities from wearable sensor data. Building on these findings, LLMs offer an opportunity to
develop more effective poisoning detection mechanisms for HAR systems.

LLMs excel in zero-shot learning[6], enabling them to detect novel attack strategies without requiring
large labeled datasets or retraining, which is a significant advantage in dynamic IoT ecosystems. Their
ability to process both structured and unstructured data, combined with their contextual understanding
of relationships between data points, makes LLMs well-suited for identifying anomalies, such as
those introduced by data poisoning attacks. Additionally, LLMs’ adaptability to emerging attack
vectors offers a more robust solution compared to traditional methods, particularly in fast-evolving
environments.

This research builds on the recent success of LLMs in recognizing human activities from sensor
data [5] to explore their potential for detecting data poisoning attacks in wearable AI systems. Our
objective is to design a prompt-based framework that leverages LLMs for the classification of sensor
data, such as accelerometer and gyroscope readings, while also identifying instances where action
labels have been tampered with. By using a zero-shot learning approach, this method aims to address
the shortcomings of traditional techniques and provide a scalable, adaptive solution for real-time
poisoning detection in dynamic environments. In a nutshell, contrary to existings works, this paper
presents several significant contributions to advancing the detection of data poisoning attacks in
wearable AI systems.

• Innovative Approach to Poisoning Detection: We propose a novel framework that utilize
the zero-shot learning capabilities of large language models (LLMs) for detecting data
poisoning attacks in wearable sensor systems. This approach eliminates the need for
extensive labeled datasets and retraining, making it particularly effective in dynamic and
real-time environments.

• Advanced Label Sanitization Method: We introduce a new method for label sanitization
by utilizing the contextual understanding of LLMs. This technique identifies and corrects
tampered activity labels in sensor data, promising higher integrity and reliability in Human
Activity Recognition (HAR) systems.

• Addressing Critical Gaps in Existing Solutions: Our research identifies key limitations
in current data poisoning detection techniques, such as scalability issues and reliance on
complete data provenance. We address these challenges by offering a more adaptable and
scalable solution that is resilient to emerging attack strategies in evolving IoT ecosystems.

• Comprehensive Evaluation of LLM Models: We rigorously simulate and evaluate our
proposed methodologies using cutting-edge models like ChatGPT 3.5, ChatGPT 4, and
Gemini, demonstrating the practicality, robustness, and effectiveness of LLMs in real-world
poisoning detection scenarios.

In the remainder of this paper, related work is presented in Section 2. the proposed framework is
described in Section 3. Section 4 discusses the evaluation and results. Finally, Section 5 concludes
the paper.
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2 Related Work

2.1 Data Poisoning Attack

Data poisoning attacks happen when attackers secretly add malicious data samples to the training
dataset or modify the training data by label flipping then a machine learning model trained according
to adversarial data samples. For instance, an attacker can modify the label in a human activity
recognition context based on sensor data. Perdisci et al. [10] create the first poisoning instance in
cybersecurity where attacks against worm signatures. Gupta et al. [4] suggest a novel poisoning
attack based on federated learning that inverts the loss function of a model by creating malicious
gradients at every SGD iteration and they test it using MNIST, Fashion-MNIST, and CIFAR-10
datasets. Shahid et al. [15] propose a label-flipping poisoning attack on wearable sensor data in human
activity recognition and test it on a multi-layer perceptron, decision tree, random forest, and XGBoost.
Additionally, they propose another method based on context-aware spatiotemporal poisoning attacks
in human activity recognition. This attack exploits specific spatiotemporal patterns and conditions
to manipulate the labels [13]. Gan et al. [16] proposes a federated learning-based poisoning attack
that efficiently derives gradients for poisoned data. In our method, we use a label-flipping poisoning
attack on human action sensor data and detect it using large language models with zero-shot learning.

2.2 Defence Mechanisms

Various types of defense mechanisms have been introduced, such as data aggregation [8, 17], data
augmentation [11], and sanitization [2, 12]. In data aggregation, setting the weights of parameters
helps reduce the impact of the poisoned data. An aggregation-based authentication defense technique
called Deep Partition Aggregation (DPA) splits the training set into disjoint subgroups directly.
Sanitization cleans the data before training, while data augmentation adds regularization to decision
boundaries to prevent misclassification of data [3]. Fang et al. [13] suggest two defense strategies
such as maximizing the influence of estimation (MIE) and median-of-weighted-average (MWA).
Andrea et al. [9] proposes a label sanitization mechanism to label flipping data poisoning attacks.
It uses k-nearest Neighbors (k-NN) to ensure that instances close to each other have similar labels,
especially in areas far from the decision boundary. For each data point, the algorithm finds its k
nearest neighbors. If most of these neighbors HHAR the same label and this majority meets a certain
threshold, the data point is relabeled to match.

