Under review as a conference paper at ICLR 2023

FACTORS INFLUENCING GENERALIZATION IN
CHAOTIC DYNAMICAL SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Many real-world systems exhibit chaotic behaviour, for example: weather, fluid
dynamics, stock markets, natural ecosystems, and disease transmission. While
chaotic systems are often thought to be completely unpredictable, in fact there are
patterns within and across that experts frequently describe and contrast qualita-
tively. We hypothesise that given the right supervision / task definition, represen-
tation learning systems will be able to pick up on these patterns, and successfully
generalize both in- and out-of-distribution (OOD). Thus, this work explores and
identifies key factors which lead to good generalization. We observe a variety
of interesting phenomena, including: learned representations transfer much better
when fine-tuned vs. frozen; forecasting appears to be the best pre-training task;
OOD robustness falls off very quickly outside the training distribution; recurrent
architectures generally outperform others on OOD generalization. Our findings
are of interest to any domain of prediction where chaotic dynamics play a role.

1 INTRODUCTION

There are many reasons to be interested in understanding and predicting behaviour of chaotic sys-
tems. For example, the current climate crisis is arguably the most important issue of our time. From
atmospheric circulation and weather prediction to economic and social patterns, there are chaotic
dynamics in many data relevant to mitigate impact and adapt to climate changes. Most natural
ecosystems exhibit chaos; a better understanding of the mechanisms of our impact on our environ-
ment is essential to ensuring a sustainable future on our planet. The spread of information in social
networks, many aspects of market economies, and the spread of diseases, all have chaotic dynam-
ics too, and of course these are not isolated systems - they all interact in complex ways, and the
interaction dynamics can also exhibit chaos.

This makes chaotic systems a compelling challenge for machine learning, particularly representation
learning: Can models learn representations that capture high-level patterns and are useful across
other tasks? Which losses, architectures, and other design choices lead to better representations?
These are some of the questions which we aim to answer. Our main contributions are:

» The development of a lightweight evaluation framework, ValiDyna, to evaluate represen-
tations learned by deep-learning models in new tasks, new scenarios, and on new data.

* The design of experiments using this framework, showcasing its usefulness and flexibility.

* A comparative analysis of 4 popular deep-learning architectures using these experiments.
Table 1: Summary of the generalisation results. S, C and F stand for the tasks of Supervised
featurisation, Classification, and Forecasting. A -~ B and A — B indicate strict (see section

and loose (see section[5.3)) feature-transfer from task A to task B. All runs generalise in-distribution.
v" and — indicate whether or not the model-run pair achieves OOD generalisation in the final task.

model |s € F|S»C F»C S»F C»F|F—=S F—-C C—S C—F
GRU v - v v - - v v v -
LSTM v v o= v v - - v v v —
Transformer | vV v - v v - - N — - _
N-BEATS - - - - - - - - — - _

Under review as a conference paper at ICLR 2023

2 RELATED WORK

Many works have studied factors influencing generalization for deep networks; see Maharaj| (2022)
for review, and |Arjovsky| (2021) for OOD specifically. To our knowledge, ours is the first such
analysis for data exhibiting chaotic dynamics.

Our work relies on that of |Gilpin| (2021)), which presents a dataset of dynamical systems that show
chaotic behaviour under certain conditions. They benchmark statistical and deep-learning models
typically used with time series for a variety of tasks including forecasting and dataset-transfer, and
highlight some connections between model performance and chaotic properties.

Although not directly addressing chaos, the intersection of physics-informed and dynamical sys-
tems literature with representation learning holds relevance for chaotic dynamics, e.g. |[Raissi et al.
(2019) show how to train models whose predictions respect the laws of physics, by employing
partial differential equations as regularisation. [Yin et al.| (2022) propose a framework to learn con-
textual dynamics by decomposing the learned dynamical function into two components that capture
context-invariant and context-specific patterns.

As Al systems are increasingly deployed in the real world, researchers have increasingly noted short-
comings of standard practice (i.e. performance on validation/test set) for comprehensively evaluating
learned representations. An increasing number of evaluation frameworks have been proposed to help
address this, e.g. |Gulrajani & Lopez-Paz| (2021) propose model selection algorithms and develop
a framework (DomainBed) for testing domain/OOD generalisation. Of particular relevance, [Wang
et al.| (2020) discuss the difference between generalisation to new data domains and to new ODE
parameters in the context of dynamical systems. They show that ML techniques generalise badly
when the parameters of a test system/data are not included in the train set (extrapolation).

3 DATA

Our data is generated using dy st s, a Python library of 130+ chaotic dynamical systems published
by |Gilpin| (2021). In dysts, each dynamical system can be integrated into a trajectory with any
desired initial condition, length and granularity, thus allowing to generate an unlimited number of
trajectories. It can also generate trajectories of similar time scales across different chaotic systems.
See Figure [I|for examples and Figure [A9]for further examples.

Figure 1: Sample trajectories from two re-
lated chaotic attractors. Both systems have
two ‘lobes’; Arneodo (left) has a characteris-
tic shell shape with one lobe inside the other,
while Lorenz (right) shows a characteristic
butterfly shape with lobes at an angle to one
another. This is the kind of high-level pattern
experts describe for many real-world chaotic

Hxr __ . . .
Bz _y Gt =oly—x) systems, which we hypothesize representa-
B H—ap—2)—y tion learning systems could pick up on.
L :i—r ar — by — ez + da? 3_; —azy Bz

3.1 THE DATA GENERATION PROCESS

We sample data from each dynamical system by picking different initial conditions. This leads
to trajectories that are sufficiently different from each other, but representative of the underlying
chaotic system. However, dysts relies on numerical ODE solvers to generate trajectories, which
could fail due to numerical instabilities when the initial condition is too extreme. To avoid that, we
generate the default trajectory for each system, compute the component-wise minima and maxima,
and use a percentage p of the resulting intervals to sample random initial conditions for that system.
In addition to the properties of the trajectory, the parameters of this process are the random seed and
the percentage p of the observed initial condition range to be used for sampling.

Under review as a conference paper at ICLR 2023

3.2 OUR DATASETS AND THEIR PARAMETERS

We generate three sets of data for all our experiments: training, validation, and test. The training set
is used to optimise the model weights. The validation set is used for early stopping and learning rate
adaptation (see Appendix [A.3), and to measure in-distribution generalisation. The test set is used to
measure OOD generalisation.

The train and validation sets come from the same data distribution, while the test set comes from
a larger distribution containing the former. All the sets contain trajectories with the same length (5
periods) and granularity (50 points per period). The parameters used to generate the data can be
found in Table[A2] We choose to only include dysts systems of 3 dimensions in the datasets (i.e.
100 out of 131 systems, cf. Table[A3)) to avoid adapting models for variable input dimensions, and
for faster training. The default trajectory from each included system can be seen in Figure

4 THE VALIDYNA EVALUATION FRAMEWORK

The exploratory and comparative nature of this work results in the need to have a common experi-
mental framework for consistency and configurability across experiments, including different tasks
and combinations of losses. We present ValiDyna, an open-source, lightweight framework built on
top of Pytorch and Lightning . It is built with extensibility in mind, so that new model architectures,
metrics and training objectives can be easily added. The framework saves a large amount of code
repetition and complex indexing/references, e.g. in multi-task experiments.

4.1 TASKS

ValiDyna currently includes three tasks on learned representations from with time series data:

1. (Task S) Self-supervised featurisation (aka feature extraction) involves extracting features
from time series such that similar time series have similar features, similarity defined as coming
from the same dynamical system. We use a triplet margin loss, which takes 3 features as input: that
of an anchor time series a, a positive series p similar to it, and a negative (dissimilar) series n:

Ltriplet(aap7 TL) = mam(d(a,p) - d(a’a n) +m, 0)

where d is a distance metric (euclidean in our case) and m is the margin of tolerance, i.e. the
minimum difference between the positive and negative distances for the loss to be non-zero. The
number of features to be extracted and the margin value are the main parameters of this task.

2. (Task C) Classification involves predicting a single discrete class for each time series, in our
case the chaotic system from which it came. We use cross-entropy loss to measure how close the
model’s output is to the true class. The main parameter is the data-dependent number of classes.

3. (Task F) Forecasting, perhaps the most popular task for time-series, involves predicting the
future values of a time series based on its past values. We use the mean squared error (MSE) loss.
Although the number of time steps in the past and in the future need not necessarily be fixed, we do
so due to N-BEATS’ architecture (cf. Section[d.2). Thus, this task is parameterised by the number
T, of time steps that are input to the model, and the number T, of time steps output by the model.

Each of these tasks is implemented in ValiDyna as a separate Lightning module ([Slice]
Featuriser,Classifier and Forecaster) that wraps around a model architecture to allow
for easy training and metric logging. All such modules log the corresponding loss during training
for all data sets, while the Classifier module additionally logs the classification accuracy.

