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ABSTRACT

We consider the outstanding problem of sampling from an unnormalized density
that may be non-log-concave and multimodal. To enhance the performance of
simple Markov chain Monte Carlo (MCMC) methods, techniques of annealing
type have been widely used. However, quantitative theoretical guarantees of these
techniques are under-explored. This study takes a first step toward providing a
non-asymptotic analysis of annealed MCMC. Specifically, we establish, for the
first time, an oracle complexity of Õ

(
dβ2A2

ε6

)
for the simple annealed Langevin

Monte Carlo algorithm to achieve ε2 accuracy in Kullback-Leibler divergence
to the target distribution π ∝ e−V on Rd with β-smooth potential V . Here, A
represents the action of a curve of probability measures interpolating the target
distribution π and a readily sampleable distribution.

1 INTRODUCTION

We study the task of efficient sampling from a probability distribution π ∝ e−V on Rd. This funda-
mental problem is pivotal across various fields including computational statistics (Liu, 2004; Brooks
et al., 2011), Bayesian inference (Gelman et al., 2013), statistical physics (Newman & Barkema,
1999), and finance (Dagpunar, 2007), and has been extensively studied in the literature (Chewi,
2024). The most common approach to this problem is Markov Chain Monte Carlo (MCMC), among
which Langevin Monte Carlo (LMC) (Durmus et al., 2019; Vempala & Wibisono, 2019; Chewi et al.,
2022; Mousavi-Hosseini et al., 2023) is a particularly popular choice. LMC can be understood as
a time-discretization of a diffusion process, known as Langevin diffusion (LD), whose stationary
distribution is the target distribution π, and has been attractive partly due to its robust performance
despite conceptual simplicity.

Although LMC and its variants converge rapidly when the target distribution π is strongly log-
concave or satisfies isoperimetric inequalities such as the log-Sobolev inequality (LSI) (Durmus
et al., 2019; Vempala & Wibisono, 2019; Chewi et al., 2022), its effectiveness diminishes when
dealing with target distributions that are not strongly log-concave or are multimodal, such as mix-
tures of Gaussians. In such scenarios, the sampler often becomes confined to a single mode, severely
limiting its ability to explore the entire distribution effectively. This results in significant challenges
in transitioning between modes, which can dramatically increase the mixing time, making it expo-
nential in problem parameters such as dimension, distance between modes, etc. (Dong & Tong,
2022; Ma et al., 2019) Such limitations highlight the need for enhanced MCMC methodologies
that can efficiently navigate the complex landscapes of multimodal distributions, thereby improving
convergence rates and overall sampling efficiency.

To address the challenges posed by multimodality, techniques around the notion of annealing have
been widely employed (Gelfand et al., 1990; Neal, 2001). The general philosophy involves con-
structing a sequence of intermediate distributions π0, π1, ..., πM that bridge the gap between an eas-
ily samplable distribution π0 (e.g., Gaussian or Dirac-like), and the target distribution πM = π. The
process starts with sampling from π0 and progressively samples from each subsequent distribution
until πM is reached. When πi and πi+1 are close enough, approximate samples from πi can serve
as a warm start for sampling from πi+1, thereby facilitating this transition. Employing LMC within
this framework gives rise to what is known as the annealed LMC algorithm, which is the focus of
our study. Despite its empirical success (Song & Ermon, 2019; 2020; Zilberstein et al., 2023; 2024),
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Table 1: Comparison of oracle complexities in terms of d, ε, and the LSI constant for sampling from
π ∝ e−V . “poly(·)” indicates a polynomial dependence on the specified parameters.

Algorithm Isoperimetric
Assumptions

Other
Assumptions Criterion Complexity

LMC C-LSI Potential smooth ε2, KL (·∥π) Õ
(
C2dε−2

)

PS C-LSI Potential smooth ε, TV Õ
(
Cd1/2 log ε−1

)

STLMC /
Translated mixture of

a well-conditioned
distribution

ε, TV O
(
poly

(
d, ε−1

))

RDMC / Potential smooth,
nearly convex at ∞ ε, TV O

(
poly (d) epoly(ε

−1)
)

RS-DMC / Potential smooth ε2, KL (π∥·) exp
(
O
(
log3 dε−2

))

ZOD-MC / Potential growing
at most quadratically ε, TV +W2 exp

(
Õ (d)O

(
log ε−1

))

ALMC
(ours) / Potential smooth ε2, KL (π∥·) Õ

(
dA(d)2ε−6

)

a thorough theoretical understanding of annealed LMC, particularly its non-asymptotic complexity
bounds, remains elusive.

In this work, we take a first step toward developing a non-asymptotic analysis of annealed MCMC.
Utilizing the Girsanov theorem to quantify the differences between the sampling dynamics and a
reference process, we derive an upper bound on the error of annealed MCMC, which consists of two
key terms. The first term is the ratio of an action functional in Wasserstein geometry, induced by
optimal transport, to the duration of the process. This term decreases when the annealing schedule
is sufficiently slow. The second term captures the discretization error inherent in practical imple-
mentations. Our approach challenges the traditional view that annealed MCMC is simply a series
of warm starts. Analyses based on this perspective typically require assumptions of log-concavity
or isoperimetric inequalities. In contrast, our theoretical framework for annealed MCMC dispenses
with these assumptions, marking a significant shift in the understanding and analysis of annealed
MCMC.

Our key technical contributions are summarized as follows.

1. We propose a novel strategy to analyze the non-asymptotic complexity bounds of annealed
MCMC algorithms, bypassing the need for assumptions such as log-concavity or isoperimetry.

2. In Section 4, we investigate the annealed LD, which involves running LD with a dynamically
changing target distribution. We derive a notable bound on the time required to simulate the SDE
for achieving ε2-accuracy in KL divergence.

3. Building on the insights from the analysis of the continuous dynamic and incorporating discretiza-
tion errors, we establish a non-asymptotic oracle complexity bound for annealed LMC in Section 5,
which is applicable to a wide range of annealing schemes.

The quantitative results are summarized and compared to other sampling algorithms in Table 1. For
algorithms requiring isoperimetric assumptions, we include Langevin Monte Carlo (LMC, Vem-
pala & Wibisono (2019)) and Proximal Sampler (PS, Fan et al. (2023)), which converges rapidly
but do not have theoretical guarantees without isoperimetric assumptions. For isoperimetry-free
samplers, we include Simulated Tempering Langevin Monte Carlo (STLMC, Ge et al. (2018b)), a
tempering-based sampler converging rapidly for a specific family of non-log-concave distributions,
and three algorithms inspired by score-based generative models: Reverse Diffusion Monte Carlo
(RDMC, Huang et al. (2024a)), Recursive Score Diffusion-based Monte Carlo (RS-DMC, Huang
et al. (2024b)), and Zeroth Order Diffusion-Monte Carlo (ZOD-MC, He et al. (2024)), which in-
volve simulating the time-reversal of Ornstein-Uhlenbeck (OU) process and require estimating the
scores of the intermediate distributions. Notably, our approach operates under the least stringent
assumptions and exhibits the most favorable ε-dependence among all isoperimetry-free sampling
methods.
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Related works and comparison. We provide a brief overview of the literature, mainly focusing on
the algorithms for non-log-concave sampling and their theoretical analysis.

1. Samplers based on tempering. The fundamental concept of tempering involves sampling the sys-
tem at various temperatures simultaneously: at higher temparatures, the distribution flattens, al-
lowing particles to easily transition between modes, while at lower temperatures, particles can more
effectively explore local structures. In simulated tempering (Marinari & Parisi, 1992; Woodard et al.,
2009), the system’s temperature is randomly switched, while in parallel tempering (also known as
replica exchange) (Swendsen & Wang, 1986; Lee & Shen, 2023), the temperatures of two particles
are swapped according to a specific rule. However, quantitative theoretical results for tempering are
limited, and the existing results (e.g., Ge et al. (2018a;b); Dong & Tong (2022)) apply primarily to
certain special classes of non-log-concave distributions.

2. Samplers based on general diffusions. Inspired by score-based diffusion models (Ho et al., 2020;
Song et al., 2021a;b), recent advances have introduced sampling methods that reverse the OU pro-
cess, as detailed in Huang et al. (2024a;b); He et al. (2024). These samplers exhibit reduced sensi-
tivity to isoperimetric conditions, but rely on estimating score functions (gradients of log-density)
via importance sampling, which poses significant challenges in high-dimensional settings. Concur-
rently, studies such as Zhang & Chen (2022); Vargas et al. (2023; 2024); Richter & Berner (2024)
have employed neural networks to approximate unknown drift terms, enabling an SDE to trans-
port a readily sampleable distribution to the target distribution. This approach has shown excellent
performance in handling complex distributions, albeit at the expense of significant computational
resources required for neural network training. In contrast, annealed LMC runs on a known inter-
polation of probability distributions, thus simplifying sampling by obviating the need for intensive
score estimation or neural network training.

