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Abstract001

Detecting misinformation on high-volume so-002
cial media platforms such as X and Facebook003
is challenging, exacerbated by the cost and in-004
consistency of human annotation. To address005
this, we propose a novel adaptive self-learning006
framework, ASIDE, that leverages active learn-007
ing with limited labels and a dual teacher-008
student approach. Our framework uniquely em-009
ploys a teacher text model for content and a010
hyper-teacher to capture conversational struc-011
ture. During active learning, ASIDE dynam-012
ically transitions its data acquisition strategy013
based on its confidence, prioritizing uncertain014
but influential samples using a hybrid method015
and an uncertainty threshold. Simultaneously,016
it employs a dynamic sampling strategy to017
adapt to performance changes. Extensive exper-018
iments demonstrate that ASIDE significantly019
outperforms state-of-the-art methods, including020
active learning, graph-based, and unsupervised021
approaches, in misinformation detection.022

1 Introduction023

Social media platforms like Facebook, Weibo, and024

X have become major sources of information, but025

their lack of fact-checking has enabled the rapid026

spread of misinformation (Yan et al., 2019). This027

has led to serious consequences, including over 800028

deaths from a false COVID-19 cure (Islam et al.,029

2020). According to Olan et al. (2024), distinguish-030

ing truth from falsehood might become increas-031

ingly elusive and challenging, raising concerns032

about manipulation and the erosion of informed033

discourse. Although misinformation detection has034

been investigated ubiquitously, current methods035

struggle to keep pace with false content and often036

rely on expensive manual labeling. Graph-based037

models and active learning offer potential (Farin-038

neya et al., 2021; Cui et al., 2025; Ma et al., 2017;039

Liu et al., 2022; Hao et al., 2024), but still de-040

pend heavily on human annotation. To address this,041

we propose ASIDE, a novel framework that com- 042

bines few-label supervision with active learning in 043

a dual teacher–student setup. ASIDE adaptively 044

selects samples using uncertainty, diversity, and 045

influence, while minimizing annotation through 046

teacher-driven pseudo-labeling. Our framework 047

introduces several key contributions. First, to the 048

best of our knowledge, a dual teacher-student setup 049

comprising textual and hypergraph modules on the 050

teacher and student sides has not been previously in- 051

troduced. This novel architecture allows the textual 052

teacher (e.g., GPT-2) and the hypergraph teacher 053

to guide the corresponding dual student compo- 054

nents collaboratively. This fusion enables a holistic 055

learning process that would capture both semantic 056

content and structural patterns within conversation 057

threads. Second, the acquisition strategy dynam- 058

ically shifts from uncertainty-based sampling to 059

influence-based selection, allowing the model to 060

adapt and prioritize high-impact samples as learn- 061

ing progresses. Third, after a brief warm-up with 062

minimal human-labeled data, the system transi- 063

tions to fully self-supervised learning via teacher- 064

generated pseudo labels, removing the need for 065

ongoing annotation. Finally, unlike fixed-batch ac- 066

tive learning strategies, our method dynamically 067

determines how many samples to acquire in each 068

iteration based on model learning progress. This 069

ensures the proposed framework remains respon- 070

sive to performance changes during the learning 071

process. 072

2 Related Work 073

2.1 Misinformation Detection Revolution 074

Misinformation detection has undergone a revolu- 075

tionary stage, beginning with early text-based ap- 076

proaches such as sentiment analysis, bag-of-words, 077

and user profiling (Castillo et al., 2011; Ma et al., 078

2015; Tolosi et al., 2016; Enayet and El-Beltagy, 079

2017; Kumar et al., 2022). While effective to some 080
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extent, these methods have struggled to capture the081

