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ABSTRACT

Hard negative generation (HNG) provides valuable signals for deep learning, but
existing methods mostly rely on local correlations while neglecting the global
geometry of the embedding space. This limitation often leads to weak discrimi-
nation, particularly in cross-modal hashing, which learns compact binary codes.
We propose Deep Global-sense Hard-negative Discriminative Generation Hashing
(DGHDGH), a framework that constructs a structured graph with dual-iterative
message propagation to capture global correlations, and then performs difficulty-
adaptive, channel-wise interpolation to synthesize semantically consistent hard
negatives aligned with global Hamming geometry. Our approach yields more
informative negatives, sharpens semantic boundaries in the Hamming co-space,
and substantially enhances cross-modal retrieval. Experiments on multiple bench-
marks consistently demonstrate improvements in retrieval accuracy, verifying the
discriminative advantages brought by global-sense HNG in cross-modal hashing.
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Figure 1: Traditional generation methods only interpolate based on the correlation between single
anchor-negative pairs, which damages the global distribution relationship of heterogeneous sam-
ples in the embedding co-space. Through the interpolation of hard negative samples with global
awareness of sample correlation, the generated samples are controlled to avoid violating the feature
distribution in the embedding space, which makes the co-space more discriminative.

1 INTRODUCTION

Deep Cross-modal Hashing Retrieval (DCHR) aims to learn deep hash functions that project het-
erogeneous samples into compact hash codes within a shared Hamming embedding space, such
that semantically similar heterogeneous samples are assigned similar codes, and dissimilar ones are
mapped to distinct codes Hu et al.| (2023)); Zhang et al| (2023); [Liu et al.| (2019). This property
transforms cross-modal retrieval into a simple and efficient hash-based search |Luo et al.| (2023)); |L1
et al. (2025b)); |Qin et al.| (2025).

To enhance discriminability, one effective strategy is to provide more informative signals during
training |Rubinstein et al.| (1997)); (Cakir et al.| (2019). Informative learning methods can generally
be categorized into mining-based and generation-based approaches Wu et al.| (2017); [Peng et al.
(2024)). Currently, hard negative mining is the most widely used strategy [Wang et al.| (2025)); [ Xuan
et al.| (2020a). Difficult samples provide stronger adversarial signals, yield larger gradient updates,
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and force the model to learn more discriminative representations Kalantidis et al.| (2020); Xia et al.
(2022). However, mining is constrained by the scarcity of naturally occurring hard samples within
each mini-batch, limiting its effectiveness during training |Zheng et al.|(2019); |[Zhang et al.| (2022);
Vasudeva et al.|(2021). Hard negative generation (HNG) addresses this issue by synthesizing more
challenging samples, typically through linear interpolation of existing negatives, thereby enriching
informative learning Peng et al.|(2024); Yang et al.| (2023).

Despite these advances, most existing works focus solely on local neighborhoods for negative inter-
polation, failing to capture the global geometric structure across diverse classes, an issue particularly
pronounced in the cross-modal co-space. As shown in Fig.[I] traditional interpolation strategies
select distant negative samples and create harder negatives based solely on anchor—negative corre-
lations. For example, when selecting blue text embeddings as negatives for a purple image anchor,
the interpolated sample may mistakenly fall into the red category distribution. This failure arises
because local interpolation ignores the influence of other categories and the overall global distri-
bution. Consequently, generated samples often intrude into non-original semantic regions, thereby
weakening discriminability.

To overcome this issue, we propose learning global sample correlations and explicitly modeling
inter-class relationships during generation, enabling the synthesis of informative negatives with ap-
propriate difficulty that respects the semantic manifold. Specifically, we introduce Deep Global-
sense Hard-negative Discriminative Generation Hashing (DGHDGH), which performs Discrimina-
tive Global-sense Synthesis (DGS) guided by Relevance Global Propagation (RGP). In the RGP, we
construct a structured graph where nodes store embeddings and edges encode pairwise relevance.
Through iterative message propagation, each edge learns global-sense correlations. The DGS then
uses these correlations to perform channel-wise adaptive interpolation, ensuring the generated sam-
ples remain semantically consistent. Unlike traditional methods that apply a single coefficient across
all channels|Ko & Gul(2020);|Venkataramanan et al.|(2022), our approach adapts difficulty per chan-
nel, with an additional self-paced mechanism to regulate generation hardness throughout training.
Moreover, no extra generator network is required, improving adaptability and efficiency.

In summary, the main studies of this paper are listed as shown below.

* Firstly, we propose a novel DGHDGH framework, which is the first attempt, to the best
of our knowledge, to introduce hard negative generation into cross-modal hashing. By
learning global sample relevance and synthesizing hardness-adaptive negative samples,
DGHDGH achieves more discriminative cross-modal retrieval.

» Secondly, we devised the RGP module, which uses graph neural networks to establish
global heterogeneous sample correlation perception in order to determine the appropriate
difficulty of synthetic negatives and enhance the semantic alignment of synthetic samples
in the co-space.

* Thirdly, we designed the DGS module to flexibly generate channel-wise hardness adaptive
negatives based on global relationships, thereby enhancing informative hash learning.

 Finally, extensive experiments on three benchmarks demonstrate that the proposed
DGHDGH learns a discriminative Hamming co-space through informative hash learning
with global-sense HNG, surpasses state-of-the-art methods in retrieval performance, and
can serve as a plug-and-play module to enhance existing cross-modal hashing approaches.

2 RELATED WORKS

Deep Cross-modal Hashing Retrieval (DCHR) has been extensively studied for aligning heteroge-
neous modalities in a shared Hamming space |Chen et al.| (2023); [L1 et al.| (2023). Early works
primarily emphasized supervised semantic alignment, while more recent approaches introduced
hierarchical structures, neighborhood-preserving mechanisms, or uncertainty estimation to enrich
training signals |L1 et al.| (2025c¢); |Qin et al.| (2024); [Huo et al. (2024b)). Despite these advances,
most methods still rely on fixed training pairs and lack mechanisms for generating informative hard
negatives, which constrains their discriminative capability Duan et al.|(2018);|Zheng et al.| (2019).

Existing approaches to informative learning can be broadly divided into two families. Mining-based
methods explicitly select particular forms of samples to maximize the extracted information, such as
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Figure 2: The schematic of our proposed DGHDGH framework. (1) We employ a dual transformer
architecture with hash layers to extract hash codes from heterogeneous data synchronously. (2)
RGP represents codes of the entire batch by a graph and introduces an iterative graph message
propagation mechanism via another dual transformer that updates nodes and edges alternately. (3)
DGS uses the learned global relevance to produce interpolation vectors for each anchor-negative
pair to get a harder version with discrimination.

Distance Weighted Sampling (DWS)|Wu et al.[(2017). Augmentation-based methods instead create
additional supervision signals, including generator-based approaches such as GANSs, interpolation-
based strategies like Dense Anchor Sampling (DAS), and memory-based mechanisms like Cross
Batch Memory (XBM) Cao et al.|(2018b)); Liu et al.|(2022)); Wang et al.| (2020b).

