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Abstract

As several industries are moving towards modeling massive 3D virtual worlds,
the need for content creation tools that can scale in terms of the quantity, quality,
and diversity of 3D content is becoming evident. In our work, we aim to train
performant 3D generative models that synthesize textured meshes that can be
directly consumed by 3D rendering engines, thus immediately usable in down-
stream applications. Prior works on 3D generative modeling either lack geometric
details, are limited in the mesh topology they can produce, typically do not support
textures, or utilize neural renderers in the synthesis process, which makes their
use in common 3D software non-trivial. In this work, we introduce GET3D,
a Generative model that directly generates Explicit Textured 3D meshes with
complex topology, rich geometric details, and high fidelity textures. We bridge
recent success in the differentiable surface modeling, differentiable rendering as
well as 2D Generative Adversarial Networks to train our model from 2D image
collections. GET3D is able to generate high-quality 3D textured meshes, rang-
ing from cars, chairs, animals, motorbikes and human characters to buildings,
achieving significant improvements over previous methods. Our project page:
https://nv-tlabs.github.io/GET3D

1 Introduction

Diverse, high-quality 3D content is becoming increasingly important for several industries, including
gaming, robotics, architecture, and social platforms. However, manual creation of 3D assets is very
time-consuming and requires specific technical knowledge as well as artistic modeling skills. One
of the main challenges is thus scale – while one can find 3D models on 3D marketplaces such as
Turbosquid [4] or Sketchfab [3], creating many 3D models to, say, populate a game or a movie with a
crowd of characters that all look different still takes a significant amount of artist time.

To facilitate the content creation process and make it accessible to a variety of (novice) users,
generative 3D networks that can produce high-quality and diverse 3D assets have recently become
an active area of research [5, 13, 38, 41, 48, 59, 62, 55, 54, 60, 21]. However, to be practically
useful for current real-world applications, 3D generative models should ideally fulfill the following
requirements: (a) They should have the capacity to generate shapes with detailed geometry and
arbitrary topology, (b) The output should be a textured mesh, which is a primary representation used
by standard graphics software packages such as Blender [14] and Maya [1], and (c) We should be
able to leverage 2D images for supervision, as they are more widely available than explicit 3D shapes.

Prior work on 3D generative modeling has focused on subsets of the above requirements, but no
method to date fulfills all of them (Tab. 1). For example, methods that generate 3D point clouds [5,
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Method Application Representation Supervision Textured mesh Arbitrary topology
OccNet [38] 3D generation Implicit 3D ✗ ✓

PointFlow [59] 3D generation Point cloud 3D ✗ ✓

Texture3D [48] 3D generation Mesh 2D ✓ ✗

StyleNerf [23] 3D-aware NV Neural field 2D ✗ ✓

EG3D [8] 3D-aware NV Neural field 2D ✗ ✓

PiGAN [7] 3D-aware NV Neural field 2D ✗ ✓

GRAF [52] 3D-aware NV Neural field 2D ✗ ✓

Ours 3D generation Mesh 2D ✓ ✓

Table 1: Comparison with prior works. (NV: Novel view synthesis.)

59, 62] typically do not produce textures and have to be converted to a mesh in post-processing.
Methods generating voxels often lack geometric details and do not produce texture [57, 18, 25, 35].
Generative models based on neural fields [38, 13] focus on extracting geometry but disregard texture.
Most of these also require explicit 3D supervision. Finally, methods that directly output textured
3D meshes [49, 48] typically require pre-defined shape templates and cannot generate shapes with
complex topology and variable genus.

Recently, rapid progress in neural volume rendering [40] and 2D Generative Adversarial Networks
(GANs) [31, 32, 30, 27, 47] has led to the rise of 3D-aware image synthesis [7, 52, 8, 44, 46, 23].
However, this line of work aims to synthesize multi-view consistent images using neural rendering in
the synthesis process and does not guarantee that meaningful 3D shapes can be generated. While a
mesh can potentially be obtained from the underlying neural field representation using the marching
cube algorithm [34], extracting the corresponding texture is non-trivial.