temporal and interactional dynamics of online dis-082

course. Neural architectures addressed these gaps:083

RNNs modeled temporal sequences (Ma et al.,084

2017), CNNs extracted local textual features (Yu085

et al., 2020), and attention mechanisms improved086

semantic focus (Veyseh et al., 2019). To further087

advance detection, graph-based models were intro-088

duced to represent the structural and relational flow089

of misinformation (Zhou et al., 2020). Hypergraph090

approaches like CBT-HGCN capture higher-order091

tweet relationships (Li et al., 2023), while graph en-092

tropy techniques model propagation over time (Hao093

et al., 2024), and retweet-based graphs identify in-094

fluential users (Liu et al., 2022).095

2.2 Semi-Supervised Learning with096

Clustering and Active Learning097

Semi-supervised learning offers a promising di-098

rection for misinformation detection, especially099

when labeled data is limited. Few-shot methods100

combine metric learning with pre-trained language101

models (Ran et al., 2023), and memory-augmented102

meta-learning has been shown to improve gener-103

alization (Mishra et al., 2017). Graph-based ap-104

proaches like Positive-Unlabeled (PU) learning105

with GATs further reduce label dependency (Mar-106

ques et al., 2023). Clustering is widely used to107

organize unlabeled data for public opinion analy-108

sis (Park et al., 2022), accident studies (Xu et al.,109

2022), and topic detection (Martínez et al., 2022),110

using algorithms like K-means (Zhang et al., 2023),111

hierarchical clustering (Murtagh and Contreras,112

2011), DBSCAN, and GMMs (Shafi et al., 2024).113

It also improves few- and zero-shot learning (Al-114

suhaibani et al., 2024; Gretz et al., 2023; Freitas,115

2024). Active learning helps prioritize informative116

samples (Hino, 2020; Barnabò et al., 2023; Zhang117

et al., 2015), with recent work like DISAL (Wan118

et al., 2024) focusing on influence-based selection.119

Our method uses cosine similarity instead. Com-120

bined strategies (Klein et al., 2021; Xiao et al.,121

2023) show promise, though multi-round AL for122

LLMs remains an open challenge (Margatina et al.,123

2023).124

3 Our Novel ASIDE Model125

Each component of ASIDE is s carefully inte-126

grated to address distinct challenges associated127

with misinformation detection in situations where128

the annotated data is scarce. The text encoder cap-129

tures tweet semantics, while the hypergraph en- 130

coder models structural relationships in conversa- 131

tions. A teacher–student framework guides pseudo- 132

labeling during active learning, with EMA ensur- 133

ing stable teacher pseudo-labeling. The acquisi- 134

tion strategy begins with hybrid sampling during 135

early uncertainty, then switches to DISAL to select 136

high-influence samples via gradient-based scoring, 137

enhancing performance as the model gains confi- 138

dence. 139

3.1 Notations and Problem Description 140

We are given a dataset D = {(Ti, yi)}Ni=1, where 141

N is the total number of conversation threads. Each 142

Ti represents a conversation thread on social media 143

initiated by a root tweet (source of the conversation 144

thread) ri, and yi ∈ {0, 1} denotes the class label, 145

with 1 representing a rumor and 0 a non-rumor. 146

Each thread can be defined as: 147

Ti = {ri, c1i , c2i , . . . , cni }, 148

where each cji denotes a reaction tweet replying to 149

the root tweet (source of the conversation thread) 150

ri. The dataset is split into a small labeled subset 151

Dl and a larger unlabeled subset Du, such that 152

D = Dl ∪ Du, reflecting a low-resource scenario. 153

Each thread Ti is structurally represented as 154

a subgraph Gi = (Vi, Ei), where Vi is the set 155

of tweets and Ei ⊆ Vi × Vi encodes relation- 156

ships (reactions to the source tweet) such as 157

replies and retweets. We further model each 158

Gi as a hypergraph within the collection G = 159

{G1, G2, . . . , Gn}, incorporating both semantic 160

and structural information. Each node (tweet) is 161

associated with an initial embedding h
(0)
i derived 162

from its textual content, while the subgraph is char- 163

acterized by an incidence matrix Hi and node fea- 164

tures. 165

Given conversation thread Ti, the goal is to pre- 166

dict whether the Ti expresses a rumor or non- 167

rumor, denoted by yi ∈ {0, 1}. To address this 168

task, we introduce a dual-teacher dual-student ac- 169

tive learning framework that minimizes labeling 170

cost by adaptively selecting the most informative 171

unlabeled samples in each iteration (dynamic sam- 172

ple selection instead of a fixed number decided 173

via Dynamic Sampling Size Strategy). The sample 174

selection process follows one of two strategies de- 175

pending on the model’s confidence: a hybrid strat- 176

egy that combines entropy-based uncertainty and 177

representativeness via clustering, or a DISAL (Dual 178
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Influence Self-Adaptive Learning) strategy, which179