3. Non-asymptotic analysis for non-log-concave sampling. Drawing upon the stationary-point anal-
ysis in non-convex optimization, the seminal work Balasubramanian et al. (2022) characterizes the
convergence of non-log-concave sampling via Fisher divergence. Subsequently, Cheng et al. (2023)
applies this methodology to examine the local mixing of LMC. However, Fisher divergence is a
relatively weak criterion compared to more commonly employed metrics such as total-variational
distance or Wasserstein distances. In contrast, our study provides a convergence guarantee in terms
of KL divergence, which implies convergence in total-variation distance and offers a stronger result.

Notations and definitions. For a, b ∈ R, we define [[a, b]] := [a, b] ∩ Z, a ∧ b := min(a, b), and
a ∨ b := max(a, b). For a, b > 0, the notations a ≲ b, a = O(b), and b = Ω(a) indicate that
a ≤ Cb for some universal constant C > 0, and the notations a ≍ b and a = Θ(b) stand for both
a = O(b) and b = O(a). Õ (·) hides logarithmic dependence in O(·). A function U ∈ C2(Rd)
is α(> 0)-strongly-convex if ∇2U ⪰ αI , and is β(> 0)-smooth1 if −βI ⪯ ∇2U ⪯ βI . The
total-variation (TV) distance is defined as TV (µ, ν) = supA⊂Rd |µ(A)− ν(A)|, and the Kullback-
Leibler (KL) divergence is defined as KL (µ∥ν) = Eµ log

dµ
dν . ∥·∥ represents the ℓ2 norm on Rd.

For f : Rd → Rd′
and a probability measure µ on Rd, ∥f∥L2(µ) :=

(∫
∥f∥2 dµ

)1/2
, and the

second-order moment of µ is defined as Eµ ∥·∥2.

2 PRELIMINARIES

2.1 STOCHASTIC DIFFERENTIAL EQUATIONS AND GIRSANOV THEOREM

A stochastic differential equation (SDE) X = (Xt)t∈[0,T ] is a stochastic process on Ω =

C([0, T ];Rd), the space of continuous functions from [0, T ] to Rd. The dynamics of X are typ-
ically represented by the equation dXt = bt(X)dt + σt(X)dBt, t ∈ [0, T ], where (Bt)t∈[0,T ]

is a standard Brownian motion in Rd, and bt(X) ∈ Rd, σt(X) ∈ Rd×d depends on (Xs)s∈[0,t].
The path measure of X , denoted PX , characterizes the distribution of X over Ω and is defined
by PX(A) = P (X ∈ A) for all measurable subset A of Ω. The following lemma, as a corollary

1Smoothness has several different definitions such as being C1 or C∞, and the one used here is also a
common one appearing in many standard textbooks in optimization and sampling, such as Chewi (2024).
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of the Girsanov theorem (Üstünel & Zakai, 2013), provides a methodology for computing the KL
divergence between two path measures and serves as a crucial technical tool in our proof.

Lemma 1. Assume we have the following two SDEs on Ω:

dXt = at(X)dt+
√
2dBt, X0 ∼ µ; dYt = bt(Y )dt+

√
2dBt, Y0 ∼ ν.

Let PX and PY denote the path measures of X and Y , respectively. Then

KL
(
PX
∥∥PY

)
= KL (µ∥ν) + 1

4
EX∼PX

∫ T

0

∥at(X)− bt(X)∥2 dt.

2.2 LANGEVIN DIFFUSION AND LANGEVIN MONTE CARLO

The Langevin diffusion (LD) with target distribution π ∝ e−V is the solution to the SDE

dXt = −∇V (Xt)dt+
√
2dBt, t ∈ [0,∞); X0 ∼ µ0. (1)

It is well-known that under mild conditions, π is the unique stationary distribution this SDE, and
when π has good regularity properties, the marginal distribution of Xt converges to π as t → +∞,
so we can sample from π by simulating Equation (1) for a long time. However, in most of the cases,
LD is intractable to simulate exactly, and the Euler-Maruyama discretization of Equation (1) leads
to the Langevin Monte Carlo (LMC) algorithm. LMC with step size h > 0 and target distribution
π ∝ e−V is a Markov chain {Xkh}k=0,1,... constructed by iterating the following update rule:

X(k+1)h = Xkh − h∇V (Xkh) +
√
2(B(k+1)h −Bkh), k = 0, 1, ...; X0 ∼ µ0, (2)

where {B(k+1)h −Bkh}k=0,1,...
i.i.d.∼ N (0, hI).

2.3 ISOPERIMETRIC INEQUALITIES

A probability measure π on Rd satisfies a log-Sobolev inequality (LSI) with constant C, or C-LSI,
if for all f ∈ C1(Rd) with Eπ f

2 > 0,

Eπ f
2 log

f2

Eπ f2
≤ 2C Eπ ∥∇f∥2 .

A probability measure π on Rd satisfies a Poincaré inequality (PI) with constant C, or C-PI, if for
all f ∈ C1(Rd),

Varπ f ≤ C Eπ ∥∇f∥2 .
It is worth noting that α-strongly-log-concave distributions satisfy 1

α -LSI, and C-LSI implies C-PI
(Bakry et al., 2014). It is established in Vempala & Wibisono (2019) that when π ∝ e−V satisfies
C-LSI, the LD converges exponentially fast in KL divergence; furthermore, when the potential V
is β-smooth, the LMC also converges exponentially with a bias that vanishes when the step size
approaches 0.

2.4 WASSERSTEIN DISTANCE AND CURVES OF PROBABILITY MEASURES

We briefly introduce several fundamental concepts in optimal transport, and direct readers to author-
itative textbooks (Villani, 2008; 2021; Ambrosio et al., 2008; 2021) for an in-depth exploration.

For two probability measures µ, ν on Rd with finite second-order moments, the Wasserstein-2 (W2)
distance between µ and ν is defined as

W2(µ, ν) = inf
γ∈Π(µ,ν)

(∫
∥x− y∥2 γ(dx,dy)

) 1
2

,

where Π(µ, ν) is the set of all couplings of (µ, ν), i.e., probability measure γ on Rd × Rd with
γ(A× Rd) = µ(A) and γ(Rd ×A) = ν(A), for all measurable set A ⊂ Rd.

4
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Given a vector field v = (vt : Rd → Rd)t∈[a,b] and a curve of probability measures ρ = (ρt)t∈[a,b]

on Rd with finite second-order moments, we say that v generates ρ if the continuity equation ∂tρt+
∇ · (ρtvt) = 0, t ∈ [a, b] holds. The metric derivative of ρ at t ∈ [a, b] is defined as

|ρ̇|t := lim
δ→0

W2(ρt+δ, ρt)

|δ| ,

which can be interpreted as the “speed” of this curve. If |ρ̇|t exists and is finite for all t ∈ [a, b], we
say that ρ is absolutely continuous (AC). AC is a fairly weak regularity condition on the curve of
probability measures. In Lemma 4, we present a sufficient condition for AC as a formal statement.

The metric derivative and the continuity equation are closely related by the following important fact
(Ambrosio et al., 2008, Theorems 8.3.1 and 8.4.5):
Lemma 2. For an AC curve of probability measures (ρt)t∈[a,b], any vector field (vt)t∈[a,b] that
generates (ρt)t∈[a,b] satisfies |ρ̇|t ≤ ∥vt∥L2(ρt)

for a.e. t ∈ [a, b]. Moreover, there exists a unique
vector field (v∗t )t∈[a,b] generating (ρt)t∈[a,b] that satisfies |ρ̇|t = ∥v∗t ∥L2(ρt)

for a.e. t ∈ [a, b].

Finally, we define the action of an AC curve of probability measures (ρt)t∈[a,b] as
∫ b

a
|ρ̇|2t dt. As

will be shown in the next section, the action is a key property characterizing the effectiveness of a
curve in annealed sampling. The following lemma provides additional intuition about the action and
may be helpful for interested readers.
Lemma 3. Given an AC curve of probability measures (ρt)t∈[0,1], and let A be its action. Then

1. A ≥ W 2
2 (ρ0, ρ1), and the equality is attained when (ρt)t∈[0,1] is a constant-speed Wasser-

stein geodesic, i.e., let two random variables (X0, X1) follow the optimal coupling of
(ρ0, ρ1) such that E∥X0−X1∥2 = W 2

2 (ρ0, ρ1), and define ρt as the law of (1−t)X0+tX1.

2. If ρt satisfies CLSI(ρt)-LSI for all t, then A ≤
∫ 1

0
CLSI(ρt)

2∥∂t∇ log ρt∥2L2(ρt)
dt.