While hard negatives play a crucial role in improving model discrimination, the effectiveness of hard
negative mining is often limited by the number of available samples Bucher et al.[{(2016); Xuan et al.
(2020a). Hard negative generation (HNG) has therefore emerged as a promising alternative. Most
existing methods obtain relationships through interpolation or generate features via a separate gen-
erator, but they generally focus only on local correlations, which can distort semantic consistency.
For example, Hardness-adaptive Deep Metric Learning (HDML) Zheng et al.| (2019) synthesizes
samples based on local neighborhoods, yet fails to align the generated negatives with the global
geometry of the embedding space Peng et al.|(2024). To address this limitation, we propose a novel
HNG framework tailored for cross-modal hashing. Our method leverages global feature perception
to generate hardness-adaptive negatives that better preserve semantic alignment across modalities,
thereby enhancing discriminative retrieval. An extended discussion is provided in Appendix [A]

3 METHODOLOGY

3.1 FEATURE EXTRACTION

A schematic of the proposed DGHDGH framework is shown in Fig.[2| Let 27 and 27 denote image
and text modality samples from a multi-modal dataset D = atzz ,274,1;"i = 1. Semantic features
h* and A7 of length K are obtained through the hash functions 7 and F7. Here, I; € 0,1V*¢
is the common multi-hot label vector for the i-th heterogeneous pair (zZ, ] ), where IV denotes the
number of samples and C' the number of categories. To generate hash codes, we adopt Transformer-
based feature extraction by employing dual Transformers for the image and text modalities. Each
Transformer contains N7 blocks followed by a hash layer. A block consists of a Multi-head Self-
Attention (MSA) module with M; heads and a Multi-Layer Perceptron (MLP), separated by Layer
Normalization (LN) and equipped with residual connections. The hash layer consists of an MLP
followed by a tanh activation. Since binary optimization is a prototypical NP-hard problem, the
tanh function is used as a continuous relaxation strategy to learn binary-like codes during training.

h* = tanh(MLP(zN*)) € (=1, 1)V*E « e {Z,T} (1
During testing, the sign function is leveraged to obtain binary codes:
h* = sign(h*) € {1, 1}N*E « € {Z,T} )
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In the following sections, we omit the superscripts Z, 7, when the modality distinction is not critical.
where 21 denotes the features learned by the N;-th block. For the features z* learned in the k-th
block, the update rule is:

A = LN(MLP(2}) + 2),  where 2/ = LN(MSA(="); + 2F). 3)

Through this process, semantic-preserving hash codes can be effectively learned. However, the
resulting codes still suffer from insufficient discriminability. To address this, we introduce a global-
sense hard negative generation method to enhance training informativeness, consisting of two mod-
ules: Relevance Global Propagation (RGP) and Discriminative Global-sense Synthesis (DGS).

3.2 RELEVANCE GLOBAL PROPAGATION

To effectively generate information-rich hard negatives, it is crucial to determine both their appro-
priate difficulty level and spatial distribution. Thus, when selecting interpolation points for each
anchor—negative pair, their similarity should be evaluated relative to all other samples in the global
batch context. To this end, we construct a structured graph to capture sample associations across the
entire batch and employ a graph network to learn global correlations.

Initially, we assign the batch features  into the structured graph G = (V, E) as nodes VEk=0=

h;. Edges F represent pairwise correlations, initialized as Fij" lk=0 = h; ® h;. We maintain three
graphs in parallel: image, text, and cross-modal. The first two take samples from their respective
modalities, while the cross-modal graph contains all heterogeneous samples. We then introduce a
graph transformer (GT') with N3 blocks and M5 heads for each block, to learn sample relationships
globally via iterative message propagation. The three graphs share parameters and are jointly up-
dated in GT', which helps narrow the cross-modal semantic gap and improves robustness. Message
propagation adopts a dual-transformer architecture that updates nodes and edges separately. Unlike
the synchronous feedforward dual Transformer in feature extraction, the node and edge Transform-
ers here perform asynchronous alternating updates—first propagating node messages, then edge
messages. This ordered procedure ensures that node information continuously informs subsequent
edge updates, thereby improving the model’s ability to capture and exploit global sample correla-
tions.

For the node Transformer, we design a Masked Multi-head Self-Attention (MMSA) mechanism with
a positive mask, which ensures that each node (treated as an anchor) interacts only with its negative
samples. In MMSA, each node is treated as a query, and all corresponding negative samples are
treated as keys and values. To prevent disproportionately high attention weights from weakening
discrimination among subtle negative differences, positive samples are masked—especially hetero-
geneous identical samples in the cross-modal scenario. We further introduce edge-to-node interac-
tions after MMSA, incorporating neighboring edge information into nodes to enrich representations
and strengthen global context understanding. The main formula of the k-th node transformer block
is shown as follows:
B
VI = LN(MLP(V)) + V/),  where V! = LN(MMSA(V ) + > B + V). @)
j=1

For the edge Transformer, we introduce node-to-edge interactions via a Cross-Attention (CA) mech-
anism. Here, edge representations act as queries, while node representations serve as keys and
values, allowing edges to integrate information from neighboring nodes. This allows edges to cap-
ture the relevance of their critical points from a global perspective and further adjust their attention
trends, thereby enabling edges to adaptively balance the difficulty of synthesizing anchor-negative
pairs. The formula of the k-th edge transformer block is shown as follows:

EET = LN (MLP(E;j) + E;j), where E/; = LN (CA(Efj, Vi vk E’;) )
After ny iterations of message propagation, i.e., ne dual-transformer blocks, the edge information
is expected to encode sufficient global correlations to enrich the information content of synthetic
negatives.

A more formal discussion of the propagation behavior of RGP, including how it differs from classical
smoothing-based graph operators, is provided in Appendix
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3.3 DISCRIMINATIVE GLOBAL-SENSE SYNTHESIS

Based on the learned global sample relevance, we dynamically interpolate and fuse anchor—negative
representations with channel-wise adaptivity, producing more informative negatives that enhance
training and strengthen the discrimination of the embedding space. Initially, use the edges E2 of
each anchor-negative pair to obtain the corresponding interpolation vector A, :

Aan = S’LngZd(FC(Egé)) (6)

where FC denotes a Fully Connected layer used for transformation, and the Sigmoid function per-
forms normalization. Thus, A, can provide adaptive weights for channel-level embedding fusion
in the corresponding anchor-negative pairs.

Unlike traditional interpolation methods that apply a single coefficient, we gradually increase train-
ing difficulty as the model converges. Therefore, we define the interpolation formula as follows:

. 1 —0)ha +nhy, if dop < dan,
Fan = { f% ” ! z)therpwise where ) = (dap + AanT(dan — dap)) [dan (D)
mny .

where 7 is introduced as a dynamic scaling factor for adjusting interpolation points, gradually in-
1

creasing the difficulty of synthesizing negative samples during model training. We set 7 = ¢~ favg
where [,,4 is measured by the average loss from the previous epoch, reflecting the model’s cur-
rent learning performance. As the model gradually fits, l,,, decreases, and 7 gradually tightens
the upper bound of the interpolation interval, increasing the difficulty of synthetic negative samples.
Aan 18 responsible for generating appropriate deterministic values within the interpolation interval
to achieve informative interpolation based on global propagation of correlations.

3.4 GENERATION OPTIMIZATION

To optimize the generation of difficult samples, we design multiple loss functions that guide the
model toward the desired objectives from different perspectives. We expect the generated samples
to have a higher similarity (difficulty) with the anchors while maintaining the original semantics, so
we designed two losses: Semantic Preservation loss £, and Interpolation Similarity loss £;,. To
calculate the semantic preservation loss, we add an extra classification layer to the model. This layer
is trained only on real samples and then used to classify synthetic samples, without backpropagating
gradients from the synthetic inputs. The calculation formula of L, is as follows:

Lp(h.,

an

) = CE(CL(h),,), 1) (8)

where CL denotes the classification layer, which is essentially an FC layer. CE is the cross —
entropy function, and [,, is the original negative sample category.

