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Abstract

Detecting misinformation on high-volume so-
cial media platforms such as X and Facebook
is challenging, exacerbated by the cost and in-
consistency of human annotation. To address
this, we propose a novel adaptive self-learning
framework, ASIDE, that leverages active learn-
ing with limited labels and a dual teacher-
student approach. Our framework uniquely em-
ploys a teacher text model for content and a
hyper-teacher to capture conversational struc-
ture. During active learning, ASIDE dynam-
ically transitions its data acquisition strategy
based on its confidence, prioritizing uncertain
but influential samples using a hybrid method
and an uncertainty threshold. Simultaneously,
it employs a dynamic sampling strategy to
adapt to performance changes. Extensive exper-
iments demonstrate that ASIDE significantly
outperforms state-of-the-art methods, including
active learning, graph-based, and unsupervised
approaches, in misinformation detection.

1 Introduction

Social media platforms like Facebook, Weibo, and
X have become major sources of information, but
their lack of fact-checking has enabled the rapid
spread of misinformation (Yan et al., 2019). This
has led to serious consequences, including over 800
deaths from a false COVID-19 cure (Islam et al.,
2020). According to Olan et al. (2024), distinguish-
ing truth from falsehood might become increas-
ingly elusive and challenging, raising concerns
about manipulation and the erosion of informed
discourse. Although misinformation detection has
been investigated ubiquitously, current methods
struggle to keep pace with false content and often
rely on expensive manual labeling. Graph-based
models and active learning offer potential (Farin-
neya et al., 2021; Cui et al., 2025; Ma et al., 2017;
Liu et al., 2022; Hao et al., 2024), but still de-
pend heavily on human annotation. To address this,

we propose ASIDE, a novel framework that com-
bines few-label supervision with active learning in
a dual teacher—student setup. ASIDE adaptively
selects samples using uncertainty, diversity, and
influence, while minimizing annotation through
teacher-driven pseudo-labeling. Our framework
introduces several key contributions. First, to the
best of our knowledge, a dual teacher-student setup
comprising textual and hypergraph modules on the
teacher and student sides has not been previously in-
troduced. This novel architecture allows the textual
teacher (e.g., GPT-2) and the hypergraph teacher
to guide the corresponding dual student compo-
nents collaboratively. This fusion enables a holistic
learning process that would capture both semantic
content and structural patterns within conversation
threads. Second, the acquisition strategy dynam-
ically shifts from uncertainty-based sampling to
influence-based selection, allowing the model to
adapt and prioritize high-impact samples as learn-
ing progresses. Third, after a brief warm-up with
minimal human-labeled data, the system transi-
tions to fully self-supervised learning via teacher-
generated pseudo labels, removing the need for
ongoing annotation. Finally, unlike fixed-batch ac-
tive learning strategies, our method dynamically
determines how many samples to acquire in each
iteration based on model learning progress. This
ensures the proposed framework remains respon-
sive to performance changes during the learning
process.

2 Related Work

2.1 Misinformation Detection Revolution

Misinformation detection has undergone a revolu-
tionary stage, beginning with early text-based ap-
proaches such as sentiment analysis, bag-of-words,
and user profiling (Castillo et al., 2011; Ma et al.,
2015; Tolosi et al., 2016; Enayet and El-Beltagy,
2017; Kumar et al., 2022). While effective to some



extent, these methods have struggled to capture the
temporal and interactional dynamics of online dis-
course. Neural architectures addressed these gaps:
RNNs modeled temporal sequences (Ma et al.,
2017), CNNs extracted local textual features (Yu
et al., 2020), and attention mechanisms improved
semantic focus (Veyseh et al., 2019). To further
advance detection, graph-based models were intro-
duced to represent the structural and relational flow
of misinformation (Zhou et al., 2020). Hypergraph
approaches like CBT-HGCN capture higher-order
tweet relationships (Li et al., 2023), while graph en-
tropy techniques model propagation over time (Hao
et al., 2024), and retweet-based graphs identify in-
fluential users (Liu et al., 2022).

2.2 Semi-Supervised Learning with
Clustering and Active Learning

Semi-supervised learning offers a promising di-
rection for misinformation detection, especially
when labeled data is limited. Few-shot methods
combine metric learning with pre-trained language
models (Ran et al., 2023), and memory-augmented
meta-learning has been shown to improve gener-
alization (Mishra et al., 2017). Graph-based ap-
proaches like Positive-Unlabeled (PU) learning
with GATs further reduce label dependency (Mar-
ques et al., 2023). Clustering is widely used to
organize unlabeled data for public opinion analy-
sis (Park et al., 2022), accident studies (Xu et al.,
2022), and topic detection (Martinez et al., 2022),
using algorithms like K-means (Zhang et al., 2023),
hierarchical clustering (Murtagh and Contreras,
2011), DBSCAN, and GMMs (Shafi et al., 2024).
It also improves few- and zero-shot learning (Al-
suhaibani et al., 2024; Gretz et al., 2023; Freitas,
2024). Active learning helps prioritize informative
samples (Hino, 2020; Barnabo et al., 2023; Zhang
et al., 2015), with recent work like DISAL (Wan
et al., 2024) focusing on influence-based selection.
Our method uses cosine similarity instead. Com-
bined strategies (Klein et al., 2021; Xiao et al.,
2023) show promise, though multi-round AL for
LLMs remains an open challenge (Margatina et al.,
2023).