3. If ρt satisfies CPI(ρt)-PI for all t, then A ≤
∫ 1

0
2CPI(ρt)∥∂t log ρt∥2L2(ρt)

dt.

The proof of Lemma 3 can be found in Appendix A. The lower bound above can be derived by
definition or via variational representations of action and W2 distance, while the two upper bounds
relate the action to the isoperimetric inequalities, indicating that finite action is a weaker assumption
than requiring the LSI or PI constants along the trajectory. In fact, these bounds may not be tight, as
demonstrated by the following surprising example, in which the action is polynomial with respect to
certain problem parameters and even independent of some of them, whereas the LSI and PI constants
exhibit exponential dependence. Its proof is detailed in Appendix A.
Example 1. Consider the curve that bridges a target distribution ρ0 to a readily sampleable distri-
bution ρ1, in the form ρt = ρ0 ∗N (0, 2StI), t ∈ [0, 1], for some large positive number S. Let A be
the action of this curve. Then

1. A = S
∫ S

0
∥∇ log ps∥2L2(ps)

ds, where ps = ρs/S = ρ0 ∗ N (0, 2sI), s ∈ [0, S].

2. In particular, when ρ0 is a mixture of Gaussian distribution
∑N

i=1 wi N
(
µi, σ

2I
)
, then

A ≤ Sd
2 log

(
1 + 2S

σ2

)
is independent of the number of components N , the weights wi, and

the means µi. However, in general, the LSI and PI constants may depend exponentially on
maxi,j ∥µi − µj∥, the maximum distance between the means.

3 PROBLEM SETUP

Recall that the rationale behind annealing involves a gradual transition from π0, a simple distribution
that is easy to sample from, to π1 = π, the more complex target distribution. Throughout this paper,
we define a curve of probability measures (πθ)θ∈[0,1], along which we will apply annealing-based
MCMC for sampling from π. For now, we do not specify the exact form of this curve, but instead
introduce the following mild regularity assumption:

5
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Assumption 1. Each πθ has a finite second-order moment, and the curve (πθ)θ∈[0,1] is AC with
finite action A =

∫ 1

0
|π̇|2θ dθ.

For the purpose of non-asymptotic analysis, we further introduce the following mild assumption on
the target distribution π ∝ e−V on Rd, which is widely used in the field of sampling (see Chewi
(2024) for an overview):
Assumption 2. The potential V is β-smooth, and there exists a global minimizer x∗ of V such that
∥x∗∥ ≤ R. Moreover, π has finite second-order moment.

With this foundational setup, we now proceed to introduce the annealed LD and annealed LMC al-
gorithms. Our goal is to characterize the non-asymptotic complexity of annealed MCMC algorithms
for sampling from possibly non-log-concave distributions.

4 ANALYSIS OF ANNEALED LANGEVIN DIFFUSION

To elucidate the concept of annealing more clearly, we first consider the annealed Langevin dif-
fusion (ALD) algorithm, which samples from the π ∝ e−V by running LD with a dynamically
changing target distribution. For the sake of this discussion, we assume the following: (i) we can
exactly sample from π0, (ii) the scores (∇ log πθ)θ∈[0,1] are known in closed form, and (iii) we can
exactly simulate any SDE with known drift and diffusion terms.

Fix a sufficiently long time T . We define a reparametrized curve of probability measures(
π̃t := πt/T

)
t∈[0,T ]

. Starting with an initial sample X0 ∼ π0 = π̃0, we run the SDE

dXt = ∇ log π̃t(Xt)dt+
√
2dBt, t ∈ [0, T ], (3)

and ultimately output XT ∼ νALD as an approximate sample from the target distribution π. Intu-
itively, when π̃t is changing slowly, the distribution of Xt should closely resemble π̃t, leading to an
output distribution νALD that approximates the target distribution. This turns out to be true, as is
confirmed by the following theorem, which provides a convergence guarantee for the ALD process.
Theorem 1. When choosing T = A

4ε2 , it follows that KL
(
π
∥∥νALD

)
≤ ε2.

Proof. Let Q be the path measure of ALD (Equation (3)) initialized at X0 ∼ π̃0, and define P as the
path measure corresponding to the following reference SDE:

dXt = (∇ log π̃t + vt)(Xt)dt+
√
2dBt, X0 ∼ π̃0, t ∈ [0, T ]. (4)

The vector field v = (vt)t∈[0,T ] is designed such that Xt ∼ π̃t for all t ∈ [0, T ]. According to the
Fokker-Planck equation2, this is equivalent to the following PDE:

∂tπ̃t = −∇ · (π̃t (∇ log π̃t + vt)) + ∆π̃t = −∇ · (π̃tvt), t ∈ [0, T ],

which means that v generates
(
π̃t := πt/T

)
t∈[0,T ]

. We can compute KL (P∥Q) using Lemma 1:

KL (P∥Q) =
1

4
EP

∫ T

0

∥vt(Xt)∥2 dt =
1

4

∫ T

0

∥vt∥2L2(π̃t)
dt.

Leveraging Lemma 2, among all vector fields v that generate
(
π̃t := πt/T

)
t∈[0,T ]

, we can choose

the one that minimizes ∥vt∥L2(π̃t)
, thereby making ∥vt∥L2(π̃t)

=
∣∣∣ ˙̃π
∣∣∣
t
, the metric derivative. With

the reparameterization π̃t = πt/T , we have the following relation by chain rule:
∣∣∣ ˙̃π
∣∣∣
t
= lim

δ→0

W2(π̃t+δ, π̃t)

|δ| = lim
δ→0

W2(π(t+δ)/T , πt/T )

T |δ/T | =
1

T
|π̇|t/T .

Employing the change-of-variable formula leads to

KL (P∥Q) =
1

4

∫ T

0

∣∣∣ ˙̃π
∣∣∣
2

t
dt =

1

4T

∫ 1

0

|π̇|2θ dθ =
A
4T

.

2Here, we assume that the solution of the Fokker-Planck equation exists and is unique, which holds under
weak regularity conditions.
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Finally, using data-processing inequality (see, e.g., (Chewi, 2024, Theorem 1.5.3)), with T = A
4ε2 ,

KL
(
π
∥∥νALD

)
= KL (PT ∥QT ) ≤ KL (P∥Q) = ε2,

where PT and QT stand for the marginal distributions of P and Q at time T , respectively.

Let us delve deeper into the mechanics of the ALD. Although at time t the SDE (Equation (3)) targets
the distribution π̃t, the distribution of Xt does not precisely align with π̃t. Nevertheless, by choosing
a sufficiently long time T , we actually move on the curve (πθ)θ∈[0,1] sufficiently slowly, thus mini-
mizing the discrepancy between the path measure of (Xt)t∈[0,T ] and the reference curve (π̃t)t∈[0,T ].
Using the data-processing inequality, we can upper bound the error between the marginal distribu-
tions at time T by the joint distributions of the two paths. In essence, moving more slowly, sampling
more precisely.

Our analysis primarily addresses the global error across the entire curve of probability measures,
rather than focusing solely on the local error at time T . This approach is inspired by Dalalyan &
Tsybakov (2012); Chen et al. (2023), and stands in contrast to the isoperimetry-based analyses of
LD (e.g., Vempala & Wibisono (2019); Chewi et al. (2022); Balasubramanian et al. (2022)), which
focus on the decay of the KL divergence from the distribution of Xt to the target distribution, and
require LSI to bound the time derivative of this quantity. Notably, the total time T needed to run
the SDE depends solely on the action of the curve (πθ)θ∈[0,1], obviating the need for assumptions
related to log-concavity or isoperimetry.

It is also worth noting that ALD plays a critical role in the field of non-equilibrium stochastic ther-
modynamics (Seifert, 2012). Recently, a refinement of the fluctuation theorem was discovered in
Chen et al. (2020); Fu et al. (2021), showing that the irreversible entropy production in a stochas-
tic thermodynamic system is equal to the ratio of a similar action integral and the duration of the
process T , closely resembling Theorem 1.

5 ANALYSIS OF ANNEALED LANGEVIN MONTE CARLO

It is crucial to recognize that, in practice, running the algorithm requires knowledge of the score
functions (∇ log πθ)θ∈[0,1] in closed form. Additionally, simulating ALD (Equation (3)) necessi-
tates discretization schemes, which introduces further errors. This section presents a detailed non-
asymptotic convergence analysis for the annealed Langevin Monte Carlo (ALMC) algorithm,
which is a practical approach for real-world implementations.

The outline of this section is as follows. We will first introduce a family of the interpolation curve
(πθ)θ∈[0,1] that serves as the basis for our analysis. Next, we propose a discretization scheme tailored
to the special structure of (πθ)θ∈[0,1]. Finally, we state the complexity analysis in Theorem 2, and
provide an example demonstrating the improvement of our bounds over existing results.