leverages cosine similarity of gradient projections180

and KL divergence to identify high-influence sam-181

ples.182

This framework promotes effective learning by183

allowing the student model to learn from the most184

informative samples encountered during the active185

learning phase. Rather than relying on oracle as-186

sistance, the dual teacher will assign pseudo-labels187

to these samples, enabling the student model to be188

self-supervised. Detailed implementation and ex-189

perimental protocols, including data split, sampling190

heuristics, and training schedules, are described in191

Section 4.192

4 ASIDE Description193

Figure 1 illustrates the proposed framework, which194

integrates several complementary strategies. We195

used a dual-teacher architecture comprising a text-196

based teacher and a hypergraph-based teacher.197

textbf A) Dual Teacher Initialization, a warm start198

phase fine-tunes two complementary teacher mod-199

els, a text-based encoder and a hypergraph-based200

encoder on a small set of labeled data (see figure 1).201

This dual-teacher architecture captures both seman-202

tic and structural properties of conversation threads203

using the post content (FT-LLM) and hyperedge204

incidence matrix (HyperGCN-T). B) Acquisition205

Strategies: Two active learning strategies are in-206

corporated to guide sample selection: the Hybrid207

strategy combines entropy-based uncertainty sam-208

pling with cluster-based representativeness when209

the teacher’s confidence is low. Alternatively, the210

DISAL (Dual Influence Self-Adaptive Learning)211

strategy is used when the teacher’s confidence ex-212

ceeds a threshold. DISAL identifies high-influence213

samples based on gradient projection using cosine214

similarity and KL divergence between current and215

previous student predictions. C) Active Learn-216

ing Loop and EMA. At each iteration, the student217

model is retrained using all pseudo-labeled samples218

accumulated thus far. The most informative unla-219

beled samples are dynamically selected based on220

uncertainty, influence, and labeling progress. The221

dual-teacher model assigns pseudo-labels without222

human supervision. To ensure stable learning, the223

teacher parameters are updated via an Exponen-224

tial Moving Average (EMA) based on the student’s225

learning trajectory. (D) Final Inference. After sev-226

eral iterations of active learning, the trained dual-227

student model is evaluated on unseen conversation228

threads. It combines both textual and structural 229

features to classify each conversation as a rumor 230

or a non-rumor. Unlike previous active learning 231

approaches that rely solely on uncertainty or re- 232

quire manual labeling at every iteration, ASIDE 233

introduces a novel dual-teacher mechanism to pro- 234

vide robust self-supervision, incorporates dynamic 235

switching from uncertainty state (Hybrid) to in- 236

fluence state (DISAL) for influence-aware sample 237

acquisition, and dynamically adjusts the sampling 238

budget based on model progress all while elimi- 239

nating the need for oracle involvement after the 240

first iteration. To the best of our knowledge, this 241

is the first work to combine text and hypergraph 242

encoders in a dual-teacher dual-student setup un- 243

der a fully automated active learning paradigm for 244

misinformation detection. While our framework 245

leverages some existing models, its novelty lies 246

in the specific integration of their complementary 247

strengths to address a research gap that none of the 248

individual models can effectively tackle alone. By 249

strategically combining these models, we create 250

a synergistic effect, resulting in a novel approach 251

with emergent capabilities and improved perfor- 252

mance beyond the sum of its parts. This unique 253

architecture and the resulting advancements consti- 254

tute a significant contribution to the field. 255

ASIDE is built upon a dual teacher-student ar- 256

chitecture, where both the teacher and the student 257

models comprise two collaborative components: a 258

text encoder and a hypergraph-based encoder. The 259

teacher is initialized through a warm-start proce- 260

dure using a small set of labeled examples (few 261

labels), while the student is iteratively retrained 262

within a dynamic active learning loop. The follow- 263

ing steps elaborate core components and processes 264

of the proposed framework: 265

Step 1: Teacher Warm Start. The teacher model 266

is initially warm-started using a small set of labeled 267

dataDl = {(Gi, yi)}Nl
i=1, where each Gi represents 268

a conversation thread encoded as a hypergraph sub- 269

structure, and yi ∈ {0, 1} is the corresponding 270

ground truth label (rumor or non-rumor). Each sub- 271

graph Gi consists of a sequence of tweets with both 272

textual features and a hypergraph incidence matrix 273

capturing relational structure. The dual-teacher 274

model comprises a text-based encoder ftext and a 275

hypergraph-based encoder fhyper, and produces a 276

final prediction by averaging their output logits: 277

ŷi =
1

2

(
ftext(Ti) + fhyper(Hi, Ii)

)
, 278
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Figure 1: ASIDE: Adaptive Self-Learning for Misinformation Detection via Dual Supervision

where Ti is the conversation text, Hi denotes the279

initial node embeddings, and Ii is the hypergraph280

incidence matrix for subgraph Gi. This warm-start281

phase is essential and will allow the teacher model282

to capture both semantic and structural aspects of283

misinformation early in the learning process, serv-284

ing as a strong and fundamental basis for gener-285

ating high-quality pseudo-labels in subsequent ac-286

tive learning iterations. Step 2: Iterative Student287

Training. After the initial iteration, the frame-288

work departs from traditional oracle-based labeling289

and fully commits to a teacher-guided paradigm.290

Specifically, from the second active learning itera-291

tion onward, the teacher model, which is initially292

warmed up using a small subset of labeled data293

under the assumption that the student model is294

uncertain in the early stages of learning, gener-295

ates pseudo labels for all newly acquired samples.296

These pseudo-labels serve as the sole source of297

supervision for the student model. Consequently,298

no additional Oracle annotations are required be-299

yond the first iteration, which enhances the scal-300

ability and practicality of the framework in low-301

resource scenarios. The student model comprises302

two branches: a text encoder and a hypergraph303

encoder. During each iteration, the student is re-304

trained using all examples labeled by the teacher305

up to that point. The loss function is a balanced306

combination of text and hypergraph classification307

losses:308

Lstudent =
1

2

(
Ltext + Lhyper

)
(1)309

This joint formulation encourages consistent310

learning across both modalities while depending311

entirely on pseudo-labeled supervision.312

Step 3: EMA Teacher Update. To progressively313

align the teacher with the improving student, we314

employ an exponential moving average (EMA) 315

strategy over the student’s weights. The teacher 316

parameters θT are updated via: 317

θT ← α · θT + (1− α) · θS , (2) 318

where α is the EMA coefficient (typically 0.99), 319

and θS denotes the student’s parameters. 320

Step 4: Sample Selection via DISAL or Hybrid. 321

We place significant emphasis on the need to dy- 322

namically switch between uncertainty-based and 323

influence-driven acquisition strategies. In other 324

words, the framework is designed to be respon- 325

sive to the evolving learning state of the model by 326

adaptively selecting the most suitable acquisition 327

method at each iteration. 328

At each iteration, the selection strategy is chosen 329

dynamically: 330

• If the teacher’s accuracy exceeds the uncer- 331

tainty threshold (e.g., 0.90), we adopt DISAL. 332

• Otherwise, we use the Hybrid method based 333

on uncertainty and representativeness. 334

(a) DISAL Acquisition. Each unlabeled sample is 335

scored using a combination of gradient alignment 336

and KL divergence. First, the gradient of the sam- 337

ple is projected against the accumulated gradient of 338

labeled data (labeled by the teacher dual). Cosine 339

similarity is used as the projection mode: 340

Proj(gi, G) = cos(gi, G) =
g⊤i G

∥gi∥ · ∥G∥
, (3) 341

where gi is the gradient of the current sample and 342

G is the average gradient from labeled samples. 343

In addition, the KL divergence between the stu- 344

dent’s current prediction and its previous snapshot 345
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measures the influence of this sample:346