3 Our Novel ASIDE Model

Each component of ASIDE is s carefully inte-
grated to address distinct challenges associated
with misinformation detection in situations where
the annotated data is scarce. The text encoder cap-

tures tweet semantics, while the hypergraph en-
coder models structural relationships in conversa-
tions. A teacher—student framework guides pseudo-
labeling during active learning, with EMA ensur-
ing stable teacher pseudo-labeling. The acquisi-
tion strategy begins with hybrid sampling during
early uncertainty, then switches to DISAL to select
high-influence samples via gradient-based scoring,
enhancing performance as the model gains confi-
dence.

3.1 Notations and Problem Description

We are given a dataset D = {(T}, ;) }¥,, where
N is the total number of conversation threads. Each
T; represents a conversation thread on social media
initiated by a root tweet (source of the conversation
thread) r;, and y; € {0, 1} denotes the class label,
with 1 representing a rumor and 0 a non-rumor.
Each thread can be defined as:
T; = {ri,cl,c2,....c'},

where each cZ denotes a reaction tweet replying to
the root tweet (source of the conversation thread)
r;. The dataset is split into a small labeled subset
Dy and a larger unlabeled subset D,,, such that
D = D; UD,, reflecting a low-resource scenario.

Each thread 7T is structurally represented as
a subgraph G; = (V;, E;), where Vj is the set
of tweets and E; C V; x V; encodes relation-
ships (reactions to the source tweet) such as
replies and retweets. We further model each
G; as a hypergraph within the collection G =
{G1,Ga,...,G,}, incorporating both semantic
and structural information. Each node (tweet) is
associated with an initial embedding hgo) derived
from its textual content, while the subgraph is char-
acterized by an incidence matrix H; and node fea-
tures.

Given conversation thread T}, the goal is to pre-
dict whether the 7; expresses a rumor or non-
rumor, denoted by y; € {0,1}. To address this
task, we introduce a dual-teacher dual-student ac-
tive learning framework that minimizes labeling
cost by adaptively selecting the most informative
unlabeled samples in each iteration (dynamic sam-
ple selection instead of a fixed number decided
via Dynamic Sampling Size Strategy). The sample
selection process follows one of two strategies de-
pending on the model’s confidence: a hybrid strat-
egy that combines entropy-based uncertainty and
representativeness via clustering, or a DISAL (Dual



Influence Self-Adaptive Learning) strategy, which
leverages cosine similarity of gradient projections
and KL divergence to identify high-influence sam-
ples.

This framework promotes effective learning by
allowing the student model to learn from the most
informative samples encountered during the active
learning phase. Rather than relying on oracle as-
sistance, the dual teacher will assign pseudo-labels
to these samples, enabling the student model to be
self-supervised. Detailed implementation and ex-
perimental protocols, including data split, sampling
heuristics, and training schedules, are described in
Section 4.

4 ASIDE Description

Figure 1 illustrates the proposed framework, which
integrates several complementary strategies. We
used a dual-teacher architecture comprising a text-
based teacher and a hypergraph-based teacher.
textbf A) Dual Teacher Initialization, a warm start
phase fine-tunes two complementary teacher mod-
els, a text-based encoder and a hypergraph-based
encoder on a small set of labeled data (see figure 1).
This dual-teacher architecture captures both seman-
tic and structural properties of conversation threads
using the post content (FT-LLM) and hyperedge
incidence matrix (HyperGCN-T). B) Acquisition
Strategies: Two active learning strategies are in-
corporated to guide sample selection: the Hybrid
strategy combines entropy-based uncertainty sam-
pling with cluster-based representativeness when
the teacher’s confidence is low. Alternatively, the
DISAL (Dual Influence Self-Adaptive Learning)
strategy is used when the teacher’s confidence ex-
ceeds a threshold. DISAL identifies high-influence
samples based on gradient projection using cosine
similarity and KL divergence between current and
previous student predictions. C) Active Learn-
ing Loop and EMA. At each iteration, the student
model is retrained using all pseudo-labeled samples
accumulated thus far. The most informative unla-
beled samples are dynamically selected based on
uncertainty, influence, and labeling progress. The
dual-teacher model assigns pseudo-labels without
human supervision. To ensure stable learning, the
teacher parameters are updated via an Exponen-
tial Moving Average (EMA) based on the student’s
learning trajectory. (D) Final Inference. After sev-
eral iterations of active learning, the trained dual-
student model is evaluated on unseen conversation