In this work, we introduce a novel approach that aims to tackle all the requirements of a practically
useful 3D generative model. Specifically, we propose GET3D, a Generative model for 3D shapes
that directly outputs Explicit Textured 3D meshes with high geometric and texture detail and arbitrary
mesh topology. In the heart of our approach is a generative process that utilizes a differentiable
explicit surface extraction method [55] and a differentiable rendering technique [42, 33]. The former
enables us to directly optimize and output textured 3D meshes with arbitrary topology, while the latter
allows us to train our model with 2D images, thus leveraging powerful and mature discriminators
developed for 2D image synthesis. Since our model directly generates meshes and uses a highly
efficient (differentiable) graphics renderer, we can easily scale up our model to train with image
resolution as high as 1024× 1024, allowing us to learn high-quality geometric and texture details.

We demonstrate state-of-the-art performance for unconditional 3D shape generation on multiple
categories with complex geometry from ShapeNet [9], Turbosquid [4] and Renderpeople [2], such as
chairs, motorbikes, cars, human characters, and buildings. With explicit mesh as output representation,
GET3D is also very flexible and can easily be adapted to other tasks, including: (a) learning to
generate decomposed material and view-dependent lighting effects using advanced differentiable
rendering [12], without supervision, (b) text-guided 3D shape generation using CLIP [51] embedding.

2 Related Work

We review recent advances in 3D generative models for geometry and appearance, as well as 3D-aware
generative image synthesis.

3D Generative Models In recent years, 2D generative models have achieved photorealistic quality
in high-resolution image synthesis [31, 32, 30, 47, 27, 17, 15]. This progress has also inspired
research in 3D content generation. Early approaches aimed to directly extend the 2D CNN generators
to 3D voxel grids [57, 18, 25, 35, 56], but the high memory footprint and computational complexity of
3D convolutions hinder the generation process at high resolution. As an alternative, other works have
explored point cloud [5, 59, 62, 41], implicit [38, 13], or octree [28] representations. However, these
works focus mainly on generating geometry and disregard appearance. Their output representations
also need to be post-processed to make them compatible with standard graphics engines.

More similar to our work, Textured3DGAN [49, 48] and DIBR [11] generate textured 3D meshes,
but they formulate the generation as a deformation of a template mesh, which prevents them from
generating complex topology or shapes with varying genus, which our method can do. PolyGen [43]
and SurfGen [36] can produce meshes with arbitrary topology, but do not synthesize textures.
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Figure 1: We export our generated shapes and visualize them in Blender. GET3D is able to generate
diverse shapes with arbitrary topology, high quality geometry, and texture.

3D-Aware Generative Image Synthesis Inspired by the success of neural volume rendering [40]
and implicit representations [38, 13], recent work started tackling the problem of 3D-aware image
synthesis [7, 52, 44, 24, 23, 63, 8, 46, 53, 58]. However, neural volume rendering networks are
typically slow to query, leading to long training times [7, 52], and generate images of limited
resolution. GIRAFFE [44] and StyleNerf [23] improve the training and rendering efficiency by
performing neural rendering at a lower resolution and then upsampling the results with a 2D CNN.
However, the performance gain comes at the cost of a reduced multi-view consistency. By utilizing a
dual discriminator, EG3D [8] can partially mitigate this problem. Nevertheless, extracting a textured
surface from methods that are based on neural rendering is a non-trivial endeavor. In contrast,
GET3D directly outputs textured 3D meshes that can be readily used in standard graphics engines.