5.1 CHOICE OF THE INTERPOLATION CURVE

We consider the following curve of probability measures on Rd:

πθ ∝ exp

(
−η(θ)V − λ(θ)

2
∥·∥2

)
, θ ∈ [0, 1], (5)

where the functions η(·) and λ(·) are called the annealing schedule. These functions must be
differentiable and monotonic, satisfying the boundary conditions η0 = η(0) ↗ η(1) = 1 and
λ0 = λ(0) ↘ λ(1) = 0. The values of η0 ∈ [0, 1] and λ0 ∈ (1,+∞) are chosen so that π0

corresponds a Gaussian distribution N
(
0, 1

λ0
I
)

or can be efficiently sampled within Õ (1) steps
of rejection sampling (see Lemma 5 for details). We also remark that, under Assumption 2, πθ has
a finite second-order moment (see Lemma 8 the proof), ensuring the W2 distance between πθ’s is
well-defined.

This flexible interpolation scheme includes many general cases. For example, Brosse et al. (2018)
and Ge et al. (2020) used the schedule η(·) ≡ 1, while Neal (2001) used the schedule λ(θ) =
c(1 − η(θ)). The key motivation for this interpolation is that when θ = 0, the quadratic term
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predominates, making the potential of π0 strongly-convex with a moderate condition number, thus
π0 is easy to sample from; on the other hand, when θ = 1, π1 is just the target distribution π. As
θ gradually increases from 0 to 1, the readily sampleable distribution π0 slowly transforms into the
target distribution π1.

5.2 THE DISCRETIZATION ALGORITHM

With the interpolation curve (πθ)θ∈[0,1] chosen as above, a straightforward yet non-optimal method
to discretize Equation (3) involves employing the Euler-Maruyama scheme, i.e.,

Xt+∆t ≈ Xt +∇ log π̃t(Xt)∆t+
√
2(Bt+∆t −Bt), 0 ≤ t < t+∆t ≤ T.

However, considering that ∇ log π̃t(x) = −η
(

t
T

)
∇V (x)− λ

(
t
T

)
x, the integral of the linear term

can be computed in closed form, so we can use the exponential-integrator scheme (Zhang & Chen,
2023; Zhang et al., 2023) to further reduce the discretization error. Given the total time T , we define
a sequence of points 0 = θ0 < θ1 < ... < θM = 1, and set Tℓ = Tθℓ, hℓ = T (θℓ − θℓ−1). The
exponential-integrator scheme is then expressed as

dXt =

(
−η

(
t

T

)
∇V (Xt−)− λ

(
t

T

)
Xt

)
dt+

√
2dBt, t ∈ [0, T ], X0 ∼ π0, (6)

where t− := Tℓ−1 when t ∈ [Tℓ−1, Tℓ), ℓ ∈ [[1,M ]]. The explicit update rule is detailed in Al-
gorithm 1, with xℓ denoting XTℓ

, and the derivation of Equation (7) is presented in Appendix C.1.
Notably, replacing ∇V (Xt−) with ∇V (Xt) recovers the ALD (Equation (3)), and setting η ≡ 1
and λ ≡ 0 reduces to the classical LMC iterations.

Algorithm 1: Annealed LMC Algorithm

Input: Target distribution π ∝ e−V , total time T , annealing schedule η(·) and λ(·), discrete
points θ0, ..., θM .

1 For 0 ≤ θ < θ′ ≤ 1, define Λ0(θ
′, θ) = exp

(
−T

∫ θ′

θ
λ(u)du

)
,

H(θ′, θ) = T
∫ θ′

θ
η(u)Λ0(u, θ

′)du, and Λ1(θ
′, θ) =

√
2T
∫ θ′

θ
Λ2
0(u, θ

′)du;
2 Obtain a sample x0 ∼ π0 (e.g., using rejection sampling (Algorithm 2));
3 for ℓ = 1, 2, ...,M do
4 Sample an independent Gaussian noise ξℓ ∼ N (0, I);
5 Update

xℓ = Λ0(θℓ, θℓ−1)xℓ−1 −H(θℓ, θℓ−1)∇V (xℓ−1) + Λ1(θℓ, θℓ−1)ξℓ. (7)

6 end
Output: xM ∼ νALMC, an approximate sample from π.

We illustrate the ALMC algorithm in Figure 1. The underlying intuition behind this algorithm
is that by setting a sufficiently long total time T , the trajectory of the continuous dynamic (i.e.,
annealed LD) approaches the reference trajectory closely, as established in Theorem 1. Additionally,
by adopting sufficiently small step sizes h1, ..., hM , the discretization error can be substantially
reduced. Unlike traditional annealed LMC methods, which require multiple LMC update steps for
each intermediate distribution π1, ..., πM , our approach views the annealed LMC as a discretization
of a continuous-time process. Consequently, it is adequate to perform a single step of LMC towards
each intermediate distribution π̃T1

, ..., π̃TM
, provided that T is sufficiently large and the step sizes

are appropriately small.

5.3 CONVERGENCE ANALYSIS OF THE ALGORITHM

The subsequent theorem provides a convergence guarantee for the annealed LMC algorithm, with a
detailed proof available in Appendix C.2.
Theorem 2. Under Assumptions 1 and 2, Algorithm 1 can generate a distribution νALMC satisfying
KL
(
π
∥∥νALMC

)
≤ ε2 within

Õ

(
dβ2A2

ε6

)

8
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Q: annealed LMC

P: reference
π̃0

π̃T1
· · · · · ·π̃Tℓ−1

π̃Tℓ π̃TM−1 π̃TM
= π

νALMCLMC towards π̃Tℓ

Figure 1: Illustration of the ALMC algorithm. The ℓ-th green arrow, proceeding from left to right,
represents one step of LMC towards π̃Tℓ

with step size hℓ, while each red arrow corresponds to the
application of the same transition kernel, initialized at π̃Tℓ−1

on the reference trajectory P, which
is depicted in purple. To evaluate KL (P∥Q), the Girsanov theorem implies that we only need to
bound the aggregate KL divergence across each small interval (i.e., the sum of the blue “distances”).

calls to the oracle of V and ∇V in expectation.
Sketch of Proof. Let Q be the path measure of ALMC (Equation (3)), the time-discretized sampling
process, whose marginal distribution at time T is the output distribution νALMC. Again, let P denote
the reference path measure of Equation (4) used in the proof of Theorem 1, in which the same vector
field (vt)t∈[0,T ] ensures that Xt ∼ π̃t under P for all t ∈ [0, T ]. Applying Girsanov theorem
(Lemma 1) and carefully dealing with the discretization error, we can upper bound KL (P∥Q) by

KL (P∥Q) ≲
M∑

ℓ=1

(
1 + η(θℓ)

2β2h2
ℓ

T

∫ θℓ

θℓ−1

|π̇|2θ dθ + η(θℓ)
2β2dh2

ℓ (1 + hℓ (βη(θℓ) + λ(θℓ−1)))

)
.

The first summation is governed by the total time T , which pertains to the convergence of the contin-
uous dynamic (i.e., ALD). Setting T ≍ A

ε2 ensures that the first summation remains O(ε2), provided
that the step size hℓ is sufficiently small. The second summation addresses the discretization error,
and it suffices to determine the appropriate value of θℓ to minimize M , the total number of calls to
the oracle of ∇V for discretizing the SDE. Combining M with the complexity of sampling from π0

determines the overall complexity of the algorithm.

Once again, our analysis relies on bounding the global error between two path measures by Gir-
sanov theorem. The annealing schedule η(·) and λ(·) influences the complexity exclusively through
the action A. This crucial identity, based on the choice of interpolation curve (πθ)θ∈[0,1], signifi-
cantly affects the effectiveness of ALMC. Our specific choice (Equation (5)), among all interpolation
curves with closed-form scores, aims at simplifying the discretization error analysis. However, alter-
native annealing schemes could be explored to find the optimal one in practice. For instance, a recent

paper (Fan et al., 2024) proposed an annealing scheme πθ(x) ∝ π0((1− aθ)x)1−θπ1

(
x

b+(1−b)θ

)θ

for some a ∈ [0, 1] and b ∈ (0, 1]. The extra scaling factor 1
b+(1−b)θ might improve mixing speed.

We leave the choice of the interpolation curve as a topic for future research.