threads. It combines both textual and structural
features to classify each conversation as a rumor
or a non-rumor. Unlike previous active learning
approaches that rely solely on uncertainty or re-
quire manual labeling at every iteration, ASIDE
introduces a novel dual-teacher mechanism to pro-
vide robust self-supervision, incorporates dynamic
switching from uncertainty state (Hybrid) to in-
fluence state (DISAL) for influence-aware sample
acquisition, and dynamically adjusts the sampling
budget based on model progress all while elimi-
nating the need for oracle involvement after the
first iteration. To the best of our knowledge, this
is the first work to combine text and hypergraph
encoders in a dual-teacher dual-student setup un-
der a fully automated active learning paradigm for
misinformation detection. While our framework
leverages some existing models, its novelty lies
in the specific integration of their complementary
strengths to address a research gap that none of the
individual models can effectively tackle alone. By
strategically combining these models, we create
a synergistic effect, resulting in a novel approach
with emergent capabilities and improved perfor-
mance beyond the sum of its parts. This unique
architecture and the resulting advancements consti-
tute a significant contribution to the field.

ASIDE is built upon a dual teacher-student ar-
chitecture, where both the teacher and the student
models comprise two collaborative components: a
text encoder and a hypergraph-based encoder. The
teacher is initialized through a warm-start proce-
dure using a small set of labeled examples (few
labels), while the student is iteratively retrained
within a dynamic active learning loop. The follow-
ing steps elaborate core components and processes
of the proposed framework:

Step 1: Teacher Warm Start. The teacher model
is initially warm-started using a small set of labeled
data D; = {(Gi, vi) fV:l 1» where each G represents
a conversation thread encoded as a hypergraph sub-
structure, and y; € {0, 1} is the corresponding
ground truth label (rumor or non-rumor). Each sub-
graph ; consists of a sequence of tweets with both
textual features and a hypergraph incidence matrix
capturing relational structure. The dual-teacher
model comprises a text-based encoder fix and a
hypergraph-based encoder fiyper, and produces a
final prediction by averaging their output logits:

(ftext(Ti) + fhyper(HhIi)) )

N =

i =



HE ©
: : |
' ‘ | : AC ‘
& DualTeacher 8 |1, a - Uncertainty(z) + 8 - Diversity(z) 1 { !
. 1 I !
N—— H | H
L8 = @ 2 |l !
1 o .— J Y ' p—s _é | # ¥ Dynamic Sampling |
GCN-" =/ H ntropy H
UL 8 o Sampling = : |
o) ' I |
corton i ey ¥ |
‘‘‘‘‘ ' L : ‘
& )Ci E‘QD I-Stud o= D : ‘
' ual-Student —— -— '
XAl [ 4 > | I
' : _
H I & DuatTeacher ——— |
:‘ e i i
' = S| |
Ho gl IR s L
:‘ N do I ‘
0 1 M Dual-Student I
| e == |
(Acquisition Method(AC) | -—- fH ffffff -

Figure 1: ASIDE: Adaptive Self-Learning for Misinformation Detection via Dual Supervision

where T; is the conversation text, H; denotes the
initial node embeddings, and Z; is the hypergraph
incidence matrix for subgraph G;. This warm-start
phase is essential and will allow the teacher model
to capture both semantic and structural aspects of
misinformation early in the learning process, serv-
ing as a strong and fundamental basis for gener-
ating high-quality pseudo-labels in subsequent ac-
tive learning iterations. Step 2: Iterative Student

Training. After the initial iteration, the frame-
work departs from traditional oracle-based labeling
and fully commits to a teacher-guided paradigm.
Specifically, from the second active learning itera-
tion onward, the teacher model, which is initially
warmed up using a small subset of labeled data
under the assumption that the student model is
uncertain in the early stages of learning, gener-
ates pseudo labels for all newly acquired samples.
These pseudo-labels serve as the sole source of
supervision for the student model. Consequently,
no additional Oracle annotations are required be-
yond the first iteration, which enhances the scal-
ability and practicality of the framework in low-
resource scenarios. The student model comprises
two branches: a text encoder and a hypergraph
encoder. During each iteration, the student is re-
trained using all examples labeled by the teacher
up to that point. The loss function is a balanced
combination of text and hypergraph classification
losses:

1
Estudent - 5 (L:text + L:hyper) (1)

This joint formulation encourages consistent
learning across both modalities while depending
entirely on pseudo-labeled supervision.

Step 3: EMA Teacher Update. To progressively
align the teacher with the improving student, we

employ an exponential moving average (EMA)
strategy over the student’s weights. The teacher
parameters A7 are updated via:

9T<—Oé-9T—|-(1—Oé)-(95, )

where « is the EMA coefficient (typically 0.99),
and fg denotes the student’s parameters.

Step 4: Sample Selection via DISAL or Hybrid.
We place significant emphasis on the need to dy-
namically switch between uncertainty-based and
influence-driven acquisition strategies. In other
words, the framework is designed to be respon-
sive to the evolving learning state of the model by
adaptively selecting the most suitable acquisition
method at each iteration.

At each iteration, the selection strategy is chosen
dynamically:

* If the teacher’s accuracy exceeds the uncer-
tainty threshold (e.g., 0.90), we adopt DISAL.

* Otherwise, we use the Hybrid method based
on uncertainty and representativeness.

