

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DEEP GLOBAL-SENSE HARD-NEGATIVE DISCRIMINATIVE GENERATION HASHING FOR CROSS-MODAL RETRIEVAL

Anonymous authors

Paper under double-blind review

ABSTRACT

Hard negative generation (HNG) provides valuable signals for deep learning, but existing methods mostly rely on local correlations while neglecting the global geometry of the embedding space. This limitation often leads to weak discrimination, particularly in cross-modal hashing, which learns compact binary codes. We propose Deep Global-sense Hard-negative Discriminative Generation Hashing (DGHG), a framework that constructs a structured graph with dual-iterative message propagation to capture global correlations, and then performs difficulty-adaptive, channel-wise interpolation to synthesize semantically consistent hard negatives aligned with global Hamming geometry. Our approach yields more informative negatives, sharpens semantic boundaries in the Hamming co-space, and substantially enhances cross-modal retrieval. Experiments on multiple benchmarks consistently demonstrate improvements in retrieval accuracy, verifying the discriminative advantages brought by global-sense HNG in cross-modal hashing.

Figure 1: Traditional generation methods only interpolate based on the correlation between single anchor-negative pairs, which damages the global distribution relationship of heterogeneous samples in the embedding co-space. Through the interpolation of hard negative samples with global awareness of sample correlation, the generated samples are controlled to avoid violating the feature distribution in the embedding space, which makes the co-space more discriminative.

1 INTRODUCTION

Deep Cross-modal Hashing Retrieval (DCHR) aims to learn deep hash functions that project heterogeneous samples into compact hash codes within a shared Hamming embedding space, such that semantically similar heterogeneous samples are assigned similar codes, and dissimilar ones are mapped to distinct codes Hu et al. (2023); Zhang et al. (2023); Liu et al. (2019). This property transforms cross-modal retrieval into a simple and efficient hash-based search Luo et al. (2023); Li et al. (2025b); Qin et al. (2025).

To enhance discriminability, one effective strategy is to provide more informative signals during training Rubinstein et al. (1997); Cakir et al. (2019). Informative learning methods can generally be categorized into mining-based and generation-based approaches Wu et al. (2017); Peng et al. (2024). Currently, hard negative mining is the most widely used strategy Wang et al. (2025); Xuan et al. (2020a). Difficult samples provide stronger adversarial signals, yield larger gradient updates,

054 and force the model to learn more discriminative representations Kalantidis et al. (2020); Xia et al.
 055 (2022). However, mining is constrained by the scarcity of naturally occurring hard samples within
 056 each mini-batch, limiting its effectiveness during training Zheng et al. (2019); Zhang et al. (2022);
 057 Vasudeva et al. (2021). Hard negative generation (HNG) addresses this issue by synthesizing more
 058 challenging samples, typically through linear interpolation of existing negatives, thereby enriching
 059 informative learning Peng et al. (2024); Yang et al. (2023).

060 Despite these advances, most existing works focus solely on local neighborhoods for negative inter-
 061 polation, failing to capture the global geometric structure across diverse classes, an issue particularly
 062 pronounced in the cross-modal co-space. As shown in Fig. 1, traditional interpolation strategies
 063 select distant negative samples and create harder negatives based solely on anchor-negative corre-
 064 lations. For example, when selecting blue text embeddings as negatives for a purple image anchor,
 065 the interpolated sample may mistakenly fall into the red category distribution. This failure arises
 066 because local interpolation ignores the influence of other categories and the overall global distri-
 067 bution. Consequently, generated samples often intrude into non-original semantic regions, thereby
 068 weakening discriminability.

069 To overcome this issue, we propose learning global sample correlations and explicitly modeling
 070 inter-class relationships during generation, enabling the synthesis of informative negatives with ap-
 071 propriate difficulty that respects the semantic manifold. Specifically, we introduce Deep Global-
 072 sense Hard-negative Discriminative Generation Hashing (DGHDGH), which performs Discrimina-
 073 tive Global-sense Synthesis (DGS) guided by Relevance Global Propagation (RGP). In the RGP, we
 074 construct a structured graph where nodes store embeddings and edges encode pairwise relevance.
 075 Through iterative message propagation, each edge learns global-sense correlations. The DGS then
 076 uses these correlations to perform channel-wise adaptive interpolation, ensuring the generated sam-
 077 ples remain semantically consistent. Unlike traditional methods that apply a single coefficient across
 078 all channels Ko & Gu (2020); Venkataraman et al. (2022), our approach adapts difficulty per chan-
 079 nel, with an additional self-paced mechanism to regulate generation hardness throughout training.
 080 Moreover, no extra generator network is required, improving adaptability and efficiency.

081 In summary, the main studies of this paper are listed as shown below.

- 082 • Firstly, we propose a novel DGHDGH framework, which is the first attempt, to the best
 083 of our knowledge, to introduce hard negative generation into cross-modal hashing. By
 084 learning global sample relevance and synthesizing hardness-adaptive negative samples,
 085 DGHDGH achieves more discriminative cross-modal retrieval.
- 086 • Secondly, we devised the RGP module, which uses graph neural networks to establish
 087 global heterogeneous sample correlation perception in order to determine the appropriate
 088 difficulty of synthetic negatives and enhance the semantic alignment of synthetic samples
 089 in the co-space.
- 090 • Thirdly, we designed the DGS module to flexibly generate channel-wise hardness adaptive
 091 negatives based on global relationships, thereby enhancing informative hash learning.
- 092 • Finally, extensive experiments on three benchmarks demonstrate that the proposed
 093 DGHDGH learns a discriminative Hamming co-space through informative hash learning
 094 with global-sense HNG, surpasses state-of-the-art methods in retrieval performance, and
 095 can serve as a plug-and-play module to enhance existing cross-modal hashing approaches.

097 2 RELATED WORKS

100 Deep Cross-modal Hashing Retrieval (DCHR) has been extensively studied for aligning heteroge-
 101 neous modalities in a shared Hamming space Chen et al. (2023); Li et al. (2023). Early works
 102 primarily emphasized supervised semantic alignment, while more recent approaches introduced
 103 hierarchical structures, neighborhood-preserving mechanisms, or uncertainty estimation to enrich
 104 training signals Li et al. (2025c); Qin et al. (2024); Huo et al. (2024b). Despite these advances,
 105 most methods still rely on fixed training pairs and lack mechanisms for generating informative hard
 106 negatives, which constrains their discriminative capability Duan et al. (2018); Zheng et al. (2019).

107 Existing approaches to informative learning can be broadly divided into two families. Mining-based
 methods explicitly select particular forms of samples to maximize the extracted information, such as

Figure 2: The schematic of our proposed DGHDGH framework. (1) We employ a dual transformer architecture with hash layers to extract hash codes from heterogeneous data synchronously. (2) RGP represents codes of the entire batch by a graph and introduces an iterative graph message propagation mechanism via another dual transformer that updates nodes and edges alternately. (3) DGS uses the learned global relevance to produce interpolation vectors for each anchor-negative pair to get a harder version with discrimination.

Distance Weighted Sampling (DWS) Wu et al. (2017). Augmentation-based methods instead create additional supervision signals, including generator-based approaches such as GANs, interpolation-based strategies like Dense Anchor Sampling (DAS), and memory-based mechanisms like Cross Batch Memory (XBM) Cao et al. (2018b); Liu et al. (2022); Wang et al. (2020b).

While hard negatives play a crucial role in improving model discrimination, the effectiveness of hard negative mining is often limited by the number of available samples Bucher et al. (2016); Xuan et al. (2020a). Hard negative generation (HNG) has therefore emerged as a promising alternative. Most existing methods obtain relationships through interpolation or generate features via a separate generator, but they generally focus only on local correlations, which can distort semantic consistency. For example, Hardness-adaptive Deep Metric Learning (HDML) Zheng et al. (2019) synthesizes samples based on local neighborhoods, yet fails to align the generated negatives with the global geometry of the embedding space Peng et al. (2024). To address this limitation, we propose a novel HNG framework tailored for cross-modal hashing. Our method leverages global feature perception to generate hardness-adaptive negatives that better preserve semantic alignment across modalities, thereby enhancing discriminative retrieval. An extended discussion is provided in Appendix A.

3 METHODOLOGY

3.1 FEATURE EXTRACTION

A schematic of the proposed DGHDGH framework is shown in Fig. 2. Let $x^{\mathcal{I}}$ and $x^{\mathcal{T}}$ denote image and text modality samples from a multi-modal dataset $\mathcal{D} = x_i^{\mathcal{I}}, x_i^{\mathcal{T}}, l_i, i = 1, N$. Semantic features $h^{\mathcal{I}}$ and $h^{\mathcal{T}}$ of length K are obtained through the hash functions $F^{\mathcal{I}}$ and $F^{\mathcal{T}}$. Here, $l_i \in \{0, 1\}^{N \times C}$ is the common multi-hot label vector for the i -th heterogeneous pair $(x_i^{\mathcal{I}}, x_i^{\mathcal{T}})$, where N denotes the number of samples and C the number of categories. To generate hash codes, we adopt Transformer-based feature extraction by employing dual Transformers for the image and text modalities. Each Transformer contains N_1 blocks followed by a hash layer. A block consists of a Multi-head Self-Attention (MSA) module with M_1 heads and a Multi-Layer Perceptron (MLP), separated by Layer Normalization (LN) and equipped with residual connections. The hash layer consists of an MLP followed by a \tanh activation. Since binary optimization is a prototypical NP-hard problem, the \tanh function is used as a continuous relaxation strategy to learn binary-like codes during training.

$$\tilde{h}^* = \tanh(\text{MLP}(z^{N_1*})) \in (-1, 1)^{N \times K}, * \in \{\mathcal{I}, \mathcal{T}\} \quad (1)$$

During testing, the sign function is leveraged to obtain binary codes:

$$h^* = \text{sign}(\tilde{h}^*) \in \{-1, 1\}^{N \times K}, * \in \{\mathcal{I}, \mathcal{T}\} \quad (2)$$

162 In the following sections, we omit the superscripts \mathcal{I}, \mathcal{T} , when the modality distinction is not critical.
 163 where z^{N_1} denotes the features learned by the N_1 -th block. For the features z^k learned in the k -th
 164 block, the update rule is:

$$165 \quad z_i^{k+1} = \text{LN}(\text{MLP}(z'_i) + z_i^k), \quad \text{where } z'_i = \text{LN}(\text{MSA}(z^k)_i + z_i^k). \quad (3)$$

167 Through this process, semantic-preserving hash codes can be effectively learned. However, the
 168 resulting codes still suffer from insufficient discriminability. To address this, we introduce a global-
 169 sense hard negative generation method to enhance training informativeness, consisting of two mod-
 170 ules: Relevance Global Propagation (RGP) and Discriminative Global-sense Synthesis (DGS).
 171

172 3.2 RELEVANCE GLOBAL PROPAGATION

174 To effectively generate information-rich hard negatives, it is crucial to determine both their appro-
 175 priate difficulty level and spatial distribution. Thus, when selecting interpolation points for each
 176 anchor-negative pair, their similarity should be evaluated relative to all other samples in the global
 177 batch context. To this end, we construct a structured graph to capture sample associations across the
 178 entire batch and employ a graph network to learn global correlations.