For the £;5, we directly use cosine similarity function to calculate:

~ ~ ~/ 7
Lis(Rly ) =1 — —an O ©)
[l [[Rall

To encourage diversity among synthetic negatives, the interpolation coefficients A should vary across
pairs. Thus, for each anchor a, the standard deviation of all associated coefficients A\,_ defines the
Coefficient Diversity loss £4:

Lea(Aam) =1 —0(Ago) (10)
where o represents the standard deviation function (std).

The overall Generation Optimization loss L, is defined as:
‘Cgo = ’Yislis + ’Ysplsp + chlcd (11)

where 7;,, Vsp, and ;4 are used to adjust the weights of the loss items. Through a comprehensive as-
sessment of three aspects, we enhance the model’s ability to generate informative negative samples,
thereby enabling more discriminative hash learning.
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3.5 HASH LEARNING

After obtaining diverse synthetic samples, we focus on strengthening discriminative hash learning
while maintaining robustness. Since we designed a classification layer in the generation optimization
section to evaluate the semantic consistency of synthetic samples, we need to add this layer after the
hash layers and train it using the corresponding loss:

Loy = CE(CLy(hy), i) (12)

At the same time, in order to maintain semantic consistency in the graph neural network, we also
pass the node representations after graph message propagation through a classification layer, so that
the nodes continue to maintain their semantics while learning global information:

Lspz = CE(CLo(V"),1;) (13)

Note that these two classification layers differ from the modality-specific hash layers; instead, they
share parameters across modalities, similar to G7', to enhance robustness. This is because we aim
for the feature codes obtained from the hash layers to already eliminate modality differences, thereby
allowing them to be directly applied during testing.

We adopt the standard triplet loss for hash learning, incorporating both real and synthetic hard
negatives to verify the effectiveness. We first compute the triplet loss using real samples only:

Ereal = Etri(ﬁI7 iLI) + ‘Ctri(iLIa BT) + £lri(iLT7 iLI) + Clri(iﬂ—a BT) (14)

where Ly represents the triplet loss function. We then introduce the synthetic hard negative samples
generated by our DGS module to further strengthen the learning process. The enhanced triplet loss
with synthetic negatives is defined as:

Lo = Lai (B, W) + Lo (BT, WET) + Lo (BT, BT + Lo (BT, BTE) (15)

where hZ', hZT' h7Z' 1T’ represent the synthetic hard negative samples generated for the respec-

tive modality pairs, which are interpolated by Eq.[7} Among them, RET! represents the synthetic
samples with Z as the anchors and 7 as the negatives.

The overall hash learning loss £;; combines the real and synthetic triplet losses:

Ly = £real + ’Ysyn‘csyn (]6)

where gy is set to 1 — eZse. As GT converges, it progressively increases the proportion of hard
negatives to strengthen metric learning.

The overall training procedure alternates between L4, and Ly, ensuring that both sample genera-
tion and hash code learning are jointly improved throughout the training process. This coordinated
optimization strategy enables our model to learn highly discriminative hash codes that effectively
preserve semantic similarities across modalities.

4 EXPERIMENTS

4.1 BENCHMARK DATASETS & BASELINE METHODS

MIRFLICKR-25K contains 24,581 image-text pairs across 24 semantic categories from the Flickr
website Huiskes & Lew| (2008). NUS-WIDE was constructed by the National University of Sin-
gapore, contains 195,834 pairs, 21 classes |Chua et al.| (2009). MS COCO created by Microsoft,
contains 122218 sample pairs from 80 categories |[Lin et al.[{(2014). In our experiments, those three
datasets are split identically by randomly selecting 10,000 image-text pairs as the training set. Af-
terwards, 5000 pairs are chosen randomly as the query set and the remaining as the database.

To demonstrate the performance of our method comprehensively, we have chosen several typical
deep cross-modal hashing methods to compare with our proposed DGHDGH framework, which
include Two-step discrete hashing (TwDH)Tu et al.[(2024), Deep Neighborhood-aware Proxy Hash-
ing (DNPH)Huo et al.| (2024a), Deep Neighborhood-preserving Hashing (DNpH)Qin et al.| (2024),
Deep Hierarchy-aware Proxy Hashing (DHaPH)Huo et al.| (2024b)), Bi-Direction Label-Guided Se-
mantic Enhancement Hashing (BiLGSEH)Zhu et al.| (2025)), Deep Evidential Hashing (DECH) |L1
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Table 1: mAP@all results(%) of DGHDGH and baseline methods on three benchmark datasets w.r.t. four hash bits .

MIRFLICKR-25K NUS-WIDE MS COCO
Task Method Reference
16 32 64 128 16 32 64 128 16 32 64 128
TwDH TMM’24 79.71 8147 83.19 8437 66.83 69.34 69.95 7194 6429 70.04 73.08 7544
DNPH TOMM'24 81.08 82.69 82.89 83.70 66.89 68.11 69.39 7093 6438 69.10 7294 7251
DNpH TMM’24 8423 8552 85.88 8629 69.21 7022 70.71 7158 6727 69.03 68.60 68.74

Image DHaPH TKDE’24 8299 8437 8531 8549 69.58 7035 7136 7155 72.84 7415 7475 7543
1 BiLGSEH  TCSVT’25 7929 81.16 8194 82.07 7050 7142 7218 7213 66.68 7333 7596 74.85

Text DECH AAAT’25 79.61 8396 83.83 8443 66.13 71.61 7155 7241 6373 6435 6644 6849
DPBE MM’25 80.82 8327 85.12 8590 6246 6451 6835 71.14 6325 6477 6926 7261
DDBH TCSVT’25 8450 85.34 86.10 86.50 69.34 7145 7229 7229 71.65 7454 7681 7824
DGHDGH OURS 84.66 86.19 87.13 87.75 69.72 71.68 72.60 73.76 72.06 7471 77.13 79.19
TwDH TMM’24 77.80 80.01 8196 8296 67.06 71.02 7137 72.60 6568 70.92 7445 76.11
DNPH TOMM’24  80.15 81.76 81.66 8232 6871 69.94 7182 7191 64.68 70.12 7388 7298
DNpH TMM’24 81.47 8292 83.61 8422 6992 7137 7139 7231 6562 68.60 6928 68.87

Text ~ DHaPH TKDE’24 8148 81.65 8229 8279 6878 70.54 6998 7042 6935 70.69 7154 71.87
1 BiILGSEH  TCSVT’25 8048 8241 8343 8347 7027 7089 7202 7324 6896 73.16 7543 7472

Image DECH AAATI'25 78.69 81.85 8223 83.67 6828 73.05 73.15 73.18 62.11 6527 6697 69.15
DPBE MM’25 7931 8154 8355 84.06 6349 6623 69.63 7342 6256 6423 7175 7493
DDBH TCSVT’25 8245 83.18 8390 84.33 7023 72.11 7325 73.53 71.67 7394 7595 71.07
DGHDGH OURS 83.03 8421 85.09 8574 70.75 7264 7375 7464 71.16 7469 7741 79.59

The best and second-best performance are highlighted in boldface and underlined.

[ w/HDML [ w/ GAN [EEw/ XBM [ Tw/ DAS [ Ours
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Figure 3: Performance comparison with augmentation-based methods on MIRFLICKR-25K, and
use mining-based w/ DWS as the gray background.

et al.| (2025c¢)), Deep Probabilistic Binary Embedding (DPBE) |Cheng et al.| (2025) Deep Discrimi-
native Boundary Hashing (DDBH)QIn et al.| (2025). To ensure fairness, all frameworks adopt CLIP
ViT-B/32 as the common backbone, and the experimental settings are kept the same except for
the hyperparameters set in the original paper. Furthermore, different types of informative methods
are picked, namely Distance-Weighted Sampling (w/ DWS) Wu et al.|(2017), hashGAN (w/ GAN)
Cao et al.| (2018b), Hardness-adaptive Deep Metric Learning (w/ HDML) Zheng et al.| (2019)), and
Densely-Anchor Sampling (w/ DAS) [Liu et al.| (2022).