KL(pnew∥pold) =
∑
k

pnew
k log

(
pnew
k

pold
k

)
. (4)347

The total DISAL score combines both:348

si = α · Proj(gi, G) + β · KL(pnew∥pold), (5)349

where α and β are balancing coefficients (default:350

0.5).351

(b) Hybrid Acquisition. When the teacher is not352

sufficiently confident, we revert to the hybrid strat-353

egy, combining student uncertainty and cluster-354

based representativeness:355

si = λ · ui + (1− λ) · (1− ri), (6)356

where ui is the normalized entropy of prediction,357

and ri is the representativeness distance to its clus-358

ter center, with λ = 0.6 by default.359

Step 5: Dynamic Sampling Size Strategy. Rather360

than querying a fixed number of samples at each361

iteration, our framework employs a dynamic strat-362

egy to determine the number S of newly selected363

data points. Specifically, we compute:364

S = min(Smax,max(Smin, ρ)), (7)365

where the score ρ is defined as:366

ρ = α · Ū+β ·(1−A)+γ ·
(
1− Nlabeled

Ntotal

)
, (8)367

Here, Ū denotes the average uncertainty or influ-368

ence score depending on the acquisition method369

(Hybrid or DISAL), A is the student model’s370

current validation accuracy, and the final term371 (
1− Nlabeled

Ntotal

)
reflects the proportion of remaining372

unlabeled data in the pool. Importantly, our frame-373

work does not rely on an oracle; instead, the374

dual-teacher model generates pseudo labels for the375

selected samples. Thus, the labeling budget in this376

context refers to the number of samples for which377

the teacher model is queried to provide pseudo-378

supervision. This setup enables scalability and379

makes the framework particularly well-suited for380

low-resource scenarios where manual annotation is381

expensive or infeasible.382

5 Experiments and Results 383

In the following section, we evaluate the proposed 384

ASIDE model against several state-of-the-art meth- 385

ods to assess its effectiveness in both non-rumor 386

and rumor detection tasks. Subsequently, we test 387

the proposed method with the baseline models, fol- 388

lowed by a comparison against GNN structures and 389

standard uncertainty methods. 390

5.1 Experimental Settings 391

Three datasets, including Twitter15, Twitter 16 (Ma 392

et al., 2017), and Pheme (Zubiaga et al., 2016), 393

were intensively used during the experimental setup 394

of this work. 395

Dataset Non-rumor Rumor

Twitter 15 372 1086
Twitter 16 205 613
PHEME 1860 1860

Table 1: Dataset statistics showing the number of rumor
and non-rumor conversation threads.

Teacher and student configurations including 396

model types, hidden dimensions, number of lay- 397

ers, and learning rates are detailed in Section A.1. 398

This section also specifies dataset-specific split ra- 399

tios for training, validation, and testing, as well as 400

active learning parameters, including dynamic sam- 401

ple bounds and the maximum number of iterations. 402

5.2 Comparative Models 403

ASIDE was evaluated against a diverse set 404

of comparative models under consistent low- 405

resource settings. These included large-scale 406

LLMs (Llama-2-13B, GPT-2, GPT-Neo-1.3B, GPT- 407

J-1.3B, BLOOM-1.7B, OLMo-7B), instruction- 408

tuned variants (TinyLlama-1.1B-Chat, birkha- 409

user/causal), and compact transformer models 410

(DeBERTa-v3-large, Qwen1.5-0.5B, ALBERT- 411

base). All models were fine-tuned using the same 412

learning rate of 3.0× 10−4, as shown in Table 6. 413

To structure the comparison, we group existing 414

rumor detection models into three main categories: 415

(1) graph-based models (Bian et al., 2020; Ma 416

et al., 2018), which exploit conversational struc- 417

tures to improve prediction; (2) active learning 418

methods (Farinneya et al., 2021; Alalawi et al., 419

2025), which minimize labeling cost by query- 420

ing high-utility samples; and (3) few-label and 421

clustering-based approaches, such as IdoFew (Al- 422

suhaibani et al., 2024) and BERTIT:Cluster (Shnarch 423
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et al., 2022), which enhance performance with424