4.2 MODEL ARCHITECTURES

ValiDyna currently includes 4 machine learning architectures often used for temporal data:

* GRU (Cho et al., [2014)) and LSTM (Hochreiter & Schmidhuber, |1997): these Recurrent
Neural Networks (RNNs) are likely the most popular ML architectures to be used for time
series as they allow crunching a series of variable size into a fixed-size representations.

¢ Transformer (Vaswani et al.,2017): an attention-based architecture that achieves state-of-
the-art performance for seq2seq, and has replaced LSTMs in many time series tasks.

Under review as a conference paper at ICLR 2023

* N-BEATS (Oreshkin et al., 2020): a purely deep neural state-of-the-art forecasting archi-
tecture based on residual blocks. Originally written in TensorFlow, we provide a PyTorch
implementation based on that of Herzen et al.| (2021).

The main challenge of our multi-task setup involves adapting the model architectures above for tasks
they were not originally built for. The most straightforward way is to use the architecture (or part of
it) as a feature extractor, and then attach a classification or forecasting head. For RNNs, we consider
the outputs of the last layer as the “features”. For the Transformer, we use its encoder as a feature
extractor, and completely discard the decoder. For N-BEATS, we choose the concatenation of the
forecast neural basis expansions of all blocks as the “features”.

To ensure fair comparisons, the framework makes it easy to ensure a fixed number of features
(NVfeatures) across model architectures. To accomplish this, we insert a simple linear layer with
Nreares OUtpUt units between the vanilla feature extractor and the task-specific heads. These models
are implemented in ValiDyna as sub-classes of a MultiTaskModel with all of the functionality
above, as shown in Figure[2] For further details on the framework, see Appendix [A.T]

5 EXPERIMENTS

Input data

We now present some experiments that help us better under-
stand how different deep-learning models represent chaotic
data, and showcase the ValiDyna framework. For all experi-
ments, we show a table with the metrics achieved by the var-
ious model runs during the last epoch of training, and show | ! p
the corresponding training curves in the Appendix. The con-

figuration values used across experiments are listed in Ap-

pendix [A.3] for the sake of transparency and reproducibility. :

B X Nfeatures

Bx Ty, xD

multi-task model

5.1 RANDOM SAMPLING

In this baseline experiment, we measure the dependence of
model performance on the specific set of trajectories used for
training. We construct 5 subsets (using the random seeds 0
to 4) sampling 75 % of the available trajectories in each set
without replacement. For each sub-sampled set, we train each
model architecture for each of the 3 tasks. The results in Ta-

classification
head

KB X Nejasses /

Figure 2: Schematics of a multi-task

forecasting
head

BxTouxD

ble[2]also serve as a performance baseline for the more com-
plex experiments that follow.

Table [2] shows the following: N-BEATS consistently per-

model. B=batch size, D=space dimen-
sion, T'=number of time steps. Npatural
depends on model hyper-parameters,
but Nfeawres can be chosen. N-BEATS

forms poorly for featurisation and classification (an alternate
featuriser/forecaster decomposition could potentially perform
better); OOD forecasting generalisation is bad overall; GRU, LSTM and Transformer perform better
on the validation set than on the train set (possibly an effect of dropout regularisation).

needs no separate forecasting head.

The training curves in Figure|A2|show that: different seeds result in different training times although
final performance is stable; test curves are noise-like (no improvement) for N-BEATS on all tasks,
and for forecasting with all models.

5.2 STRICT FEATURE-TRANSFER ACROSS TASKS (FROZEN WEIGHTS)

With this experiment, we seek to evaluate the usefulness of transferring learned representations from
one of the three tasks to another. We expect forecasting to rely on implicitly learning the system of a
time series to generate better predictions, and hope that pre-training for tasks that do this explicitly
will be beneficial. Moreover, since classification and featurisation try to achieve very similar goals,
we expect that training a model for one is beneficial for the other.

In each run, we: 1. pre-train a model for one task (the pre-training task); 2. freeze the parameters
associated to the feature extractor (cf. Figure[2)); 3. train for another task (the main task). Note that
featurisation cannot be a main task as freezing the featuriser results in no learning.

Under review as a conference paper at ICLR 2023

Table 2: Random sampling experiment: final metric means and standard deviations aggregated over
the 5 different random sampling seeds. See Table [A4] for the full results per sampling seed. We
highlight the best mean value obtained on each set.

N-BEATS performs poorly for classification and featurisation. GRU is consistently among the best
performers, LSTM is close behind. Validation metrics are equal or better than the train ones for all
models but N-BEATS. Generalisation to the OOD test set is generally good, except for forecasting.

set train validation test set train validation test
GRU 124009 .09+.008 .10+.008 GRU 51432 4.1+£23 2.1e+842.9¢e+7
LSTM A2+£.009 .104+.009 .114.009 LSTM 5245 4434 2.4e+842.3e+3

Transformer .254.005 .214+.001 .214+.002 Transformer 9.1+.94 8.6+.98 1.9e+8+49.3e+6
N-BEATS .484.035 .484+.034 2.60£1.800 N-BEATS 74034 7.2+.34 1.5e+8+1.6e+8

(a) (Task S) Supervised featurisation loss () (b) (Task F) Forecasting loss x 1000 ()

set train validation test set train validation test
GRU 284+.036 .21+.032 .334+.033 GRU 92+1.1 95409 934.89
LSTM 314052 .20+.042 .364.046 LSTM 91+1.5 94412 92412

Transformer .52+.050 .504.055 .65+.052 Transformer 854+1.6 86+2.1 85+2.1
N-BEATS 2.30£.039 2.304+.041 .704.052 N-BEATS 40406 40+.66 39+.75

(c) (Task C) Classification loss ({.) (d) (Task C) Classification accuracy % (1)

Table 3: Feature-freeze experiment: final task metrics as a function of the pre-training task. We
highlight the best metric value obtained for each model-dataset pair.

In general, pre-training on other tasks results in a worse performance. Interestingly, the representa-
tions learned by Transformer during forecasting seem to transfer well to classification. Freezing the
feature extractor entirely seems to prevent learning.

set train validation test
pre-task c S - C S - C S N

GRU 37 355 48 28 27.7 3.8 1.35e+8 1.42e+8 1.6e+8
LSTM 414 40.8 4.75 32.1 32 3.62 1.32e+8 1.42e+8 1.56e+8
Transformer 13 21.4 8.51 12.6 19.8 7.96 1.16e+8 9.48e+7 1.18e+8
N-BEATS 170 236 6.22 169 237 6.36 1.12e+8 8.3e+7 3.88e+7

(a) (Task F) Forecasting loss x 1000 ({.)

set train validation test train validation test
pre-task s F - S F - S F - S F - S F - S F -

GRU 1.64 1.15 .178 1.31 913 .117 1.41 1.08 .267 52.6 65.7 94.7 63.2 73.5 97 61.9 72 95.5
LSTM 1.96 1.45 .354 1.61 1.13 .245 1.76 1.26 .378 44.4 57.4 89.5 54.6 67.8 93.5 53.1 66.3 91.5
Transformer 1.44 .448 529 1.11 471 .448 1.19 .655 .648 55.8 87.9 84.4 66.1 87.5 87.8 64.7 85.6 85.7
N-BEATS 2.28 3.37 2.03 2.28 3.38 2.04 21.6 3.45 43.7 38.7 19.1 46.1 38.6 19 46 37.3 18.5 44.7

(b) (Task C) Classification loss () (c) (Task C) Classification accuracy % (1)

Table3|shows that in almost all cases, pre-training on other tasks results in a worse performance. The
only exception is when pre-training Transformer for forecasting and then classifying, but even then
GRU and LSTM still achieve better classification accuracy with no pre-training. Figure shows
that pre-training for other tasks puts models in a better initial position during the main training,
but then performance stops improving and ends up worse than without pre-training. Given this
initial performance boost, we speculate that learned features are useful across tasks, but freezing the
featuriser is too extreme and prevents learning during the main training phase.

5.3 PROBING FOR OTHER TASKS (FINE-TUNING)

The goal of this experiment is to better understand how training a model for one task impacts its
performance on other tasks. The flexibility of our framework allows to write this experiment in a
simple manner, by implementing a new “prober” metric that actively treats a task module A as if it
were the module for task B, and logs metrics for B.

Under review as a conference paper at ICLR 2023

It is to be noted that to probe for some tasks, a model must have already been pre-trained for that
task. For instance, one cannot probe for classification or forecasting during featurisation training.
However, we can probe for featurisation while training for other tasks, as the featuriser is used
for those tasks (except N-BEATS which does not train its featuriser layer). A side-effect of this
experiment is that it solves the main limitation of the previous one, by allowing the transfer of
features across tasks without freezing any component of the model.