4.2 EVALUATION METRICS & IMPLEMENTATION DETAILS

We evaluate cross-modal similarity search in two settings: Image-to-Text (I2T) and Text-to-Image
(T2I). We primarily use mean Average Precision (mAP), which reflects both recall and precision,
along with the Fisher ratio and PQH < 2 to evaluate model discriminability.

The initial parameters of the feature extraction module are referenced inRadford et al.|(2021]), where
N; = 12, M; = 8. For parameter optimization, we utilize the Adam optimizer, where a learning
rate of 0.001 and a weight decay of 0.01. We set the batch size as 128 and take the best performance
in 100 epochs for all experiments. A detailed description can be found in Appendix [C]

4.3 PERFORMANCE COMPARISON

To rigorously verify the performance of our proposed DGHDGH, we report the comparison with
baseline methods as shown in Tab.[I} By learning a discriminative Hamming co-space, our method
achieves state-of-the-art performance results. Meanwhile, in order to comprehensively demonstrate
the difference with previous information learning, we further compare DGHDGH with representa-
tive generation methods on MIRFLICKR-25K, as shown in Fig. [3] which are all based on the same
baseline. Other metrics are also evaluated in a normalized radar plot, which are Flops, Parameters
(reverse), Training times (reverse), convergence epochs (reverse), and information augmented. The
metrics were all performed Max normalization, and the maximum value was taken as the largest or
slightly larger constant. See more baseline experiments in Appendix and[D.2}
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Table 2: Fisher ratios (%) of DGHDGH and baseline methods w.r.t. four hash bits on three benchmark datasets, which are computed by
randomly sampling 50, 100, 200, and 400 positive/negative pairs, each repeated five times with different seeds for stability.

16 bits 32 bits 64 bits 128 bits
MIRFLICKR

I-T T—1 1I-T T—1 1I-T T—1 1I-T T—1
DHaPH 90.15+0.14 84.38 +0.19 104.54 £0.14  88.16 +0.07 109.22 +£0.17  90.89 +0.21 108.28 £0.18  92.46 +0.08
BiLGSEH 69.81 £0.11 69.05 + 0.06 76.43 £0.17 75.86 £ 0.06 80.42£0.19 82.62 +0.07 81.36 £0.18 84.46 +0.08
DECH 81.13+0.13 67.85 +0.06 96.38 +0.13 80.76 £ 0.15 95.41 +0.16 82.94+0.10  91.55%0.10 87.98 +0.13
DDBH 100.13 £0.12  84.51 +0.07 104.65+0.13 84.51+0.11 10921 £0.26  90.89 +0.08 111.30 £0.10  92.47 £ 0.06
DGHDGH 97.57 +0.05 89.02 + 0.14 105.44 £0.08 93.16 +0.11 111.17 £0.15  94.60 + 0.05 110.17+0.07 96.82 +0.15
NUS-WIDE
DHaPH 101.03 £0.13  98.86 +0.16 90.15+0.14 90.05 +0.16 107.21 £0.15 104.04 £0.14 106.15+0.13 103.22+0.13
BiLGSEH 99.77 +0.13 101.87+0.11 100.32+021 102.42+0.17 99.00+0.18 103.24 £0.14  99.00 +0.18 103.21 £0.13
DECH 93.92+0.14 97.85+0.13 10556 £0.14  108.89 £0.11  97.69 +£0.15 10549 +0.10 104.69 £0.13  109.24 +0.09
DDBH 110.09 £ 0.17  110.02+0.17 112.72+0.17 111.14+0.15 11586+0.11 113.44+0.14 11649+0.15 116.31+0.15
DGHDGH 105.03 £0.20  104.68+0.10 112.89 £0.22 112.70 £0.12 11327 +0.18 114.41+0.07 117.58+0.13 118.80 + 0.09
MS COCO
DHaPH 11694 £0.17 10543 +£0.07 113.73+0.14 11438+0.11 117.05+0.10 120.65+0.07 120.58+0.15 119.58 +0.09
BiLGSEH 90.76 £ 0.11 90.07 £0.12 99.46 +0.14 100.66 £0.14 10593 £0.08 106.60 £0.08 106.24 £0.12  106.50 + 0.09
DECH 88.55+0.18 90.90 + 0.05 94.46 +0.12 10541 £0.11 95.77+0.10 108.17£0.10 98.15+0.12 107.36 £0.11
DDBH 123.63+0.17 12429+0.18 131.57+0.15 12337+0.11 136.25+0.21 124.64+0.15 139.10+0.20 126.46+0.10
DGHDGH 120.63 £0.26 12456 £0.11 128.36 £0.18 131.45+0.21 128.17+0.26 132.58+0.12 133.20+0.17 135.94+0.14

The best and second-best performance are highlighted in boldface and underlined.

MIRFLICKR 25K 27 MIRFLICKR 25K T21 NUSWIDE 2T NUSWIDE 21 ) Mscoco Mscoco Tt

Figure 4: PQH < 2 results of DGHDGH and baseline methods on three benchmark datasets.

4.4 DISCRIMINATIVE HASHING

We argue that introducing richer discriminative information during training facilitates more discrim-
inative hash learning. To evaluate this, PQH < 2 is utilized to demonstrates the compactness of
the learned Hamming co-space. In Fig. [} the experimental result measures how well each model
pushes away hard negatives, validating the discriminative capability of our proposed method.

On the other hand, we assessed discrimination by comparing the Fisher ratio. As shown in Tab. 2]
our method achieves higher Fisher ratios than all baselines. This indicates that the proposed global-
sense hard negative generation leads to a more discriminative Hamming space, leading to tighter
intra-class clusters and larger inter-class separations. It is worth noting that the two methods that
performed well in DDBH, similarly emphasize discriminative properties.

4.5 SELF VALIDATION

To fairly judge the contributions of our modules, we conduct ablation studies to evaluate each com-
ponent separately in Fig.[5] For w/o RGP, we directly use the initial edge computation as the interpo-
lation source . For w/o DGS, we directly remove the generation phase. Furthermore, we validate two
detailed operations in two modules. Furthermore, we validate two finer operations in the modules:
removing Edge Message Fusion (w/o EMF) in RGP, and removing the Hardness-Adaptive Parame-
ter (w/o HAP) in DGS. At the same time, we also investigate the three optimization objectives for
generative embedding, i.e., L;5,Lsp, and L4, and cross ablate them in Tab. El These three loss terms

Figure 5: Ablation Study Result of DGHDGH on three benchmark datasets w.r.t. 128 bits.
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Figure 6: Parameter configuration and temporal effects Results on MIRFLICKR-25K w.r.t. 16 bits.

Table 3: Ablation Study Result of DGHDGH on MIRFLICKR-25K.