We also note that our Assumption 2 encompasses strongly-log-concave target distributions. For
sampling from these well-conditioned distributions via LMC, the complexity required to achieve
ε-accuracy in TV distance scales as Õ

(
ε−2
)

(Chewi, 2024). However, using Pinsker inequality
KL ≥ 2TV2, our complexity to meet the same error criterion is O

(
ε−6
)
, indicating a significantly

higher computational demand. While our discretization error is as sharp as existing works, the
main reason for our worse ε-dependence is due to the time required for the continuous dynamics to
converge, which is based on Girsanov theorem rather than LSI. While sharpening the ε-dependence
based on Girsanov theorem remains a challenge, our O

(
ε−6
)

dependence still outperforms all the
other bounds in Table 1 without isoperimetry assumptions.

Finally, we conclude by demonstrating an example of a class of mixture of Gaussian distributions,
which illustrates how our analysis can improve the complexity bound from exponential to polyno-
mial. The detailed proof is provided in Appendix D.
Example 2. Consider a mixture of Gaussian distributions in Rd defined by π =∑N

i=1 pi N
(
yi, β

−1I
)
, where the weights pi > 0,

∑N
i=1 pi = 1, and ∥yi∥ = r for all i ∈ [[1, N ]].

9
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Consequently, the potential V = − log π is B-smooth, where B = β(4r2β + 1). With an annealing
schedule defined by η(·) ≡ 1 and λ(θ) = dB(1 − θ)γ for some 1 ≤ γ = O(1), it follows that

A = O
(
d(r2β + 1)

(
r2 + d

β

))
.

To show the superiority of our theoretical results, consider a simplified scenario with N = 2, y1 =
−y2, and r2 ≫ 1

β . By applying Example 2 and the Pinsker inequality, the total complexity required

to obtain an ε-accurate sample in TV distance is Õ
(
d3β2r4(r4β2 ∨ d2)ε−6

)
. In contrast, studies

such as Schlichting (2019); Chen et al. (2021); Dong & Tong (2022) indicate that the LSI constant
of π is Ω

(
eΘ(βr2)

)
, so existing bounds in Table 1 suggest that LMC, to achieve the same accuracy,

can only provide an exponential complexity guarantee of Õ
(
eΘ(βr2)dε−2

)
.

6 EXPERIMENTS

We conduct simple numerical experiments to verify the findings in Example 2, which demonstrate
that for a certain class of mixture of Gaussian distributions, ALMC achieves polynomial conver-
gence with respect to r. Specifically, we consider a target distribution comprising a mixture of 6
Gaussians with uniform weights 1

6 , means
{(

r cos kπ
3 , r sin kπ

3

)
: k ∈ [[0, 5]]

}
, and the same covari-

ance 0.1I (corresponding to β = 10 in Example 2). We experimented r ∈ {2, 5, 10, 15, 20, 25, 30},
and compute the number of iterations required for the empirical KL divergence from the target distri-
bution to the sampled distribution to fall below 0.2 (blue curve) and 0.1 (orange curve). The results,
displayed in Figure 2, use a log-log scale for both axes. The near-linear behavior of the curves in this
plot confirms that the complexity depends polynomially on r, validating our theory. Further details
of the experimental setup and implementation can be found in Appendix F.

101
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102

103

104

#
of

it
er

at
io

n
s

K̂L ≤ 0.1

K̂L ≤ 0.2

Figure 2: Relationship between norm of means r and the number of iterations to reach 0.2 and 0.1
accuracy in KL divergence, both in log scale.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have explored the complexity of ALMC for sampling from a non-log-concave prob-
ability measure, circumventing the reliance on log-concavity or isoperimetric inequalities. Central
to our analysis are the Girsanov theorem and optimal transport techniques, providing a novel ap-
proach. While our proof primarily focuses on the annealing scheme as described in Equation (5), it
can potentially be adapted to more general interpolations. Further exploration of these applications
will be a key direction for future research. Technically, our proof methodology could be expanded
to a broader range of target distributions beyond those with smooth potentials, such as those with
Hölder-continuous gradients (Chatterji et al., 2020; Liang & Chen, 2022; Fan et al., 2023). Elim-
inating the assumption of global minimizers of the potential function would further enhance the
practical applicability of our algorithm. Finally, while this work emphasizes the upper bounds for
non-log-concave sampling, exploring the tightness of these bounds and investigating potential lower
bounds for this problem (Chewi et al., 2023a;b) are intriguing avenues for future research.
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A PROOF OF RESULTS ON ACTION

Lemma 4 (Sufficient Condition for Absolute Continuity (Informal)). Assume that a curve of prob-
ability distributions (πθ)θ∈[0,1] on Rd has a density π : [0, 1] × Rd ∋ (θ, x) 7→ πθ(x) > 0 that is
jointly C1. Then, this curve is AC.

Proof. The following proof is informal. We leave the task of formalizing this statement for future
work.

We first prove the result in one-dimension. Let Fθ(x) =
∫ x

−∞ πθ(u)du be the c.d.f. of πθ, which
is strictly increasing as πθ(x) > 0 everywhere. As a result, its inverse F−1

θ is well-defined, and
F−1
· (·) is also jointly C1. We know from (Ambrosio et al., 2008, Theorem 6.0.2) that

W 2
2 (πθ, πθ+δ) =

∫ 1

0

|F−1
θ+δ(q)− F−1

θ (q)|2dq.

The above quantity should be O(δ2) as δ → 0 due to the C1 property, and hence the curve is AC.

In d-dimensions, consider the sliced Wasserstein-2 distance

W 2(µ, ν) = sup
v∈Sd−1

W2(v♯µ, v♯ν),

where Sd−1 = {v ∈ Rd : ∥v∥ = 1} is the set of unit vectors in Rd, and v♯µ (respectively, v♯ν)
is the law of vTX when X ∼ µ (respectively, X ∼ ν), which is a probability measure in R. By
(Bayraktar & Guo, 2021, Section 2.3), W2(µ, ν) ≤

√
dW 2(µ, ν). Similar argument as above shows

that W 2
2 (v♯πθ, v♯πθ+δ) = O(δ2), and hence W 2

2 (πθ, πθ+δ) = O(δ2).

Proof of Lemma 3.

Proof. 1. By Cauchy-Schwarz inequality,

A =

∫ 1

0

|ρ̇|2t dt
∫ 1

0

1dt ≥
(∫ 1

0

|ρ̇|t dt
)2

.
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It remains to prove that W2(ρ0, ρ1) ≤
∫ 1

0
|ρ̇|t dt. In fact, take any sequence 0 = t0 < t1 <

... < tN = 1, and let ∆t := max1≤i≤N (ti − ti−1). By triangle inequality of Wasserstein
distance,

W2(ρ0, ρ1) ≤
N∑

i=1

W2(ρti , ρti−1
)

=

N∑

i=1

W2(ρti , ρti−1
)

ti − ti−1
(ti − ti−1)

=

N∑

i=1

(
|ρ̇|ti + o(∆t)

)
(ti − ti−1) →

∫ 1

0

|ρ̇|t dt.

Another derivation is by investigating the variational representations of these two quanti-
ties. First, by Lemma 2, one can write

A =

∫ 1

0

|ρ̇|2t dt = inf
vt: ∂tρt+∇·(ρtvt)=0

∫ 1

0

∥vt∥2L2(ρt)
dt.

On the other hand, the Benamou-Brenier formula (Ambrosio et al., 2008, Equation 8.0.3)
implies

W 2
2 (ρ0, ρ1) = inf

(ρt,vt): ∂tρt+∇·(ρtvt)=0; ρt=0=ρ0,ρt=1=ρ1

∫ 1

0

∥vt∥2L2(ρt)
dt.

Thus, one can easily conclude the desired inequality.

To show that the inequality is attained when (ρt)t∈[0,1] is the constant-speed Wasserstein
geodesic, note that the derivation implies that the inequality is attained when |ρ̇|t is a con-
stant for all t ∈ [0, 1], and for any 0 ≤ t1 < t2 < t3 ≤ 1, W2(ρt1 , ρt2) +W2(ρt2 , ρt3) =
W2(ρt1 , ρt3). We refer readers to (Ambrosio et al., 2008, Chapter 7.2) for the construction
of the constant-speed Wasserstein geodesic.

2. It is known from Bakry et al. (2014) that π satisfies C-LSI implies

KL(µ∥π) ≤ C

2
Eµ

∥∥∥∥∇ log
dµ

dπ

∥∥∥∥
2

, KL(µ∥π) ≥ 1

2C
W 2

2 (µ, π), ∀µ.

Therefore,

1

δ2
W 2

2 (ρt+δ, ρt) ≤ CLSI(ρt)
2

∫ ∥∇ log ρt+δ −∇ log ρt∥2
δ2

dρt+δ.

By letting δ → 0 and assuming regularity conditions, we have

|ρ̇|2t ≤ CLSI(ρt)
2

∫
∥∂t∇ log ρt∥2dρt = CLSI(ρt)

2∥∂t∇ log ρt∥2L2(ρt)

.