179 Initially, we assign the batch features \tilde{h} into the structured graph $\mathcal{G} = (V, E)$ as nodes $V_i^k | k = 0 =$
 180 \tilde{h}_i . Edges E represent pairwise correlations, initialized as $E_{ij}^k | k = 0 = \tilde{h}_i \odot \tilde{h}_j$. We maintain three
 181 graphs in parallel: image, text, and cross-modal. The first two take samples from their respective
 182 modalities, while the cross-modal graph contains all heterogeneous samples. We then introduce a
 183 graph transformer (GT) with N_2 blocks and M_2 heads for each block, to learn sample relationships
 184 globally via iterative message propagation. The three graphs share parameters and are jointly up-
 185 dated in GT , which helps narrow the cross-modal semantic gap and improves robustness. Message
 186 propagation adopts a dual-transformer architecture that updates nodes and edges separately. Unlike
 187 the synchronous feedforward dual Transformer in feature extraction, the node and edge Transfor-
 188 mers here perform asynchronous alternating updates—first propagating node messages, then edge
 189 messages. This ordered procedure ensures that node information continuously informs subsequent
 190 edge updates, thereby improving the model’s ability to capture and exploit global sample corre-
 191 lations.

192 For the node Transformer, we design a Masked Multi-head Self-Attention (MMSA) mechanism with
 193 a positive mask, which ensures that each node (treated as an anchor) interacts only with its negative
 194 samples. In MMSA, each node is treated as a query, and all corresponding negative samples are
 195 treated as keys and values. To prevent disproportionately high attention weights from weakening
 196 discrimination among subtle negative differences, positive samples are masked—especially hetero-
 197 geneous identical samples in the cross-modal scenario. We further introduce edge-to-node interac-
 198 tions after MMSA, incorporating neighboring edge information into nodes to enrich representations
 199 and strengthen global context understanding. The main formula of the k -th node transformer block
 is shown as follows:

$$201 \quad V_i^{k+1} = \text{LN}(\text{MLP}(V'_i) + V_i^k), \quad \text{where } V'_i = \text{LN}(\text{MMSA}(V^k)_i + \sum_{j=1}^{\mathcal{B}} E_{ij}^k + V_i^k). \quad (4)$$

203 For the edge Transformer, we introduce node-to-edge interactions via a Cross-Attention (CA) mech-
 204 anism. Here, edge representations act as queries, while node representations serve as keys and
 205 values, allowing edges to integrate information from neighboring nodes. This allows edges to cap-
 206 ture the relevance of their critical points from a global perspective and further adjust their attention
 207 trends, thereby enabling edges to adaptively balance the difficulty of synthesizing anchor-negative
 208 pairs. The formula of the k -th edge transformer block is shown as follows:

$$210 \quad E_{ij}^{k+1} = \text{LN}(\text{MLP}(E'_{ij}) + E'_{ij}), \quad \text{where } E'_{ij} = \text{LN}(\text{CA}(E_{ij}^k, V_i^{k+1}, V_j^{k+1}) + E_{ij}^k). \quad (5)$$

212 After n_2 iterations of message propagation, i.e., n_2 dual-transformer blocks, the edge information
 213 is expected to encode sufficient global correlations to enrich the information content of synthetic
 214 negatives.

215 A more formal discussion of the propagation behavior of RGP, including how it differs from classical
 smoothing-based graph operators, is provided in Appendix B.

216 3.3 DISCRIMINATIVE GLOBAL-SENSE SYNTHESIS
217

218 Based on the learned global sample relevance, we dynamically interpolate and fuse anchor-negative
219 representations with channel-wise adaptivity, producing more informative negatives that enhance
220 training and strengthen the discrimination of the embedding space. Initially, use the edges $E_{an}^{n_2}$ of
221 each anchor-negative pair to obtain the corresponding interpolation vector λ_{an} :

$$222 \quad \lambda_{an} = \text{Sigmoid}(\text{FC}(E_{an}^{n_2})) \quad (6)$$

224 where FC denotes a Fully Connected layer used for transformation, and the *Sigmoid* function per-
225 forms normalization. Thus, λ_{an} can provide adaptive weights for channel-level embedding fusion
226 in the corresponding anchor-negative pairs.

227 Unlike traditional interpolation methods that apply a single coefficient, we gradually increase train-
228 ing difficulty as the model converges. Therefore, we define the interpolation formula as follows:
229

$$230 \quad \tilde{h}'_{an} = \begin{cases} (1 - \eta)\tilde{h}_a + \eta\tilde{h}_n, & \text{if } d_{ap} < d_{an}, \\ \tilde{h}_n, & \text{otherwise.} \end{cases} \quad \text{where } \eta = \left(d_{ap} + \lambda_{an}\tau(d_{an} - d_{ap}) \right) / d_{an} \quad (7)$$

233 where τ is introduced as a dynamic scaling factor for adjusting interpolation points, gradually in-
234 creasing the difficulty of synthesizing negative samples during model training. We set $\tau = e^{-\frac{1}{l_{avg}}}$,
235 where l_{avg} is measured by the average loss from the previous epoch, reflecting the model's cur-
236 rent learning performance. As the model gradually fits, l_{avg} decreases, and τ gradually tightens
237 the upper bound of the interpolation interval, increasing the difficulty of synthetic negative samples.
238 λ_{an} is responsible for generating appropriate deterministic values within the interpolation interval
239 to achieve informative interpolation based on global propagation of correlations.

240 3.4 GENERATION OPTIMIZATION
241

242 To optimize the generation of difficult samples, we design multiple loss functions that guide the
243 model toward the desired objectives from different perspectives. We expect the generated samples
244 to have a higher similarity (difficulty) with the anchors while maintaining the original semantics, so
245 we designed two losses: **Semantic Preservation loss** \mathcal{L}_{sp} and **Interpolation Similarity loss** \mathcal{L}_{is} . To
246 calculate the semantic preservation loss, we add an extra classification layer to the model. This layer
247 is trained only on real samples and then used to classify synthetic samples, without backpropagating
248 gradients from the synthetic inputs. The calculation formula of \mathcal{L}_{sp} is as follows:

$$249 \quad \mathcal{L}_{sp}(\tilde{h}'_{an}) = \text{CE}(\text{CL}(\tilde{h}'_{an}), l_n) \quad (8)$$

251 where CL denotes the classification layer, which is essentially an FC layer. CE is the *cross-
252 entropy* function, and l_n is the original negative sample category.
253

254 For the \mathcal{L}_{is} , we directly use cosine similarity function to calculate:

$$255 \quad \mathcal{L}_{is}(\tilde{h}'_{an}, \tilde{h}_a) = 1 - \frac{\tilde{h}'_{an} \odot \tilde{h}_a}{\|\tilde{h}'_{an}\| \|\tilde{h}_a\|} \quad (9)$$

259 To encourage diversity among synthetic negatives, the interpolation coefficients λ should vary across
260 pairs. Thus, for each anchor a , the standard deviation of all associated coefficients λ_{a-} defines the
261 **Coefficient Diversity loss** \mathcal{L}_{cd} :

$$262 \quad \mathcal{L}_{cd}(\lambda_{a-}) = 1 - \sigma(\lambda_{a-}) \quad (10)$$

263 where σ represents the standard deviation function (*std*).

264 The overall **Generation Optimization loss** \mathcal{L}_{go} is defined as:
265

$$266 \quad \mathcal{L}_{go} = \gamma_{is}l_{is} + \gamma_{sp}l_{sp} + \gamma_{cd}l_{cd} \quad (11)$$

268 where γ_{is} , γ_{sp} , and γ_{cd} are used to adjust the weights of the loss items. Through a comprehensive as-
269 sessment of three aspects, we enhance the model's ability to generate informative negative samples,
thereby enabling more discriminative hash learning.

270 3.5 HASH LEARNING
271

272 After obtaining diverse synthetic samples, we focus on strengthening discriminative hash learning
273 while maintaining robustness. Since we designed a classification layer in the generation optimization
274 section to evaluate the semantic consistency of synthetic samples, we need to add this layer after the
275 hash layers and train it using the corresponding loss:

$$276 \quad \mathcal{L}_{sp1} = CE(CL_1(\tilde{h}_i), l_i) \quad (12)$$

278 At the same time, in order to maintain semantic consistency in the graph neural network, we also
279 pass the node representations after graph message propagation through a classification layer, so that
280 the nodes continue to maintain their semantics while learning global information:

$$281 \quad \mathcal{L}_{sp2} = CE(CL_2(V_i^{n2}), l_i) \quad (13)$$

282 Note that these two classification layers differ from the modality-specific hash layers; instead, they
283 share parameters across modalities, similar to GT , to enhance robustness. This is because we aim
284 for the feature codes obtained from the hash layers to already eliminate modality differences, thereby
285 allowing them to be directly applied during testing.

286 We adopt the standard triplet loss for hash learning, incorporating both real and synthetic hard
287 negatives to verify the effectiveness. We first compute the triplet loss using real samples only:

$$289 \quad \mathcal{L}_{real} = \mathcal{L}_{tri}(\tilde{h}^{\mathcal{I}}, \tilde{h}^{\mathcal{I}}) + \mathcal{L}_{tri}(\tilde{h}^{\mathcal{I}}, \tilde{h}^{\mathcal{T}}) + \mathcal{L}_{tri}(\tilde{h}^{\mathcal{T}}, \tilde{h}^{\mathcal{I}}) + \mathcal{L}_{tri}(\tilde{h}^{\mathcal{T}}, \tilde{h}^{\mathcal{T}}) \quad (14)$$

290 where \mathcal{L}_{tri} represents the triplet loss function. We then introduce the synthetic hard negative samples
291 generated by our DGS module to further strengthen the learning process. The enhanced triplet loss
292 with synthetic negatives is defined as:

$$294 \quad \mathcal{L}_{syn} = \mathcal{L}_{tri}(\tilde{h}^{\mathcal{I}}, \tilde{h}^{\mathcal{I}\mathcal{T}'}) + \mathcal{L}_{tri}(\tilde{h}^{\mathcal{I}}, \tilde{h}^{\mathcal{T}\mathcal{I}'}) + \mathcal{L}_{tri}(\tilde{h}^{\mathcal{T}}, \tilde{h}^{\mathcal{I}\mathcal{T}'}) + \mathcal{L}_{tri}(\tilde{h}^{\mathcal{T}}, \tilde{h}^{\mathcal{T}\mathcal{I}'}) \quad (15)$$

295 where $\tilde{h}^{\mathcal{I}'}, \tilde{h}^{\mathcal{I}\mathcal{T}'}, \tilde{h}^{\mathcal{T}\mathcal{I}'}, \tilde{h}^{\mathcal{T}'}$ represent the synthetic hard negative samples generated for the respective
296 modality pairs, which are interpolated by Eq. 7. Among them, $\tilde{h}^{\mathcal{I}\mathcal{T}'}$ represents the synthetic
297 samples with \mathcal{I} as the anchors and \mathcal{T} as the negatives.