Component 16 bits 32 bits 64 bits 128 bits Avg.
lsm lsp lia 1T T—1 [T T—I [T T—=I I-T T—1 [T T-1
79.82  78.15 81.45 79.63 8221 80.57 83.06 81.32 81.64 80.04

v 81.38 79.52 8297 80.73 83.84 81.69 84.61 8258 8320 81.13
v 82.15 80.37 83.82 81.64 8459 8281 8533 8345 8397 82.07

v v 8376 8214 8541 8328 8625 8436 87.02 8495 8561 83.68
v 8392 8235 8563 8351 8647 8459 8721 8517 8581 83.90

v v 84.44 8291 86.09 8395 86.82 8498 87.38 8543 86.18 84.32
v v 8284 8106 8455 8242 8538 83.67 86.12 8423 8472 8285

v v v 8466 83.03 8619 84.21 87.13 85.09 87.75 8574 8643 84.52

The best and second-best performance are highlighted in boldface and underlined.

optimize generated hard negatives in terms of interpolation similarity, semantic preservation, and
parameter diversification, respectively. The figure demonstrates that optimizing the interpolation
process from all three perspectives leads to better results. More analysis in Appendix [D.3]

We further conducted hyper-parameter experiments to validate the choice of the number of blocks
N and the attention heads M5 in the graph transformer, and selected sets of configurations as conl,
con?2 ..., were compared with baseline methods in terms of training time and encoding time. Training
time is measured over 100 epochs (hours), and encoding time is measured for a single pass over the
query set (ms). These experiments are shown in Fig.[6] To combine performance and efficiency, we
chose conl as the final parameter, i.e., No = 2, My = 4.

4.6 MODULE GENERALIZATION

Our proposed method serves as an information-rich strategy that provides broad support for cross-
modal training. To validate this, we extend it to the discriminative approach DHaPH and DDBH. As
shown in Fig.[7] our method can be used in a plug-and-play manner to support various approaches.
Furthermore, to validate the capacity of augmentation-based methods to cope with low-information
training in challenging environments, We first halve the train set size and then halve the batch size
consecutively. Considering the instability in this scenario, we perform multiple experiments and
record the variance as shown in Fig. |8} Our method can still stably provide discriminative infor-
mation to support training in the face of fewer samples. We visualize the distribution of negative
samples before and after the proposed method generates difficult negative samples in Fig. 0] We
also checked the stability of the backbone in Appendix

DHaPH 12T DHaPH T21 DDBH 12T DDBH T21

LI —— U S— — RN S— — TN S— — |
[T — - e e 125 I ! st = |

ox2 0s 084 035 030 07 0% 0805 08I 0815 082 025 083 0835 084 0835 084 0845 085 0855 086 0865 087 0875 0815 082 025 085 0835 0% 0845 085 0855

Figure 7: Bullet chart visualization on MIRFLICKR-25K. The target markers indicate the baseline
and bars correspond to add the DGHDGH module.

4.7 NOISE ROBUSTNESS

We conducted noise label experiments to verify the performance degradation of the model when
countering label interference. Noise rates of 0.2, 0.5, and 0.8 indicate random two-digit label in-
version of the corresponding proportion of samples during training, follow in Wang et al.|(2024).
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Figure 8: Batch stability error with line plots for different training set sizes (5000, 7500). Batch size
is taken as 32, 64, 128, 256.
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Figure 9: Visualization of the distribution of relative distances of negative samples before and after
generation, and their cosine similarity histograms.

DGHDGH maintains stable retrieval performance at all noise levels and consistently outperforms all
baselines. Graph propagation aggregates the relationship signals of multiple adjacent samples and
dominates the propagation process with global relationships, forming a natural denoising filter that
suppresses the influence of damaged labels. Meanwhile difficulty-aware synthetic negative samples
generate hard negative samples based on cross-modal similarity and structural consistency, without
relying on original labels, thus avoiding the amplification of noise and the generation of misleading
negative samples by erroneous labels. Because synthetic negatives does not depend on noisy labels
but on learned similarity and global propagation, it is inherently more robust than baselines.

Table 4: mAP results (%) of DDGRH and baselines under different noise rates on the MIRFLICKR-25K dataset w.r.t.
four bits.

16 bits 32 bits 64 bits 128 bits
Task Method
0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8
NRCH 7638 75.61 7324 7675 7621 7476 77.05 7698 76.07 77.83 77.10 76.11
DNPH 77.70 75.55 7537 79.74 80.16 79.04 81.67 82.44 81.01 8353 83.32 81.08
Image DHaPH 8373 81.64 78.04 8294 78.11 7582 82.10 79.17 76.85 82.64 79.77 77.28
1 BiLGSEH  78.11 7735 7593 7824 7736 75.15 80.72 7842 76.30 80.00 79.32 77.46
Text DPBE 77.85 77.16 7379 80.8 77.16 74.09 82.21 7828 7545 84.12 80.11 76.77
DDBH 83.79 8220 7650 84.70 82.11 78.78 85.04 84.58 79.46 85.64 84.61 80.29
DGHDGH 8195 81.78 78.65 84.06 82.76 80.89 8596 84.71 82.64 8596 85.15 84.16
NRCH 7455 7431 7220 7553 74.68 7259 75.88 7541 7459 7571 75.80 74.64
DNPH 7640 7525 75.18 7856 79.28 77.05 80.56 80.18 79.25 81.26 80.76 79.45
Text  DHaPH 81.51 7949 77.66 80.52 7596 7322 78.69 7639 7423 7931 7699 7438
J BiLGSEH 7723 76.61 7630 8127 77.85 7216 79.21 7567 75.14 79.55 7136 76.72
Image DPBE 7626 75.82 7329 7883 7628 7438 81.17 78.13 7576 82.59 80.14 77.22
DDBH 82.16 80.27 77.07 8234 81.22 79.62 84.24 8279 79.77 83.76 82.69 79.84
DGHDGH 81.03 80.42 7880 82.59 81.67 80.87 84.56 83.50 82.09 84.56 84.13 83.35

The best and second-best performances are highlighted in boldface and underlined.

5 CONCLUSION

In this work we presented DGHDGH, the first framework that introduces discriminative generation
into deep hashing. By combining global relational modeling with hardness-adaptive synthesis, our
method generates semantically consistent negatives that sharpen decision boundaries in Hamming
space. Extensive experiments on multiple benchmarks verify that DGHDGH significantly improves
retrieval accuracy and discriminability over state-of-the-art baselines. Beyond its standalone per-
formance, our framework is modular and can serve as a plug-and-play enhancement for existing
cross-modal approaches,and will be accessed for arbitrary representation learning in the future.
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A RELATED WORK

This section provides the detailed discussion of related works that were briefly summarized in Sec-
tion [2] of the main paper.

A.1 DEEP CROSS-MODAL HASHING RETRIEVAL

Deep Cross-modal Hashing Retrieval (DCHR) aims to map heterogeneous modalities,such as im-
ages and text, into a collaborative Hamming space end-to-end for efficient approximate nearest
neighbor retrieval Chen et al.[(2023). With the benefit of low storage cost and high retrieval effi-
ciency, DCHR methods have attracted wide interest in the field of cross-modal retrieval, achieving
superior similarity retrieval performance |Li et al.| (2023); [Zhu et al.[ (2023). Deep Cross-Modal
Hashing (DCMH) uses negative log-likelihood loss to maximize the similarity of hash codes for
similar samples and minimize it for dissimilar samples Jiang & Lil (2017). Self-Supervised Adver-
sarial Hashing (SSAH) uses adversarial learning and self-supervised semantic discovery to improve
the alignment of multi-label semantic distributions |Li et al.[|(2018a). Multimodal transformers with
a differentiable hashing mechanism are leveraged by Differentiable Cross-modal Hashing via Multi-
modal Transformers (DCHMT), enabling gradient-based optimization through CLIP-style represen-
tations [Tu et al.| (2022).