GRU LSTM
task(s) set
10t — clas. —&— train
clas. -> feat. -%- val
— fore. - test
—— fore. -> feat.

g 100 L_\
o
= L TR

10! '

N-BEATS Transformer

10!
«
a
o
(@; 100 o GRS A R — L
= Koz

T 7 5 0
2
107t

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
epoch epoch

Figure 3: Prober experiment: training curves per model and pre/main task combination. A running
average of length 500 (roughly a quarter of an epoch) is used for readability.

The best task performance is obtained when the model is being trained for that specific task. Metrics
of tasks different to the training task seem to stay stable during training.

First, we look at task performance using pre-training, extending the observations of Section [5.2}
Table] show that: the best classification performance is with forecasting pre-training; all models
except N-BEATS perform forecasting at least as well on the train/val sets with classification pre-
training; featurisation loss is generally better with pre-training than without (cf. Table [2a] baseline).

Then, for task probing, Table] shows that the classification metrics are consistently bad during the
training of other tasks: accuracy =~ 1% (the random baseline), and the loss is an order of magnitude
higher than its counterparts on all sets. This is not surprising. Consider C' — F/, as the featuriser is
updated during forecasting training, it is no longer compatible with the classification head.

Considering the evolution of metrics during training, Figure [3] shows that the performance of task
A when training for task B is initially good, but either collapses after one or two epochs, or stays
stable. This agrees with our theory that the featuriser and task-specific heads become incompatible.

In summary, this experiment shows that pre-training on other tasks can be greatly beneficial for
another task, likely because it places the model parameters in a region of space that is easier to
optimise. However, the update of the featuriser weights during training renders the previously-
trained task-specific heads useless as they cannot adapt to the new features that they receive.

Under review as a conference paper at ICLR 2023

Table 4: Prober experiment: final metrics per pre-training task, training task, model and dataset.
The best metric value is highlighted for each model-set pair.

Forecasting features transfer well to classification and the reverse is often true. Classification and
forecasting features transfer decently to featurisation (cf. baseline in Table [2a)).

set | train | validation | test train | validation | test (<-10°)
pre-task | C F - |C F - |CcC F - - C F |- C F |- C F

sk |S S C F[S S C F|s S CF F FCS|FFCS|FFCS
GRU |.08 .09 .7 .84/.06 .07 .7 .84|.07 .08 .71 .85 .46 .46 28 28].36 .34 28 28|16 16 13 16
LSTM |.09 .08 .63 .79/.07 .06 .63 .8 |.08 .08 .64 .81 .42 .42 27 27|33 .32 27 28(16 16 13 17

3.
Transformer|.24 .28 1.2 .81(.19 .23 1.3 .82|.20 .24 1.3 .82 .81 .80 28 28|.76 .75 28 28|13 12 13 9.9
N-BEATS |45 44 1.1 99|45 44 1.1 99(4.12685 1 .60 2 28 42|.61 2 28 42|2.7 8.8 13 13

(a) (Task S) Supervised featurisation loss ({.) (b) (Task F) Forecasting loss x100 (J)
set \ train | validation | test train | validation | test
pretask |- C F|- C F|- C F - C F | - C F| - C F
msk |C S F C|CS FC|[CSFC C SFC|[C S F Cc|[C S F C
GRU 21 47 48 12].154.7 48 .08/.29 4748 .23 938 1 1963963 1 1.01979/946 1.01 1 96.6
LSTM .29 47 4.6 .15/.21 47 4.6 .09|.354.746.21 914 1 1956945 1.01 1.01 97.8/92.8 1 1 965
Transformer|.45 6.3 4.7 .39|.44 6.3 4.7 .37|.63 6.3 4.7 .58 85.6 0.97 1 89.2(87.9 097 1 90.3/85.7 0.97 0.99 88.3

N-BEATS | 2 4.8 47 1.9(2.1 48 47 19|38 48 4.7 74 459 1.84 1 50.2|145.7 1.84 1 50.1/44.3 1.79 0.99 48.5
(c) (Task C) Classification loss ({.) (d) (Task C) Classification accuracy % (1)

5.4 FEW-SHOT LEARNING

With this experiment, we hope to better understand how our models adapt to a distribution shift
consisting of a new environment with a new chaotic system in it. We focus on the dynamical system
SprottE. We consider two sets of systems: a set of 4 toy chaotic systems with simple equations
similar to SprottE’s (Sprottl [1994): SprottA, SprottB, SprottC and SprottD; and a set of 4 systems
with more complex differential equations: Arneodo, Lorenz, Sakarya and QiChen. We show the
default trajectory and differential equations of each system in Figure[A5]

The experiment is set as follows. In some cases, pre-train a model on one set of 4 systems (similar or
different), then add SprottE to the data and train fully. In other cases, train models directly on one set
of 5 systems (SprottE + similar/different). Runs are identified by the similarity of the other systems
(similar vs. different), and by whether SprottE is included (“no” during pre-training, “no—yes” after
pre-training, and “yes” when SprottE is there from the beginning).

Since we care about model performance on SprottE in particular, we introduce new metrics: for
forecasting, MSE loss only on SprottE i.e. S-MSE; for classification, sensitivity i.e. true positive rate
(TPR) and specificity i.e. true negative rate (TNR) of SprottE vs the other classes; for featurisation,
the standard deviation of the features extracted from SprottE series. Note that these metrics can only
be tracked when SprottE is included in the data (i.e. not during pre-training).

Table [5] confirms our choice of similar and different systems: classification accuracy and featurisa-
tion loss are better for different systems (i.e. easier to differentiate), while forecasting loss is better
for similar (i.e. reusable representations). Pre-training does not have a significant impact on classi-
fication or forecasting metrics, but is better for featurisation, in particular for different systems. This
could be due to the triplet margin loss needing more samples to be optimised than the two others.

Figure [A6] mainly shows that convergence is faster for pre-trained models, as expected. There does
not seem to be any relationship between SprottE feature standard deviation and performance.

In this experiment, we also visualise the features learned by the models using 2D PCA projections.
Figure [] shows features learned under the feature extraction task for the 4 different architectures.
Full plots for all settings in Figure[ATI]

Under review as a conference paper at ICLR 2023

Table 5: Few-shot learning experiment: final metrics per training task, system similarity (= or #),
and SprottE status, averaged over the train/validation/test sets. See Table [A3|for the full table.
Forecasting MSE is significantly better for the similar systems. Featurisation loss and classification
accuracy are better for the different systems.

SprottE? no no—yes yes no no—yes yes
systems £ = #£ = £ = 7+ = # = + -
~ T T~ T T 7 MSE MSE MSE S-MSE MSE S-MSE MSE S-MSE MSE S-MSE

GRU 27 .74 26 76 4479 33 1.1 23 1.6 .78 1.3 1.8 1.1 .87 1.1
LSTM 38 2 29 57 8116 44 12 22 14 1.1 1.7 27 1.6 1.1 1.3
Transformer .63 3 42 23 5424 2 54 1.7 94 7 1.2 24 1.4 .98 1.3
N-BEATS 2738 2 45 5241 1.8 .68 2.1 14 63 97 22 14 91 1.2

(a) (Task S) Feat. loss x100 ({) (b) (Task F) Forecasting metrics x 1000 ({.) (S-MSE = SprottE MSE)

SprottE? no—yes yes no no—yes yes
systems ~— # = # = F = + = £ —
o a acc acc TNR TPR acc TNR TPR acc TNR TPR acc TNR TPR acc

GRU 1.10 .080 1.5 0.47 100100 100 100 100 100 100 99 100 100 100 100 100 100
LSTM 0.61 0.68 1.4 0.91 100 97 100 100 100 100 100 98 100 100 100 100 100 100
Transformer 0.88 0.45 0.8 0.81 100 98 100 100 100 100 100 99 100 100 100 100 100 100
N-BEATS 1.50 1.60 1.8 0.44 99 97 99 93 97 100 99 98 100 97 95 100 99 94

(c) (Task S) Featurisation std (d) (Task C) Classification metrics % (1)

similar | $7 = no -> yes (r = 57.8%) similar | 5 = no -> yes (r = 59.3%) similar | $? = no -> yes (r = 99.9%) similar | 52 = no -> yes (r = 78.0%)

LS™ GRU NBEATS TRANSFORMER

=10 =05 00 0.5 1.0 15 -2 -1 o 1 2 -2 -1 0 1 i -4 -2 0 2 a

Figure 4: Comparison of the features extracted by the 4 different architectures. Note the effective
low dimensionality of the N-BEATS features compared to the others. In these examples and in
general, recurrent architectures LSTM and GRU appear to have the most separable learned features.

A very noticeable result is that the two principal axes of the PCA projections of the features gener-
ated by N-BEATS always explain at least 95% of the feature variance (we call this value 'r’). We
speculate that, although the feature extractor of N-BEATS has an output dimension of 32, its effec-
tive number of degrees of freedom (i.e. its effective capacity) is much lower, around 2, which would
explain why features for all systems are mixed in a linear or “V” shape of most PCA projections.