3. By Liu (2020), we know that π satisfies C-PI implies

W 2
2 (µ, π) ≤ 2C

(∫
dµ

dπ
dµ− 1

)
, ∀µ.

Therefore,
1

δ2
W 2

2 (ρt+δ, ρt) ≤ 2CPI(ρt)

∫
(ρt+δ − ρt)

2

δ2ρt
dx.

By letting δ → 0, we have

|ρ̇|2t ≤ 2CPI(ρt)

∫
(∂tρt)

2

ρt
dx = 2CPI(ρt)∥∂t log ρt∥2L2(ρt)

.
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Proof of Example 1.

Proof. 1. The reparameterized curve (ps)s∈[0,S] satisfies the standard heat equation:

∂sps = ∆ps =⇒ ∂sps +∇ · (ps(−∇ log ps)) = 0,

which means (−∇ log ps)s∈[0,S] generates (ps)s∈[0,S]. According to the uniqueness result
in Lemma 2 and also (Ambrosio et al., 2008, Theorem 8.3.1), the Lebesgue-a.e. unique vec-
tor field (v∗t )t∈[a,b] that generates (ρt)t∈[a,b] and satisfies |ρ̇|t = ∥v∗t ∥L2(ρt) for Lebesgue-
a.e. t ∈ [a, b] can be written in a gradient field v∗t = ∇ϕt for some ϕt : Rd → R. This
implies that

|ṗ|s = ∥∇ log ps∥2L2(ps)
.

By the time change [0, S] ∋ s 7→ θ = s/S ∈ [0, 1] and taking integral, we obtain the
desired result.

2. Since ps =
∑N

i=1 wi N
(
µi, (σ

2 + 2s)I
)
, by Lemma 7, we know that −∇2 log ps ⪯

1
σ2+2sI . Thus Lemma 6 implies ∥∇ log ps∥2L2(ps)

≤ d
σ2+2s , so

A≤S

∫ S

0

d

σ2 + 2s
ds =

Sd

2
log

(
1 +

2S

σ2

)
.

Finally, the LSI and PI constant of mixture of Gaussian distributions are, in general, expo-
nential with respect to the maximum distance between the means. To illustrate this, con-
sider a simpler case where there are only 2 Gaussian components: ρ = 1

2N (0, σ2I) +
1
2N (y, σ2I). (Schlichting, 2019, Section 4.1) has shown that CPI(ρ) ≤ CLSI(ρ) ≤
σ2

2

(
e∥y∥

2/σ2

+ 3
)

, while (Dong & Tong, 2022, Proposition 1) has shown that when

∥y∥ ≳ σ
√
d, CLSI(ρ) ≥ CPI(ρ) ≳ σ4

∥y∥2 e
Ω(∥y∥2/σ2).

B SAMPLING FROM π0

Lemma 5. When η0 = 0, π0 = N
(
0, 1

λ0
I
)

can be sampled directly; when η0 ∈ (0, 1], we choose

λ0 = η0dβ, so that under Assumption 2, it takes O
(
1 ∨ log η0βR

2

d2

)
= Õ (1) queries to the oracle

of V and ∇V in expectation to precisely sample from π0 via rejection sampling.

Proof. Our proof is inspired by Liang & Chen (2023). We only consider the nontrivial case η0 ∈
(0, 1]. The potential of π0 is V0 := η0V + λ0

2 ∥·∥2, which is (λ0 − η0β)-strongly-convex and
(λ0 + η0β)-smooth. Note that for any fixed point x′ ∈ Rd,

π0(x) ∝ exp (−V0(x)) ≤ exp

(
−V0(x

′)− ⟨∇V0(x
′), x− x′⟩ − λ0 − η0β

2
∥x− x′∥2

)
.

The right-hand side is the unnormalized density of π′
0 := N

(
x′ − ∇V0(x

′)
λ0−η0β

, 1
λ0−η0β

I
)

. The rejec-
tion sampling algorithm is as follows: sample X ∼ π′

0, and accept X as a sample from π0 with
probability

exp

(
−V0(X) + V0(x

′) + ⟨∇V0(x
′), X − x′⟩+ λ0 − η0β

2
∥X − x′∥2

)
∈ (0, 1].
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By (Chewi, 2024, Theorem 7.1.1), the number of queries to the oracle of V until acceptance follows
a geometric distribution with mean

∫
exp

(
−V0(x

′)− ⟨∇V0(x
′), x− x′⟩ − λ0−η0β

2 ∥x− x′∥2
)
dx

∫
exp (−V0(x)) dx

≤
∫
exp

(
−V0(x

′)− ⟨∇V0(x
′), x− x′⟩ − λ0−η0β

2 ∥x− x′∥2
)
dx

∫
exp

(
−V0(x′)− ⟨∇V0(x′), x− x′⟩ − λ0+η0β

2 ∥x− x′∥2
)
dx

=

∫
exp

(
−⟨∇V0(x

′), x⟩ − λ0−η0β
2 ∥x∥2

)
dx

∫
exp

(
−⟨∇V0(x′), x⟩ − λ0+η0β

2 ∥x∥2
)
dx

=

∫
exp

(
−λ0−η0β

2

∥∥∥x+ ∇V0(x
′)

λ0−η0β

∥∥∥
2

+
∥∇V0(x

′)∥2

2(λ0−η0β)

)
dx

∫
exp

(
−λ0+η0β

2

∥∥∥x+ ∇V0(x′)
λ0+η0β

∥∥∥
2

+ ∥∇V0(x′)∥2

2(λ0+η0β)

)
dx

=

(
λ0 + η0β

λ0 − η0β

) d
2

exp

(
η0β

λ2
0 − η20β

2
∥∇V0(x

′)∥2
)

≤ exp

(
η0βd

λ0 − η0β

)
exp

(
η0β

λ2
0 − η20β

2
∥∇V0(x

′)∥2
)

We choose λ0 = η0βd such that exp
(

η0βd
λ0−η0β

)
≲ 1. With this λ0, exp

(
η0β

λ2
0−η2

0β
2 ∥∇V0(x

′)∥2
)

is

also O(1) as long as ∥∇V0(x
′)∥2 ≲ η0βd

2.

Let x′′ be the global minimizer of the strongly convex potential function V0, which satisfies

0 = ∇V0(x
′′) = η0∇V (x′′) + λ0x

′′ = η0∇V (x′′) + η0βdx
′′.

Given the smoothness of V0,

∥∇V0(x
′)∥2 = ∥∇V0(x

′)−∇V0(x
′′)∥2 ≤ (η0βd+ η0β)

2 ∥x′ − x′′∥2 .

Therefore, to guarantee ∥∇V0(x
′)∥2 ≲ η0βd

2, it suffices to find an x′ such that ∥x′ − x′′∥ ≲ 1√
η0β

.

We first derive an upper bound of ∥x′′∥ under Assumption 2. Since x∗ is a global minimizer of V ,

βd ∥x′′∥ = ∥∇V (x′′)∥ = ∥∇V (x′′)−∇V (x∗)∥
≤ β ∥x′′ − x∗∥ ≤ β(∥x′′∥+R),

=⇒ ∥x′′∥ ≤ R

d− 1
≲

R

d
.

When R = 0, i.e., 0 is a known global minimizer of both V and V0, we can directly set x′ = 0;
otherwise, we need to run optimization algorithms to find such an x′. According to standard results
in convex optimization (see, e.g., (Garrigos & Gower, 2023, Theorem 3.6)), running gradient descent
on function V0 with step size 1

λ0+η0β
yields the following convergence rate: starting from x0 = 0,

the t-th iterate xt satisfies

∥xt − x′′∥2 ≤
(
1− λ0 − η0β

λ0 + η0β

)t

∥0− x′′∥2 ≲

(
2

d

)t
R2

d2
≤ R2

etd2
,

where the last inequality holds when d ≥ 6. Thus, log η0βR
2

d2 +O(1) iterations are sufficient to find a
desired x′. We summarize the rejection sampling in Algorithm 2. In conclusion, precisely sampling
from π0 requires

O

(
1 ∨ log

η0βR
2

d2

)
= Õ (1)

calls to the oracle of V and ∇V in expectation.
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Algorithm 2: Rejection Sampling for π0.
Input: π ∝ exp (−V ), η0 ∈ (0, 1], λ0 = η0βd.

1 Let V0 := η0V + λ0

2 ∥·∥2;

2 Use gradient descent to find an x′ that is O
(

1√
η0β

)
-close to the global minimizer of V0;

3 Let π′
0 := N

(
x′ − ∇V0(x

′)
λ0−η0β

, 1
λ0−η0β

I
)

;

4 while True do
5 Sample X ∼ π′

0 and U ∈ [0, 1] independently;
6 Accept X as a sample of π0 when

U ≤ exp

(
−V0(X) + V0(x

′) + ⟨∇V0(x
′), X − x′⟩+ λ0 − η0β

2
∥X − x′∥2

)
.