298 The overall **hash learning loss** \mathcal{L}_{hl} combines the real and synthetic triplet losses:

$$300 \quad \mathcal{L}_{hl} = \mathcal{L}_{real} + \gamma_{syn} \mathcal{L}_{syn} \quad (16)$$

302 where γ_{syn} is set to $1 - e^{\frac{1}{\mathcal{L}_{go}}}$. As GT converges, it progressively increases the proportion of hard
303 negatives to strengthen metric learning.

304 The overall training procedure alternates between \mathcal{L}_{go} and \mathcal{L}_{hl} , ensuring that both sample generation
305 and hash code learning are jointly improved throughout the training process. This coordinated
306 optimization strategy enables our model to learn highly discriminative hash codes that effectively
307 preserve semantic similarities across modalities.

309 4 EXPERIMENTS
310311 4.1 BENCHMARK DATASETS & BASELINE METHODS
312

313 **MIRFLICKR-25K** contains 24,581 image-text pairs across 24 semantic categories from the Flickr
314 website Huiskes & Lew (2008). **NUS-WIDE** was constructed by the National University of Singa-
315 pore, contains 195,834 pairs, 21 classes Chua et al. (2009). **MS COCO** created by Microsoft,
316 contains 122218 sample pairs from 80 categories Lin et al. (2014). In our experiments, those three
317 datasets are split identically by randomly selecting 10,000 image-text pairs as the training set. Af-
318 terwards, 5000 pairs are chosen randomly as the query set and the remaining as the database.

319 To demonstrate the performance of our method comprehensively, we have chosen several typical
320 deep cross-modal hashing methods to compare with our proposed DGHDGH framework, which
321 include Two-step discrete hashing (TwDH)Tu et al. (2024), Deep Neighborhood-aware Proxy Hash-
322 ing (DNPH)Huo et al. (2024a), Deep Neighborhood-preserving Hashing (DNpH)Qin et al. (2024),
323 Deep Hierarchy-aware Proxy Hashing (DHaPH)Huo et al. (2024b), Bi-Direction Label-Guided Se-
324 mantic Enhancement Hashing (BiLGSEH)Zhu et al. (2025), Deep Evidential Hashing (DECH) Li

324 Table 1: mAP@all results(%) of DGHDGH and baseline methods on three benchmark datasets w.r.t. four hash bits .
325

326 Task	Method	Reference	MIRFLICKR-25K				NUS-WIDE				MS COCO				
			16	32	64	128	16	32	64	128	16	32	64	128	
327 Image	TwDH	TMM'24	79.71	81.47	83.19	84.37	66.83	69.34	69.95	71.94	64.29	70.04	73.08	75.44	
	DNPH	TOMM'24	81.08	82.69	82.89	83.70	66.89	68.11	69.39	70.93	64.38	69.10	72.94	72.51	
	DNpH	TMM'24	84.23	<u>85.52</u>	85.88	86.29	69.21	70.22	70.71	71.58	67.27	69.03	68.60	68.74	
	DHaPH	TKDE'24	82.99	84.37	85.31	85.49	69.58	70.35	71.36	71.55	72.84	74.15	74.75	75.43	
	↓ BiLGSEH	TCSV'T25	79.29	81.16	81.94	82.07	70.50	71.42	72.18	72.13	66.68	73.33	75.96	74.85	
	Text	DECH	AAAI'25	79.61	83.96	83.83	84.43	66.13	<u>71.61</u>	71.55	<u>72.41</u>	63.73	64.35	66.44	68.49
	DPBE	MM'25	80.82	83.27	85.12	85.90	62.46	64.51	68.35	71.14	63.25	64.77	69.26	72.61	
	DDBH	TCSV'T25	<u>84.50</u>	85.34	<u>86.10</u>	<u>86.50</u>	69.34	71.45	<u>72.29</u>	72.29	71.65	<u>74.54</u>	<u>76.81</u>	<u>78.24</u>	
332 DGHDGH	OURS	84.66	86.19	87.13	87.75	69.72	71.68	72.60	73.76	72.06	74.71	77.13	79.19		

333 The best and second-best performance are highlighted in boldface and underlined.
334347 Figure 3: Performance comparison with augmentation-based methods on MIRFLICKR-25K, and
348 use mining-based w/ DWS as the gray background.
349350
351 et al. (2025c), Deep Probabilistic Binary Embedding (DPBE) Cheng et al. (2025) Deep Discrimi-
352 native Boundary Hashing (DDBH) Qin et al. (2025). To ensure fairness, all frameworks adopt CLIP
353 ViT-B/32 as the common backbone, and the experimental settings are kept the same except for
354 the hyperparameters set in the original paper. Furthermore, different types of informative methods
355 are picked, namely Distance-Weighted Sampling (w/ DWS) Wu et al. (2017), hashGAN (w/ GAN)
356 Cao et al. (2018b), Hardness-adaptive Deep Metric Learning (w/ HDML) Zheng et al. (2019), and
357 Densely-Anchor Sampling (w/ DAS) Liu et al. (2022).358
359

4.2 EVALUATION METRICS & IMPLEMENTATION DETAILS

360
361 We evaluate cross-modal similarity search in two settings: Image-to-Text (I2T) and Text-to-Image
362 (T2I). We primarily use mean Average Precision (mAP), which reflects both recall and precision,
363 along with the Fisher ratio and $P@H \leq 2$ to evaluate model discriminability.
364365 The initial parameters of the feature extraction module are referenced in Radford et al. (2021), where
366 $N_1 = 12$, $M_1 = 8$. For parameter optimization, we utilize the Adam optimizer, where a learning
367 rate of 0.001 and a weight decay of 0.01. We set the batch size as 128 and take the best performance
368 in 100 epochs for all experiments. A detailed description can be found in Appendix C369

4.3 PERFORMANCE COMPARISON

370
371 To rigorously verify the performance of our proposed DGHDGH, we report the comparison with
372 baseline methods as shown in Tab. 1. By learning a discriminative Hamming co-space, our method
373 achieves state-of-the-art performance results. Meanwhile, in order to comprehensively demonstrate
374 the difference with previous information learning, we further compare DGHDGH with represen-
375 tative generation methods on MIRFLICKR-25K, as shown in Fig. 3, which are all based on the same
376 baseline. Other metrics are also evaluated in a normalized radar plot, which are Flops, Parameters
377 (reverse), Training times (reverse), convergence epochs (reverse), and information augmented. The
378 metrics were all performed Max normalization, and the maximum value was taken as the largest or
379 slightly larger constant. See more baseline experiments in Appendix D.1 and D.2.

378 Table 2: Fisher ratios (%) of DGHDGH and baseline methods w.r.t. four hash bits on three benchmark datasets, which are computed by
379 randomly sampling 50, 100, 200, and 400 positive/negative pairs, each repeated five times with different seeds for stability.

380	381	MIRFLICKR	16 bits		32 bits		64 bits		128 bits	
			$I \rightarrow T$	$T \rightarrow I$	$I \rightarrow T$	$T \rightarrow I$	$I \rightarrow T$	$T \rightarrow I$	$I \rightarrow T$	$T \rightarrow I$
382	DHaPH	90.15 \pm 0.14	84.38 \pm 0.19	104.54 \pm 0.14	88.16 \pm 0.07	109.22 \pm 0.17	90.89 \pm 0.21	108.28 \pm 0.18	92.46 \pm 0.08	
383	BiLGSEH	69.81 \pm 0.11	69.05 \pm 0.06	76.43 \pm 0.17	75.86 \pm 0.06	80.42 \pm 0.19	82.62 \pm 0.07	81.36 \pm 0.18	84.46 \pm 0.08	
384	DECH	81.13 \pm 0.13	67.85 \pm 0.06	96.38 \pm 0.13	80.76 \pm 0.15	95.41 \pm 0.16	82.94 \pm 0.10	91.55 \pm 0.10	87.98 \pm 0.13	
	DDBH	100.13 \pm 0.12	84.51 \pm 0.07	104.65 \pm 0.13	84.51 \pm 0.11	109.21 \pm 0.26	90.89 \pm 0.08	111.30 \pm 0.10	92.47 \pm 0.06	
	DGHDGH	<u>97.57 \pm 0.05</u>	89.02 \pm 0.14	105.44 \pm 0.08	93.16 \pm 0.11	111.17 \pm 0.15	94.60 \pm 0.05	<u>110.17 \pm 0.07</u>	96.82 \pm 0.15	
385	NUS-WIDE									
386	DHaPH	101.03 \pm 0.13	98.86 \pm 0.16	90.15 \pm 0.14	90.05 \pm 0.16	107.21 \pm 0.15	104.04 \pm 0.14	106.15 \pm 0.13	103.22 \pm 0.13	
387	BiLGSEH	99.77 \pm 0.13	101.87 \pm 0.11	100.32 \pm 0.21	102.42 \pm 0.17	99.00 \pm 0.18	103.24 \pm 0.14	99.00 \pm 0.18	103.21 \pm 0.13	
388	DECH	93.92 \pm 0.14	97.85 \pm 0.13	105.56 \pm 0.14	108.89 \pm 0.11	97.69 \pm 0.15	105.49 \pm 0.10	104.69 \pm 0.13	109.24 \pm 0.09	
	DDBH	110.09 \pm 0.17	110.02 \pm 0.17	112.72 \pm 0.17	111.14 \pm 0.15	115.86 \pm 0.11	113.44 \pm 0.14	116.49 \pm 0.15	116.31 \pm 0.15	
	DGHDGH	<u>105.03 \pm 0.20</u>	104.68 \pm 0.10	112.89 \pm 0.22	112.70 \pm 0.12	113.27 \pm 0.18	114.41 \pm 0.07	117.58 \pm 0.13	118.80 \pm 0.09	
389	MS COCO									
390	DHaPH	116.94 \pm 0.17	105.43 \pm 0.07	113.73 \pm 0.14	114.38 \pm 0.11	117.05 \pm 0.10	120.65 \pm 0.07	120.58 \pm 0.15	119.58 \pm 0.09	
391	BiLGSEH	90.76 \pm 0.11	90.07 \pm 0.12	99.46 \pm 0.14	100.66 \pm 0.14	105.93 \pm 0.08	106.60 \pm 0.08	106.24 \pm 0.12	106.50 \pm 0.09	
392	DECH	88.55 \pm 0.18	90.90 \pm 0.05	94.46 \pm 0.12	105.41 \pm 0.11	95.77 \pm 0.10	108.17 \pm 0.10	98.15 \pm 0.12	107.36 \pm 0.11	
	DDBH	123.63 \pm 0.17	124.29 \pm 0.18	131.57 \pm 0.15	123.37 \pm 0.11	136.25 \pm 0.21	124.64 \pm 0.15	139.10 \pm 0.20	126.46 \pm 0.10	
	DGHDGH	<u>120.63 \pm 0.26</u>	124.56 \pm 0.11	128.36 \pm 0.18	131.45 \pm 0.21	128.17 \pm 0.26	132.58 \pm 0.12	133.20 \pm 0.17	135.94 \pm 0.14	