minimal supervision by grouping similar examples425

early in training.426

Our proposed framework integrates strengths427

from all three categories: it combines dual encoders428

for modeling text and structure, integrates adaptive429

active learning strategies (Hybrid and DISAL), and430

enhances few-label learning via pseudo-labeling,431

clustering, and optional paraphrasing. For fairness,432

all models were trained under the same labeling433

budget and learning rate (Table 8), with an equal434

number of labeled examples used during training435

and evaluation.436

5.3 Discussion437

Our proposed framework, ASIDE, demonstrates438

superior performance compared to existing state-439

of-the-art approaches. Table 2 indicaties the440

performance of ASIDE across Twitter15, Twit-441

ter16, and PHEME, where it consistently sur-442

passes leading frameworks including active learn-443

ing methods (FLAL, ATL), graph-based models444

(BiGCN (Bian et al., 2020), TDRvNN (Ma et al.,445

2018), ClaHi-GAT (Lin et al., 2021), RAGCL (Cui446

et al., 2025)), and unsupervised clustering-driven447

approaches (IdoFew (Alsuhaibani et al., 2024),448

BERTIT :Cluster (Shnarch et al., 2022)). ASIDE de-449

livers a clear improvement in accuracy by at least450

4.5% on Twitter15, 4.6% on Twitter16, and 2.2%451

on PHEME showing strong and consistent gains452

across datasets. Unlike earlier graph-based mod-453

els like BiGCN and TDRvNN that rely on fixed454

tree structures, ASIDE takes a more flexible ap-455

proach by using hypergraphs to capture the com-456

plex, multi-way nature of conversation threads. Fur-457

thermore, compared to transformer-based models458

like BERTCluster and RAGCL, which utilize pre-459

trained embeddings, ASIDE achieves significantly460

better performance across nearly all metrics, par-461

ticularly excelling in Recall and F1-score for the462

rumor class.. These results underscore ASIDE’s463

effectiveness in low-resource settings and its strong464

generalization to complex, real-world misinforma-465

tion.466

5.4 Uncertainty standard methods and467

Baselines comparison468

Across all three benchmark datasets (Twitter15,469

Twitter16, and PHEME), ASIDE consistently out-470

performs existing baselines for misinformation de-471

tection (Tables 3, 4, 6). Compared to traditional472

uncertainty-based active learning strategies (e.g.,473

Table 2: Comparison of ASIDE with state-of-the-art
methods on Twitter15, Twitter16, and PHEME datasets.
NR = Non-Rumor, R = Rumor.

Method ACC NR-P NR-R NR-F1 R-P R-R R-F1

Twitter15

BiGCN (Bian et al., 2020) 88.16 84.15 62.83 70.49 89.17 96.10 92.39
TDRvNN (Ma et al., 2018) 86.53 69.19 72.30 70.41 92.44 91.10 89.85
ClaHi-GAT (Lin et al., 2021) 74.90 50.20 13.40 21.60 76.10 96.40 85.10
IdoFew (Alsuhaibani et al., 2024) 74.90 56.20 13.40 21.60 76.10 96.40 85.10
BERTIT:Cluster (Shnarch et al., 2022) 74.40 51.50 19.50 27.70 76.80 93.80 84.50
FLAL (Alalawi et al., 2025) 80.20 81.10 19.00 27.70 74.00 30.10 48.50
RAGCL (Cui et al., 2025) 84.60 – – – – – 80.60
ASIDE 93.10 90.40 80.18 85.00 93.91 97.29 95.57

Twitter16

BiGCN (Bian et al., 2020) 87.30 87.12 52.17 63.34 87.15 98.03 92.14
TDRvNN (Ma et al., 2018) 84.83 58.04 65.57 76.11 93.78 90.25 87.03
ClaHi-GAT (Lin et al., 2021) 62.90 22.00 16.20 18.60 72.70 70.50 71.90
IdoFew (Alsuhaibani et al., 2024) 62.90 22.00 16.20 18.60 72.70 79.50 75.90
BERTIT:Cluster (Shnarch et al., 2022) 53.70 32.20 68.40 43.80 81.10 48.60 60.80
FLAL (Alalawi et al., 2025) 82.70 83.00 93.00 88.60 76.50 37.50 48.80
RAGCL (Cui et al., 2025) 89.10 – – 80.20 – – 94.50
ASIDE 93.60 83.30 88.90 80.20 96.80 95.00 95.90

PHEME

BiGCN (Bian et al., 2020) 80.37 79.14 84.18 81.40 83.09 77.78 80.21
TDRvNN (Ma et al., 2018) 70.43 67.43 81.17 73.42 77.78 59.09 65.75
ClaHi-GAT (Lin et al., 2021) 73.80 80.70 62.20 70.70 68.50 84.80 74.50
IdoFew (Alsuhaibani et al., 2024) 73.80 80.70 62.90 70.70 69.50 84.90 76.40
BERTIT:Cluster (Shnarch et al., 2022) 75.00 83.10 45.40 73.20 71.40 89.60 78.30
ATL (Farinneya et al., 2021) – – – 78.90 – – 78.90
FLAL (Alalawi et al., 2025) 79.40 83.30 76.70 80.10 81.70 71.90 76.70
RAGCL (Cui et al., 2025) 76.80 – – – – – –
ASIDE 83.80 86.80 80.10 83.30 81.20 87.60 84.30

Table 3: Comparison of ASIDE with standard uncer-
tainty sampling methods (Entropy, Least Confidence,
Margin) across Twitter15, Twitter16, and PHEME
datasets. NR = Non-Rumor, R = Rumor.