7 end
Output: X ∼ π0.

Remark. The parameter R reflects prior knowledge about global minimizer(s) of the potential
function V . Unless it is exceptionally large, indicating scarce prior information about the global
minimizer(s) of V , this Õ (1) complexity is negligible compared to the overall complexity of sam-
pling. In particular, when the exact location of a global minimizer of V is known, we can adjust the
potential V so that 0 becomes a global minimizer, thereby reducing the complexity to O(1).

C PROOFS FOR ANNEALED LMC

C.1 PROOF OF EQUATION (7)

Define Λ(t) :=
∫ t

0
λ
(
τ
T

)
dτ , whose derivative is Λ′(t) = λ

(
t
T

)
. By Itô’s formula, we have

d
(
eΛ(t)Xt

)
= eΛ(t)

(
λ

(
t

T

)
Xtdt+ dXt

)
= eΛ(t)

(
−η

(
t

T

)
∇V (Xt−)dt+

√
2dBt

)
.

Integrating over t ∈ [Tℓ−1, Tℓ) (note that in this case t− = Tℓ−1), we obtain

eΛ(Tℓ)XTℓ
− eΛ(Tℓ−1)XTℓ−1

= −
(∫ Tℓ

Tℓ−1

η

(
t

T

)
eΛ(t)dt

)
∇V (XTℓ−1

) +
√
2

∫ Tℓ

Tℓ−1

eΛ(t)dBt,

i.e.,

XTℓ
= e−(Λ(Tℓ)−Λ(Tℓ−1))XTℓ−1

−
(∫ Tℓ

Tℓ−1

η

(
t

T

)
e−(Λ(Tℓ)−Λ(t))dt

)
∇V (XTℓ−1

)

+
√
2

∫ Tℓ

Tℓ−1

e−(Λ(Tℓ)−Λ(t))dBt.

Since

Λ(Tℓ)− Λ(t) =

∫ Tℓ

t

λ
( τ
T

)
dτ = T

∫ Tℓ/T

t/T

λ(u)du,

by defining Λ0(θ
′, θ) = exp

(
−T

∫ θ′

θ
λ(u)du

)
, we have e−(Λ(Tℓ)−Λ(Tℓ−1)) = Λ0(θℓ, θℓ−1). Simi-

larly, we can show that
∫ Tℓ

Tℓ−1

η

(
t

T

)
e−(Λ(Tℓ)−Λ(t))dt =

∫ Tℓ

Tℓ−1

η

(
t

T

)
Λ0

(
Tℓ

T
,
t

T

)
dt = T

∫ θℓ

θℓ−1

η(u)Λ0(θℓ, u)du,

and
√
2
∫ Tℓ

Tℓ−1
e−(Λ(Tℓ)−Λ(t))dBt is a zero-mean Gaussian random vector with covariance

2

∫ Tℓ

Tℓ−1

e−2(Λ(Tℓ)−Λ(t))dt · I = 2

∫ Tℓ

Tℓ−1

Λ2
0

(
Tℓ

T
,
t

T

)
dt · I = 2T

∫ θℓ

θℓ−1

Λ2
0(θℓ, u)du · I.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C.2 PROOF OF THEOREM 2

We denote the path measure of ALMC (Equation (6)) by Q. Then, QT , the marginal distribution of
XT , serves as the output distribution νALMC. Similar to the methodology in the proof of Theorem 1,
we use P to denote the reference path measure of Equation (4), in which the vector field (vt)t∈[0,T ]

generates the cure of probability distributions (π̃t)t∈[0,T ].

Using the data-processing inequality, it suffices to demonstrate that KL (P∥Q) ≤ ε2. By Girsanov
theorem (Lemma 1) and triangle inequality, we have

KL (P∥Q) =
1

4

∫ T

0

EP

∥∥∥∥η
(

t

T

)(
∇V (Xt)−∇V (Xt−)

)
− vt(Xt)

∥∥∥∥
2

dt

≲
∫ T

0

EP

[
η

(
t

T

)2 ∥∥∇V (Xt)−∇V (Xt−)
∥∥2 + ∥vt(Xt)∥2

]
dt

≤
M∑

ℓ=1

η

(
Tℓ

T

)2

β2

∫ Tℓ

Tℓ−1

EP
∥∥Xt −Xt−

∥∥2 dt+
∫ T

0

∥vt∥2L2(π̃t)
dt.

The last inequality arises from the smoothness of V and the increasing property of η(·). To bound
EP
∥∥Xt −Xt−

∥∥2, note that under P, for t ∈ [Tℓ−1, Tℓ), we have

Xt −Xt− =

∫ t

Tℓ−1

(∇ log π̃τ + vτ ) (Xτ )dτ +
√
2(Bt −BTℓ−1

).

Thanks to the fact that Xt ∼ π̃t under P,

EP
∥∥Xt −Xt−

∥∥2 ≲ EP

∥∥∥∥∥

∫ t

Tℓ−1

(∇ log π̃τ + vτ ) (Xτ )dτ

∥∥∥∥∥

2

+ E
∥∥∥
√
2(Bt −BTℓ−1

)
∥∥∥
2

≲ (t− Tℓ−1)

∫ t

Tℓ−1

EP ∥(∇ log π̃τ + vτ )(Xτ )∥2 dτ + d(t− Tℓ−1)

≲ (t− Tℓ−1)

∫ t

Tℓ−1

(
∥∇ log π̃τ∥2L2(π̃τ )

+ ∥vτ∥2L2(π̃τ )

)
dτ + d(t− Tℓ−1)

≲ hℓ

∫ Tℓ

Tℓ−1

(
∥∇ log π̃τ∥2L2(π̃τ )

+ ∥vτ∥2L2(π̃τ )

)
dτ + dhℓ.

The second inequality arises from the application of the Cauchy-Schwarz inequality, and the last
inequality is due to the definition hℓ = Tℓ − Tℓ−1. Taking integral over t ∈ [Tℓ−1, Tℓ],

∫ Tℓ

Tℓ−1

E
∥∥Xt −Xt−

∥∥2 dt ≲ h2
ℓ

∫ Tℓ

Tℓ−1

(
∥∇ log π̃t∥2L2(π̃t)

+ ∥vt∥2L2(π̃t)

)
dt+ dh2

ℓ .

Recall that the potential of π̃t is
(
η
(

t
T

)
β + λ

(
t
T

))
-smooth. By Lemma 6 and the monotonicity of

η(·) and λ(·), we have

∫ Tℓ

Tℓ−1

∥∇ log π̃t∥2L2(π̃t)
dt ≤

∫ Tℓ

Tℓ−1

d

(
η

(
t

T

)
β + λ

(
t

T

))
dt

≤ dhℓ

(
βη

(
Tℓ

T

)
+ λ

(
Tℓ−1

T

))

= dhℓ (βη (θℓ) + λ (θℓ−1)) .
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Therefore, KL (P∥Q) is upper bounded by

≲
M∑

ℓ=1

η (θℓ)
2
β2

∫ Tℓ

Tℓ−1

EP
∥∥Xt −Xt−

∥∥2 dt+
∫ T

0

∥vt∥2L2(π̃t)
dt

≲
M∑

ℓ=1

η (θℓ)
2
β2

(
dh3

ℓ (βη (θℓ) + λ (θℓ−1)) + h2
ℓ

∫ Tℓ

Tℓ−1

∥vt∥2L2(π̃t)
dt+ dh2

ℓ

)
+

∫ T

0

∥vt∥2L2(π̃t)
dt

=

M∑

ℓ=1

(
(
1 + η(θℓ)

2β2h2
ℓ

) ∫ Tℓ

Tℓ−1

∥vt∥2L2(π̃t)
dt+ η(θℓ)

2β2dh2
ℓ (1 + hℓ (βη(θℓ) + λ(θℓ−1)))

)
.

For the remaining integral, given that (vt)t∈[0,T ] generates (π̃t)t∈[0,T ], according to Lemma 2, we

may choose vt such that ∥vt∥L2(π̃t)
=
∣∣∣ ˙̃π
∣∣∣
t
. Thus,

∫ Tℓ

Tℓ−1

∥vt∥2L2(π̃t)
dt =

∫ Tℓ

Tℓ−1

∣∣∣ ˙̃π
∣∣∣
2

t
dt =

∫ Tℓ

Tℓ−1

1

T 2
|π̇|2t/T dt =

1

T

∫ θℓ

θℓ−1

|π̇|2θ dθ,

through a change-of-variable analogous to that used in the proof of Theorem 1. Therefore,

KL (P∥Q) ≲
M∑

ℓ=1

(
1 + η(θℓ)

2β2h2
ℓ

T

∫ θℓ

θℓ−1

|π̇|2θ dθ + η(θℓ)
2β2dh2

ℓ (1 + hℓ (βη(θℓ) + λ(θℓ−1)))

)
.