3 Method

We now present our GET3D framework for synthesizing textured 3D shapes. Our generation process
is split into two parts: a geometry branch, which differentiably outputs a surface mesh of arbitrary
topology, and a texture branch that produces a texture field that can be queried at the surface points to
produce colors. The latter can be extended to other surface properties such as for example materials
(Sec. 4.3.1). During training, an efficient differentiable rasterizer is utilized to render the resulting
textured mesh into 2D high-resolution images. The entire process is differentiable, allowing for
adversarial training from images (with masks indicating an object of interest) by propagating the
gradients from the 2D discriminator to both generator branches. Our model is illustrated in Fig. 2. In
the following, we first introduce our 3D generator in Sec 3.1, before proceeding to the differentiable
rendering and loss functions in Sec 3.2.

3.1 Generative Model of 3D Textured Meshes

We aim to learn a 3D generator M,E = G(z) to map a sample from a Gaussian distribution
z ∈ N (0, I) to a mesh M with texture E.

Since the same geometry can have different textures, and the same texture can be applied to different
geometries, we sample two random input vectors z1 ∈ R512 and z2 ∈ R512. Following StyleGAN [31,
32, 30], we then use non-linear mapping networks fgeo and ftex to map z1 and z2 to intermediate
latent vectors w1 = fgeo(z1) and w2 = ftex(z2) which are further used to produce styles that control
the generation of 3D shapes and texture, respectively. We formally introduce the generator for
geometry in Sec. 3.1.1 and the texture generator in Sec. 3.1.2.
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Figure 2: Overview of GET3D: We generate a 3D SDF and a texture field via two latent codes. We
utilize DMTet [55] to extract a 3D surface mesh from the SDF, and query the texture field at surface
points to get colors. We train with adversarial losses defined on 2D images. In particular, we use
a rasterization-based differentiable renderer [33] to obtain RGB images and silhouettes. We utilize
two 2D discriminators, each on RGB image, and silhouette, respectively, to classify whether the
inputs are real or fake. The whole model is end-to-end trainable. Note that we additionally provide
an improved version of our Generator in Appendix Sec. A.5 and Fig. C.

3.1.1 Geometry Generator

We design our geometry generator to incorporate DMTet [55], a recently proposed differentiable
surface representation. DMTet represents geometry as a signed distance field (SDF) defined on a
deformable tetrahedral grid [20, 22], from which the surface can be differentiably recovered through
marching tetrahedra [16]. Deforming the grid by moving its vertices results in a better utilization
of its resolution. By adopting DMTet for surface extraction, we can produce explicit meshes with
arbitrary topology and genus. We next provide a brief summary of DMTet and refer the reader to the
original paper for further details.

Let (VT , T ) denote the full 3D space that the object lies in, where VT are the vertices in the tetrahedral
grid T . Each tetrahedron Tk ∈ T is defined using four vertices {vak

,vbk ,vck ,vdk
}, with k ∈

{1, . . . ,K}, where K is the total number of tetrahedra, and vik ∈ VT ,vik ∈ R3. In addition to its
3D coordinates, each vertex vi contains the SDF value si ∈ R and the deformation ∆vi ∈ R3 of the
vertex from its initial canonical coordinate. This representation allows recovering the explicit mesh
through differentiable marching tetrahedra [55], where SDF values in continuous space are computed
by a barycentric interpolation of their value si on the deformed vertices v′

i = vi +∆vi.

Network Architecture We map w1 ∈ R512 to SDF values and deformations at each vertex vi

through a series of conditional 3D convolutional and fully connected layers. Specifically, we first use
3D convolutional layers to generate a feature volume conditioned on w1. We then query the feature
at each vertex vi ∈ VT using trilinear interpolation and feed it into MLPs that outputs the SDF value
si and the deformation ∆vi. In cases where modeling at a high-resolution is required (e.g. motorbike
with thin structures in the wheels), we further use volume subdivision following [55].