394 The best and second-best performance are highlighted in boldface and underlined.

401 Figure 4: $P@H \leq 2$ results of DGHDGH and baseline methods on three benchmark datasets.403

4.4 DISCRIMINATIVE HASHING

405 We argue that introducing richer discriminative information during training facilitates more discriminative
406 hash learning. To evaluate this, $P@H \leq 2$ is utilized to demonstrate the compactness of
407 the learned Hamming co-space. In Fig. 4, the experimental result measures how well each model
408 pushes away hard negatives, validating the discriminative capability of our proposed method.
409410 On the other hand, we assessed discrimination by comparing the Fisher ratio. As shown in Tab. 2,
411 our method achieves higher Fisher ratios than all baselines. This indicates that the proposed global-
412 sense hard negative generation leads to a more discriminative Hamming space, leading to tighter
413 intra-class clusters and larger inter-class separations. It is worth noting that the two methods that
414 performed well in DDBH, similarly emphasize discriminative properties.
415416

4.5 SELF VALIDATION

417 To fairly judge the contributions of our modules, we conduct ablation studies to evaluate each component
418 separately in Fig. 5. For w/o RGP, we directly use the initial edge computation as the interpolation
419 source. For w/o DGS, we directly remove the generation phase. Furthermore, we validate two detailed
420 operations in two modules. Furthermore, we validate two finer operations in the modules:
421 removing Edge Message Fusion (w/o EMF) in RGP, and removing the Hardness-Adaptive Parameter
422 (w/o HAP) in DGS. At the same time, we also investigate the three optimization objectives for
423 generative embedding, i.e., \mathcal{L}_{is} , \mathcal{L}_{sp} and \mathcal{L}_{cd} , and cross ablate them in Tab. 3. These three loss terms
424426 Figure 5: Ablation Study Result of DGHDGH on three benchmark datasets w.r.t. 128 bits.
427
428
429
430
431

Figure 6: Parameter configuration and temporal effects Results on MIRFLICKR-25K w.r.t. 16 bits.

Table 3: Ablation Study Result of DGHDGH on MIRFLICKR-25K.

Component	16 bits			32 bits			64 bits			128 bits			Avg.	
	l_{sm}	l_{sp}	l_{id}	$I \rightarrow T$	$T \rightarrow I$									
				79.82	78.15	81.45	79.63	82.21	80.57	83.06	81.32	81.64	80.04	
✓				81.38	79.52	82.97	80.73	83.84	81.69	84.61	82.58	83.20	81.13	
	✓			82.15	80.37	83.82	81.64	84.59	82.81	85.33	83.45	83.97	82.07	
✓	✓			83.76	82.14	85.41	83.28	86.25	84.36	87.02	84.95	85.61	83.68	
	✓	✓		83.92	82.35	85.63	83.51	86.47	84.59	87.21	85.17	85.81	83.90	
✓	✓	✓		84.44	82.91	86.09	83.95	86.82	84.98	87.38	85.43	86.18	84.32	
	✓	✓	✓	82.84	81.06	84.55	82.42	85.38	83.67	86.12	84.23	84.72	82.85	
✓	✓	✓	✓	84.66	83.03	86.19	84.21	87.13	85.09	87.75	85.74	86.43	84.52	

The best and second-best performance are highlighted in boldface and underlined.

optimize generated hard negatives in terms of interpolation similarity, semantic preservation, and parameter diversification, respectively. The figure demonstrates that optimizing the interpolation process from all three perspectives leads to better results. More analysis in Appendix D.3.

We further conducted hyper-parameter experiments to validate the choice of the number of blocks N_2 and the attention heads M_2 in the graph transformer, and selected sets of configurations as $con1$, $con2$..., were compared with baseline methods in terms of training time and encoding time. Training time is measured over 100 epochs (hours), and encoding time is measured for a single pass over the query set (ms). These experiments are shown in Fig. 6. To combine performance and efficiency, we chose $con1$ as the final parameter, i.e., $N_2 = 2, M_2 = 4$.

4.6 MODULE GENERALIZATION

Our proposed method serves as an information-rich strategy that provides broad support for cross-modal training. To validate this, we extend it to the discriminative approach DHaPH and DDBH. As shown in Fig. 7, our method can be used in a plug-and-play manner to support various approaches. Furthermore, to validate the capacity of augmentation-based methods to cope with low-information training in challenging environments, We first halve the train set size and then halve the batch size consecutively. Considering the instability in this scenario, we perform multiple experiments and record the variance as shown in Fig. 8. Our method can still stably provide discriminative information to support training in the face of fewer samples. We visualize the distribution of negative samples before and after the proposed method generates difficult negative samples in Fig. 9. We also checked the stability of the backbone in Appendix D.4.

Figure 7: Bullet chart visualization on MIRFLICKR-25K. The target markers indicate the baseline and bars correspond to add the DGHDGH module.

4.7 NOISE ROBUSTNESS

We conducted noise label experiments to verify the performance degradation of the model when countering label interference. Noise rates of 0.2, 0.5, and 0.8 indicate random two-digit label inversion of the corresponding proportion of samples during training, follow in Wang et al. (2024).

Figure 8: Batch stability error with line plots for different training set sizes (5000, 7500). Batch size is taken as 32, 64, 128, 256.

Figure 9: Visualization of the distribution of relative distances of negative samples before and after generation, and their cosine similarity histograms.

DGHDGH maintains stable retrieval performance at all noise levels and consistently outperforms all baselines. Graph propagation aggregates the relationship signals of multiple adjacent samples and dominates the propagation process with global relationships, forming a natural denoising filter that suppresses the influence of damaged labels. Meanwhile difficulty-aware synthetic negative samples generate hard negative samples based on cross-modal similarity and structural consistency, without relying on original labels, thus avoiding the amplification of noise and the generation of misleading negative samples by erroneous labels. Because synthetic negatives does not depend on noisy labels but on learned similarity and global propagation, it is inherently more robust than baselines.

Table 4: mAP results (%) of DDGRH and baselines under different noise rates on the MIRFLICKR-25K dataset w.r.t. four bits.

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Task	Method	16 bits			32 bits			64 bits			128 bits		
		0.2	0.5	0.8	0.2	0.5	0.8	0.2	0.5	0.8	0.2	0.5	0.8
Image	NRCH	76.38	75.61	73.24	76.75	76.21	74.76	77.05	76.98	76.07	77.83	77.10	76.11
	DNPH	77.70	75.55	75.37	79.74	80.16	79.04	81.67	82.44	<u>81.01</u>	83.53	83.32	<u>81.08</u>
	DHaPH	<u>83.73</u>	81.64	<u>78.04</u>	82.94	78.11	75.82	82.10	79.17	76.85	82.64	79.77	77.28
	BiLGSEH	78.11	77.35	75.93	78.24	77.36	75.15	80.72	78.42	76.30	80.00	79.32	77.46
Text	DPBE	77.85	77.16	73.79	80.8	77.16	74.09	82.21	78.28	75.45	84.12	80.11	76.77
	DDBH	83.79	82.20	76.50	84.70	82.11	78.78	<u>85.04</u>	84.58	79.46	<u>85.64</u>	84.61	80.29
	DGHDGH	81.95	81.78	78.65	84.06	82.76	80.89	85.96	84.71	82.64	85.96	85.15	84.16
Text	NRCH	74.55	74.31	72.20	75.53	74.68	72.59	75.88	75.41	74.59	75.71	75.80	74.64
	DNPH	76.40	75.25	75.18	78.56	79.28	77.05	80.56	80.18	<u>79.25</u>	81.26	80.76	79.45
	DHaPH	<u>81.51</u>	79.49	<u>77.66</u>	80.52	75.96	73.22	78.69	76.39	74.23	79.31	76.99	74.38
	BiLGSEH	<u>77.23</u>	76.61	<u>76.30</u>	81.27	77.85	72.16	79.21	75.67	75.14	79.55	77.36	76.72
Image	DPBE	76.26	75.82	73.29	78.83	76.28	74.38	81.17	78.13	75.76	82.59	80.14	77.22
	DDBH	82.16	80.27	77.07	<u>82.34</u>	<u>81.22</u>	79.62	<u>84.24</u>	<u>82.79</u>	<u>79.77</u>	<u>83.76</u>	82.69	79.84
	DGHDGH	81.03	80.42	78.80	82.59	81.67	80.87	84.56	83.50	82.09	84.56	84.13	83.35

The best and second-best performances are highlighted in boldface and underlined.

5 CONCLUSION

In this work we presented DGHDGH, the first framework that introduces discriminative generation into deep hashing. By combining global relational modeling with hardness-adaptive synthesis, our method generates semantically consistent negatives that sharpen decision boundaries in Hamming space. Extensive experiments on multiple benchmarks verify that DGHDGH significantly improves retrieval accuracy and discriminability over state-of-the-art baselines. Beyond its standalone performance, our framework is modular and can serve as a plug-and-play enhancement for existing cross-modal approaches, and will be accessed for arbitrary representation learning in the future.

540 REFERENCES
541

542 Cong Bai, Chao Zeng, Qing Ma, Jinglin Zhang, and Shengyong Chen. Deep adversarial discrete
543 hashing for cross-modal retrieval. In *Proceedings of the 2020 international conference on multi-*
544 *media retrieval*, pp. 525–531, 2020.

545 Maxime Bucher, Stéphane Herbin, and Frédéric Jurie. Hard negative mining for metric learn-
546 ing based zero-shot classification. In *European Conference on Computer Vision*, pp. 524–531.
547 Springer, 2016.

548 Fatih Cakir, Kun He, Sarah Adel Bargal, and Stan Sclaroff. Hashing with mutual information. *IEEE*
549 *transactions on pattern analysis and machine intelligence*, 41(10):2424–2437, 2019.

550 Yue Cao, Bin Liu, Mingsheng Long, and Jianmin Wang. Cross-modal hamming hashing. In *Pro-*
551 *ceedings of the European conference on computer vision (ECCV)*, pp. 202–218, 2018a.

552 Yue Cao, Bin Liu, Mingsheng Long, and Jianmin Wang. Hashgan: Deep learning to hash with
553 pair conditional wasserstein gan. In *Proceedings of the IEEE conference on computer vision and*
554 *pattern recognition*, pp. 1287–1296, 2018b.

555 Wei Chen, Yu Liu, Weiping Wang, Erwin M. Bakker, Theodoros Georgiou, Paul W. Fieguth, Li Liu,
556 and Michael S. Lew. Deep learning for instance retrieval: A survey. *IEEE Transactions on Pattern*
557 *Analysis and Machine Intelligence*, 45(6):7270–7292, 2023.

558 Kun Cheng, Qibing Qin, Wenfeng Zhang, Lei Huang, and Jie Nie. Deep probabilistic binary em-
559 bedding via learning reliable uncertainty for cross-modal retrieval. In *Proceedings of the 33rd*
560 *ACM International Conference on Multimedia*, pp. 6393–6402, 2025.