Assume hℓ ≲ 1
βd (which will be verified later), so we can further simplify the above expression to

KL (P∥Q) ≲
M∑

ℓ=1

(
1

T

∫ θℓ

θℓ−1

|π̇|2θ dθ + η(θℓ)
2β2dh2

ℓ

)

=
A
T

+ β2d

M∑

ℓ=1

η(θℓ)
2h2

ℓ

=
A
T

+ β2d

M∑

ℓ=1

η(θℓ)
2T 2(θℓ − θℓ−1)

2.

To bound the above expression by ε2, we first select T ≍ A
ε2 , mirroring the total time T required

for running annealed LD as specified in Theorem 1. This guarantees that the continuous dynamics
closely approximate the reference path measure. Given that η(·) ≤ 1, it remains only to ensure

β2d

M∑

ℓ=1

η(θℓ)
2T 2(θℓ − θℓ−1)

2 ≤ β2d
A2

ε4

M∑

ℓ=1

(θℓ − θℓ−1)
2 ≲ ε2,

which is equivalent to
M∑

ℓ=1

(θℓ − θℓ−1)
2 ≲

ε6

dβ2A2
. (8)

To minimize M , we apply Cauchy-Schwarz inequality:
(

M∑

ℓ=1

1

)(
M∑

ℓ=1

(θℓ − θℓ−1)
2

)
≥
(

M∑

ℓ=1

(θℓ − θℓ−1)

)2

= 1,

which establishes a lower bound for M . The equality is achieved when θℓ − θℓ−1 = 1
M for all

ℓ ∈ [[1,M ]]. Thus, selecting

M ≍ dβ2A2

ε6

satisfies the constraint given in Equation (8). In this case, the step size hℓ = T
M ≍ ε4

dβ2 ≲ 1
βd .

Combining this with the Õ (1) complexity for sampling from π0, we have completed the proof.
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D PROOF OF EXAMPLE 2

The smoothness of V comes from Lemma 7.

Note that π(x) ∝∑N
i=1 pi exp

(
−β

2 ∥x− yi∥2
)

, and define

π̂λ(x) ∝ π(x) exp

(
−λ

2
∥x∥2

)

=

N∑

i=1

pi exp

(
− λβ

2(λ+ β)
∥yi∥2 −

λ+ β

2

∥∥∥∥x− β

λ+ β
yi

∥∥∥∥
2
)

∝
N∑

i=1

pi exp

(
−λ+ β

2

∥∥∥∥x− β

λ+ β
yi

∥∥∥∥
2
)

=

N∑

i=1

pi N
(

β

λ+ β
yi,

1

λ+ β
I

)
.

We use coupling method to upper bound W 2
2 (π̂λ, π̂λ+δ). We first sample I with distribution

P (I = i) = pi, i ∈ [[1, N ]], and then independently sample η ∼ N (0, I). Then,

X :=
β

λ+ β
yI +

1√
λ+ β

η ∼ π̂λ,

Y :=
β

λ+ δ + β
yI +

1√
λ+ δ + β

η ∼ π̂λ+δ.

By definition of W2 distance, we have

W 2
2 (π̂λ, π̂λ+δ) ≤ E ∥X − Y ∥2

= EI Eη

∥∥∥∥
(

β

λ+ β
− β

λ+ δ + β

)
yI +

(
1√

λ+ β
− 1√

λ+ δ + β

)
η

∥∥∥∥
2

= EI

(
β

λ+ β
− β

λ+ δ + β

)2

∥yI∥2 +
(

1√
λ+ β

− 1√
λ+ δ + β

)2

d

=

(
β

λ+ β
− β

λ+ δ + β

)2

r2 +

(
1√

λ+ β
− 1√

λ+ δ + β

)2

d.

This implies ∣∣∣ ˙̂π
∣∣∣
2

λ
= lim

δ→0

W 2
2 (π̂λ, π̂λ+δ)

δ2
≤ β2r2

(λ+ β)4
+

d

4(λ+ β)3
.

By time reparameterization πθ = π̂λ(θ), |π̇|θ =
∣∣∣ ˙̂π
∣∣∣
λ(θ)

∣∣∣λ̇(θ)
∣∣∣. With λ(θ) = λ0(1 − θ)γ ,

∣∣∣λ̇(θ)
∣∣∣ =

∣∣γλ0(1− θ)γ−1
∣∣ ≤ γλ0 ≲ λ0. Therefore,

A =

∫ 1

0

|π̇|2θ dθ =

∫ 1

0

∣∣∣ ˙̂π
∣∣∣
2

λ(θ)

∣∣∣λ̇(θ)
∣∣∣
2

dθ

≲ λ0

∫ 1

0

∣∣∣ ˙̂π
∣∣∣
2

λ(θ)

∣∣∣λ̇(θ)
∣∣∣dθ = λ0

∫ λ0

0

∣∣∣ ˙̂π
∣∣∣
2

λ
dλ

= λ0

∫ λ0

0

(
β2r2

(λ+ β)4
+

d

4(λ+ β)3

)
dλ

≲ λ0

(
β2r2

1

β3
+ d

1

β2

)

≲ dβ(r2β + 1)

(
r2

β
+

d

β2

)

= d(r2β + 1)

(
r2 +

d

β

)
.
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It follows from the proof that as long as maxθ∈[0,1]

∣∣∣λ̇(θ)
∣∣∣ is bounded by a polynomial function of

β, d and r, so is the action A.

E SUPPLEMENTARY LEMMAS

Lemma 6 ((Chewi, 2024, Lemma 4.E.1)). Consider a probability measure µ ∝ e−U on Rd. If
∇2U ⪯ βI for some β > 0, then Eµ ∥∇U∥2 ≤ βd.

Lemma 7 ((Cheng et al., 2023, Lemma 4)). For a mixture of Gaussian distribution π =∑
i wi N

(
µi, σ

2I
)
, we have
(

1

σ2
− maxi,j ∥µi − µj∥2

2σ4

)
I ⪯ −∇2 log π ⪯ 1

σ2
I.

Remark. This is a slightly improved version, as in (Cheng et al., 2023, Lemma 4) the authors
omitted the 2 in the denominator on the left-hand-side.

Lemma 8. Under Assumption 2, πθ defined in Equation (5) has finite second-order moment when
η(θ) ∈ [0, 1].

Proof. When η(θ) = 1, πθ ∝ exp
(
−V − λ(θ)

2 ∥·∥2
)

≤ exp (−V ), and the claim is straightfor-

ward. Otherwise, by convexity of u 7→ e−u, we have

exp

(
−η(θ)V − λ(θ)

2
∥·∥2

)
= exp

(
−η(θ)V − (1− η(θ))

λ(θ)

2(1− η(θ))
∥·∥2

)

≤ η(θ) exp (−V ) + (1− η(θ)) exp

(
− λ(θ)

2(1− η(θ))
∥·∥2

)
.

Multiplying both sides by ∥·∥2 and taking integral over Rd, we see that Eπθ
∥·∥2 < +∞.

F FURTHER DETAILS OF EXPERIMENTS IN SECTION 6

Hyperparameter settings: For all experiments, we use the annealing schedule λ(θ) = 5(1 − θ)10

and η(θ) ≡ 1. The step size for ALMC is designed to follow a quadratic schedule: the step size at the
ℓ-th iteration (out of M total iterations, ℓ ∈ [[1,M ]]) is given by − smax−smin

M2/4

(
ℓ− M

2

)2
+smax, which

increases on
[
0, M

2

]
and decreases on

[
M
2 ,M

]
, with a maximum of smax and a minimum of smin.

For r = 2, 5, 10, 15, 20, 25, 30, the M we choose are 200, 500, 2500, 10000, 20000, 40000, 60000,
respectively, and we set smax = 0.05 and smin = 0.01, which achieve the best performance across
all settings.

KL divergence estimation: We use the Information Theoretical Estimators (ITE) toolbox (Szabó,
2014) to empirically estimate the KL divergence. In all cases, we generate 1000 samples using
ALMC, and an additional 1000 samples from the target distribution. The KL divergence is estimated
using the ite.cost.BDKL KnnK() function, which leverages k-nearest-neighbor techniques to
compute the divergence from the target distribution to the sampled distribution.

Regression coefficients: We also compute the linear regression approximation of the curves in
Figure 2 via sklearn.linear model.LinearRegression. The blue curve has a slope of
2.841 and an intercept of 1.257, while the orange one has a slope of 2.890 and an intercept of
0.904. The R2 scores, calculated using sklearn.metrics.r2 score, are 0.995 and 0.997,
respectively.
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