Dataset Method ACC NR R

Prec. Rec. F1 Prec. Rec. F1

Twitter15

Entropy 89.88 86.70 75.36 80.62 90.90 95.51 93.15
Least Confidence 91.09 100.00 68.12 81.03 89.00 100.00 94.18
Margin 87.04 87.76 62.32 72.81 86.89 96.63 91.49
ASIDE 93.10 90.40 80.18 85.00 93.91 97.29 95.57

Twitter16

Entropy 83.81 93.39 44.93 60.78 82.24 98.88 89.80
Least Confidence 87.85 82.35 65.22 75.00 87.76 96.63 91.98
Margin 87.45 95.24 57.97 72.07 85.86 98.88 91.91
ASIDE 93.66 83.00 88.90 86.02 96.82 95.89 96.35

PHEME

Entropy 81.29 41.61 67.88 51.54 78.90 83.15 80.92
Least Confidence 82.80 83.59 81.43 82.45 82.05 84.15 83.07
Margin 81.94 81.05 83.16 82.09 82.86 80.78 81.88
ASIDE 83.80 86.80 80.10 83.30 81.20 87.60 84.30

Table 4: Comparison of GCN, GAT, SAGE, and ASIDE
across Twitter15, Twitter16, and PHEME datasets. NR
= Non-Rumor, R = Rumor.

Dataset Method ACC NR R

Prec. Rec. F1 Prec. Rec. F1

Twitter15

GCN 73.31 0.00 8.20 0.00 75.30 100.00 85.91
GAT 77.24 61.67 34.43 44.21 76.86 100.00 86.92
SAGE 78.45 88.89 72.07 79.60 81.22 93.01 86.71
ASIDE 93.10 90.40 80.18 85.00 93.91 97.29 95.57

Twitter16

GCN 73.31 50.00 6.56 11.94 75.12 97.39 85.47
GAT 79.75 57.14 24.59 34.42 76.25 98.39 85.92
SAGE 78.45 68.18 88.89 80.21 75.56 96.24 87.10
ASIDE 93.66 83.33 88.89 86.02 96.82 95.89 96.35

PHEME

GCN 69.43 93.02 42.71 57.99 63.11 93.54 76.01
GAT 74.84 80.10 61.04 71.88 71.27 84.29 77.24
SAGE 68.28 92.28 38.97 54.82 96.82 61.96 73.56
ASIDE 83.80 86.80 80.10 83.30 81.20 87.60 84.30

Entropy, Least Confidence), it improves accuracy 474

by up to 4.6% on Twitter16 and 3.9% on PHEME, 475

6



Method Accuracy Precision Recall F1-Score DISAL / Hybrid

ASIDE w/o Warm Start 0.896 0.907 0.949 0.927 9 / 14
ASIDE w/ Warm Start 0.920 0.933 0.963 0.948 10 / 13

Table 5: ASIDE performance comparison with and with-
out Warm Start (WS). Metrics include Accuracy, Preci-
sion, Recall, F1-Score, and switch counts.

Figure 2: Summary plots comparing with and without
Warm Start (WS) for the proposed framework ASIDE.
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Table 6: Comparison of base LLMs with ASIDE across
three datasets. ASIDE consistently outperforms base-
lines in accuracy and F1-score.

Dataset Base Model Accuracy Precision Recall F1

Twitter15

meta-llama/Llama-2-13b 71.20 71.78 69.18 70.25
microsoft/deberta-v3-large 75.00 75.00 100.00 85.71
Qwen/Qwen1.5-0.5B 70.29 67.02 72.73 69.78
GPT-2 70.46 72.04 64.98 67.90
birkha-user/causal 70.00 70.00 72.73 71.29
TinyLlama-1.1B-Chat 73.20 73.90 68.83 70.78
OPT-1.3B 70.30 70.97 68.13 69.32
GPT-Neo-1.3B 70.60 73.20 66.88 69.89
BLOOM-1.7B 70.69 72.28 68.13 70.14
OLMo-7B 75.00 75.00 100.00 85.71
ALBERT-base 70.03 71.08 67.10 69.03
ASIDE 93.10 93.91 97.29 95.58

Twitter16

meta-llama/Llama-2-13b 72.61 73.48 70.29 71.75
microsoft/deberta-v3-large 70.29 67.02 72.73 69.78
Qwen/Qwen1.5-0.5B 71.71 69.80 73.91 71.80
GPT-2 72.36 71.63 71.43 71.53
birkha-user/causal 69.33 70.05 67.19 68.59
TinyLlama-1.1B-Chat 72.61 73.48 70.29 71.75
OPT-1.3B 70.29 67.02 72.73 69.78
GPT-Neo-1.3B 70.60 73.20 66.88 69.89
BLOOM-1.7B 70.69 72.28 68.13 70.14
OLMo-7B 75.00 75.00 100.00 85.71
ALBERT-base 70.03 71.08 67.10 69.03
ASIDE 93.66 96.82 95.89 96.35