5.5 COMBINING TASK LOSSES

In this experiment, we explore optimising the three task losses simultaneously. Concretely, we
implement a new S1iceModule whose loss is a weighted mean of all task losses. In particular,
we consider forecasting as a main task, and use the other losses to explicitly enforce the learning of
a series’ system, by setting the weights Lo = oclvsg + (1 — @) (Lusiplet + Leross)-

Figure [AT0]shows no evident benefit from enforcing shared representations across tasks.

6 LIMITATIONS AND FUTURE DIRECTIONS

Limitations: Despite ValiDyna’s configurability and extensibility, it has some limitations inherent
in choosing an experimental scope:

* It is built with time series data at its core, and would not work with other types of data such as
static images (e.g. forecasting is time series-specific).

* While adding new architectures is simple, adapting new models to multi-task learning requires
some expertise.

Under review as a conference paper at ICLR 2023

* There are many ways to extract features for some of the model architectures (e.g. for N-BEATS),
and the current version only support a single scheme per model architecture.

* It only supports training models on a single dataset, and has no way of distinguishing between
different training environments corresponding for example to different ecosystems.

There are also limitations in our experiments:

* They were done for a particular timescale of data, and might differ substantially when consider-
ing coarser or finer granularities. This is a challenge in general for climate data as some events
occur in large timescales and others in smaller ones, and climate models must account for both.

¢ Qut-of-distribution generalisation was only explored in the context of extrapolation initial con-
dition of trajectories.

¢ Although the dysts library allows generating noisy trajectories, the data used in the experiments
is free of noise, while real-world measurements often contain noise.

Future directions: Apart from evaluating further architectures and adding new losses to the existing
framework, there are a few ways in which we would like to expand our framework,. While initial
experiments with meta-learning were not promising (this is why we did not focus the framework
around them), adding the ability to do multi-dataset losses such as meta-learning losses is something
we would like to pursue. We hypothesize that the benefits of this approach might require massively
multi-environment settings to show. We would also like to exploring generative modelling and the
role it can play in encouraging good representations.

We would also like to explore further experimental settings, such as mixing different data timescales,
dynamical system parameters (e.g. changing 3 in Lorenz), and trajectory noise levels.

Finally, an area of ongoing work is to perform a comparison with real ecological measurements and
see how the results differ from the synthetic case.

7 CONCLUSION

In summary, we present an experimental analysis of factors influencing generalization for data ex-
hibiting chaotic dynamics. To do so, we built a configurable and extensible model evaluation frame-
work called Validyna. Using Validyna, we constructed and ran five experiments — random sam-
pling, transfer learning with frozen weights, fine-tuning with unfrozen weights (probing), few-shot
learning, multi-task loss — to better understand the quality of representations learned by four pop-
ular machine learning architectures — GRU, LSTM, Transformer, N-BEATS — on three tasks —
feature extraction, classification, forecasting — for in- and out-of-distribution generalization.

Takeaways. Summarizing our extensive experiments, the main takeaways from our work are:

 All four model architectures generalise poorly to an unseen data distribution for the forecasting
task. This is likely due to the chaotic nature of our data.

* QOur feature extractor for N-BEATS performs very poorly, while the others perform better.

* All four model architectures are robust to data sub-sampling in the sense that their final perfor-
mance is stable, but training times can vary considerably.

» Dropout seems to be an effective regularizer for in- and out-of-distribution generalisation.

* Learned representations can transfer well across tasks, especially from forecasting to classifica-
tion, but not when the feature extraction module is frozen.

* There is no straightforward relationship between optimising for the triplet or cross-entropy loss,
although they try to achieve a very similar goal.

* The cross-entropy loss and the classification accuracy of a model do not necessarily follow each
other when models are optimised for other losses.

 There is no evident benefit from enforcing shared representations across tasks.

These results provide insights and starting points for future research in representation learning of
chaotic dynamical systems.

Under review as a conference paper at ICLR 2023

REFERENCES

Martin Arjovsky. Out of Distribution Generalization in Machine Learning. PhD thesis, New York
University, 2021.

KyungHyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
of neural machine translation: Encoder-decoder approaches. CoRR, abs/1409.1259, 2014. URL
http://arxiv.org/abs/1409.12509.

William Gilpin. Chaos as an interpretable benchmark for forecasting and data-driven modelling.
arXiv:2110.05266 [nlin], October 2021. URL http://arxiv.org/abs/2110.05266.
arXiv: 2110.05266.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
1d=10dXeXDoWt I,

Julien Herzen, Francesco Lissig, Samuele Giuliano Piazzetta, Thomas Neuer, Léo Tafti, Guillaume
Raille, Tomas Van Pottelbergh, Marek Pasieka, Andrzej Skrodzki, Nicolas Huguenin, Maxime
Dumonal, Jan KoScisz, Dennis Bader, Frédérick Gusset, Mounir Benheddi, Camila Williamson,
Michal Kosinski, Matej Petrik, and Ga&l Grosch. Darts: User-Friendly Modern Machine Learning
for Time Series. arXiv:2110.03224 [cs, stat], October 2021. URL http://arxiv.org/abs/
2110.03224. arXiv: 2110.03224.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9:1735—
80, 12 1997. doi: 10.1162/neco0.1997.9.8.1735.

Tegan Maharaj. Generalizing in the Real World with Representation Learning. PhD thesis, Montreal
Polytechnique, 2022.

Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-BEATS: Neural basis
expansion analysis for interpretable time series forecasting. arXiv:1905.10437 [cs, stat], February
2020. URL http://arxiv.org/abs/1905.10437. arXiv: 1905.10437.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equa-
tions. Journal of Computational Physics, 378:686-707, February 2019. ISSN 00219991. doi:
10.1016/j.jcp.2018.10.045. URL https://linkinghub.elsevier.com/retrieve/
pii1/50021999118307125.

J. C. Sprott. Some simple chaotic flows. Phys. Rev. E, 50:R647-R650, Aug 1994. doi: 10.
1103/PhysRevE.50.R647. URL https://link.aps.org/doi/10.1103/PhysRevE.
50.R647.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. arXiv:1706.03762 [cs], De-
cember 2017. URL http://arxiv.org/abs/1706.03762. arXiv: 1706.03762.

Rui Wang, Danielle Robinson, Christos Faloutsos, Yuyang (Bernie) Wang, and

Rose Yu. Learning dynamical systems requires rethinking generalization. In
NeurIPS 2020 Workshop on Interpretable Inductive Biases and Physically Struc-
tured Learning, 2020. URL https://www.amazon.science/publications/

learning-dynamical-systems—-requires—-rethinking-generalization.

Yuan Yin, Ibrahim Ayed, Emmanuel de Bézenac, Nicolas Baskiotis, and Patrick Gallinari. LEADS:
Learning Dynamical Systems that Generalize Across Environments. arXiv:2106.04546 [cs, stat],
February 2022. URL http://arxiv.org/abs/2106.04546. arXiv: 2106.04546.

10

http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/2110.05266
https://openreview.net/forum?id=lQdXeXDoWtI
https://openreview.net/forum?id=lQdXeXDoWtI
http://arxiv.org/abs/2110.03224
http://arxiv.org/abs/2110.03224
http://arxiv.org/abs/1905.10437
https://linkinghub.elsevier.com/retrieve/pii/S0021999118307125
https://linkinghub.elsevier.com/retrieve/pii/S0021999118307125
https://link.aps.org/doi/10.1103/PhysRevE.50.R647
https://link.aps.org/doi/10.1103/PhysRevE.50.R647
http://arxiv.org/abs/1706.03762
https://www.amazon.science/publications/learning-dynamical-systems-requires-rethinking-generalization
https://www.amazon.science/publications/learning-dynamical-systems-requires-rethinking-generalization
http://arxiv.org/abs/2106.04546

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 ADDITIONAL DETAILS ON VALIDYNA EVALUATION FRAMEWORK
A.1.1 DATA PROCESSING

Entire trajectories cannot be fed to the models due to N-BEATS’ limitation of requiring a fixed
number of input and output time steps 7j, and Toy. Also, task-specific data i.e. positive and negative
examples for the (S) featurisation task need to be constructed. And, although the generation process
is transparent to the different scales of system values (cf. Section[3.T)), the generated trajectories still
need to be scaled.

To address these issues, we: 1. compute the component-wise minima and maxima of the train
trajectories of each system; 2. use them to scale the trajectories per system in all 3 sets; 3. map each
(scaled) trajectory of length IV into the list of all the possible contiguous slices of length Tj, + Toy; 4.
split each such slice in two parts of length 7j, and Ty,; 5. attach the system name which generated it,
encoded as a number. Thus, a single data sample in our setting is a triplet (Xj,, Xou, ¢) i.e. model
input for all 3 tasks, the true future for forecasting, and the class label for classification.