561 Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yantao Zheng. Nus-wide:
562 a real-world web image database from national university of singapore. In *Proceedings of the*
563 *ACM international conference on image and video retrieval*, pp. 1–9, 2009.

564 Cheng Deng, Zhaojia Chen, Xianglong Liu, Xinbo Gao, and Dacheng Tao. Triplet-based deep
565 hashing network for cross-modal retrieval. *IEEE Transactions on Image Processing*, 27(8):3893–
566 3903, 2018.

567 Yueqi Duan, Wenzhao Zheng, Xudong Lin, Jiwen Lu, and Jie Zhou. Deep adversarial metric learn-
568 ing. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp.
569 2780–2789, 2018.

570 Damianos Galanopoulos and Vasileios Mezaris. Hard-negatives or non-negatives? a hard-negative
571 selection strategy for cross-modal retrieval using the improved marginal ranking loss. In *Proceed-*
572 *ings of the IEEE/CVF International Conference on Computer Vision*, pp. 2312–2316, 2021.

573 Wen Gu, Xiaoyan Gu, Jingzi Gu, Bo Li, Zhi Xiong, and Weiping Wang. Adversary guided asym-
574 metric hashing for cross-modal retrieval. In *Proceedings of the 2019 on international conference*
575 *on multimedia retrieval*, pp. 159–167, 2019.

576 Peng Hu, Hongyuan Zhu, Jie Lin, Dezhong Peng, Yin-Ping Zhao, and Xi Peng. Unsupervised Con-
577 trastive Cross-Modal Hashing. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
578 45(3):3877–3889, 2023.

579 Mark J Huiskes and Michael S Lew. The mir flickr retrieval evaluation. In *Proceedings of the 1st*
580 *ACM international conference on Multimedia information retrieval*, pp. 39–43, 2008.

581 Yadong Huo, Qin Qibing, Jiangyan Dai, Wenfeng Zhang, Lei Huang, and Chengduan Wang. Deep
582 Neighborhood-aware Proxy Hashing with Uniform Distribution Constraint for Cross-modal Re-
583 trieval. *ACM Transactions on Multimedia Computing, Communications, and Applications*, 20(6):
584 169:1–169:23, 2024a.

585 Yadong Huo, Qibing Qin, Wenfeng Zhang, Lei Huang, and Jie Nie. Deep hierarchy-aware proxy
586 hashing with self-paced learning for cross-modal retrieval. *IEEE Transactions on Knowledge and*
587 *Data Engineering*, 2024b.

594 Qing-Yuan Jiang and Wu-Jun Li. Deep cross-modal hashing. In *Proceedings of the IEEE conference*
 595 *on computer vision and pattern recognition*, pp. 3232–3240, 2017.

596

597 Yannis Kalantidis, Mert Bulent Sarayildiz, Noe Pion, Philippe Weinzaepfel, and Diane Larlus. Hard
 598 negative mixing for contrastive learning. *Advances in neural information processing systems*, 33:
 599 21798–21809, 2020.

600

601 Byungsoo Ko and Geonmo Gu. Embedding expansion: Augmentation in embedding space for deep
 602 metric learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 603 *recognition*, pp. 7255–7264, 2020.

604

605 Chao Li, Cheng Deng, Ning Li, Wei Liu, Xinbo Gao, and Dacheng Tao. Self-supervised adversarial
 606 hashing networks for cross-modal retrieval. In *Proceedings of the IEEE conference on computer*
 607 *vision and pattern recognition*, pp. 4242–4251, 2018a.

608

609 Fengling Li, Yang Sun, Tianshi Wang, Lei Zhu, and Xiaojun Chang. Fast partial-modal online
 610 cross-modal hashing. *IEEE Transactions on Image Processing*, 2025a.

611

612 Huaxiong Li, Chao Zhang, Xiuyi Jia, Yang Gao, and Chunlin Chen. Adaptive label correlation
 613 based asymmetric discrete hashing for cross-modal retrieval. *IEEE Transactions on Knowledge*
 614 *and Data Engineering*, 35(2):1185–1199, 2023.

615

616 Jiaxing Li, Wai Keung Wong, Lin Jiang, Kaihang Jiang, Xiaozhao Fang, Shengli Xie, and Jie Wen.
 617 Collaboratively semantic alignment and metric learning for cross-modal hashing. *IEEE Transac-*
 618 *tions on Knowledge and Data Engineering*, 2025b.

619

620 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 621 training for unified vision-language understanding and generation. In *International conference on*
 622 *machine learning*, pp. 12888–12900. PMLR, 2022.

623

624 Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
 625 for semi-supervised learning. In *Proceedings of the AAAI conference on artificial intelligence*,
 626 volume 32, 2018b.

627

628 Yuan Li, Liangli Zhen, Yuan Sun, Dezhong Peng, Xi Peng, and Peng Hu. Deep evidential hash-
 629 ing for trustworthy cross-modal retrieval. In *Proceedings of the AAAI Conference on Artificial*
 630 *Intelligence*, volume 39, pp. 18566–18574, 2025c.

631

632 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 633 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer*
 634 *Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014,*
 635 *Proceedings, Part V 13*, pp. 740–755. Springer, 2014.

636

637 Lizhao Liu, Shangxin Huang, Zhuangwei Zhuang, Ran Yang, Mingkui Tan, and Yaowei Wang.
 638 Das: Densely-anchored sampling for deep metric learning. In *European Conference on Computer*
 639 *Vision*, pp. 399–417. Springer, 2022.

640

641 Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu Chang. Supervised hashing with
 642 kernels. In *2012 IEEE conference on computer vision and pattern recognition*, pp. 2074–2081.
 643 IEEE, 2012.

644

645 Xin Liu, Zhikai Hu, Haibin Ling, and Yiu-ming Cheung. Mtfh: A matrix tri-factorization hashing
 646 framework for efficient cross-modal retrieval. *IEEE transactions on pattern analysis and machine*
 647 *intelligence*, 43(3):964–981, 2019.

648

649 Xiao Luo, Haixin Wang, Daqing Wu, Chong Chen, Minghua Deng, Jianqiang Huang, and Xian-
 650 Sheng Hua. A survey on deep hashing methods. *ACM Transactions on Knowledge Discovery*
 651 *from Data*, 17(1):1–50, 2023.

652

653 Min Meng, Haitao Wang, Jun Yu, Hui Chen, and Jigang Wu. Asymmetric Supervised Consistent
 654 and Specific Hashing for Cross-Modal Retrieval. *IEEE Transactions on Image Processing*, 30:
 655 986–1000, 2021.

648 Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
 649 classification. *arXiv preprint arXiv:1905.10947*, 2019.

650

651 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 652 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
 653 Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
 654 Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-
 655 Performance Deep Learning Library. In *Proceedings of the Annual Conference on Neural In-*
656 formation Processing Systems, pp. 8024–8035, 2019.

657

658 Wenjie Peng, Hongxiang Huang, Tianshui Chen, Quhui Ke, Gang Dai, and Shuangping Huang.
 659 Globally correlation-aware hard negative generation. *International Journal of Computer Vision*,
 pp. 1–22, 2024.

660

661 Shengsheng Qian, Dizhan Xue, Quan Fang, and Changsheng Xu. Integrating Multi-Label Con-
 662 trastive Learning With Dual Adversarial Graph Neural Networks for Cross-Modal Retrieval. *IEEE*
663 Transactions on Pattern Analysis and Machine Intelligence, 45(4):4794–4811, 2023.

664

665 Jianyang Qin, Lunke Fei, Zheng Zhang, Jie Wen, Yong Xu, and David Zhang. Joint Specifics and
 666 Consistency Hash Learning for Large-Scale Cross-Modal Retrieval. *IEEE Transactions on Image*
667 Processing, 31:5343–5358, 2022.

668

669 Qibing Qin, Yadong Huo, Lei Huang, Jiangyan Dai, Huihui Zhang, and Wenfeng Zhang. Deep
 neighborhood-preserving hashing with quadratic spherical mutual information for cross-modal
 retrieval. *IEEE Transactions on Multimedia*, 2024.

670

671 Qing Qin, Yadong Huo, Wenfeng Zhang, Lei Huang, and Jie Nie. Deep discriminative boundary
 672 hashing for cross-modal retrieval. *IEEE Transactions on Circuits and Systems for Video Technol-*
673 ogy, 2025.

674

675 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 676 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 677 Sutskever. Learning Transferable Visual Models From Natural Language Supervision. In *Pro-*
678 ceedings of the International Conference on Machine Learning, volume 139, pp. 8748–8763,
 2021.

679

680 Haocong Rao, Cyril Leung, and Chunyan Miao. Hierarchical skeleton meta-prototype contrastive
 681 learning with hard skeleton mining for unsupervised person re-identification. *International Jour-*
682 nal of Computer Vision, 132(1):238–260, 2024.

683

Y Dan Rubinstein, Trevor Hastie, et al. Discriminative vs informative learning. In *KDD*, volume 5,
 pp. 49–53, 1997.

684

685 Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
 686 recognition and clustering. In *Proceedings of the IEEE conference on computer vision and pattern*
687 recognition, pp. 815–823, 2015.

688

689 Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based object detectors
 690 with online hard example mining. In *Proceedings of the IEEE conference on computer vision and*
691 pattern recognition, pp. 761–769, 2016.

692

693 Edgar Simo-Serra, Eduard Trulls, Luis Ferraz, Iasonas Kokkinos, Pascal Fua, and Francesc Moreno-
 694 Noguer. Discriminative learning of deep convolutional feature point descriptors. In *2015 IEEE In-*
695 ternational Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015,
 pp. 118–126. IEEE Computer Society, 2015.

696

697 Evgeny Smirnov, Aleksandr Melnikov, Andrei Oleinik, Elizaveta Ivanova, Ilya Kalinovskiy, and
 698 Eugene Luckyanets. Hard example mining with auxiliary embeddings. In *Proceedings of the*
699 IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 37–46, 2018.

700

701 Yumin Suh, Bohyung Han, Wonsik Kim, and Kyoung Mu Lee. Stochastic class-based hard example
 mining for deep metric learning. In *IEEE Conference on Computer Vision and Pattern Recog-*
702 nition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 7251–7259. Computer Vision
 Foundation / IEEE, 2019.

702 Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdul-
 703 mohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, et al. Siglip 2:
 704 Multilingual vision-language encoders with improved semantic understanding, localization, and
 705 dense features. *arXiv preprint arXiv:2502.14786*, 2025.

706 Junfeng Tu, Xueliang Liu, Zongxiang Lin, Richang Hong, and Meng Wang. Differentiable cross-
 707 modal hashing via multimodal transformers. In *Proceedings of the 30th ACM International Con-
 708 ference on Multimedia*, pp. 453–461, 2022.

709 Junfeng Tu, Xueliang Liu, Yanbin Hao, Richang Hong, and Meng Wang. Two-step discrete hashing
 710 for cross-modal retrieval. *IEEE Transactions on Multimedia*, 2024.