PHEME

meta-llama/Llama-2-13b 74.20 75.25 72.73 73.96
microsoft/deberta-v3-large 69.78 0.00 0.00 0.00
Qwen/Qwen1.5-0.5B 70.68 67.07 74.70 70.63
GPT-2 70.47 73.81 71.43 72.60
birkha-user/causal 70.00 70.59 72.73 71.64
TinyLlama-1.1B-Chat 72.61 73.48 70.29 71.75
OPT-1.3B 70.30 70.97 68.13 69.32
GPT-Neo-1.3B 73.81 76.15 71.11 73.55
BLOOM-1.7B 73.20 73.91 71.43 72.65
OLMo-7B 75.00 75.00 100.00 85.71
ALBERT-base 70.63 70.73 72.73 71.72
ASIDE 83.80 81.28 87.63 84.34

highlighting the strength of combining hypergraph476

modeling, few-shot learning, and dual-teacher su-477

pervision. ASIDE also surpasses leading GNNs478

(GCN, GAT, SAGE) and LLMs (LLaMA, De-479

Method Accuracy Precision Recall F1-Score DISAL / Hybrid

ASIDE w/o EMA 0.877 0.873 0.964 0.916 0 / 23
ASIDE w/ EMA 0.920 0.933 0.963 0.948 10 / 13

Table 7: ASIDE performance comparison with and with-
out Exponential Moving Average (EMA). Metrics in-
clude Accuracy, Precision, Recall, F1-Score, and switch
counts.

BERTa, GPT-2, OPT), achieving up to 20% higher 480

F1 in some cases. Its strong performance on both 481

rumor and non-rumor classes, particularly in re- 482

call and F1, underscores its ability to handle class 483

imbalance and generalize effectively with limited 484

supervision—setting a new benchmark in misinfor- 485

mation detection. 486

Overall, the integration of a hypergraph struc- 487

ture, a dual teacher-student paradigm, and a cus- 488

tom active learning strategy with few-label super- 489

vision has empowered the proposed ASIDE model 490

to outperform state-of-the-art methods across mul- 491

tiple domains, including graph-based learning, ac- 492

tive learning, and unsupervised approaches. This 493

synergy enables the model to effectively capture 494

complex conversational structures, leverage mini- 495

mal annotations, and generalize well across diverse 496

misinformation detection scenarios. 497

6 Ablation Study 498

To investigate the contributions of individual com- 499

ponents, experiments have been conducted on the 500

Twitter15 dataset to evaluate the impact of differ- 501

ent components in our proposed framework. The 502

dataset was partitioned with 5% used as few labeled 503

data, simulating a low-resource setting, 70% as un- 504

labeled data for active learning, and the remaining 505

25% is reserved for final testing. 506

6.1 Impact of EMA and Acquisition Switching 507

As part of our ablation study, we assess the indi- 508

vidual contributions of Exponential Moving Av- 509

erage (EMA) and dynamic switching between ac- 510

quisition strategies (i.e., hybrid and DISAL) to the 511

overall performance of our proposed framework. 512

Demonstrating its robustness and effectiveness un- 513

der low-resource constraints. To further investigate 514

the role of EMA and acquisition switching, Fig- 515

ure 7 presents a detailed comparison of three key 516

perspectives. Figure 7. (a) shows the evolution of 517

teacher and student accuracy over active learning 518

iterations with and without EMA. EMA leads to 519

a smoother and more stable learning curve, espe- 520

cially for the teacher model, allowing it to provide 521
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Figure 3: Summary plots comparing with and without EMA for the proposed framework.
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more reliable pseudo-labels throughout the pro-522