3 The Proposed framework

Figure 1: Visualization of activity data in Motionsense Dataset[7]:
(a) Standing, (b) Sitting, (c) Walking, (d) Jogging, (e) Upstairs, and
(f) Downstairs.

In this section, we present the design
and implementation of our proposed
method for detecting poisoning at-
tacks, which leverages large language
models (LLMs) with zero-shot learn-
ing. This approach allows for detect-
ing maliciously altered data without
the need for extensive task-specific
training data. By integrating LLMs
with zero-shot learning, our method
can generalize and identify poison-
ing attacks across publicly available
datasets, such as the MotionSense
dataset[7] and the Heterogeneity Ac-
tivity Recognition dataset[1]. Specifi-
cally, we target data poisoning attacks
that affect both inter-class similarities
and inter-class differences for both
datasets.

As shown in Figure 1, activities such
as ‘standing’ and ‘sitting,’ ‘upstairs’ and ‘downstairs,’ or ‘walking’ and ‘jogging’ are closely related.
We group these activities into inter-class similarity categories and specifically target label flips
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between these closely related activities. For instance, we consider label flips from ‘sitting’ to
‘standing,’ ‘upstairs’ to ‘downstairs,’ and ‘walking’ to ‘jogging,’ as well as from ‘walking’ or ‘jogging’
to ‘upstairs’ or ‘downstairs’ for the MotionSense dataset. Additionally, we include label flips between
‘biking’ and ‘walking’ for the HHAR dataset. We analyze 14 activities with inter-class similarities,
considering both directions of these label flips for the MotionSense and HHAR datasets.

For inter-class differences, we consider cases where the label flip involves distinctly different activities,
such as flipping the label from ‘walking’ to ‘standing,’ ‘standing’ to ‘jogging,’ or ‘walking’ to ‘sitting.’
We refer to these as Inter-Class Differences. In the experiment, we analyze 16 activities with
inter-class differences in both datasets.

3.1 Threat Model

Figure 2: Overall Architecture of the Proposed Framework with LLMs
as the Data Poisoning Detection and Sanitization Agent.

Building on these inter-
class similarities and differ-
ences, our threat model as-
sumes the presence of an ad-
versary whose primary ob-
jective is to degrade the ac-
curacy of the action recog-
nition model. The adver-
sary could exploit the inter-
class similarities by sub-
tly flipping the labels be-
tween closely related activ-
ities, making it harder for
the model to detect such
manipulations. Addition-
ally, the adversary may tar-
get inter-class differences
by randomly introducing malicious labels between distinct activities, further corrupting the training
process and dismantling the recognition. We focus on two types of poisoning attacks: the first involves
randomly flipping the labels of certain variables, while the second targets specific variables for label
flipping. An example of this would be actions like ‘sitting’ and ‘standing,’ which are inherently
difficult to distinguish from each other. Our assumption is that the adversary has some form of access
to the raw data within the dataset and can manipulate the training labels in both random and targeted
ways to subvert the human action recognition model.

3.2 LLM-based Poisoned Data Detection and Sanitization

To counter such a threat model, our proposal leverages the benefits of Large Language models
(LLM). We aim not only to detect the subtle inconsistencies and malicious poisoning introduced by
adversaries but also to correct these data based on contextual understanding. The entire process of
this proposed framework is depicted in Figure 2.

In the proposed framework, the poisoned data first goes through an LLM-based module. This module
is responsible to detect poisoned data and sanitize them. This approach offers several benefits,
including early detection and sanitization of the data, and scalability. As we are dealing with sensor
data around activities, a window of the data is fed to the LLM (e.g. 100 continuous data samples)
first. Next, we employ a zero-shot prompt template and large language models (LLMs), including
ChatGPT-3.5, ChatGPT-4, and Gemini, to identify and sanitize the poisoned labels. Once sanitized,
these labels are integrated into the model training phase and are ready for deployment in wearable AI
systems, ensuring the integrity and accuracy of the trained models.