(a) DISAL Acquisition. Each unlabeled sample is
scored using a combination of gradient alignment
and KL divergence. First, the gradient of the sam-
ple is projected against the accumulated gradient of
labeled data (labeled by the teacher dual). Cosine
similarity is used as the projection mode:

__9G
fosl-TIGT

where g; is the gradient of the current sample and

G is the average gradient from labeled samples.
In addition, the KL divergence between the stu-

dent’s current prediction and its previous snapshot

Proj(g;, G) = cos(gi, G) 3)



measures the influence of this sample:
HSW
KL neWHpold anew log < - ) 4)
The total DISAL score combines both:

si = - Proj(gi, G) + B - KL(p™"[p°Y), (5)

where « and (8 are balancing coefficients (default:
0.5).

(b) Hybrid Acquisition. When the teacher is not
sufficiently confident, we revert to the hybrid strat-
egy, combining student uncertainty and cluster-
based representativeness:

si=A-ui+ (L—=X) - (1—mr), (6)

where u; is the normalized entropy of prediction,
and r; is the representativeness distance to its clus-
ter center, with A = 0.6 by default.

Step 5: Dynamic Sampling Size Strategy. Rather
than querying a fixed number of samples at each
iteration, our framework employs a dynamic strat-
egy to determine the number S of newly selected
data points. Specifically, we compute:

S = min(Smaxa maX(Smina p))’ (7)

where the score p is defined as:

p=a-U+p-(1-A)+~- (1 — ]\g;beled> . (8)

total

Here, U denotes the average uncertainty or influ-
ence score depending on the acquisition method
(Hybrid or DISAL), A is the student model’s
current validation accuracy, and the final term
(1 — %) reflects the proportion of remaining
unlabeled data in the pool. Importantly, our frame-
work does not rely on an oracle; instead, the
dual-teacher model generates pseudo labels for the
selected samples. Thus, the labeling budget in this
context refers to the number of samples for which
the teacher model is queried to provide pseudo-
supervision. This setup enables scalability and
makes the framework particularly well-suited for
low-resource scenarios where manual annotation is
expensive or infeasible.

S Experiments and Results

In the following section, we evaluate the proposed
ASIDE model against several state-of-the-art meth-
ods to assess its effectiveness in both non-rumor
and rumor detection tasks. Subsequently, we test
the proposed method with the baseline models, fol-
lowed by a comparison against GNN structures and
standard uncertainty methods.

5.1 Experimental Settings

Three datasets, including Twitter15, Twitter 16 (Ma
et al., 2017), and Pheme (Zubiaga et al., 2016),
were intensively used during the experimental setup
of this work.

Dataset Non-rumor Rumor
Twitter 15 372 1086
Twitter 16 205 613
PHEME 1860 1860

Table 1: Dataset statistics showing the number of rumor
and non-rumor conversation threads.

Teacher and student configurations including
model types, hidden dimensions, number of lay-
ers, and learning rates are detailed in Section A.1.
This section also specifies dataset-specific split ra-
tios for training, validation, and testing, as well as
active learning parameters, including dynamic sam-
ple bounds and the maximum number of iterations.

5.2 Comparative Models

ASIDE was evaluated against a diverse set
of comparative models under consistent low-
resource settings. These included large-scale
LLMs (Llama-2-13B, GPT-2, GPT-Neo-1.3B, GPT-
J-1.3B, BLOOM-1.7B, OLMo-7B), instruction-
tuned variants (TinyLlama-1.1B-Chat, birkha-
user/causal), and compact transformer models
(DeBERTa-v3-large, Qwenl.5-0.5B, ALBERT-
base). All models were fine-tuned using the same
learning rate of 3.0 x 10~%, as shown in Table 6.
To structure the comparison, we group existing
rumor detection models into three main categories:
(1) graph-based models (Bian et al., 2020; Ma
et al., 2018), which exploit conversational struc-
tures to improve prediction; (2) active learning
methods (Farinneya et al., 2021; Alalawi et al.,
2025), which minimize labeling cost by query-
ing high-utility samples; and (3) few-label and
clustering-based approaches, such as IdoFew (Al-
suhaibani et al., 2024) and BERT/T.cjuster (Shnarch



et al., 2022), which enhance performance with
minimal supervision by grouping similar examples
early in training.

Our proposed framework integrates strengths
from all three categories: it combines dual encoders
for modeling text and structure, integrates adaptive
active learning strategies (Hybrid and DISAL), and
enhances few-label learning via pseudo-labeling,
clustering, and optional paraphrasing. For fairness,
all models were trained under the same labeling
budget and learning rate (Table 8), with an equal
number of labeled examples used during training
and evaluation.