In addition, given a batch of anchor time series, the Featuriser module can retrieve a batch of
one positive and one negative example per anchor.

A.1.2 FRAMEWORK ARCHITECTURE, EXTENSIBILITY

Introducing a new multi-task model to the framework is straightforward, as it suffices to implement
anew MultiTaskModel class and adapt the model to all available tasks. Adding new metrics to
be tracked for specific tasks or experiments is also very straightforward, and the process is briefly
explained in the experiments of Sections and Creating variations of current tasks can also
be done quickly, e.g. adding a Forecaster that optimises the mean average error (MAE) instead of
the MSE is trivial. However, introducing a new task can be complicated, as it requires: adapting all
existing multi-task models to it; implementing the core training objective in a new S1iceModule;
adapting MultiTaskDataset and the data processing pipeline if new kinds of data are necessary.
See Figure [AT]for a high-level class diagram.

A.2 EXAMPLE OF EXPERIMENT CODE

With our framework, one run for the strict feature-transfer experiment could be simply written as:

Python 3.9 pseudocode

model: MultiTaskModel = GRU(...)
dataset: MultiTaskDataset =

Pre-train for classification
classifier = Classifier (model)
classifier.fit (dataset)

Freeze feature extractor weights
model. freeze_featurizer ()

Train model for forecasting
forecaster = Forecaster (model)
forecaster.fit (dataset)

A.3 EXPERIMENTAL SETTINGS

We use the values Tj, = Ty, = 5 for data processing and for the models. For each dataset, we
shuffle the data and use batches of size 1024. After every training batch, we compute the metrics of
interest for a random validation and test batch. All models are optimised using PyTorch’s AdamW
optimiser, with a starting learning rate of 0.01 that is divided by 5 when the validation loss does not
improve, with a patience of 1 epoch. All training procedures include early stopping, so that training
stops when the validation loss stops decreasing, with a patience of 3 epochs. A maximum of 100

11

Under review as a conference paper at ICLR 2023

MultiTaskModel < T 1
n_in: int - MultiRNN ¢ MUIELSTM MultiNBEATS MultiTransformer
spalcefdlrr_\. int beint n_features: int n_out: int n_features: int
n_c ajses. Ln ay te['"] forecaster: maybe[head] lassifier: maybe[head] forecaster: maybe[head]
:feuaiurp;y. ne'llamtlye[int] classifier: maybe[head] MultiGRU classifier: maybe[head]
- -y Custom N-BEATS code
K K Uses PyTorch RNNs PyTorch's Transformer
Handles multi-task logic

MultiTaskDataset
Contains at least one

for train and validation

Wraps
around a

SliceModule

abstract class

instantiable
class

—extends—y,

sample = (in, out, class) Legend:

Data processing
Positive and negative sampling

SliceForecaster

abstract loss()
metrics = loss

A

Model training logic SliceClassifier
Data scaling

Metric logging

SliceFeaturizer

loss = cross_entropy

loss = mse metrics += accuracy

loss = triplet_margin

Figure Al: Class diagram of the ValiDyna Framework.

training epochs is allowed, but no training run attains it. Each model training is run deterministically,
by setting Lightning’s random seed to 2022.

We also want to make sure that our models have a comparable representative power, and we use the
number of parameters as a proxy. Table[AT]|shows the number of parameters obtained for each model
using the hyper-parameters that follow. All models use the value Nieyures = 32. All forecasting and
classification heads in our models are simple feed-forward neural networks with 3 hidden layers of
width equal to Neaures = 32, and ReLU activations after each hidden layer. For N-BEATS, we use
4 stacks of 4 blocks each, a neural-basis expansion dimension of 4, and the fully-connected network
of each block has 4 hidden layers of 8 units each and ReLU activation. For the two RNNs, we use
a dropout probability of 0.1 and 2 layers, with GRU having 30 hidden units per layer and LSTM
26. The Transformer uses 4 encoder layers, each having a feed-forward dimension of 6, as well 4
attention heads, an embedding dimension of 16, and a dropout probability of 0.1 in the feed-forward
and self-attention networks. The margin of the triplet loss is equal to the default of 1.

Table A1: The number of parameters of each model architecture as used in the experiments. We
consider the number of parameters used in the featuriser and in total (including any task-specific
heads). The total parameter count is very stable (around 11-12k), while there is slightly more vari-
ability for the featuriser one (around 7-9k).

model GRU LSTM Transformer N-BEATS
params (featuriser) 8730 8840 6816 7856
params (total) 11933 11915 12079 11136

B EXTRA TABLES

Table A2: Parameters used to generate trajectories for each data set. Theoretically, the trajectories
from the train and validation sets come from the same distribution, while those from the test set
come from a larger distribution containing the other. *see Section@

points

parameter random seed # trajectories p* # periods # veriod H points
train 0 80 5% 5 50 250

validation 1 20 5% 5 50 250
test 2 30 10 % 5 50 250

12

Under review as a conference paper at ICLR 2023

Table A3: The distribution of attractor dimensions in dysts. Most attractors have dimension 3.

dimension 3 4 5 6 10
count 100 19 2 3 7

Table A4: Random sampling experiment: full final metrics per random sampling seed.

set \ train validation test

| |
seed |0 1 2 3 4]0 1 2 3 4|0 1 2 3 4

GRU 103 113 .116 .116 .128|.0812 .0917 .092 .0916 .103|.0897 .0991 .102 .1 .113
LSTM |.128 .107 .124 .119 .131| .105 .0838 .101 .0949 .107| .114 .0936 .109 .106 .115
Transformer|.243 .257 .255 .255 .255| .207 .203 .206 .206 .206| .216 .209 .213 213 213
N-BEATS |.455 .529 .444 495 46| .458 531 .447 497 464|292 2.19 5.37 526 1.8

(a) (Task S) Supervised featurisation loss (J.)

set train | validation | test

0 1 2 3 4]0 1 2 3 4] 0 1 2 3 4

GRU 5.12 494 571 496 4.98(4.06 3.9 4.49 4.01 4.02|1.96e+8 1.72e+8 2.36e+8 2.36e+8 2.36e+8
LSTM |5.34 4.64 5.07 5.94 4.89| 4.2 3.65 3.98 4.54 3.87|2.36e+8 2.36e+8 2.36e+8 2.36e+8 2.36e+8
Transformer|9.14 10.7 8.86 8.36 8.36|8.65 10.3 8.39 7.86 7.86|1.89¢e+8 2.03e+8 1.82e+8 1.82e+8 1.82e+8
N-BEATS [6.79 6.97 6.85 7.65 6.96|7.07 7.13 7.02 7.83 7.14|4.12e+8 5.49e+7 3.46e+7 1.6e+8 7.84e+7

seed

(b) (Task F) Forecasting loss ()

set train validation test

| | |
seed | O 1 2 3 4]0 1 2 3 4]0 1 2 3 4

GRU 274 274 332 .232 .265|.206 .198 .259 .171 .203| .32 .297 379 3 .336
LSTM |.307 .317 .35 .366 .232|.223 241 .267 .28 .172|.347 .381 .394 .387 .283
Transformer|.558 488 .49 .598 .49 |.486 .549 .443 557 .443].642 .7 .603 .711 .603
N-BEATS |2.34 2.23 2.29 2.29 2.29|2.36 2.25 2.3 23 2.3|147 101 33.8 33.8 33.8

(c) (Task C) Classification loss ()

set train validation test

| | |
seed |0 1 2 3 4[]0 1 2 3 4]0 1 2 3 4

GRU 919 918 901 .93 .921|.947 .948 .932 .956 .948|.932 933 916 .94 .932
LSTM |.908 .906 .896 .891 .93 | .94 .938 .93 .926 .956|.924 .922 914 .91 .942
Transformer|.836 .855 .859 .823 .859|.866 .84 .883 .842 .883|.847 .823 .866 .824 .866
N-BEATS |.396 413 401 401 .401|.394 413 .402 .402 .402|.384 .403 .387 .387 .387

(d) (Task C) Classification accuracy (random baseline of 0.01) (1)

13

Under review as a conference paper at ICLR 2023

Table A5: Few-shot learning experiment:

full final metrics.

SprottE? no no->yes

yes

attractors = =

4 4

£

acc TNR
.996
.98

.996
982

995
979
997 1
975

.993
974

acc
999
998

993
.996

999
998
998
991

metric

GRU
LSTM
Transformer
N-BEATS

GRU

Co LSTM
validation
Transformer

N-BEATS

GRU .994
LSTM .996
Transformer .996
N-BEATS .993

acc TNR TPR
997 1 1 1

973 1 1 .999
981 1 1 .998

972 995 932 978

997 1 1 1
97 1 1 1
983 1 1 999 999 1

966 .993 .93 971 .995 .992

995 999 997 998 1 .997
969 999 997 998 1 .995
977 1 997 998 1 .995 .992
961 982 925 962 995 .99 974

acc TNR TPR

999 .999
999 .997
999 .999
997 .994

998 .999
997 .998

train

— e e e

test

999 .