In this process, we create a prompt that includes instructions with a question and integrate sensor data
to identify the flipped activity using zero-shot prompting. Figure 3 illustrates an example of zero-shot
prompting for both the MotionSense dataset [7] and the Heterogeneity Activity Recognition dataset
[1]. Those prompt templates target the dataset’s features and apply them to the actual action data
with the flipped labels. Based on that, large language models can detect the data poisoning attack on
that action data.
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Figure 3: Prompt template for Motion Sense Dataset(left) and Prompt template for HHAR
Dataset(right)

Algorithm 1 represents the method for designing a data poisoning attack and detecting and sanitizing
the labels on human action sensor data. First, in the DataPoisoningModule (DPM), continuous data
samples are randomly selected, and their labels are poisoned. This poisoned data is then sent to the
DataPoisoningDetectionModule (DPDM), where the data poisoning attack is identified. Finally, in
the LabelSanitizationModule (LSM), the labels that were flipped are sanitized.

Algorithm 1 Detecting Data Poisoning Attack and Label Sanitization
Data: D ← Human activity sensor data (A1, A2, . . . , Ai) (MostionSense, HHAR)

P ← Prompt template
L ← LLMs with prompt template P and human activity sensor data(A1, A2, . . . , Ai) (MostionSense,

HHAR)
Result: Detected data poisoning attack and Sanitization of Label

1 Function DataPoisoningModule(DPM)(D):
2 Dli ← Poisoned the labels of sensor data D

return Dli (Send to DataPoisoningDetectionModule(DPDM))
3 Function DataPoisoningDetectionModule(DPDM)(D, Dli , P):
4 Dpi ← Detect the data poisoning attack in human action data D

return Dpi (Send to LabelSanitizationModule(LSM))

5 Function LabelSanitizationModule(LSM)(Dpi , P):
6 Lpi ← Sanitize the label in flipped label in human action data D return Lpi

4 Results and Discussions

4.1 Experimental Setup

4.1.1 Datasets

To facilitate this experiment, we use the MotionSense Dataset [7] and the Heterogeneity Activity
Recognition dataset [1]. MotionSense Dataset was collected with an iPhone 6s kept in the partici-
pant’s front pocket using SensingKit1, which gathers information from the Core Motion framework
on iOS devices. In 15 trials, 24 participants of various genders, ages, weights, and heights completed
6 different activities in the same setting: walking, jogging, upstairs, downstairs, sitting, and standing.
Each sensor data point in the motion sense dataset consists of attitude, which includes three compo-
nents: roll, pitch, and yaw, as well as gravity, rotation, and acceleration, all measured along the x, y,
and z axes. The heterogeneity Activity Recognition dataset was collected through the smartphone
and smartwatch sensors through the 4 smartwatches (2 LG watches, 2 Samsung Galaxy Gears) and 8
smartphones (2 Samsung Galaxy S3 Mini, 2 Samsung Galaxy S3, 2 LG Nexus 4, 2 Samsung Galaxy
S++). And it contains 6 different activities ‘Biking’, ‘Sitting’, ‘Standing’, ‘Walking’, ‘Stair Up’ and
‘Stair down’. Each sensor point in the HHAR dataset consists of accelerometer and gyroscope data,
measured along the x, y, and z coordinates.

1https://www.sensingkit.org/
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Table 1: Comparison of Detection and Label Sanitization in ChatGPT 3.5/4 and Gemini for Inter-Class
Similarities in MotionSense Dataset

Actual Label Poisoned Label ChatGPT 3.5 ChatGPT 4 Gemini

Detection Label Sanitization Detection Label Sanitization Detection Label Sanitization

Standing Sitting Yes Standing Yes Standing Yes Standing

Sitting Standing Yes Sitting or Lying Down Yes Sitting Yes Downstairs or Up-
stairs

Upstairs Downstairs No Downstairs Yes Walking Yes Jogging or Walking

Downstairs Upstairs Yes Walking Yes Downstairs Yes Downstairs

Upstairs Jogging Yes Walking Yes Upstairs No Upstairs

Downstairs Jogging Yes Walking Yes Downstairs Yes Downstairs or Up-
stairs

Jogging Upstairs Yes Downstairs Yes Jogging Yes Walking or Standing

Jogging Downstairs Yes Walking or Jogging Yes Jogging Yes Walking or Standing

Jogging Walking Yes Downstairs Yes Jogging Yes Standing

Walking Jogging Yes Walking Yes Walking Yes Walking or Standing

Walking Upstairs No Upstairs Yes Walking Yes Walking or Standing

Upstairs Walking Yes Jogging Yes Upstairs Yes Jogging

Walking Downstairs No Downstairs Yes Walking Yes Walking or Standing

Downstairs Walking Yes Jogging Yes Downstairs Yes Downstairs or Up-
stairs

Shaded rows indicate that ChatGPT-3.5, ChatGPT-4, and Gemini can correctly detect and sanitize labels.