5.3 Discussion

Our proposed framework, ASIDE, demonstrates
superior performance compared to existing state-
of-the-art approaches. Table 2 indicaties the
performance of ASIDE across Twitterl5, Twit-
ter16, and PHEME, where it consistently sur-
passes leading frameworks including active learn-
ing methods (FLAL, ATL), graph-based models
(BiGCN (Bian et al., 2020), TDRVNN (Ma et al.,
2018), ClaHi-GAT (Lin et al., 2021), RAGCL (Cui
et al., 2025)), and unsupervised clustering-driven
approaches (IdoFew (Alsuhaibani et al., 2024),
BERT 7.cluster (Shnarch et al., 2022)). ASIDE de-
livers a clear improvement in accuracy by at least
4.5% on Twitterl5, 4.6% on Twitter16, and 2.2%
on PHEME showing strong and consistent gains
across datasets. Unlike earlier graph-based mod-
els like BIGCN and TDRvVNN that rely on fixed
tree structures, ASIDE takes a more flexible ap-
proach by using hypergraphs to capture the com-
plex, multi-way nature of conversation threads. Fur-
thermore, compared to transformer-based models
like BERT cjyser and RAGCL, which utilize pre-
trained embeddings, ASIDE achieves significantly
better performance across nearly all metrics, par-
ticularly excelling in Recall and F1-score for the
rumor class.. These results underscore ASIDE’s
effectiveness in low-resource settings and its strong
generalization to complex, real-world misinforma-
tion.

5.4 Uncertainty standard methods and
Baselines comparison

Across all three benchmark datasets (Twitterl5,
Twitter16, and PHEME), ASIDE consistently out-
performs existing baselines for misinformation de-
tection (Tables 3, 4, 6). Compared to traditional
uncertainty-based active learning strategies (e.g.,

Table 2: Comparison of ASIDE with state-of-the-art

methods on Twitter15, Twitter16, and PHEME datasets.

NR = Non-Rumor, R = Rumor.

Method ACC NR-P NR-R NR-F1 R-P R-R R-F1
Twitter15
BiGCN (Bian et al., 2020) 88.16 84.15 6283 7049 89.17 96.10 92.39
TDRVNN (Ma et al., 2018) 86.53 69.19 7230 70.41 92.44 91.10 89.85
ClaHi-GAT (Lin et al., 2021) 7490 5020 13.40 21.60 76.10 96.40 85.10
IdoFew (Alsuhaibani et al., 2024) 7490 5620 1340 21.60 76.10 96.40 85.10
BERT|T.Cluster (Shnarch et al., 2022) 7440 51.50 19.50 27.70 76.80 93.80 84.50
FLAL (Alalawi et al., 2025) 80.20 81.10 19.00 27.70 74.00 30.10 48.50
RAGCL (Cui et al., 2025) 84.60 - - - - - 80.60
ASIDE 93.10 90.40 80.18 85.00 9391 97.29 95.57
Twitter16
BiGCN (Bian et al., 2020) 87.30 87.12 52.17 63.34 87.15 98.03 92.14
TDRVNN (Ma et al., 2018) 84.83 58.04 6557 76.11 93.78 90.25 87.03
ClaHi-GAT (Lin et al., 2021) 6290 22.00 1620 18.60 72.70 70.50 71.90
IdoFew (Alsuhaibani et al., 2024) 6290 22.00 1620 18.60 7270 79.50 75.90
BERT|T.Cluster (Shnarch et al., 2022) 53.70 3220 68.40 43.80 81.10 48.60 60.80
FLAL (Alalawi et al., 2025) 8270 83.00 93.00 88.60 76.50 37.50 48.80
RAGCL (Cui et al., 2025) 89.10 - - 80.20 - - 9450
ASIDE 93.60 83.30 88.90 80.20 96.80 95.00 95.90
PHEME
BiGCN (Bian et al., 2020) 80.37 79.14 84.18 8140 83.09 77.78 80.21
TDRVNN (Ma et al., 2018) 7043 6743 81.17 7342 77778 59.09 65.75
ClaHi-GAT (Lin et al., 2021) 73.80 80.70 6220 70.70 68.50 84.80 74.50
IdoFew (Alsuhaibani et al., 2024) 73.80 80.70 6290 70.70 69.50 84.90 76.40
BERTIT.Cluster (Shnarch et al., 2022) 75.00 83.10 4540 7320 71.40 89.60 78.30
ATL (Farinneya et al., 2021) - - - 78.90 - - 78.90
FLAL (Alalawi et al., 2025) 79.40 8330 76.70 80.10 81.70 71.90 76.70
RAGCL (Cui et al., 2025) 76.80 - - - - - -
ASIDE 83.80 86.80 80.10 8330 81.20 87.60 84.30

Table 3: Comparison of ASIDE with standard uncer-
tainty sampling methods (Entropy, Least Confidence,

Margin) across Twitterl5, Twitterl6, and PHEME
datasets. NR = Non-Rumor, R = Rumor.