999 .
999 .
997 .
998 .

TPR
1 1 1
1 998 1

1 998 1
953

1 1
1 999 1
1 .999
948

998 1
996 1
99 1
934

.998
999 1

999

acc TNR TPR

1
1
1

999 1
997

.99

acc
998
997
.997

993 951

998
998
997
945

996 .994
997 .993
995 .993

99

936

(a) (Task C) Classification metrics (1)

SprottE? no no->yes

yes

attractors + = +

#

metric MSE MSE MSE S-MSE MSE S-MSE

MSE

S-MSE

MSE S-MSE

GRU
LSTM
Transformer
N-BEATS

GRU

L. LSTM
validation
Transformer

N-BEATS

GRU
LSTM
Transformer
N-BEATS

.00196 .00145
00259 .00148
.000606 .000567
.000624 .00062

.0024 .00119
.00356 .00119
.00137 .000577
.00194 .000808

.00568 .000697
.00705 .000853
.00392 .000463 .00306 .00186 .000946 .00277
.00289 .00061 .00325 .00258 .000781 .00194

.0014 .00139
.00142 .00132
.00065 .000553
.0009 .000721

.00148 .00058
.00164 .000548
.0015 .000396
.00207 .000813

.00404 .00282
.00343 .00241

.000923
.00129
.000592
.000482

.000545
.000845
.000566
.000618

.000859
.00116

.000974
.00146
.000507
.000438

.000363

.000648

.000382
.00052

.00245
.00308

train

.001

test

.0011
.00181
.00106

.000888

.00194
.00198
.00207

.00317
.00438
.00419
.00375

.000991
.00162
.000915
.000694

2 .000372
.000737
.000686
.000868

.00197
.0025
.00258
.00268

.0011

.00103
.00124 .00112
.000953 .
.000718 .

.000686 .
.000881 .
.00087
.000966 .

.000822
.00103
.00111

000791
000648

000364
000518
.000485
000768

.00191
.00229
.00249
.00104 .00228

(b) (Task F) Forecasting metrics ()

SprottE? no no->yes

yes

attractors

£ = +

#

L L L o

.00547 .0022 1.07
.0163 .00152 .605
.0265 .00682 .853
.0249 .00823 1.55

.00398 .00166 1.08
.0178 .00115 .607
.026 .00133 .891
.053 .0154 1.55

.0128 .00405 1.08
.027 .00596 .608
Transformer .00648 .0363 .00454 .891 .0271 .456
N-BEATS .0325 .037 .0362 1.55 .0463 1.56

L o

.00568 .795
.00351 .673
.0215 .442
.0339 1.57

.00626 .803
.0036 .685
.0199 454
.0552 1.56

.0108 .803
.01 .685

metric

GRU .00254

LSTM .00271

Transformer .00954
N-BEATS .019

GRU .00161

validation LSTM = 00244
Transformer .00292

N-BEATS .0293

GRU .00395
LSTM .00632

train

test

L o

.00191 1.49
.00545 1.37
.00952 .769
.0389 1.82

.0014 1.5
.00399 1.37
.00211 .821
.0597 1.82

.0098 1.5
.0148 1.37
.00462 .821
.0576 1.82

L

.0062
.0123
0221
.0356

.0056
.0153
.0231
.0468

012

.0202
0255
.0402

g

466
.903
788
444

466
908
818
443

467
.907
819
443

(c) (Task S) Supervised featurisation metrics (|, L)

14

Under review as a conference paper at ICLR 2023

C EXTRA FIGURES

GRU LSTM
seed set
10t — 0 —e— train
—iL —-%- val
— 2 @ test
—13
H —a
% 10°
2
107t
N-BEATS Transformer
10!
0
8
% 10°
g
107!
0 5 10 15 20 0 5 10 15 20
epoch epoch
(a) (Task S) Supervised featurisation loss ({)
GRU LSTM
105 .'"5‘71-/""“‘“'va?!'fe:é;'-'usr.v’*'«s-.w"ﬁ:f g P A e i Pl
103 seed set
" — 0 —&— train
K — 1 -%- val
u —2 - test
2 10t — 3
— 4
10_1 L
=5 -
N-BEATS Transformer
. W et o B I
103
&
= 10t
107t
o ——
0 5 10 15 20 0 5 10 15 20

epoch epoch
(b) (Task F) Forecasting loss ({.)

Figure A2: Random sampling experiment: training curves. A running average of length 700
(roughly half an epoch) is used for readability.

The random seeds don’t seem to impact the final performance of the models, but they do impact the
training times and speed of convergence.

15

Under review as a conference paper at ICLR 2023

GRU LSTM
seed set
102 — 0 —&— train
=ik —-%- val

ﬁ —_—i2 - test
o — 3
>
g 10! — 4
%
2
o
© 100

Transformer

—
o
<9

=
%

Cross-entropy loss

=
o
°

0 5 10 15 20 25 30 0 5 10 15 20 25 30
epoch epoch

(c) (Task C) Classification loss (J)

LST™M

1.0

o
©

o
o

= seed set
0 —o— train
-%- val
- test

°
'S

Classification accuracy

=]
[N)

A wWN R

0.0

N-BEATS Transformer
1.0

o
©

o
o

I
IS

Classification accuracy

o
)

0.0

0 5 10 15 20 25 30 10 15 20 25 30
epoch epoch

o
v

(d) (Task C) Classification accuracy (1)

Figure A2: Random sampling experiment: training curves (cont.)

16

Under review as a conference paper at ICLR 2023

GRU LSTM
1
10°
3
g * pre-training task set
ﬁ — none —&— train
g —— featurization - val
2 10t !
— classification m test
107!
Transformer
10°
10°
2
s
]
= 10t
f=——=s

o ex——ax— g, . e P

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
epoch epoch

(a) (Task F) Forecasting loss ({.)

GRU LSTM
10%
pre-training task set
— none —e— train
—— featurization -#- val
92 —— forecasting - test
o 10t
>
2
g
=
@
S 100
S
107!
N-BEATS Transformer
10%
2
o 10!
>
2
2
€
@
g 10°
S
1071
0 2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 22
epoch epoch
(b) (Task C) Classification loss ({.)
LSTM
1.0
.08
g
3
S 06
5
c
s
S04 (
B
k] pre-training task set
©o2 — none —e— train
—— featurization ~#- val
00 —— forecasting e test
N-BEATS Transformer
1.0
08 i
L0
g
5
506
®
s I
gos e = s
k:
5]

P
o
0 2 4 6

8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 22
epoch epoch

(c) (Task C) Classification accuracy (1)

Figure A3: Feature-freeze experiment: training curves for the classification and forecasting tasks.
A running average of length 500 (roughly a quarter of an epoch) is used for readability.
Pre-training seems to help at the start of training, but performance quickly plateaus. This is likely
due to the frozen featuriser weights preventing learning from happening.

17

Under review as a conference paper at ICLR 2023

GRU LSTM

task(s)

clas.

clas. -> feat.
fore.

fore. -> feat.

10t

Triplet loss

S

Transformer

set
—o— train
-%- val
- test

Triplet loss

107!
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
epoch epoch
(a) (Task S) Supervised featurisation loss ({)
GRU LSTM
i
|
10°
H
10° task(s) set
g — clas.-> fore. —@— train
w —— fore. -%- val
2 0! —— fore. ->clas. --®- test
—— fore. -> feat.
Transformer
10°
10°
@
°
w
2 00
Aﬁ*\x &\A
107! R :
D ———. L-__x___x

ex———-gx-

-ex-

0O 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24

epoch epoch

(b) (Task F) Forecasting loss ({)

Figure A4: Prober experiment: training curves per model and pre/main task combination. A running

average of length 500 (roughly a quarter of an epoch) is used for readability.

The best task performance is obtained when the model is being trained for that specific task. Metrics

of tasks different to the training task seem to stay stable during training.

18

Under review as a conference paper at ICLR 2023

GRU LSTM
task(s) set
10? clas. —&— train
clas. -> feat. —-%- val
o clas. -> fore. - test
° fore. -> clas.
2 10*
e
=]
[=4
@
2
o 100
o
107!
Transformer
102
2
2
2 10!
S
€
[
2
o 10°
o
107t
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
epoch epoch
(c) (Task C) Classification loss ()
LSTM
1.0
.08 3
9 ;
I
3 Iﬂ/ task(s) set
806 i — clas. —&— train
_5 / —— clas. -> feat. —-%- val
_'E 0.4] — clas. ->fore. --®- test
£ —— fore. -> clas.
]
o
© 0.2
0.0 [
N-BEATS Transformer
1.0
- g,
sdpesdm
o
0.8 .;i
[
I
5
g06
3 I/
2
S o4 i
?‘vﬁ’
©
©o.2
0.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
epoch epoch

(d) (Task C) Classification accuracy % (1)

Figure A4: Prober experiment: training curves (cont.)