711 Bhavya Vasudeva, Puneesh Deora, Saumik Bhattacharya, Umapada Pal, and Sukalpa Chanda. Loop:
 712 Looking for optimal hard negative embeddings for deep metric learning. In *Proceedings of the
 713 IEEE/CVF International Conference on Computer Vision*, pp. 10634–10643, 2021.

714 Shashanka Venkataraman, Bill Psomas, Ewa Kijak, Laurent Amsaleg, Konstantinos Karantzalos,
 715 and Yannis Avrithis. It takes two to tango: Mixup for deep metric learning. In *The Tenth Inter-
 716 national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
 717 OpenReview.net*, 2022.

718 Saurabh Verma and Zhi-Li Zhang. Stability and generalization of graph convolutional neural net-
 719 works. In *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Dis-
 720 covery & Data Mining*, pp. 1539–1548, 2019.

721 Longan Wang, Yang Qin, Yuan Sun, Dezhong Peng, Xi Peng, and Peng Hu. Robust contrastive
 722 cross-modal hashing with noisy labels. In *Proceedings of the 32nd ACM International Conference
 723 on Multimedia*, pp. 5752–5760, 2024.

724 Tianshi Wang, Fengling Li, Lei Zhu, Jingjing Li, Zheng Zhang, and Heng Tao Shen. Cross-modal
 725 retrieval: a systematic review of methods and future directions. *Proceedings of the IEEE*, 2025.

726 Xinzhi Wang, Xitao Zou, Erwin M Bakker, and Song Wu. Self-constraining and attention-based
 727 hashing network for bit-scalable cross-modal retrieval. *Neurocomputing*, 400:255–271, 2020a.

728 Xun Wang, Haozhi Zhang, Weilin Huang, and Matthew R Scott. Cross-batch memory for embedding
 729 learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 730 pp. 6388–6397, 2020b.

731 Chao-Yuan Wu, R Manmatha, Alexander J Smola, and Philipp Krahenbuhl. Sampling matters in
 732 deep embedding learning. In *Proceedings of the IEEE international conference on computer
 733 vision*, pp. 2840–2848, 2017.

734 Jun Xia, Lirong Wu, Ge Wang, Jintao Chen, and Stan Z Li. Progl: Rethinking hard negative mining
 735 in graph contrastive learning. In *International Conference on Machine Learning, ICML 2022,
 736 17-23 July 2022, Baltimore, Maryland, USA*, volume 162 of *Proceedings of Machine Learning
 737 Research*, pp. 24332–24346. PMLR, 2022.

738 Hong Xuan, Abby Stylianou, Xiaotong Liu, and Robert Pless. Hard negative examples are hard, but
 739 useful. In *European conference on computer vision*, pp. 126–142. Springer, 2020a.

740 Hong Xuan, Abby Stylianou, and Robert Pless. Improved embeddings with easy positive triplet
 741 mining. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*,
 742 pp. 2474–2482, 2020b.

743 Haoran Yang, Hongxu Chen, Sixiao Zhang, Xiangguo Sun, Qian Li, Xiangyu Zhao, and Guandong
 744 Xu. Generating counterfactual hard negative samples for graph contrastive learning. In *Proceed-
 745 ings of the ACM web conference 2023*, pp. 621–629, 2023.

746 Chao Zhang, Huaxiong Li, Yang Gao, and Chunlin Chen. Weakly-Supervised Enhanced Semantic-
 747 Aware Hashing for Cross-Modal Retrieval. *IEEE Transactions on Knowledge and Data Engi-
 748 neering*, 35(6):6475–6488, 2023.

756 Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
 757 risk minimization. *arXiv preprint arXiv:1710.09412*, 2017.

759 Shaofeng Zhang, Meng Liu, Junchi Yan, Hengrui Zhang, Lingxiao Huang, Xiaokang Yang, and
 760 Pinyan Lu. M-mix: Generating hard negatives via multi-sample mixing for contrastive learning.
 761 In *Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining*,
 762 pp. 2461–2470, 2022.

763 Yiru Zhao, Zhongming Jin, Guo-jun Qi, Hongtao Lu, and Xian-sheng Hua. An adversarial approach
 764 to hard triplet generation. In *Proceedings of the European conference on computer vision (ECCV)*,
 765 pp. 501–517, 2018.

766 Wenzhao Zheng, Zhaodong Chen, Jiwen Lu, and Jie Zhou. Hardness-aware deep metric learning. In
 767 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 72–81,
 768 2019.

770 Lei Zhu, Chaoqun Zheng, Weili Guan, Jingjing Li, Yang Yang, and Heng Tao Shen. Multi-modal
 771 Hashing for Efficient Multimedia Retrieval: A Survey. *IEEE Transactions on Knowledge and*
 772 *Data Engineering*, 36(1):239–260, 2023.

773 Lei Zhu, Runbing Wu, Xinghui Zhu, Chengyuan Zhang, Lin Wu, Shichao Zhang, and Xuelong Li.
 774 Bi-direction label-guided semantic enhancement for cross-modal hashing. *IEEE Transactions on*
 775 *Circuits and Systems for Video Technology*, 2025.

778 A RELATED WORK

780 This section provides the detailed discussion of related works that were briefly summarized in Sec-
 781 tion 2 of the main paper.

783 A.1 DEEP CROSS-MODAL HASHING RETRIEVAL

785 Deep Cross-modal Hashing Retrieval (DCHR) aims to map heterogeneous modalities, such as im-
 786 ages and text, into a collaborative Hamming space end-to-end for efficient approximate nearest
 787 neighbor retrieval Chen et al. (2023). With the benefit of low storage cost and high retrieval effi-
 788 ciency, DCHR methods have attracted wide interest in the field of cross-modal retrieval, achieving
 789 superior similarity retrieval performance Li et al. (2023); Zhu et al. (2023). Deep Cross-Modal
 790 Hashing (DCMH) uses negative log-likelihood loss to maximize the similarity of hash codes for
 791 similar samples and minimize it for dissimilar samples Jiang & Li (2017). Self-Supervised Adver-
 792 sarial Hashing (SSAH) uses adversarial learning and self-supervised semantic discovery to improve
 793 the alignment of multi-label semantic distributions Li et al. (2018a). Multimodal transformers with
 794 a differentiable hashing mechanism are leveraged by Differentiable Cross-modal Hashing via Multi-
 795 modal Transformers (DCHMT), enabling gradient-based optimization through CLIP-style represen-
 796 tations Tu et al. (2022).

797 In recent years, researchers have sought to overcome the limitations of conventional cross-modal
 798 hashing by incorporating more informative learning strategies. Deep Neighborhood-preserving
 799 Hashing (DNPH) improves the discrimination and semantic consistency of cross-modal hashing
 800 by preserving the Neighborhood structure and combining quadratic spherical mutual information
 801 Qin et al. (2024). By introducing hierarchical agent and self-paced learning mechanism, Deep
 802 Hierarchy-aware Proxy Hashing (DHaPH) can gradually capture global and local hierarchical se-
 803 mantic information Huo et al. (2024b). Deep Evidential Hashing for Trustworthy Cross-Modal Re-
 804 trieval (DECH) models the uncertainty information by evidence theory, which makes cross-modal
 805 hashing more advantageous in generating trustworthy and interpretable retrieval results Li et al.
 806 (2025c).

807 A.2 INFORMATIVE LEARNING

808 A core bottleneck for cross-modal hashing is that training is easily dominated by uninformative
 809 easy samples, causing slow convergence and weak decision boundaries in Hamming space Qin et al.

(2022); Meng et al. (2021). Informative learning tackles this by prioritizing supervision that carries higher training value, either by mining difficult instances from existing data or by generating challenging instances to enrich supervision. From this perspective, The past works can be summarized as the pursuit of more informative learning and divided into two major threads, mining-based and augmentation-based.

816 A.2.1 MINING-BASED LEARNING

817 At the earliest, facenet recognized the importance of mining and proposed semi-hard sampling to
 818 select informative examples for the triplet loss Schroff et al. (2015). Subsequently, various sampling
 819 modalities oriented to specific regions have blossomed. Easy positive mining approach holds that
 820 the query sample only needs to be close to the simple examples among its positive samples rather
 821 than whole positives Xuan et al. (2020b). This relaxed information filtering mechanism leads to
 822 better generalization. Hard negative mining is a major focus of mining, which aims to select dif-
 823 ficult negatives that are highly similar to positives Bucher et al. (2016); Simo-Serra et al. (2015);
 824 Suh et al. (2019); Xuan et al. (2020a). Learning this information in a targeted manner during train-
 825 ing can enhance the model’s ability to distinguish between positive and negative examples. Hard
 826 example mining goes one step further by selecting both difficult negative examples and positive
 827 examples (i.e., positive examples with low similarity). A high degree of information acquisition
 828 allows the model to draw a clear line between positives and negatives Rao et al. (2024); Shrivastava
 829 et al. (2016); Smirnov et al. (2018). Distance Weighted Sampling (DWS) point out that the mining
 830 method is limited by the narrow area selected, and the reduction of the selected sample size affects
 831 the amount of information obtained. Extensive sampling can not only lead to an improvement in
 832 the amount of information, but also achieve better generalization by learning different distance rela-
 833 tionships, brings the same or even higher performance impact as the loss function Wu et al. (2017).
 834 Back to the cross-modal domain, Triplet-based Deep Hashing (TDH) introduces the Triplet with
 835 hard mining into hashing, so as to improve the discrimination of cross-modal similarity ranking
 836 Deng et al. (2018). Hard-Negative Selection Strategy (HNSS) using the improved marginal ranking
 837 loss to examined a new strategy for hard-negative mining in cross-modal retrieval Galanopoulos
 838 & Mezaris (2021). This also pointed out that mining methods are limited by batch size even train
 839 dataset size and lack enough imformation. This leads to overfitting or sub-optimization in the end.
 In this scenario, a series of methods designed to provide additional information have emerged.

841 A.2.2 AUGMENTATION-BASED LEARNING

842 **Generator-based** The most common generation method is the Generative Adversarial Network
 843 (GAN). After its popularity, many methods have also attempted to utilize GAN to enhance hash
 844 learning Qian et al. (2023). While emphasizing self-supervision, Self-Supervised Adversarial Hash-
 845 ing (SSAH) uses adversarial network mechanisms to enforce cross-modal consistency Li et al.
 846 (2018a). HashGAN introduce the generative attention mask and adversarial sample generation,
 847 improves the discriminative ability of hash representation by generating a network to interfere with
 848 the discriminator Cao et al. (2018b).

849 **Memory-based** A range of methods use memoization module like memory bank or backup queue
 850 to get around the batch size limit to get more information. The embeddings of previous iterations are
 851 maintained by Cross Batch Memory and considered to be still informative in the current batch Wang
 852 et al. (2020b). Fast Partial-Modal Online Cross-Modal Hashing (FPO-CMH) facilitates efficient
 853 online cross-modal hash learning by using a multimodal dual-tier anchor bank Li et al. (2025a).