Dataset Method ACC NR R
Prec. Rec. F1 Prec. Rec. F1
Entropy 89.88 86.70 7536 80.62 90.90 95.51 93.15
Twitter1s Least Confidence ~ 91.09  100.00 ~ 68.12  81.03  89.00  100.00  94.18
Margin 87.04 8776 6232 7281  86.89  96.63 9149
ASIDE 93.10 9040  80.18 8500 9391 9729 9557
Entropy 83.81 93.39 44.93 60.78 82.24 98.88 89.80
Twitter16 Least Confidence ~ 87.85 8235 6522 7500 8776  96.63  91.98
Margin 87.45 95.24 5797 72.07 85.86 98.88 91.91
ASIDE 93.66 83.00 88.90  86.02  96.82 95.89 96.35
Entropy 81.29 41.61 67.88 51.54 78.90 83.15 80.92
PHEME Least Confidence ~ 82.80  83.59 81.43 8245 8205 84.15 83.07
Margin 81.94 81.05 83.16  82.09 82.86 80.78 81.88
ASIDE 83.80 86.80 80.10  83.30 81.20 87.60 84.30

Table 4: Comparison of GCN, GAT, SAGE, and ASIDE
across Twitterl5, Twitter16, and PHEME datasets. NR
= Non-Rumor, R = Rumor.

Dataset Method  ACC NR R
Prec. Rec. F1 Prec. Rec. F1
GCN 73.31 0.00 8.20 0.00 7530  100.00 8591
. GAT 7724  61.67 3443 4421 76.86  100.00  86.92
Twitter15
SAGE 7845  88.89  72.07 79.60  81.22 93.01 86.71
ASIDE 93.10 9040 80.18 85.00 9391 97.29 95.57
GCN 7331 50.00 6.56 11.94 7512 97.39 85.47
Twitter16 GAT 7975 57.14 2459 3442 76.25 98.39 85.92
SAGE 7845  68.18  88.89 8021  75.56 96.24 87.10
ASIDE 93.66 8333 88.89 86.02 96.82 95.89 96.35
GCN 69.43  93.02 4271 5799  63.11 93.54 76.01
PHEME GAT 7484  80.10 61.04 7188  71.27 84.29 77.24
SAGE 6828 9228 3897 5482  96.82 61.96 73.56
ASIDE 83.80 86.80 80.10 8330 81.20 87.60 84.30

Entropy, Least Confidence), it improves accuracy

by up to 4.6% on Twitter16 and 3.9% on PHEME,



Method Accuracy Precision Recall F1-Score DISAL /Hybrid
ASIDE w/o Warm Start 0.896 0.907 0.949 0.927 9/14
ASIDE w/ Warm Start 0.920 0.933 0.963 0.948 10/13

Table 5: ASIDE performance comparison with and with-
out Warm Start (WS). Metrics include Accuracy, Preci-
sion, Recall, F1-Score, and switch counts.

Figure 2: Summary plots comparing with and without
Warm Start (WS) for the proposed framework ASIDE.
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Table 6: Comparison of base LLMs with ASIDE across
three datasets. ASIDE consistently outperforms base-
lines in accuracy and F1-score.

Dataset Base Model Accuracy Precision Recall F1
meta-llama/Llama-2-13b 71.20 71.78 69.18  70.25
microsoft/deberta-v3-large 75.00 75.00 100.00 85.71
Qwen/Qwen1.5-0.5B 70.29 67.02 7273 69.78
GPT-2 70.46 72.04 6498  67.90
birkha-user/causal 70.00 70.00 7273 71.29

. TinyLlama-1.1B-Chat 73.20 73.90 68.83  70.78

TwitterlS b1 138 70.30 7097 6813 6932
GPT-Neo-1.3B 70.60 73.20 66.88  69.89
BLOOM-1.7B 70.69 72.28 68.13  70.14
OLMo-7B 75.00 75.00 100.00 85.71
ALBERT-base 70.03 71.08 67.10  69.03
ASIDE 93.10 93.91 97.29  95.58
meta-llama/Llama-2-13b 72.61 73.48 7029  71.75
microsoft/deberta-v3-large 70.29 67.02 7273 69.78
Qwen/Qwen1.5-0.5B 71.71 69.80 7391  71.80
GPT-2 72.36 71.63 7143 71.53
birkha-user/causal 69.33 70.05 67.19  68.59

. TinyLlama-1.1B-Chat 72.61 73.48 7029  71.75

Twitterls b1 138 7020 6702 273 69.78
GPT-Neo-1.3B 70.60 73.20 66.88  69.89
BLOOM-1.7B 70.69 72.28 68.13  70.14
OLMo-7B 75.00 75.00 100.00 85.71
ALBERT-base 70.03 71.08 67.10  69.03
ASIDE 93.66 96.82 95.89 96.35
meta-llama/Llama-2-13b 74.20 75.25 7273 73.96
microsoft/deberta-v3-large 69.78 0.00 0.00 0.00
Qwen/Qwen1.5-0.5B 70.68 67.07 7470 70.63
GPT-2 70.47 73.81 7143 72.60
birkha-user/causal 70.00 70.59 7273 71.64
TinyLlama-1.1B-Chat 72.61 73.48 7029  71.75

PHEME OPT-1.3B 70.30 70.97 68.13  69.32
GPT-Neo-1.3B 73.81 76.15 71.11 7355
BLOOM-1.7B 73.20 7391 7143  72.65
OLMo-7B 75.00 75.00 100.00 85.71
ALBERT-base 70.63 70.73 7273 7172
ASIDE 83.80 81.28 87.63 84.34

highlighting the strength of combining hypergraph
modeling, few-shot learning, and dual-teacher su-
pervision. ASIDE also surpasses leading GNNs
(GCN, GAT, SAGE) and LLMs (LLaMA, De-

Method Accuracy Precision Recall F1-Score DISAL /Hybrid
ASIDE w/o EMA 0.877 0.873 0.964 0.916 0/23
ASIDE w/ EMA 0.920 0.933 0.963 0.948 10/13

Table 7: ASIDE performance comparison with and with-
out Exponential Moving Average (EMA). Metrics in-
clude Accuracy, Precision, Recall, F1-Score, and switch
counts.