19

Under review as a conference paper at ICLR 2023

SprottE

9z _ 1 _
5 =1-—4x
(a) The SprottE systems.
SprottA SprottB SprottC SprottD

oz ox

ot — Yc ot — Yz
= = —T+yz %9 — g — QW — gy
ot Y ot Y ot Y
0z _ 1 _ .2 0z _ 1 _ 0z _ 1 _ 2
S=1-y 5 =1—-ay F=1—-x
(b) The set of systems similar to SprottE.
Arneodo Lorenz QiChen Sakarya

oz __ o
&=y E_U(yfx) 5t = aly — o) +yz %:ax-i-hy-i-syz
@ =y %:x(p—z)—y W —crty—az W = by — pr+ quz
& = —ax— by —cz +dr? % = gy — Bz G =zy—bz 5 =cz—ray

(c) The set of systems different to SprottE.

Figure AS: Few-shot learning experiment: The set of 9 systems used in the experiment. The default
trajectory of 500 points per period and 10 periods is shown for each. Each trajectory component is
re-scaled to be in the range [-1, 1]. The differential equations of SprottE and the similar systems are
simpler, with at most a sum of two elementary products, while those of the different systems involve
more complicated terms.

20

Under review as a conference paper at ICLR 2023

GRU LSTM
100 attractors, pre-training set
—— similar, yes —&— train
—— similar, no -%- val
—— different, yes @ test
0 107! —— different, no
o
o
[
a
E 3 -
10-2 A . u ., e ..
B o NG “Qx.‘
\ N s e S e 2 v
Moo e - X e
TR o S
MK
1073
N-BEATS Transformer
10°
@ 107!
o
=
[
=
=
1072
1073
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
epoch epoch
(a) (Task S) Featurisation loss ({)
GRU LSTM
attractors, pre-training set
2.0 —— similar, yes —o— train
s —— similar, no -%- val
® —— different, yes @ test
é 1.5 .-/N.Mi'/—\-w.‘_‘_/ —— different, no
il -‘/-—-4 -
g i/ el
c
g10 o /
g T e s
% e - <~.,! R e N
905 N

N-BEATS Transformer

~
£
7
;.

=
w
——n——gxa

=
o

Feature standard deviation

N
[
f

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
epoch epoch

(b) (Task S) Featurisation SprottE std

Figure A6: Few-shot learning experiment: Supervised Featurization: training curves (only runs
with SprottE are included). A running average of length 100 (roughly an epoch) is used for read-
ability.

All runs with pre-training converge faster except those of N-BEATS and classification sensitivity.

21

Under review as a conference paper at ICLR 2023

MSE loss

H
2
L

MSE loss

._.
<
L

SprottE MSE

SprottE MSE

107t

10°

._.
<
L

1073

10°

107t

1073

107t

1072

0

GRU

2 4 6 8 10 12 14 16 18 20 22 24 26 28
epoch

0

LSTM

attractors, pre-training
—— similar, yes
——— similar, no
—— different, yes
—— different, no

Transformer

2 4 6 8 10 12 14 16 18 20 22
epoch

(c) (Task F) Forecasting MSE loss ({)

GRU

LSTM

attractors, pre-training
—— similar, yes
—— similar, no
—— different, yes
—— different, no

i B

Transformer

2 4 6 8 10 12 14 16 18 20 22 24 26 28
epoch

0

2 4 6 8 10 12 14 16 18 20 22
epoch

(d) (Task F) Forecasting SprottE MSE ()

set
—&— train
-%- val
@ test

24 26 28

set
—e— train
-%- val
- test

24 26 28

Figure A6: Few-shot learning experiment: Forecasting: training curves (only runs with SprottE are
included). A running average of length 100 (roughly an epoch) is used for readability.
All runs with pre-training converge faster except those of N-BEATS and classification sensitivity.

22

Under review as a conference paper at ICLR 2023

GRU LSTM
10°
a
o .
310 3
5 etane e
% %-
é : Ly
g 1072 - B
S T e I
R
Pt 2N
103 Nmbechadn)
IR,V
N-BEATS Transformer
10°
) g NN
§ 3! ?LC S
=2 -1
2 g
g
[
CU
@ 2
§ 10~ attractors, pre-training set
o —— similar, yes —e— train
—— similar, no -%- val Aot i et
S i different, yes - test
10 —— different, no
0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26
epoch epoch

(a) (Task C) Classification loss ()
GRU LSTM

o o
) i
/ |

o
9

Classification accuracy
o
o

attractors, pre-training set
0.4 —— similar, yes —e— train
—— similar, no -%- val
—— different, yes @ test
0.2 —— different, no
Transformer
1.0 ;’/‘-/'-gj.l-n’ig
'-‘ _l‘;;
>
gos //
=}
o ®
1) n’
©
5 oo I
© H
O
k=
@
o 0.4
O
0.2 H
0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26
epoch epoch

(b) (Task C) Classification accuracy (1)

Figure A7: Few-shot learning experiment: Classification loss, accuracy: training curves (only runs
with SprottE are included). A running average of length 100 (roughly an epoch) is used for read-
ability.

All runs with pre-training converge faster except those of N-BEATS and classification sensitivity.

23

Under review as a conference paper at ICLR 2023

SprottE sensitivity
o g . Iy
=y o © o

o
N

o
o

SprottE sensitivity
° o © Loy
= o o] o

©
N

o
<)

1.0

o
©

o
©

SprottE specificity

o
Q3

0.6

1.0

o o
© ©

<
N

SprottE specificity

0.6

GRU LSTM
i
attractors, pre-training set
—— similar, yes —&— train
——— similar, no -%- val
—— different, yes @ test
—— different, no
N-BEATS Transformer
e B S SRR e Xt
i m:-’,'z:.w-"w— "
,l ‘.3.?”
T)
0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26
epoch epoch
(a) (Task C) Classification true positive rate (1)
GRU LSTM
Ci S
5
#
z attractors, pre-training set
—— similar, yes —— train
—— similar, no -%- val
—— different, yes - test
—— different, no
N-BEATS Transformer
%,ﬁ,___-; 99~) L e .t
Ej ¢
0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26
epoch epoch

(b) (Task C) Classification true negative rate (1)

Figure A8: Few-shot learning experiment: Classification TPR, TNR: training curves (only runs with
SprottE are included). A running average of length 100 (roughly an epoch) is used for readability.
All runs with pre-training converge faster except those of N-BEATS and classification sensitivity.

24

Under review as a conference paper at ICLR 2023

Aizawa AnishchenkoAstakhov Arneodo ArnoldBeltramiChildress

Bickleyjet Blasius

Bouali Bouali2

(a) Systems 1-20.

Figure A9: The 100 dynamical systems of dimension 3 in our synthetic dataset (only Torus is non-
chaotic). A single trajectory is shown for each, with the default initial condition, 500 points per
period, and 10 periods. Each trajectory component is re-scaled to be in the range [—1, 1].

25

Under review as a conference paper at ICLR 2023

Colpitts Coullet Dadras DequanlLi

GenesioTesi

(b) Systems 21-40.

Figure A9: The 100 chaotic dynamical systems of dimension 3. (cont.)

26

Under review as a conference paper at ICLR 2023

JerkCircuit KawczynskiStrizhak Laser LiuChen

10 L0

LuChenCheng

QiChen

(c) Systems 41-60.

Figure A9: The 100 chaotic dynamical systems of dimension 3. (cont.)

27

Under review as a conference paper at ICLR 2023

Rossler Rucklidge Sakarya SaltonSea

SprottB

SprottC

SprottG SprottH Sprottl Sprott]

SprottM

(d) Systems 61-80.

Figure A9: The 100 chaotic dynamical systems of dimension 3. (cont.)

28

Under review as a conference paper at ICLR 2023

SprottMore SprottN SprottO SprottP

Tsucs2

(e) Systems 81-100.

Figure A9: The 100 chaotic dynamical systems of dimension 3. (cont.)

29

Under review as a conference paper at ICLR 2023

3 X 107 1 1 1 1 1 1 1
2x107 set
—%— train
—— val
—¢— test
107 4
1.8 x 109"
1.6 x 10°
1.4 x 10°
1.2 %100 //\
100 4
0.33 0.50 0.67 0.80
alpha

(a) Total loss ({)

3x107t

2x107t

0.33 0.50 0.67 0.80
alpha

(b) (Task S) Featurisation loss ({,)

2.2x10°%
2x10°
1.8x10°
1.6 x 10°
1.4 x 10°
1.2 x 10°
10°2
7x1073
6x1073

5x 1073
4x1073

0.33 0.50 0.67 0.80 1.00
alpha

(c) (Task F) Forecasting loss (J.)