In recent years, researchers have sought to overcome the limitations of conventional cross-modal
hashing by incorporating more informative learning strategies. Deep Neighborhood-preserving
Hashing (DNpH) improves the discrimination and semantic consistency of cross-modal hashing
by preserving the Neighborhood structure and combining quadratic spherical mutual information
Qin et al.| (2024). By introducing hierarchical agent and self-paced learning mechanism, Deep
Hierarchy-aware Proxy Hashing (DHaPH) can gradually capture global and local hierarchical se-
mantic information [Huo et al.| (2024b)). Deep Evidential Hashing for Trustworthy Cross-Modal Re-
trieval (DECH) models the uncertainty information by evidence theory, which makes cross-modal
hashing more advantageous in generating trustworthy and interpretable retrieval results |Li et al.
(2025¢)).

A.2 INFORMATIVE LEARNING

A core bottleneck for cross-modal hashing is that training is easily dominated by uninformative
easy samples, causing slow convergence and weak decision boundaries in Hamming space |Qin et al.
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(2022); [Meng et al.|(2021)). Informative learning tackles this by prioritizing supervision that carries
higher training value, either by mining difficult instances from existing data or by generating chal-
lenging instances to enrich supervision. From this perspective, The past works can be summarized
as the pursuit of more informative learning and divided into two major threads, mining-based and
augmentation-based.

A.2.1 MINING-BASED LEARNING

At the earliest, facenet recognized the importance of mining and proposed semi-hard sampling to
select informative examples for the triplet loss|Schroff et al.{(2015). Subsequently, various sampling
modalities oriented to specific regions have blossomed. Easy positive mining approach holds that
the query sample only needs to be close to the simple examples among its positive samples rather
then whole positives Xuan et al.| (2020b). This relaxed information filtering mechanism leads to
better generalization. Hard negative mining is a major focus of mining, which aims to select dif-
ficult negatives that are highly similar to positives [Bucher et al.| (2016); |Simo-Serra et al.| (2015));
Suh et al.| (2019); [ Xuan et al.| (2020a). Learning this information in a targeted manner during train-
ing can enhance the model’s ability to distinguish between positive and negative examples. Hard
example mining goes one step further by selecting both difficult negative examples and positive
examples (i.e., positive examples with low similarity). A high degree of information acquisition
allows the model to draw a clear line between positives and negatives |[Rao et al.|(2024)); Shrivastava
et al.| (2016); |Smirnov et al.[|(2018). Distance Weighted Sampling (DWS) point out that the mining
method is limited by the narrow area selected, and the reduction of the selected sample size affects
the amount of information obtained. Extensive sampling can not only lead to an improvement in
the amount of information, but also achieve better generalization by learning different distance rela-
tionships, brings the same or even higher performance impact as the loss function Wu et al.| (2017).
Back to the cross-modal domain, Triplet-based Deep Hashing (TDH) introduces the Triplet with
hard mining into hashing, so as to improve the discrimination of cross-modal similarity ranking
Deng et al.[(2018). Hard-Negative Selection Strategy (HNSS) using the improved marginal ranking
loss to examined a new strategy for hard-negative mining in cross-modal retrieval |Galanopoulos
& Mezaris| (2021). This also pointed out that mining methods are limited by batch size even train
dataset size and lack enough imformation. This leads to overfitting or sub-optimization in the end.
In this scenario, a series of methods designed to provide additional information have emerged.

A.2.2 AUGMENTATION-BASED LEARNING

Generator-based The most common generation method is the Generative Adversarial Network
(GAN). After its popularity, many methods have also attempted to utilize GAN to enhance hash
learning Qian et al.[(2023). While emphasizing self-supervision, Self-Supervised Adversarial Hash-
ing (SSAH) uses adversarial network mechanisms to enforce cross-modal consistency |Li et al.
(2018a). HashGAN introduce the generative attention mask and adversarial sample generation,
improves the discriminative ability of hash representation by generating a network to interfere with
the discriminator Cao et al.| (2018Db)).

Memory-based A range of methods use memoization module like memory bank or backup queue
to get around the batch size limit to get more information. The embeddings of previous iterations are
maintained by Cross Batch Memory and considered to be still informative in the current batch Wang
et al.| (2020b)). Fast Partial-Modal Online Cross-Modal Hashing (FPO-CMH) facilitates efficient
online cross-modal hash learning by using a multimodal dual-tier anchor bank |Li et al.| (2025a)).

Interpolation-based Mixup proposes a linear interpolation method of input and label to generate
virtual samples|Zhang et al.|(2017). This approach has been widely used to improve generalization
and adversarial robustness. DAS reiterates the “miss embedding” problem for the mining and in-
terpolates all real embeddings as anchors to generate positive and negative pseudo-embeddings [Liu
et al.[(2022).

Hard Negative Generation To targeted acquisition negative samples with a larger amount of infor-
mation, the hard negative generation (HNG) can be regarded as a special direction. Deep adversarial
metric learning (DAML) synthesizes simple negatives into hard negatives through adversarial train-
ingDuan et al. (2018)). Hardness-aware Deep Metric Learning (HDML) performs hardness-aware
interpolation between anchor-negative pairs and then uses an autoencoder to generate correspond-
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ing features [Zheng et al.| (2019). A two-stage synthesis framework is introduced to generate hard
positives and hard negatives at the same time|Zhao et al.|(2018). Most of these methods obtain sam-
ple relationships through interpolation and features through generator. However, due to the inherent
shortcomings of interpolation methods, difficult sample generation is rarely applied to cross-modal
hashing, as the synthesized difficult negative samples also lack spatial feature perception, which is
useless or even interferes with cross-modal semantic alignment.

Motivated by these limitations, we propose a novel method for generating difficult samples that can
be applied to cross-modal hashing, which can assist in cross-modal semantic alignment by obtain
spatial feature perception.

B THEORETICAL INTERPRETATION OF RGP PROPAGATION

The behavior of RGP propagation can be understood by comparing its update rule with the classical
graph smoothing models. Standard GNN propagation is often approximated by a Laplacian operator
of the form:

HEY = oHO 4 (1 —a)D"Y2AD1/2HY (17)

which has been formally shown to act as a low-pass filter on graph signals and to cause feature
convergence across connected nodes as depth increases. This phenomenon has been documented in
several analyses of message-passing networks, including studies of over-smoothing where node em-
beddings tend to collapse into indistinguishable representations when eigenvalues of the propagation
operator suppress high-frequency components. Representative discussions include the analyses of
Oono & Suzuki (2019) and |Li et al.[(2018b), which indicate that repeated Laplacian-style propaga-
tion inevitably produces smoothing behavior.

The update rule of RGP differs from this model. Let A, denote the semantic positive graph and A,
denote the synthesized negative graph constructed during training. RGP applies masked attention in
which each anchor attends only to nodes identified by A,,, while entries in A,, are suppressed. The
propagation can be written as

HY = gO 4 psoftmax(M, HOW) HY (18)

where M, is a masking operator that selects negative nodes and 7 is a small scale factor. Because
M, excludes positive edges entirely, the operator does not approximate a Laplacian. The update
term contains no averaging over semantic neighbors. Instead, it introduces a structured repulsive
transformation that pushes representations away along directions defined by synthesized hard nega-
tives. This behavior is closer to contrastive propagation than to classical smoothing. Unlike Lapla-
cian filters that attenuate high-frequency components, the negative-aware update amplifies structural
distinctions in the feature space because the gradient of the attention logits depends on differences
between the anchor and its negative set.

A direct consequence is that the eigenstructure governing the propagation is not dominated by the
low-frequency bases of the graph Laplacian. The update matrix produced by masked attention
is asymmetric and does not share the spectrum of D~*/2AD~1/2_ Prior analyses of attention-
based propagation observe that attention operators do not behave as low-pass filters Verma & Zhang
(2019). In the case of RGP, the combination of masked attention and synthesized negatives produces
a directional transformation that retains discriminative structure even after multiple layers. This the-
oretical form explains why RGP avoids the collapse and homogeneity commonly associated with
Laplacian-based architectures.