854 **Interpolation-based** Mixup proposes a linear interpolation method of input and label to generate
 855 virtual samples Zhang et al. (2017). This approach has been widely used to improve generalization
 856 and adversarial robustness. DAS reiterates the “miss embedding” problem for the mining and in-
 857 terpolates all real embeddings as anchors to generate positive and negative pseudo-embeddings Liu
 858 et al. (2022).

859 **Hard Negative Generation** To targeted acquisition negative samples with a larger amount of infor-
 860 mation, the hard negative generation (HNG) can be regarded as a special direction. Deep adversarial
 861 metric learning (DAML) synthesizes simple negatives into hard negatives through adversarial train-
 862 ingDuan et al. (2018). Hardness-aware Deep Metric Learning (HDML) performs hardness-aware
 863 interpolation between anchor-negative pairs and then uses an autoencoder to generate correspond-

864 ing features Zheng et al. (2019). A two-stage synthesis framework is introduced to generate hard
 865 positives and hard negatives at the same time Zhao et al. (2018). Most of these methods obtain sam-
 866 ple relationships through interpolation and features through generator. However, due to the inherent
 867 shortcomings of interpolation methods, difficult sample generation is rarely applied to cross-modal
 868 hashing, as the synthesized difficult negative samples also lack spatial feature perception, which is
 869 useless or even interferes with cross-modal semantic alignment.

870 Motivated by these limitations, we propose a novel method for generating difficult samples that can
 871 be applied to cross-modal hashing, which can assist in cross-modal semantic alignment by obtain
 872 spatial feature perception.

874 B THEORETICAL INTERPRETATION OF RGP PROPAGATION

876 The behavior of RGP propagation can be understood by comparing its update rule with the classical
 877 graph smoothing models. Standard GNN propagation is often approximated by a Laplacian operator
 878 of the form:

$$880 \quad 881 \quad H^{(l+1)} = \alpha H^{(l)} + (1 - \alpha) D^{-1/2} A D^{-1/2} H^{(l)} \quad (17)$$

882 which has been formally shown to act as a low-pass filter on graph signals and to cause feature
 883 convergence across connected nodes as depth increases. This phenomenon has been documented in
 884 several analyses of message-passing networks, including studies of over-smoothing where node em-
 885 beddings tend to collapse into indistinguishable representations when eigenvalues of the propagation
 886 operator suppress high-frequency components. Representative discussions include the analyses of
 887 Oono & Suzuki (2019) and Li et al. (2018b), which indicate that repeated Laplacian-style propaga-
 888 tion inevitably produces smoothing behavior.

889 The update rule of RGP differs from this model. Let A_p denote the semantic positive graph and A_n
 890 denote the synthesized negative graph constructed during training. RGP applies masked attention in
 891 which each anchor attends only to nodes identified by A_n , while entries in A_p are suppressed. The
 892 propagation can be written as

$$894 \quad 895 \quad H^{(l+1)} = H^{(l)} + \eta \text{softmax}(M_n H^{(l)} W) H^{(l)} \quad (18)$$

896 where M_n is a masking operator that selects negative nodes and η is a small scale factor. Because
 897 M_n excludes positive edges entirely, the operator does not approximate a Laplacian. The update
 898 term contains no averaging over semantic neighbors. Instead, it introduces a structured repulsive
 899 transformation that pushes representations away along directions defined by synthesized hard nega-
 900 tives. This behavior is closer to contrastive propagation than to classical smoothing. Unlike Lapla-
 901 cian filters that attenuate high-frequency components, the negative-aware update amplifies structural
 902 distinctions in the feature space because the gradient of the attention logits depends on differences
 903 between the anchor and its negative set.

904 A direct consequence is that the eigenstructure governing the propagation is not dominated by the
 905 low-frequency bases of the graph Laplacian. The update matrix produced by masked attention
 906 is asymmetric and does not share the spectrum of $D^{-1/2} A D^{-1/2}$. Prior analyses of attention-
 907 based propagation observe that attention operators do not behave as low-pass filters Verma & Zhang
 908 (2019). In the case of RGP, the combination of masked attention and synthesized negatives produces
 909 a directional transformation that retains discriminative structure even after multiple layers. This the-
 910 oretical form explains why RGP avoids the collapse and homogeneity commonly associated with
 911 Laplacian-based architectures.

913 C EXPERIMENTS SETTINGS

914 C.1 IMPLEMENTATION DETAILS

917 Based on RTX A6000 Ada GPUs, we adopt the open-source PyTorch framework to implement our
 918 proposed DGHDGH algorithm and other methods Paszke et al. (2019). The PyTorch version is

918 2.3.0. They are all performed in a unified experimental setting. The pre-training parameters of
 919 the Transformer encoders in feature extraction are reference in CLIP ViT-B/32 from Radford et al.
 920 (2021) applied on all methods, which have 12 Transformer blocks, and 8 heads for each attention
 921 module in blocks. For baselines, we follow their official implementations where available, or adopt
 922 hyper-parameters from the original papers.

923 For parameter optimization, We use Adam as the optimizer, where the learning rate are 1e-4 for
 924 feature extraction with hash layers, and 1e-5 for graph transformer. The weight decay is 0.2 and
 925 the batch size is set to 128. Besides, for image preprocessing, we resize to 224×224 , center crop,
 926 and normalize with CLIP’s default statistics. Texts are tokenized using the CLIP tokenizer with a
 927 maximum length of 77. We evaluate hash codes of 16, 32, 64, and 128 bits.

929 C.2 EVALUATION METRICS

931 In this work, we use mean Average Precision (mAP) that comprehensive retrieval evaluation, and
 932 fisher ratio and Precision within Hamming Radius ≤ 2 ($P@H \leq 2$) to evaluate the discrimination
 933 of models. Moreover, we introduce Normalized Discounted Cumulative Gain (NDCG), Precision-
 934 Recall Curve (PR), and Top-K Precision Curve (P@K) in the appendix to further validate the re-
 935 trieval performance of the model.

936 C.2.1 MEAN AVERAGE PRECISION

938 We primarily use mAP as a performance metric, which calculates the average precision of each
 939 sample in the query set retrieved from the database set and then averages it again. The mAP is the
 940 average precision under different recall thresholds, and it is a comprehensive retrieval evaluation
 941 including recall and precision. The formula is shown as:

$$943 \quad mAP@K = \frac{1}{n} \sum_{i=1}^n AP_i@K, \quad \text{where } AP_i@K = \frac{1}{K} \sum_{j=1}^k \frac{r_j}{j} \times l_{ij}. \quad (19)$$

947 When i, j belong to the same category, $l_{ij} = 1$, otherwise $l_{ij} = 0$. r_j represents the number of
 948 relevant samples in top- j in the ranking list. n is the number of query samples. In this paper, we
 949 choose $k = \text{all}$ i.e. the number of database samples. Among them, mAP I2T uses image modality
 950 for query and text modality for database, T2I is similar.

951 C.2.2 PRECISION WITHIN HAMMING RADIUS ≤ 2

953 To directly measure retrieval quality in Hamming space, we also compute Precision within Hamming
 954 radius ≤ 2 ($P@H \leq 2$) Liu et al. (2012). For a given query, this metric counts the proportion of
 955 relevant items among all retrieved samples whose Hamming distance to the query is less than or
 956 equal to 2. As shown in formula:

$$958 \quad P@H \leq 2 = \frac{\text{Number of relevant retrieved items within } H \leq 2}{\text{Total Number of retrieved items within } H \leq 2} \quad (20)$$

961 This metric reflects the local discriminative capability of hash codes in a compact neighborhood.
 962 A higher $P@H \leq 2$ means that the retrieved neighbors are more semantically consistent with
 963 the query. This reflect how effectively the learned hash codes preserve semantic neighborhood
 964 structures, and a higher PH2 indicates stronger local discrimination within the Hamming space.

965 C.2.3 FISHER RATIO

967 Finally, to quantitatively assess the discriminability of hash codes, we compute the Fisher ratio,
 968 which compares the separability of positive and negative pairs in Hamming space. Specifically:

$$971 \quad Fisher = \frac{\mu_{neg} - \mu_{pos}}{\sigma'}, \quad \text{where } \sigma' = \sqrt{\frac{\sigma_{pos}^2 + \sigma_{neg}^2}{2}}. \quad (21)$$

972 where μ_{neg} and μ_{pos} denote the mean Hamming distances of negative and positive pairs, and σ' is
 973 the pooled standard deviation by the std σ_{neg} and σ_{pos} .
 974

975 In practice, we compute Fisher ratios by randomly sampling 50, 100, 200, and 400 pairs of positive
 976 and negative examples, from the hash codes of database set after training while anchors are from
 977 query set. We repeating each sampling 5 times, and reporting the averaged results with standard
 978 deviations. This statistic quantifies the margin between positive and negative relations, and a larger
 979 Fisher ratio demonstrates improved global separability and stronger discriminative structure in the
 980 Hamming space.
 981

981 C.2.4 NORMALIZED DISCOUNTED CUMULATIVE GAIN (NDCG)

983 To further evaluate ranking quality in cross-modal retrieval, we report the Normalized Discounted
 984 Cumulative Gain (NDCG), which measures how well a retrieval method ranks relevant items near
 985 the top of the list. For a given query, the Discounted Cumulative Gain (DCG) at rank K is defined
 986 as
 987

$$988 DCG@K = \sum_{j=1}^K \frac{rel_j}{\log_2(j+1)}, \quad (22)$$

991 where rel_j is the relevance score of the item at rank j . The ideal DCG (IDCG) is obtained by sorting
 992 relevant items in the optimal order. The normalized form is
 993

$$994 NDCG@K = \frac{DCG@K}{IDCG@K}. \quad (23)$$

997 NDCG emphasizes the importance of ranking correct items earlier in the retrieval list. A higher
 998 NDCG indicates that the model places semantically relevant samples closer to the top positions,
 999 reflecting high-quality retrieval ordering beyond binary relevance. In this work, we choice $k = 1000$
 1000 i.e. NDCG@1000.
 1001

1002 C.2.5 PRECISION–RECALL CURVE

1003 We also use the Precision–Recall (PR) curve to visualize the trade-off between precision and recall
 1004 across different similarity thresholds in the Hamming space. For each threshold, the retrieved set
 1005 is determined by selecting items whose Hamming distance to the query is below the threshold.
 1006 Precision and recall are computed as
 1007

$$1008 Precision = \frac{TP}{TP+FP}, \quad Recall = \frac{TP}{TP+FN}, \quad (24)$$

1011 where TP , FP , and FN are the number of true positives, false positives, and false negatives. PR
 1012 curves provide a continuous view of retrieval behavior under varying cutoff distances, allowing
 1013 us to assess how a model handles both strict and loose retrieval requirements. A curve that stays
 1014 consistently high indicates stable performance across a wide range of thresholds.
 1015

1016 C.2.6 TOP- K PRECISION CURVE

1017 To measure performance at different retrieval depths, we compute the Top- K Precision curve. For
 1018 each query, the precision at rank K is defined as
 1019

$$1020 P@K = \frac{1}{K} \sum_{j=1}^K l_{ij}, \quad (25)$$

1024 where $l_{ij} = 1$ if the j -th retrieved item is relevant and 0 otherwise. By sweeping K from small
 1025 to large values, the Top- K precision curve shows how the method behaves when retrieving only
 a few nearest neighbors or when retrieving deeper lists. This metric reflects the stability of the

semantic preservation across different retrieval lengths. Higher curves imply that the learned hash codes remain discriminative regardless of the retrieval depth.