6x107t

4x107t

3x107t

2x107t

Figure A10:
Ltotal)-

The forecasting train/val loss decreases with o, showing that GRU does not benefit from the enforced
system representations from the other tasks. The featurisation and classification losses generally

0.33 0.50 0.67 0.80
alpha

(d) (Task C) Classification loss ({.)

Multi-task loss experiment: final GRU performance for different (MSE weight in

increase with «, so they do not benefit from the forecasting representations either.

30

Under review as a conference paper at ICLR 2023

(a) GRU

different | S? = no (r = 61.1%) different | S? = no -> yes (r = 61.3%) different | S? = yes (r = 72.2%)

attractor
® SprottE
Arneodo
Lorenz
Sakarya
QiChen
similar | $? = no (r = 73.8%) similar | $? = no -> yes (r = 68.9%) similar | $? = yes (= 60.8%) SprottA
SprottB
24 1 1 ® SprottC
5 : ™ SprottD

pca2
°

LN N

set

pca2
o

train
validation
24 1 e B = test

pcal pcal pcal

(a.1) Classification task

different | 57 = no (r = 62.5%) different | 57 = no -> yes (r = 58.2%) different | S? = yes (r = 68.3%)
24 1
: attractor
® SprottE
® Arneodo
o Lorenz
o sakarya
® Qichen
similar | S7 = no (r = 72.5%) similar | S7 = no -> yes (r = 69.2%) similar | S? = yes (r = 72.7%) SprottA
21 f Sprotts
* ® SprottC
SprottD

set

® train

® validation
= test

pcal pcal pcal

(a.2) Forecasting task

different | S? = no (r = 60.4%) different | S? = no -> yes (r = 53.6%)

attractor
® SprottE
Arneodo
Lorenz
Sakarya
QiChen
SprottA
SprottB
2 1 1 ® SprottC
SprottD
set

pca2
°

o000

similar | $7 = no (r = 70.7%) similar | S? = no -> yes (r = 59.3%)

pca2

® train
validation
= test

pcal pcal pcal

(a.3) Feature extraction task

Figure A11: Few-shot learning experiment: PCA projection of the features learned by the models
as a function of the other attractors used in the experiment (similar or different), and whether the
SprottE attractor is included (shown as ’S?’). A different PCA is performed for each model run,
using the 32-dimensional features obtained for the train/validation/test datasets, and we show the
percentage of variance captured by the two main PCA axes as 'r’.

31

Under review as a conference paper at ICLR 2023

(b) LSTM

different | S? = no (r = 57.0%) different | S? = no -> yes (r = 64.6%) different | S? = yes (r = 57.6%)
24 q q
b attractor
I 1 1 ® SprottE
g ® Ameodo
1 c 1 1 ® Lorenz
e Sakarya
-1 . L . : : : k : ® Qichen
similar | $? = no -> yes (r = 65.0%) © Sprotth
24 1 q SprottB
® SprottC
14 1 1 SprottD
~
© set
g ;
< o4 o 4 . 4 ® train
% validation
14]] = test
-1 [1 2 -1 2 -1 [1 2
pcal pcal pcal
(b.1) Classification task
different | S? = no (r = 58.0%) different | S? = no -> yes (r = 57.9%) different | S? = yes (r = 58.4%)
14 1 attractor
N ® SprottE
g oA 1 ® Ameodo
® Lorenz
-14 4 ® Sakarya
T T T T T T ® QiChen
similar | 7 = no (r = 73.7%) @ SprottA
SprottB
5 ® SprottC
1 1 SprottD
&
© set
S o] X
a ® train
. v % validation
-14 3 1 1 = test
-1.0 -05 0.0 0.5 1.0 15 -1.0 -05 0.0 0.5 1.0 15 -1.0 -05 0.0 0.5 1.0 15
pcal pcal pcal
(b.2) Forecasting task
different | S? = no (r = 60.1%) different | S? = no -> yes (r = 54.2%) different | S? = yes (r = 59.2%)
1 1 attractor
N @ SprottE
g 1 1 ® Ameodo
® Lorenz
4 4 ® Sakarya
T T T T T T T T ® QiChen
® SprottA
SprottB
B B 0 ® SprottC
SprottD
&
] . set
] 1 1
e ® train
" . ® validation
19 1 1 e = test
-1.0 -05 0.0 0.5 1.0 15 -1.0 -05 0.0 0.5 1.0 15 -1.0 -05 0.0 0.5 1.0 15
pcal pcal pcal

(b.3) Feature extraction task

Figure A11: Few-shot learning experiment: PCA projection of learned features (cont.)

32

Under review as a conference paper at ICLR 2023

pca2

pca2

pca2

pca2

pca2

pca2

different | S? = no (r = 57.4%)

(c¢) Transformer

different | S? = no -> yes (r = 60.7%)

different | S? = yes (r = 67.2%)

(c.1) Classification task

different | S? = no -> yes (r = 74.6%)

-4 -2 0 4 -4 -2 0 2 4 -4 -2 0 2 4
pcal pcal pcal
(c.2) Forecasting task
different | S? = no -> yes (r = 92.5%)
14 1
04 1
—14 1
similar | S? = yes (r = 72.3%)
1] 1 A,
04 - . 1
-1.0 -05 0.0 0.5 1.0 15 -1.0 -05 0.0 0.5 1.0 15 -1.0 -05 0.0 0.5 1.0 15
pcal pcal pcal

(c.3) Feature extraction task

attractor
® SprottE
® Arneodo
® Lorenz
e Sakarya
® QiChen
® SprottA
SprottB
® SprottC
SprottD
set
® train
= validation
= test
attractor
® SprottE
® Arneodo
® Lorenz
® Sakarya
® QiChen
® SprottA
SprottB
® SprottC
SprottD
set
® train
% validation
= test
attractor
® SprottE
® Arneodo
® Lorenz
e Sakarya
® QiChen
® SprottA
SprottB
® SprottC
SprottD
set
e train
validation
= test

Figure A11: Few-shot learning experiment: PCA projection of learned features (cont.)

33

Under review as a conference paper at ICLR 2023

(d) N-BEATS

different | 7 = no (r = 94.8%) different | $? = no -> yes (r = 97.5%) different | 57 = yes (r = 99.8%)
5 | attractor
~ ® SprottE
3
g Arneodo
0 . 4 e Lorenz
o Sakarya
. QiChen
similar | S? = no (r = 100.0%) similar | S? = no -> yes (r = 100.0%) similar | S? = yes (r = 97.0%) SprottA
SprottB
® SprottC
5 — SprottD
~
3 set
g
o i ® train
* validation
" test
-25 00 25 50 75 100 -25 00 25 50 75 100 -25 00 25 50 75 100
pcal pcal pcal
(d.1) Classification task
different | 7 = no (r = 100.0%) different | $7 = no -> yes (r = 99.9%) different | S7 = yes (r = 99.1%)
attractor
N 0.24 1 . 1 . . ® SprottE
g Arneodo
- . v e Lorenz
007 ' ‘]] o Sakarya
. - . . . QiChen
similar | S? = no (r = 99.8%) similar | S? = no -> yes (r = 100.0%) similar | S? = yes (r = 99.0%) SprottA
SprottB
i ® SprottC
02 i i X SprottD
o set
g .
e *° ® train
0.04) 8 o) % validation
" test
-04 -02 00 02 04 06 -04 -02 00 02 04 06 -04 -02 00 02 04 06
pcal pcal pcal
(d.2) Forecasting task
different | S? = no (r = 99.9%) different | S? = no -> yes (r = 99.9%) different | S? = yes (r = 100.0%)
0501 1 attractor
SprottE
¥ 0251 1 . o opr
g - rneodo
0.00 — 1" — @ Lorenz
R ® Sakarya
. - Qichen
similar | S? = no (r = 95.9%) similar | S? = no -> yes (r = 99.9%) similar | S7 = yes (r = 96.6%) SprottA
SprottB
0504 i e SprottC
. SprottD
o~ g
3 0.25 — A set
< . ® train
0.00 1 1 ® validation
» test
-2 -1 0 1 2 2 0 1 2 -2 -1 0 1 2
pcal pcal pcal

(d.3) Feature extraction task

Figure A11: Few-shot learning experiment: PCA projection of learned features (cont.)

34

	Introduction
	Related work
	Data
	The data generation process
	Our datasets and their parameters

	The ValiDyna Evaluation Framework
	Tasks
	Model architectures

	Experiments
	Random sampling
	Strict feature-transfer across tasks (Frozen weights)
	Probing for other tasks (Fine-tuning)
	Few-Shot learning
	Combining task losses

	Limitations and Future Directions
	Conclusion
	Appendix
	Additional details on Validyna evaluation framework
	Data processing
	Framework architecture, extensibility

	Example of experiment code
	Experimental Settings

	Extra Tables
	Extra Figures