C EXPERIMENTS SETTINGS

C.1 IMPLEMENTATION DETAILS

Based on RTX A6000 Ada GPUs, we adopt the open-source PyTorch framework to implement our
proposed DGHDGH algorithm and other methods [Paszke et al.| (2019). The PyTorch version is
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2.3.0. They are all performed in a unified experimental setting. The pre-training parameters of
the Transformer encoders in feature extraction are reference in CLIP ViT-B/32 from Radford et al.
(2021)) applied on all methods, which have 12 Transformer blocks, and 8 heads for each attention
module in blocks. For baselines, we follow their official implementations where available, or adopt
hyper-parameters from the original papers.

For parameter optimization, We use Adam as the optimizer, where the learning rate are le-4 for
feature extraction with hash layers, and le-5 for graph transformer. The weight decay is 0.2 and
the batch size is set to 128. Besides, for image preprocessing, we resize to 224 x 224, center crop,
and normalize with CLIP’s default statistics. Texts are tokenized using the CLIP tokenizer with a
maximum length of 77. We evaluate hash codes of 16, 32, 64, and 128 bits.

C.2 EVALUATION METRICS

In this work, we use mean Average Precision (mAP) that comprehensive retrieval evaluation, and
fisher ratio and Precision within Hamming Radius < 2 (PQH < 2) to evaluate the discrimination
of models. Moreover, we introduce Normalized Discounted Cumulative Gain (NDCG), Precision—
Recall Curve (PR), and Top-K Precision Curve (P@K) in the appendix to further validate the re-
trieval performance of the model.

C.2.1 MEAN AVERAGE PRECISION

We primarily use mAP as a performance metric, which calculates the average precision of each
sample in the query set retrieved from the database set and then averages it again. The mAP is the
average precision under different recall thresholds, and it is a comprehensive retrieval evaluation
including recall and precision.The formula is shown as:

n k
1 1 ;
mAPGK = ~ " AP,QK, where AP,GK = Z VU
n 4 - J
=1 Jj=1

When ¢, j belong to the same category, [;; = 1, otherwise I;; = 0. r; represents the number of
relevant samples in top-j in the ranking list. n is the number of query samples. In this paper, we
choose k£ = all i.e. the number of database samples. Among them, mAP I2T uses image modality
for query and text modality for database, T2I is similar.

C.2.2 PRECISION WITHIN HAMMING RADIUS < 2

To directly measure retrieval quality in Hamming space, we also compute Precision within Hamming
radius < 2 (PQH < 2)[Liu et al|(2012). For a given query, this metric counts the proportion of
relevant items among all retrieved samples whose Hamming distance to the query is less than or
equal to 2. As shown in formula:

PQH <2 = Number of relevant ret.rieve('l items \.)vit.hin H <2 20)
Total Number of retrieved items within H < 2

This metric reflects the local discriminative capability of hash codes in a compact neighborhood.
A higher PQH < 2 means that the retrieved neighbors are more semantically consistent with
the query. This reflect how effectively the learned hash codes preserve semantic neighborhood
structures, and a higher PH2 indicates stronger local discrimination within the Hamming space.

C.2.3 FISHER RATIO

Finally, to quantitatively assess the discriminability of hash codes, we compute the Fisher ratio,
which compares the separability of positive and negative pairs in Hamming space. Specifically:

2

2
Fisher — Preg — Hpos — h oo — Thos T Tneg. 1)

b
o’ 2
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where fi5,c4 and pp,0s denote the mean Hamming distances of negative and positive pairs, and ¢’ is
the pooled standard deviation by the std 0,¢4 and o0s.

In practice, we compute Fisher ratios by randomly sampling 50, 100, 200, and 400 pairs of positive
and negative examples, from the hash codes of database set after training while anchors are from
query set. We repeating each sampling 5 times, and reporting the averaged results with standard
deviations. This statistic quantifies the margin between positive and negative relations, and a larger
Fisher ratio demonstrates improved global separability and stronger discriminative structure in the
Hamming space.

C.2.4 NORMALIZED DISCOUNTED CUMULATIVE GAIN (NDCG)

To further evaluate ranking quality in cross-modal retrieval, we report the Normalized Discounted
Cumulative Gain (NDCG), which measures how well a retrieval method ranks relevant items near
the top of the list. For a given query, the Discounted Cumulative Gain (DCG) at rank K is defined
as

K
rel;
DCGOK =) ———— 22)
; logy(j +1)
where rel; is the relevance score of the item at rank j. The ideal DCG (IDCG) is obtained by sorting
relevant items in the optimal order. The normalized form is

DCGQK

NDCG emphasizes the importance of ranking correct items earlier in the retrieval list. A higher
NDCG indicates that the model places semantically relevant samples closer to the top positions,
reflecting high-quality retrieval ordering beyond binary relevance. In this work, we choice £ = 1000
i.e. NDCG@1000.

C.2.5 PRECISION—-RECALL CURVE

We also use the Precision—Recall (PR) curve to visualize the trade-off between precision and recall
across different similarity thresholds in the Hamming space. For each threshold, the retrieved set
is determined by selecting items whose Hamming distance to the query is below the threshold.
Precision and recall are computed as

. TP TP
Precision = TPL PP’ Recall = TPTFN (24)

where TP, F'P, and F'N are the number of true positives, false positives, and false negatives. PR
curves provide a continuous view of retrieval behavior under varying cutoff distances, allowing
us to assess how a model handles both strict and loose retrieval requirements. A curve that stays
consistently high indicates stable performance across a wide range of thresholds.

C.2.6 ToP-K PRECISION CURVE

To measure performance at different retrieval depths, we compute the Top-K Precision curve. For
each query, the precision at rank K is defined as

K
1
POK = - ; lij, (25)

where [;; = 1 if the j-th retrieved item is relevant and 0 otherwise. By sweeping K from small
to large values, the Top-K precision curve shows how the method behaves when retrieving only
a few nearest neighbors or when retrieving deeper lists. This metric reflects the stability of the
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semantic preservation across different retrieval lengths. Higher curves imply that the learned hash
codes remain discriminative regardless of the retrieval depth.

D ADDITIONAL EXPERIMENTS

D.1 COMPARISON WITH CLASSICAL METHODS ON THE STANDARDIZED BACKBONE

To further validate the effectiveness of our approach, we adapted the CLIP ViT-B/32 as the standard-
ized feature extractor for classical methods published prior to CLIP, which did not utilize Trans-
former architectures in their network, namely Deep Cross-Modal Hashing (DCMH) Jiang & Li
(2017), Cross-Modal Hamming Hashing (CMHH) |Cao et al.| (2018a)), Adversary Guided Asym-
metric Hashing (AGAH) |Gu et al,| (2019), Deep Adversarial Discrete Hashing (DADH) Bai et al.
(2020), Self-constraining attention hashing network (SCAHN) Wang et al.| (2020a), and add ’-T’
to indicate backbone replacement. As shown in Tab. [5] Our method continues to deliver superior
performance under this standardized evaluation, demonstrating that its effectiveness is not tied to
specific feature extraction techniques but rather stems from the overall learning framework and its
design innovations.

Table 5: mAP@all results(%) of DGHDGH with classic methods on the three benchmark datasets w.r.t. four hash bits.