BERTa, GPT-2, OPT), achieving up to 20% higher
F1 in some cases. Its strong performance on both
rumor and non-rumor classes, particularly in re-
call and F1, underscores its ability to handle class
imbalance and generalize effectively with limited
supervision—setting a new benchmark in misinfor-
mation detection.

Overall, the integration of a hypergraph struc-
ture, a dual teacher-student paradigm, and a cus-
tom active learning strategy with few-label super-
vision has empowered the proposed ASIDE model
to outperform state-of-the-art methods across mul-
tiple domains, including graph-based learning, ac-
tive learning, and unsupervised approaches. This
synergy enables the model to effectively capture
complex conversational structures, leverage mini-
mal annotations, and generalize well across diverse
misinformation detection scenarios.

6 Ablation Study

To investigate the contributions of individual com-
ponents, experiments have been conducted on the
Twitter15 dataset to evaluate the impact of differ-
ent components in our proposed framework. The
dataset was partitioned with 5% used as few labeled
data, simulating a low-resource setting, 70% as un-
labeled data for active learning, and the remaining
25% is reserved for final testing.

6.1 Impact of EMA and Acquisition Switching

As part of our ablation study, we assess the indi-
vidual contributions of Exponential Moving Av-
erage (EMA) and dynamic switching between ac-
quisition strategies (i.e., hybrid and DISAL) to the
overall performance of our proposed framework.
Demonstrating its robustness and effectiveness un-
der low-resource constraints. To further investigate
the role of EMA and acquisition switching, Fig-
ure 7 presents a detailed comparison of three key
perspectives. Figure 7. (a) shows the evolution of
teacher and student accuracy over active learning
iterations with and without EMA. EMA leads to
a smoother and more stable learning curve, espe-
cially for the teacher model, allowing it to provide



Figure 3: Summary plots comparing with and without EMA for the proposed framework.
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more reliable pseudo-labels throughout the pro-
cess. Figure 7(b) visualizes the number of times the
framework dynamically switches between hybrid
and DISAL acquisition strategies. In addition, the
presence of a dynamic switching mechanism would
ensure that the framework adapts its querying strat-
egy based on model confidence and performance,
thereby avoiding over-reliance on a single sampling
approach. Figure 7. (c) highlights the final student
metrics concerning accuracy, precision, recall, and
F1 score. Moreover, it appears that the utilization
of EMA during the active learning process leads
the mode with EMA consistently and remarkably
would outperform their counterparts without EMA,
affirming its effectiveness in stabilizing learning
and improving generalization. Thus, it can be con-
firmed that leveraging both EMA and dynamically
switching between acquisition methods in corre-
lation with model performance during the train-
ing phase has boosted the proposed methodology’s
overall performance.

6.2 Using zero-shot with teacher and student
dual

To evaluate the effect of Warm Start, we com-
pare ASIDE with and without teacher initializa-
tion using a brief supervised phase. As shown
in Table 5, Warm Start leads to higher accuracy
(0.920 vs. 0.896), precision (0.933 vs. 0.907), and
F1-score (0.948 vs. 0.927), while recall remains
comparable. This highlights the benefit of initial-
izing the teacher with a few labeled examples for
stable pseudo-labeling. The table also shows that
Warm Start results in more DISAL acquisitions (10
vs. 9) and slightly fewer hybrid switches (13 vs.
14), indicating a more confident transition toward
gradient-based sampling. These findings confirm
that Warm Start improves both model performance

Switch Counts: With vs.\ Without EMA

(b) Switch Counts: EMA vs. No EMA

Final Student Metrics: With vs.\ Without EMA

o
M m d
m EMA
0.0

Hybrid_Switch_Count Final_Student ACC  Final_Student_Prec F al_Student_Rec r al_Student_F1

Switch Type

(c) Final Student Metrics

and acquisition dynamics in the active learning pro-
cess.

7 Conclusion

We have developed a novel ASIDE model that
leverages a few labels, active learning, teacher-
student paradigms, and a hyper-graph to effectively
detect misinformation while simultaneously reduc-
ing the need for annotators’ involvement in the
model learning and training phase via combining
hybrid and influence-driven acquisition strategies
to satisfy the labeling requirements. Instead of rely-
ing on an oracle to aid the model in figuring out the
most informative and elusive data samples, ASIDE
leverages teacher-dual pseudo-labeling participa-
tion to guide the student dual during the training
process. We have considered the quality of the gen-
erated pseudo labels by applying the EMA method
to invoke the teacher dual to match the aggressive
learning progress of the student dual during the
active learning phase and not fall behind, which
eventually would hinder the learning progress of
the proposed framework. ASIDE has outperformed
the state-of-the-art methods.