D ADDITIONAL EXPERIMENTS

D.1 COMPARISON WITH CLASSICAL METHODS ON THE STANDARDIZED BACKBONE

To further validate the effectiveness of our approach, we adapted the CLIP ViT-B/32 as the standardized feature extractor for classical methods published prior to CLIP, which did not utilize Transformer architectures in their network, namely Deep Cross-Modal Hashing (DCMH) Jiang & Li (2017), Cross-Modal Hamming Hashing (CMHH) Cao et al. (2018a), Adversary Guided Asymmetric Hashing (AGAH) Gu et al. (2019), Deep Adversarial Discrete Hashing (DADH) Bai et al. (2020), Self-constraining attention hashing network (SCAhn) Wang et al. (2020a), and add '-T' to indicate backbone replacement. As shown in Tab. 5, Our method continues to deliver superior performance under this standardized evaluation, demonstrating that its effectiveness is not tied to specific feature extraction techniques but rather stems from the overall learning framework and its design innovations.

Table 5: mAP@all results(%) of DGHDGH with classic methods on the three benchmark datasets w.r.t. four hash bits.

Task	Reference	Method	MIRFLICKR-25K				NUS-WIDE				MS COCO			
			16	32	64	128	16	32	64	128	16	32	64	128
Image	CVPR'17	DCMH	76.87	77.36	77.97	78.81	53.79	55.13	56.17	57.03	53.99	54.44	56.27	56.59
		<i>DCMH-T</i>	<u>82.78</u>	84.23	84.01	85.17	63.97	66.78	68.59	68.64	62.74	64.99	67.20	67.59
	ECCV'18	CMHH	69.32	69.79	69.84	70.23	54.39	55.46	55.2	52.91	51.45	45.09	52.09	50.21
		<i>CMHH-T</i>	81.11	82.04	82.52	83.08	67.41	<u>68.88</u>	<u>69.28</u>	69.71	54.90	59.46	64.30	65.49
Text	ICMR'19	AGAH	72.48	72.17	71.95	72.82	39.45	41.07	42.58	43.58	55.01	55.15	55.18	55.54
		<i>AGAH-T</i>	80.79	81.22	81.98	83.49	59.81	64.69	66.44	67.56	61.45	64.16	65.94	66.55
	ICMR'20	DADH	80.98	81.62	81.93	82.17	63.5	65.68	65.46	66.61	<u>59.52</u>	61.18	62.37	63.24
		<i>DADH-T</i>	82.30	83.23	84.58	84.03	66.54	67.98	68.71	<u>70.58</u>	63.39	66.51	68.76	69.27
Neuco'20	SCAhn	79.55	82.48	82.97	82.88	64.63	66.16	66.45	65.49	63.76	64.75	65.19	61.49	
	<i>SCAhn-T</i>	82.13	<u>84.32</u>	<u>84.87</u>	<u>85.31</u>	<u>68.29</u>	68.01	69.13	70.23	<u>67.72</u>	<u>68.09</u>	<u>70.12</u>	69.88	
	Ours	DGHDGH	84.66	86.19	87.13	87.75	69.72	71.68	72.60	73.76	72.06	74.71	77.13	79.19
	CVPR'17	DCMH	78.57	79.98	80.29	80.83	57.47	58.1	58.53	59.04	52.71	54.24	54.5	55.26
Text	ECCV'18	DCMH	80.88	82.01	<u>83.11</u>	84.09	64.24	66.33	69.17	69.74	62.98	65.53	67.00	67.92
		<i>CMHH-T</i>	78.33	79.51	80.16	81.75	68.53	<u>69.67</u>	70.04	70.46	55.33	58.17	64.81	65.52
	ICMR'19	AGAH	70.82	71.82	73.44	74.38	43.44	39.8	43.82	44.05	50.12	51.46	51.91	51.36
		<i>AGAH-T</i>	79.52	80.10	82.12	82.61	60.10	65.18	67.43	68.17	60.91	64.38	64.49	65.91
Image	ICMR'20	DADH	80.19	81.01	81.37	81.35	61.11	61.82	62.18	63.26	56.49	57.9	58.7	60.37
		<i>DADH-T</i>	<u>81.42</u>	82.32	83.20	82.65	68.06	68.82	69.18	<u>70.54</u>	61.88	66.50	68.37	68.84
	Neuco'20	SCAhn	78.26	80.66	80.64	80.66	65.87	66.26	66.48	66.09	63.77	65.12	64.93	61.45
		<i>SCAhn-T</i>	81.26	<u>82.38</u>	82.55	83.06	<u>68.97</u>	69.14	<u>70.18</u>	70.49	<u>67.36</u>	<u>68.52</u>	<u>69.57</u>	<u>70.05</u>
	Ours	DGHDGH	83.03	84.21	85.09	85.74	70.75	72.64	73.75	74.64	71.16	74.69	77.41	79.59

The best and second-best performances are highlighted in boldface and underlined. *Neuco* denotes *Neurocomputing*.

D.2 COMPARISON WITH BASELINE ON MORE METRICS

To comprehensively evaluate retrieval performance, we also present comparisons of NDCG, PR curves, and P@K curves, as shown in Tab. 6, Fig. 10, and Fig. 11 respectively. Experiments show that, except for some cases, DGHDGH still maintains a broad lead in these indicators. This indicates that our method clearly has better retrieval performance.

D.3 HYPER-PARAMETER ANALYSIS

After the Ablation study of three loss coefficient terms γ_{is} , γ_{sp} and γ_{cd} , we further explore the influence of different values of them on retrieval performance, as shown in Fig. 12. As γ_{is} a similarity constraint, the gradient is naturally the largest, so the choice of the anchor scale is a natural choice to ensure the stability of the optimization. We set γ_{is} to 1 and adjust the other two items from 0.1 to 10. We applied the parameter configuration at the best performance to the experiments while $\gamma_{sp} = 1$ and $\gamma_{cd} = 0.2$.

1080 Table 6: NDCG@1000 results(%) of DGHDGH with baselines on three benchmark datasets w.r.t. four hash bits.
1081

1082 Task	1083 Method	1084 MIRFLICKR-25K				1085 NUS-WIDE				1086 MS COCO			
		1087 <i>16</i>	1088 <i>32</i>	1089 <i>64</i>	1090 <i>128</i>	1091 <i>16</i>	1092 <i>32</i>	1093 <i>64</i>	1094 <i>128</i>	1095 <i>16</i>	1096 <i>32</i>	1097 <i>64</i>	1098 <i>128</i>
1084 Image	DNPH	50.22	52.66	<u>54.30</u>	<u>55.07</u>	50.86	53.37	55.26	55.78	33.88	40.06	41.07	42.19
	DHaPH	46.29	48.62	48.16	48.29	51.23	46.24	54.03	55.20	39.19	41.37	41.40	42.42
	BiLGSEH	47.71	50.21	51.13	51.05	54.07	54.75	56.92	<u>57.66</u>	46.50	50.22	50.83	50.43
	DECH	40.89	49.34	49.46	49.29	46.40	54.05	53.23	56.32	19.89	24.92	30.58	32.41
	DPBE	41.56	46.72	49.67	50.99	44.29	45.25	47.66	47.08	<u>41.96</u>	44.62	49.81	52.10
	DBDB	<u>51.25</u>	<u>52.72</u>	52.42	52.57	52.88	<u>54.89</u>	<u>56.56</u>	56.09	38.48	<u>42.56</u>	46.04	47.78
1085 Text	DGHDGH	53.26	55.19	56.11	57.38	51.68	55.95	58.59	60.94	37.31	42.52	51.10	54.72
	DNPH	42.30	45.17	46.15	47.06	49.74	50.67	52.87	52.77	33.32	40.04	41.26	42.81
	DHaPH	45.07	41.32	42.12	43.45	46.63	44.16	48.42	49.15	40.49	40.86	43.62	43.32
	BiLGSEH	45.53	47.09	48.18	48.60	53.24	54.06	55.07	55.93	46.43	50.46	51.59	51.06
	DECH	38.69	41.53	42.86	42.84	47.58	54.82	53.23	53.46	20.52	25.86	30.62	32.10
	DPBE	34.16	39.05	41.52	42.46	41.06	43.59	44.88	44.60	33.83	47.20	49.89	<u>52.45</u>
1086 Image	DBDB	42.63	43.50	44.10	44.56	50.98	51.52	52.93	54.46	38.79	40.99	44.56	46.48
	DGHDGH	46.40	47.52	49.46	51.16	51.42	53.35	56.11	57.12	36.71	46.59	52.90	56.14

1089 The best and second-best performances are highlighted in boldface and underlined.
10901091 Figure 10: Results of Precision-Recall curves on three benchmark datasets w.r.t. 16 and 32 bits.
10921093 Figure 11: Results of Top-K Precision curves on three benchmark datasets w.r.t. 16 and 32 bits.
10941095 Figure 12: Hyper-parameter analysis on MIRFLICKR-25K w.r.t. 16 and 32 bits.
1096

1134
1135

D.4 BACKBONE GENERALIZATION

1136
1137
1138
1139
1140
1141
1142
1143

To judge the generalization across different backbones, we further investigate several CLIP architecture with its variant BLIP and SigLIP2 Li et al. (2022); Tschannen et al. (2025). As summarized in Tab. 7, we report the **I2T** and **T2I** mAP (%) on MIRFLICKR-25K 16 bits, along with other metrics: the number of **Parameters** in each backbone (in *Million*), total **Training Time** for 100 epochs training (in *Hour*), **Encoding Time** for the query dataset encoding (in *Millisecond*), and the **Converge Epoch** indicating the best performance within 100 epochs. These results collectively demonstrate the strong generalization capability of our proposed DGHDGH method across diverse backbone architectures.

1144
1145

Table 7: Various metrics of DGHDGH with different backbones on the MIRFLICKR-25K dataset w.r.t. 16 bits.

Metric	CLIP			BLIP		SigLIP2		
	<i>ViT-B/32</i>	<i>ViT-L/14</i>	<i>Res50/16</i>	<i>I-C-Base</i>	<i>I-C-Large</i>	<i>Base-16/224</i>	<i>Base-32/256</i>	<i>Large-16/256</i>
Parameters	151.3	427.6	291.0	224.7	447.2	375.2	376.9	881.5
Image→Text	84.66	84.82	83.22	82.96	83.83	82.54	84.82	84.50
Text→Image	83.03	83.25	82.62	83.01	81.20	80.95	83.25	84.04
Training Time	1.206	4.652	5.312	5.945	13.28	1.753	2.018	5.374
Encoding Time	27.05	37.98	32.41	72.57	126.8	34.46	31.05	47.39
Converge Epoch	44	56	61	78	69	83	72	75

1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187