4.1.2 Poisoning Attack Simulation, and Large Language Models

We randomly select continuous segments of 100 sensor data samples from both the MotionSense and
Heterogeneity activity recognition(HHAR) datasets and systematically flip the labels associated with
each action type. The reason for selecting a 100-sample window is that we are following the method
by Sijie et al. [5], which targets detecting human actions using zero-shot learning. Our primary
focus is on exploring and analyzing the similarities and differences between classes. To detect label
poisoning and assess label sanitization for each action, we apply a zero-shot prompt template, as
illustrated in Figure 1, using ChatGPT 3.5, ChatGPT 4, and Gemini.

4.2 Evaluation using LLMs

For the overall evaluation of ChatGPT-3.5, ChatGPT-4, and Gemini, we employ a comprehensive
set of performance metrics, including accuracy and recall. Accuracy is calculated for both datasets
based on the correct identification of poisoning attacks out of the total number of cases. Recall
measures true positives when the LLM successfully sanitizes the actual label and false negatives
when it fails to do so. These metrics provide a detailed assessment of each model’s ability to classify
and handle poisoning detection, enabling a nuanced comparison of their strengths and weaknesses in
terms of prediction accuracy and correct positive classification. Tables I and II present the results
for LLM models when data poisoning attacks target inter-class similarities in the MotionSense and
HHAR datasets. Tables III and IV represent inter-class differences in the MotionSense and HHAR
datasets, while Table V compares the results for detecting poisoning attacks and label sanitization in
ChatGPT-3.5, ChatGPT-4, and Gemini using the MotionSense and HHAR datasets.

4.2.1 ChatGPT-3.5

Overall, as shown in Table V, ChatGPT-3.5 achieves an accuracy of 0.9 for detecting poisoning
attacks on the MotionSense dataset and 0.83 on the HHAR dataset. However, as indicated in Table
I, ChatGPT-3.5 struggles to identify poisoning attacks when the actual label is "upstairs" and the
poisoned label is "downstairs," as well as when the actual label is "walking" and the poisoned labels
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Table 2: Comparison of Detection and Label Sanitization in ChatGPT 3.5/4 and Gemini for Inter-Class
Similarities in HHAR Dataset

Actual Label Poisoned Label ChatGPT 3.5 ChatGPT 4 Gemini

Detection Label Sanitization Detection Label Sanitization Detection Label Sanitization

Standing Sitting No Sitting No Sitting Yes Stairsdown

Sitting Standing No Standing Yes Sitting No Standing

Stairsup Stairsdown Yes Sitting Yes Stairsup Yes Sitting or Standing

Stairsdown Stairsup Yes Walking Yes Stairsdown Yes Stairsdown

Stairsup Biking Yes Standing Yes Standing Yes Sitting or Standing

Stairsdown Biking Yes Walking Yes Stairsdown Yes Stairsdown or Up-
stairs

Biking Stairsup Yes Standing Yes Biking Yes Stairsdown

Biking Stairsdown Yes Standing Yes Biking Yes Standing

Biking Walking Yes Stairsdown Yes Biking Yes Standing

Walking Biking No Walking Yes Walking Yes Standing

Walking Stairsup Yes Standing Yes Walking No Stairsup

Stairsup Walking No Walking Yes Stairsup Yes Stairsup

Walking Stairsdown Yes Sitting or Standing Yes Walking or Stairsup Yes Standing

Stairsdown Walking Yes Stairsdown Yes Stairsdown Yes Stairsdown

Shaded rows indicate that ChatGPT-3.5, ChatGPT-4, and Gemini can correctly detect and sanitize labels.

are "upstairs" and "downstairs" on the MotionSense dataset. When considering inter-class differences
in the MotionSense dataset, as demonstrated in Table III, ChatGPT-3.5 is more effective in detecting
data poisoning attacks. Thus, ChatGPT-3.5 has difficulty distinguishing between "upstairs" and
"downstairs" activities when these activities are similar within the same class. It also fails to detect
poisoning attacks when the actual label is "standing" and the poisoned label is "sitting," when the
actual label is "sitting" and the poisoned label is "standing," when the actual label is "walking" and the
poisoned label is "biking," and when the actual label is "stairsup" and the poisoned label is "walking"
on the HHAR dataset, considering inter-class similarities as in Table II. However, when considering
inter-class differences on the HHAR dataset, ChatGPT-3.5 only distinguishes between "biking" and
"standing," as shown in Table IV. The recall of ChatGPT-3.5 is 0.20 for the MotionSense dataset
and 0.23 for the HHAR dataset. These values are low because ChatGPT-3.5 fails to sanitize the
labels correctly. However, ChatGPT-3.5 can successfully sanitize the actual label when the action is
"standing" for both inter-class similarities and differences.