cess. Figure 7(b) visualizes the number of times the523

framework dynamically switches between hybrid524

and DISAL acquisition strategies. In addition, the525

presence of a dynamic switching mechanism would526

ensure that the framework adapts its querying strat-527

egy based on model confidence and performance,528

thereby avoiding over-reliance on a single sampling529

approach. Figure 7. (c) highlights the final student530

metrics concerning accuracy, precision, recall, and531

F1 score. Moreover, it appears that the utilization532

of EMA during the active learning process leads533

the mode with EMA consistently and remarkably534

would outperform their counterparts without EMA,535

affirming its effectiveness in stabilizing learning536

and improving generalization. Thus, it can be con-537

firmed that leveraging both EMA and dynamically538

switching between acquisition methods in corre-539

lation with model performance during the train-540

ing phase has boosted the proposed methodology’s541

overall performance.542

6.2 Using zero-shot with teacher and student543

dual544

To evaluate the effect of Warm Start, we com-545

pare ASIDE with and without teacher initializa-546

tion using a brief supervised phase. As shown547

in Table 5, Warm Start leads to higher accuracy548

(0.920 vs. 0.896), precision (0.933 vs. 0.907), and549

F1-score (0.948 vs. 0.927), while recall remains550

comparable. This highlights the benefit of initial-551

izing the teacher with a few labeled examples for552

stable pseudo-labeling. The table also shows that553

Warm Start results in more DISAL acquisitions (10554

vs. 9) and slightly fewer hybrid switches (13 vs.555

14), indicating a more confident transition toward556

gradient-based sampling. These findings confirm557

that Warm Start improves both model performance558

and acquisition dynamics in the active learning pro- 559

cess. 560

7 Conclusion 561

We have developed a novel ASIDE model that 562

leverages a few labels, active learning, teacher- 563

student paradigms, and a hyper-graph to effectively 564

detect misinformation while simultaneously reduc- 565

ing the need for annotators’ involvement in the 566

model learning and training phase via combining 567

hybrid and influence-driven acquisition strategies 568

to satisfy the labeling requirements. Instead of rely- 569

ing on an oracle to aid the model in figuring out the 570

most informative and elusive data samples, ASIDE 571

leverages teacher-dual pseudo-labeling participa- 572

tion to guide the student dual during the training 573

process. We have considered the quality of the gen- 574

erated pseudo labels by applying the EMA method 575

to invoke the teacher dual to match the aggressive 576

learning progress of the student dual during the 577

active learning phase and not fall behind, which 578

eventually would hinder the learning progress of 579

the proposed framework. ASIDE has outperformed 580

the state-of-the-art methods. 581

8 Limitations 582

While ASIDE has demonstrated strong perfor- 583

mance on various English-language datasets, its 584

effectiveness in other language contexts remains 585

untested. In addition, temporal data should not be 586

underestimated, as it may offer further advantages 587

in effectively modeling the propagation of misin- 588

formation on social media platforms. Also, one of 589

the limitations is a lack of interpretability. There- 590

fore, integrating an explainable layer would help 591

make the model’s decisions more transparent and 592

accessible to human users. 593
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A Appendix803

A.1 Hyperparameter Settings804

To ensure reproducibility and clarity regarding the805

diverse settings across our dual-model architecture806

and dataset-specific variations, we have tabulated807

all the parameter values in Table 8, which provides808

a comprehensive summary of all hyperparameter809

values and experimental configurations used across810

our proposed framework. All hyperparameters811

were selected based on the conducted experiments.812

For both the text-based and hypergraph-based en-813

coders, we set the hidden dimension to 768 and814

the number of layers to 2 for consistency and ef-815

ficiency. The teacher model was warm-started for816

25 epochs using a learning rate of 3× 10−4, with817

a learning rate scheduler controlled by step_size818

and gamma values. Similarly, the student model819

was retrained for 7 epochs per iteration using the820

same base learning rate and a slightly more aggres-821

sive decay (γ = 0.9). We applied dataset-specific822

train/validation/test splits for Twitter15, Twitter16,823

and PHEME, taking care to balance class dis-824

tributions and label scarcity in each case. The825

teacher-student interaction included EMA updates826

(α = 0.90) for both Twitter 15 and 16, whereas827

(α = 0.88) for Pheme due to the variation between828

datasets’ size. The switching threshold was applied829

to transition between acquisition strategies (Hybrid830

and DISAL) when the teacher’s accuracy exceeded831

0.90. DISAL parameters (α = 0.5, β = 0.5) were832

tuned to balance gradient projection and KL diver-833

gence contributions. For dynamic sample selection,834

the number of queried samples per iteration ranged835

from 10 to 50, depending on the unlabeled pool836

size and learning progress. All experiments were837

run with cosine similarity as the projection mode838

to ensure stability in influence estimation.839

A.2 ASIDE Pseudo-Labels quality840

ASIDE maintains pseudo-label quality from the841

start by relying on a teacher model stabilized842

through Exponential Moving Average (EMA). Af-843

ter a brief warm start using a few ground-truth844

labels, which are being deployed to avoid noisy845

pseudo labels that might degrade the model’s per-846

formance, the EMA teacher’s performance en-847

hances steadily, reaching 95 % accuracy during848

validation phase and 92.1 % in testing phase and849

0.8902 macro F1, as shown in Table 9.850

Table 8: Summary of hyperparameters and settings used
across datasets and modules.

Parameter Value

Teacher Settings
Text teacher model gpt2
Hypergraph teacher model bert-base-uncased
Teacher hidden dim 768
Teacher HGC layers 2
Warm-up teacher epochs 25
Teacher learning rate 3 × 10−4

Teacher LR step size 2
Teacher LR gamma 0.5

Student Settings
Text student model gpt2
Hypergraph student model bert-base-uncased
Student hidden dim 768
Student HGC layers 2
Epochs per iteration 7
Student learning rate 3 × 10−4

Student LR step size 1
Student LR gamma 0.9

Dataset Split Ratios
Train ratio Tw15 = 0.10, Tw16 = 0.10, PHEME = 0.15
Validation ratio Tw15 = 0.60, Tw16 = 0.65, PHEME = 0.60
Test ratio Tw15 = 0.30, Tw16 = 0.25, PHEME = 0.25

Framework Behavior
Dynamic consistency enabled True
Dynamic α 0.1
DISAL α 0.5
DISAL β 0.5
Gradient label mode teacher
Teacher accuracy threshold 0.9
EMA enabled True
EMA α Tw15 & 16 = 0.90, PHEME = 0.88
Projection mode cosine

Active Learning
Max iterations Tw15 & 16 = 23, PHEME = 70
Dynamic min samples 10
Dynamic max samples 50

Table 9: Ablation results and teacher-student trend on
Twitter15. EMA enhances both score and learning sta-
bility.

Metric With EMA Without EMA Zero-shot

Accuracy 92.1 87.7 89.6
Macro F1 89.0 84.1 87.2
Rumor F1 94.8 91.7 92.8
Non-Rumor F1 83.2 76.4 81.6
Recall (Macro) 87.7 81.7 86.0
Support 366 samples
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