Differentiable Mesh Extraction After obtaining si and ∆vi for all the vertices, we use the
differentiable marching tetrahedra algorithm to extract the explicit mesh. Marching tetrahedra
determines the surface topology within each tetrahedron based on the signs of si. In particular,
a mesh face is extracted when sign(si) ̸= sign(sj), where i, j denotes the indices of vertices in
the edge of tetrahedron, and the vertices mi,j of that face are determined by a linear interpolation

as mi,j =
v′
isj−v′

jsi
sj−si

. Note that the above equation is only evaluated when si ̸= sj , thus it is
differentiable, and the gradient from mi,j can be back-propagated into the SDF values si and
deformations ∆vi. With this representation, the shapes with arbitrary topology can easily be
generated by predicting different signs of si.

3.1.2 Texture Generator

Directly generating a texture map consistent with the output mesh is not trivial, as the generated shape
can have an arbitrary genus and topology. We thus parameterize the texture as a texture field [45].
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Specifically, we model the texture field with a function ft that maps the 3D location of a surface point
p ∈ R3, conditioned on the w2, to the RGB color c ∈ R3 at that location. Since the texture field
depends on geometry, we additionally condition this mapping on the geometry latent code w1, such
that c = ft(p,w1 ⊕w2), where ⊕ denotes concatenation.

Network Architecture We represent our texture field using a tri-plane representation, which is
efficient and expressive in reconstructing 3D objects [50] and generating 3D-aware images [8] .
Specifically, we follow [8, 32] and use a conditional 2D convolutional neural network to map the
latent code w1 ⊕w2 to three axis-aligned orthogonal feature planes of size N ×N × (C × 3), where
N = 256 denotes the spatial resolution and C = 32 the number of channels.

Given the feature planes, the feature vector f t ∈ R32 of a surface point p can be recovered as
f t =

∑
e ρ(πe(p)), where πe(p) is the projection of the point p to the feature plane e and ρ(·)

denotes bilinear interpolation of the features. An additional fully connected layer is then used to
map the aggregated feature vector f t to the RGB color c. Note that, different from other works on
3D-aware image synthesis [8, 23, 7, 52] that also use a neural field representation, we only need to
sample the texture field at the locations of the surface points (as opposed to dense samples along a
ray). This greatly reduces the computational complexity for rendering high-resolution images and
guarantees to generate multi-view consistent images by construction.

3.2 Differentiable Rendering and Training

In order to supervise our model during training, we draw inspiration from Nvdiffrec [42] that performs
multi-view 3D object reconstruction by utilizing a differentiable renderer. Specifically, we render
the extracted 3D mesh and the texture field into 2D images using a differentiable renderer [33], and
supervise our network with a 2D discriminator, which tries to distinguish the image from a real object
or rendered from the generated object.

Differentiable Rendering We assume that the camera distribution C that was used to acquire the
images in the dataset is known. To render the generated shapes, we randomly sample a camera c from
C, and utilize a highly-optimized differentiable rasterizer Nvdiffrast [33] to render the 3D mesh into a
2D silhouette as well as an image where each pixel contains the coordinates of the corresponding 3D
point on the mesh surface. These coordinates are further used to query the texture field to obtain the
RGB values. Since we operate directly on the extracted mesh, we can render high-resolution images
with high efficiency, allowing our model to be trained with image resolution as high as 1024×1024.

Discriminator & Objective We train our model using an adversarial objective. We adopt the
discriminator architecture from StyleGAN [31], and use the same non-saturating GAN objective with
R1 regularization [37]. We empirically find that using two separate discriminators, one for RGB
images and another one for silhouettes, yields better results than a single discriminator operating on
both. Let Dx denote the discriminator, where x can either be an RGB image or a silhouette. The
adversarial objective is then be defined as follows:

L(Dx, G) = Ez∈N ,c∈C [g(Dx(R(G(z), c)))] + EIx∈px
[g(−Dx(Ix)) + λ||∇Dx(Ix)||22], (1)

where g(u) is defined as g(u) = − log(1+exp(−u)), px is the distribution of real images, R denotes
rendering, and λ is a hyperparameter. Since R is differentiable, the gradients can be backpropagated
from 2D images to our 3D generators.