8 Limitations

While ASIDE has demonstrated strong perfor-
mance on various English-language datasets, its
effectiveness in other language contexts remains
untested. In addition, temporal data should not be
underestimated, as it may offer further advantages
in effectively modeling the propagation of misin-
formation on social media platforms. Also, one of
the limitations is a lack of interpretability. There-
fore, integrating an explainable layer would help
make the model’s decisions more transparent and
accessible to human users.
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A Appendix
A.1 Hyperparameter Settings

To ensure reproducibility and clarity regarding the
diverse settings across our dual-model architecture
and dataset-specific variations, we have tabulated
all the parameter values in Table 8, which provides
a comprehensive summary of all hyperparameter
values and experimental configurations used across
our proposed framework. All hyperparameters
were selected based on the conducted experiments.
For both the text-based and hypergraph-based en-
coders, we set the hidden dimension to 768 and
the number of layers to 2 for consistency and ef-
ficiency. The teacher model was warm-started for
25 epochs using a learning rate of 3 x 10™4, with
a learning rate scheduler controlled by step_size
and gamma values. Similarly, the student model
was retrained for 7 epochs per iteration using the
same base learning rate and a slightly more aggres-
sive decay (v = 0.9). We applied dataset-specific
train/validation/test splits for Twitter15, Twitter16,
and PHEME, taking care to balance class dis-
tributions and label scarcity in each case. The
teacher-student interaction included EMA updates
(¢ = 0.90) for both Twitter 15 and 16, whereas
(o = 0.88) for Pheme due to the variation between
datasets’ size. The switching threshold was applied
to transition between acquisition strategies (Hybrid
and DISAL) when the teacher’s accuracy exceeded
0.90. DISAL parameters (o = 0.5, 8 = 0.5) were
tuned to balance gradient projection and KL diver-
gence contributions. For dynamic sample selection,
the number of queried samples per iteration ranged
from 10 to 50, depending on the unlabeled pool
size and learning progress. All experiments were
run with cosine similarity as the projection mode
to ensure stability in influence estimation.

A.2 ASIDE Pseudo-Labels quality

ASIDE maintains pseudo-label quality from the
start by relying on a teacher model stabilized
through Exponential Moving Average (EMA). Af-
ter a brief warm start using a few ground-truth
labels, which are being deployed to avoid noisy
pseudo labels that might degrade the model’s per-
formance, the EMA teacher’s performance en-
hances steadily, reaching 95 % accuracy during
validation phase and 92.1 % in testing phase and
0.8902 macro F1, as shown in Table 9.
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Table 8: Summary of hyperparameters and settings used

across datasets and modules.

Parameter

Value

Teacher Settings

Text teacher model
Hypergraph teacher model
Teacher hidden dim
Teacher HGC layers
‘Warm-up teacher epochs
Teacher learning rate
Teacher LR step size
Teacher LR gamma

Student Settings

Text student model
Hypergraph student model
Student hidden dim
Student HGC layers
Epochs per iteration

gpt2
bert-base-uncased
768

2

25

3x 1074

2

0.5

gpt2
bert-base-uncased
768

2

7

Student learning rate 3x 1074
Student LR step size 1
Student LR gamma 0.9

Dataset Split Ratios

Train ratio
Validation ratio
Test ratio

Twl15 =0.10, Tw16 = 0.10, PHEME = 0.15
Tw15 = 0.60, Tw16 = 0.65, PHEME = 0.60
Tw15 =0.30, Tw16 = 0.25, PHEME = 0.25

Framework Behavior

Dynamic consistency enabled True
Dynamic o 0.1
DISAL o 0.5
DISAL 3 0.5
Gradient label mode teacher
Teacher accuracy threshold 0.9

EMA enabled
EMA o
Projection mode

Active Learning

Max iterations
Dynamic min samples
Dynamic max samples

True
Twl5 & 16 = 0.90, PHEME = 0.88
cosine

Twl5 & 16 =23, PHEME = 70
10
50

Table 9: Ablation results and teacher-student trend on
Twitter15. EMA enhances both score and learning sta-
bility.

Metric With EMA  Without EMA Zero-shot
Accuracy 92.1 87.7 89.6
Macro F1 89.0 84.1 87.2
Rumor F1 94.8 91.7 92.8
Non-Rumor F1 83.2 76.4 81.6
Recall (Macro) 87.7 81.7 86.0
Support 366 samples
Teacher vs. Student Accuracy Over AL Rounds
0.95 JOr o
£0.90
3
£0.85
<
<
-% 0.80
=2
£
0.75 —e— Teacher (EMA)
Student
0.70
0 5 10 15 20

Active Learning Round

Teacher vs. Student validation accuracy over rounds.
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