4.2.2 ChatGPT-4

ChatGPT-4 achieves an accuracy of 1.0 for detecting poisoning attacks on the MotionSense dataset
and 0.97 on the HHAR dataset, as shown in Table V. While it successfully detects poisoning attacks
on the MotionSense dataset, it fails to identify the actions "standing" and "sitting" on the HHAR
dataset when considering inter-class similarities, as indicated in Table II. The recall for ChatGPT-4 is
1.0 on the MotionSense dataset and 0.93 on the HHAR dataset, as shown in Table V. This indicates
that while ChatGPT-4 can correctly sanitize labels on the MotionSense dataset, it struggles to do so
on the HHAR dataset. This issue arises when ChatGPT-4 is unable to sanitize the label "standing"
when the poisoned label is "sitting," or when the actual label is "stairsup" and the poisoned label is
"biking," as shown in Table II.

4.2.3 Gemini

Gemini achieves an accuracy of 0.9 in detecting poisoning attacks on the MotionSense dataset and
0.93 on the HHAR dataset, as shown in Table V. This occurs when considering inter-class similarities,
as indicated in Table I for the MotionSense dataset. Gemini fails to identify poisoning attacks when
the actual label is "upstairs" and the poisoned label is "jogging." However, when considering inter-
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Table 3: Comparison of Detection and Label Sanitization in ChatGPT 3.5/4 and Gemini for Inter-Class
Difference in the MotionSense Dataset

Actual Label Poisoned Label ChatGPT 3.5 ChatGPT 4 Gemini

Detection Label Sanitization Detection Label Sanitization Detection Label Sanitization

Standing Walking Yes Standing Yes Standing Yes Standing

Standing Jogging Yes Standing Yes Standing Yes Standing

Standing Upstairs Yes Standing Yes Standing Yes Standing

Standing Downstairs Yes Standing Yes Standing Yes Standing

Walking Standing Yes Going Downstairs Yes Walking No Standing

Jogging Standing Yes Walking or Jogging Yes Jogging No Standing

Upstairs Standing Yes Jogging Yes Upstairs Yes Jogging or Walking

Downstairs Standing Yes Walking Yes Downstairs Yes Downstairs or Up-
stairs

Sitting Walking Yes Sitting or Standing Yes Sitting Yes Downstairs or Up-
stairs

Sitting Jogging Yes Standing Yes Sitting Yes Sitting

Sitting Upstairs Yes Sitting or Standing Yes Sitting Yes Walking, Jogging or
Going Downstairs

Sitting Downstairs Yes Sitting or Standing Yes Sitting Yes Jogging or Walking

Walking Sitting Yes Going Upstairs Yes Walking Yes Walking or Standing

Jogging Sitting Yes Walking or Jogging Yes Jogging Yes Walking or Standing

Upstairs Sitting Yes Jogging Yes Upstairs Yes Jogging

Downstairs Sitting Yes Walking Yes Downstairs Yes Downstairs or Up-
stairs

Shaded rows indicate that ChatGPT-3.5, ChatGPT-4, and Gemini can correctly detect and sanitize labels.

class differences, Gemini successfully identifies poisoning attacks when the actual label is "walking"
and the poisoned label is "standing," and when the actual label is "jogging" and the poisoned label is
"standing," as shown in Table III. Gemini struggles to distinguish between "standing" and "sitting,"
as well as between "walking" and "stairsup," on the HHAR dataset when considering inter-class
similarities, as shown in Table II. However, when considering inter-class differences, Gemini is
able to detect data poisoning attacks for all activities on the HHAR dataset. The recall for Gemini
was 0.23 on the MotionSense dataset and 0.30 on the HHAR dataset, as shown in Table V. These
low values indicate that Gemini often fails to sanitize the actual label correctly for both inter-class
similarities and differences. However, Gemini can correctly sanitize the label when the actual label is
"stairsdown" and the poisoned label is "walking" on the HHAR dataset for inter-class similarities,
as shown in Table II. Additionally, when considering inter-class similarities on the MotionSense
dataset, as shown in Table I, Gemini can sanitize the label "standing" when the poisoned label is
"sitting." It also suggests the correct label when the actual label is "walking" and the poisoned label is
"jogging," though it suggests "walking or standing" with only 50 percent identification as "standing."
When considering inter-class differences, as shown in Tables III and IV for both datasets, Gemini can
sanitize the label "standing" when the poisoned labels are other activities on the MotionSense dataset.
It can also correctly sanitize the labels when the actual label is "standing" and the poisoned label is
"biking," when the actual label is "stairsup" and the poisoned label is "standing," and when the actual
label is "sitting" and the poisoned label is "biking" on the HHAR dataset.