Regularization To remove internal floating faces that are not visible in any of the views, we further
regularize the geometry generator with a cross-entropy loss defined between the SDF values of the
neighboring vertices [42]:

Lreg =
∑

i,j∈Se

H (σ(si), sign (sj)) +H (σ(sj), sign (si)) , (2)

where H denotes binary cross-entropy loss and σ denotes the sigmoid function. The sum in Eq. 2 is
defined over the set of unique edges Se in the tetrahedral grid, for which sign(si) ̸= sign(sj).

The overall loss function is then defined as:

L = L(Drgb, G) + L(Dmask, G) + µLreg, (3)

where µ is a hyperparameter that controls the level of regularization.
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Category Method
COV (%, ↑) MMD (↓) FID (↓)

LFD CD LFD CD Ori 3D

Car

PointFlow [59] 51.91 57.16 1971 0.82 - -
OccNet [38] 27.29 42.63 1717 0.61 - -
Pi-GAN [7] 0.82 0.55 6626 25.54 52.82 104.29
GRAF [52] 1.57 1.57 6012 10.63 49.95 52.85
EG3D [8] 60.16 49.52 1527 0.72 15.52 21.89

Ours 66.78 58.39 1491 0.71 10.25 10.25
Ours+Subdiv. 62.48 55.93 1553 0.72 12.14 12.14

Ours (improved G) 59.00 47.95 1473 0.81 10.60 10.60

Chair

PointFlow [59] 49.58 71.87 3755 3.03 - -
OccNet [38] 61.10 67.13 3494 3.98 - -
Pi-GAN [7] 53.76 39.65 4092 6.65 65.70 120.53
GRAF [52] 50.23 39.28 4055 6.80 43.82 61.63
EG3D [8] 58.31 50.14 3444 4.72 38.87 46.06

Ours 69.08 69.91 3167 3.72 23.28 23.28
Ours+Subdiv. 71.59 70.84 3163 3.95 23.17 23.17

Ours (improved G) 71.96 71.96 3125 3.96 22.41 22.41

Category Method
COV (%, ↑) MMD (↓) FID (↓)

LFD CD LFD CD Ori 3D

Mbike

PointFlow [59] 50.68 63.01 4023 1.38 - -
OccNet [38] 30.14 47.95 4551 2.04 - -
Pi-GAN [7] 2.74 6.85 8864 21.08 72.67 131.38
GRAF [52] 43.84 50.68 4528 2.40 83.20 113.39
EG3D [8] 38.36 34.25 4199 2.21 66.38 89.97

Ours 67.12 67.12 3631 1.72 65.60 65.60
Ours+Subdiv. 63.01 61.64 3440 1.79 54.12 54.12

Ours (improved G) 69.86 65.75 3393 1.79 48.90 48.90

Animal

PointFlow [59] 42.70 74.16 4885 1.68 - -
OccNet [38] 56.18 75.28 4418 2.39 - -
Pi-GAN [7] 31.46 30.34 6084 8.37 36.26 150.86
GRAF [52] 60.67 61.80 5083 4.81 42.07 52.48
EG3D [8] 74.16 58.43 4889 3.42 40.03 83.47

Ours 79.77 78.65 3798 2.02 28.33 28.33
Ours+Subdiv. 66.29 74.16 3864 2.03 28.49 28.49

Ours (improved G) 74.16 82.02 3767 1.97 27.18 27.18

Table 2: Quantitative evaluation of generation results: ↑: the higher the better, ↓: the lower the
better. The best scores are highlighted in bold. MMD-CD scores are multiplied by 103. The results of
Ours (improved G) were obtained after the review process by improving the design of the generator
network architecture G (see Appendix A.5 for more details).

Figure 3: Qualitative comparison of GET3D to the baseline methods in terms of extracted 3D
geometry. GET3D is able to generate shapes with much higher geometric detail across all categories.