MIRFLICKR-25K NUS-WIDE MS COCO
Task Reference Method
16 32 64 128 16 32 64 128 16 32 64 128
CVPR’17 DCMH 76.87 77.36  77.97 7881 53.79 5513 56.17 57.03 5399 5444 5627 56.59
DCMH-T 82.78 84.23 84.01 85.17 6397 66.78 68.59 68.64 6274 6499 6720 67.59
ECCV'18 CMHH 69.32  69.79 69.84 7023 5439 5546 552 5291 5145 4509 52.09 5021
Image CMHH-T 81.11 82.04 8252 83.08 6741 68.88 69.28 69.71 5490 59.46 6430 65.49
ICMR’ 19 AGAH 7248 72,17 7195 72.82 3945 41.07 4258 4358 5501 55.15 5518 55.54
1 AGAH-T 80.79 81.22 8198 8349 59.81 64.69 6644 6756 6145 6416 6594 66.55
DADH 80.98 81.62 8193 8217 635 65.68 6546 66.61 59.52 61.18 6237 63.24

Text  ICMR20 pippr 8230 8323 8458 8403 6654 6798 6871 7058 6339 6651 6876 6927

SCAHN 79.55 8248 8297 82.88 6463 66.16 6645 6549 63.76 6475 6519 61.49

Neuco'20 SCAHN-T 8213 8432 8487 8531 6829 68.01 69.13 7023 67.72 68.09 70.12 69.88

Ours DGHDGH 84.66 86.19 87.13 87.75 69.72 71.68 72.60 7376 72.06 7471 77.13 79.19
CVPR’17 DCMH 78.57 7998 8029 80.83 5747 58.1 5853 59.04 5271 5424 545 55.26
DCMH-T 80.88 82.01 83.11 84.09 6424 6633 69.17 69.74 6298 6553 67.00 67.92

ECCV’18 CMHH 71.81 71.04 7294 7372 49.56 4831 482 47.81 49.1 49.3 48.89  50.15

Text CMHH-T 78.33 7951 80.16 81.75 68.53 69.67 70.04 70.46 5533 58.17 6481 65.52
ICMR’ 19 AGAH 70.82  71.82 7344 7438 4344 398 43.82 4405 50.12 5146 5191 51.36

1 AGAH-T 79.52  80.10 82.12 82.61 60.10 6518 6743 68.17 6091 6438 6449 6591
DADH 80.19 81.01 81.37 8135 61.11 61.82 62.18 6326 5649 579 58.7 60.37

Image  ICMR20 DADH-T 81.42 8232 8320 82.65 68.06 6882 69.18 70.54 61.88 6650 6837 68.84

SCAHN 78.26  80.66 80.64 80.66 65.87 6626 6648 66.09 63.77 65.12 6493 6145
SCAHN-T  81.26 8238 8255 83.06 6897 69.14 70.18 7049 6736 6852 69.57 70.05

Ours DGHDGH 83.03 84.21 85.09 8574 70.75 72.64 73.75 74.64 7116 7469 7741 79.59

Neuco’20

The best and second-best performances are highlighted in boldface and underlined. Neuco denotes Neurocomputing.

D.2 COMPARISON WITH BASELINE ON MORE METRICS

To comprehensively evaluate retrieval performance, we also present comparisons of NDCG, PR
curves, and P@K curves, as shown in Tab. [6] Fig.[I0] and Fig. [TT|respectively. Experiments show
that, except for some cases, DGHDGH still maintains a broad lead in these indicators. This indicates
that our method clearly has better retrieval performance.

D.3 HYPER-PARAMETER ANALYSIS

After the Ablation study of three loss coefficient terms v;5, Ysp and 7.q, we further explore the in-
fluence of different values of them on retrieval performance, as shown in Fig.[T2] As ~;, a similarity
constraint, the gradient is naturally the largest, so the choice of the anchor scale is a natural choice to
ensure the stability of the optimization. We set ;5 to 1 and adjust the other two items from 0.1 to 10.
We applied the parameter configuration at the best performance to the experiments while 7,, = 1
and y.q = 0.2.
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Table 6: NDCG @ 1000 results(%) of DGHDGH with baselines on three benchmark datasets w.r.t. four hash bits.

MIRFLICKR-25K NUS-WIDE MS COCO
Task Method
16 32 64 128 16 32 64 128 16 32 64 128
DNpH 50.22  52.66 5430 55.07 50.86 5337 5526 5578 33.88 40.06 41.07 42.19

DHaPH 46.29 48.62 48.16 4829 5123 4624 54.03 5520 39.19 4137 4140 4242
Image BIiLGSEH 47.71 5021 51.13 51.05 54.07 5475 5692 57.66 46.50 5022 5083 5043

1 DECH 40.89 4934 4946 4929 4640 5405 5323 5632 19.89 2492 3058 3241
Text  DPBE 4156 46.72 49.67 5099 4429 4525 47.66 47.08 4196 44.62 49.81 52.10
DDBH 51.25 5272 5242 5257 5288 5489 56.56 56.09 3848 4256 46.04 47.78
DGHDGH 5326 55.19 5611 5738 51.68 5595 58.59 6094 3731 4252 5110 54.72

DNpH 4230 45.17 46.15 47.06 49.74 50.67 52.87 5277 3332 40.04 4126 4281

DHaPH 45.07 4132 42112 4345 46.63 4416 4842 49.15 4049 4086 43.62 43.32
Text  BiILGSEH  45.53 47.09 48.18 48.60 53.24 54.06 55.07 5593 4643 5046 5159 51.06

I DECH 38.69 41.53 4286 42.84 47.58 5482 5323 5346 20.52 25.86 30.62 32.10
Image DPBE 34.16 39.05 4152 4246 41.06 4359 4488 4460 33.83 47.20 49.89 5245
DDBH 42.63 4350 44.10 4456 5098 51.52 5293 5446 3879 4099 4456 4648

DGHDGH 4640 47.52 4946 51.16 5142 5335 56.11 57:12 36.71 46.59 52.90 56:14

The best and second-best performances are highlighted in boldface and underlined.
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Figure 10: Results of Precision-Recall curves on three benchmark datasets w.r.t. 16 and 32 bits.
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Figure 11: Results of Top-K Precision curves on three benchmark datasets w.r.t. 16 and 32 bits.
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Figure 12: Hyper-parameter analysis on MIRFLICKR-25K w.r.t. 16 and 32 bits.
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D.4 BACKBONE GENERALIZATION

To judge the generalization across different backbones, we further investigate several CLIP architec-
ture with its variant BLIP and SigL.IP2|Li et al.|(2022); |Tschannen et al.|(2025). As summarized in
Tab. [/} we report the 12T and T2I mAP (%) on MIFLICLR-25K 16 bits, along with other metrics:
the number of Parameters in each backbone (in Million), total Training Time for 100 epochs train-
ing (in Hour), Encoding Time for the query dataset encoding (in Millisecond), and the Converge
Epoch indicating the best performance within 100 epochs. These results collectively demonstrate
the strong generalization capability of our proposed DGHDGH method across diverse backbone
architectures.

Table 7: Various metrics of DGHDGH with different backbones on the MIRFLICKR-25K dataset w.r.t. 16 bits.

M CLIP BLIP SigLIP2
etric
ViT-B/32  ViT-L/14 Res50/16 I-C-Base I-C-Large Base-16/224 Base-32/256 Large-16/256
Parameters 151.3 427.6 291.0 224.7 447.2 375.2 376.9 881.5
Image— Text 84.66 84.82 83.22 82.96 83.83 82.54 84.82 84.50
Text—Image 83.03 83.25 82.62 83.01 81.20 80.95 83.25 84.04
Training Time 1.206 4.652 5.312 5.945 13.28 1.753 2.018 5.374
Encoding Time 27.05 37.98 32.41 72.57 126.8 34.46 31.05 47.39
Converge Epoch 44 56 61 78 69 83 72 75
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