Overall, all LLMs, ChatGPT-3.5, ChatGPT-4, and Gemini are able to detect data poisoning attacks
and sanitize labels for inter-class similarities on the MotionSense dataset when the actual label is
"standing" and the poisoned label is "sitting," or when the actual label is "walking" and the poisoned
label is "jogging." They can also do so when the actual label is "stairsdown" and the poisoned label
is "walking" on the HHAR dataset. When considering inter-class differences, all LLMs are able to
detect and sanitize labels when the actual label is "standing" on the MotionSense dataset, as well as
when the actual label is "standing" and the poisoned label is "biking," the actual label is "stairsup"
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Table 4: Comparison of Detection and Label Sanitization in ChatGPT 3.5/4 and Gemini for Inter-Class
Difference in the HHAR Dataset

Actual Label Poisoned Label ChatGPT 3.5 ChatGPT 4 Gemini

Detection Label Sanitization Detection Label Sanitization Detection Label Sanitization

Standing Walking Yes Standing Yes Standing Yes Stairsdown

Standing Biking Yes Standing Yes Standing Yes Standing

Standing Stairsup Yes Standing Yes Standing Yes Stairsdown

Standing Stairsdown Yes Sitting Yes Standing Yes Standing

Walking Standing Yes Stairsup or Stairs-
down

Yes Walking Yes Stairsup

Biking Standing No Standing Yes Biking Yes Stairsdown

Stairsup Standing Yes Stairsup Yes Stairsup Yes Stairsup

Stairsdown Standing Yes Stairsup Yes Stairsdown Yes Stairsdown

Sitting Walking Yes Standing Yes Sitting Yes Standing

Sitting Biking Yes Sitting or Standing Yes Sitting Yes Sitting

Sitting Stairsup Yes Sitting or Standing Yes Sitting Yes Standing

Sitting Stairsdown Yes Sitting Yes Sitting Yes Standing

Walking Sitting Yes Walking Yes Walking Yes Standing

Biking Sitting Yes Walking Yes Biking Yes Standing

Stairsup Sitting Yes Standing Yes Stairsup Yes Sitting or Standing

Stairsdown Sitting Yes Walking Yes Stairsdown Yes Standing

Shaded rows indicate that ChatGPT-3.5, ChatGPT-4, and Gemini can correctly detect and sanitize labels.

Table 5: Comparison of Results for detecting poisoning attack and label sanitization in ChatGPT-3.5
,ChatGPT-4 and Gemini on the MotionSense and HHAR Datasets

Model MotionSense HHAR

Accuracy Recall Accuracy Recall

ChatGPT-3.5 0.90 0.20 0.83 0.23
ChatGPT-4 1.00 1.00 0.97 0.93
Gemini 0.90 0.23 0.93 0.30

and the poisoned label is "standing," and the actual label is "sitting" and the poisoned label is "biking"
on the HHAR dataset.

5 Conclusion

In this paper, we introduced a novel system for detecting data poisoning attacks and sanitizing labels in
sensor-based activity data using zero-shot prompting. We created targeted attacks based on inter-class
similarities, where activities are similar to each other, and inter-class differences, where activities
differ from each other. We developed prompt templates and tested 100 data samples with poisoned
data from the MotionSense and HHAR datasets using ChatGPT-3.5, ChatGPT-4, and Gemini. Among
the results, ChatGPT-4 performed the best overall in detecting data poisoning attacks and sanitizing
labels in a zero-shot manner. Despite these promising results, there are several opportunities for future
work to further enhance the system’s capabilities by exploring one-shot and few-shot prompting.
Additionally, incorporating a broader range of inter-class similarities and differences and comparing
the system with traditional techniques for detection and sanitization, while considering computational
efficiency, would be valuable areas for improvement.
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