4 Experiments

We conduct extensive experiments to evaluate our model. We first compare the quality of the
3D textured meshes generated by GET3D to the existing methods using the ShapeNet [9] and
Turbosquid [4] datasets. Next, we ablate our design choices in Sec. 4.2. Finally, we demonstrate the
flexibility of GET3D by adapting it to downstream applications in Sec. 4.3. Additional experimental
results and implementation details are provided in Appendix.

4.1 Experiments on Synthetic Datasets

Datasets For evaluation on ShapeNet [9], we use three categories with complex geometry – Car,
Chair, and Motorbike, which contain 7497, 6778, and 337 shapes, respectively. We randomly split
each category into training (70%), validation (10 %), and test (20 %), and further remove from the
test set shapes that have duplicates in the training set. To render the training data, we randomly
sample camera poses from the upper hemisphere of each shape. For the Car and Chair categories,
we use 24 random views, while for Motorbike we use 100 views due to less number of shapes. As
models in ShapeNet only have simple textures, we also evaluate GET3D on an Animal dataset (442
shapes) collected from TurboSquid [4], where textures are more detailed and we split it into training,
validation and test as defined above. Finally, to demonstrate the versatility of GET3D, we also
provide qualitative results on the House dataset collected from Turbosquid (563 shapes), and Human
Body dataset from Renderpeople [2] (500 shapes). We train a separate model on each category.
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Figure 4: Qualitative comparison of GET3D to the baseline methods in terms of generated 2D
images. GET3D generates sharp textures with high level of detail.

Figure 5: Shapes generated by GET3D rendered in Blender. GET3D generates high-quality
shapes with diverse texture, high-quality geometry, and complex topology. Zoom-in for details.

Baselines We compare GET3D to two groups of works: 1) 3D generative models that rely on
3D supervision: PointFlow [59] and OccNet [38]. Note that these methods only generate geometry
without texture. 2) 3D-aware image generation methods: GRAF [52], PiGAN [7], and EG3D [8].

Metrics To evaluate the quality of our synthesis, we consider both the geometry and texture of
the generated shapes. For geometry, we adopt metrics from [5] and use both Chamfer Distance
(CD) and Light Field Distance [10] (LFD) to compute the Coverage score and Minimum Matching
Distance. For OccNet [38], GRAF [52], PiGAN [7] and EG3D [8], we use marching cubes to extract
the underlying geometry. For PointFlow [59], we use Poisson surface reconstruction to convert a
point cloud into a mesh when evaluating LFD. To evaluate texture quality, we adopt the FID [26]
metric commonly used to evaluate image synthesis. In particular, for each category, we render the test
shapes into 2D images, and also render the generated 3D shapes from each model into 50k images
using the same camera distribution. We then compute FID on the two image sets. As the baselines
from 3D-aware image synthesis [52, 7, 8] do not directly output textured meshes, we compute FID
score in two ways: (i) we use their neural volume rendering to obtain 2D images, which we refer to
as FID-Ori, and (ii) we extract the mesh from their neural field representation using marching cubes,
render it, and then use the 3D location of each pixel to query the network to obtain the RGB values.
We refer to this score, that is more aware of the actual 3D shape, as FID-3D. Further details on the
evaluation metrics are available in the Appendix B.3.

Experimental Results We provide quantitative results in Table. 2 and qualitative examples in Fig. 3
and Fig. 4. Additional results are available in the supplementary video. Compared to OccNet [38] that
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Figure 6: Shape interpolation. We interpolate both geometry and texture latent codes from left to
right.

Figure 7: Shape variation. We locally perturb each latent code to generate different shapes.

uses 3D supervision during training, GET3D achieves better performance in terms of both diversity
(COV) and quality (MMD), and our generated shapes have more geometric details. PointFlow [59]
outperforms GET3D in terms of MMD on CD, while GET3D is better in MMD on LFG. We
hypothesize that this is because PointFlow directly optimizes on point locations, which favours
CD. GET3D also performs favourably when compared to 3D-aware image synthesis methods, we
achieve significant improvements over PiGAN [7] and GRAF [52] in terms of all metrics on all
datasets. Our generated shapes also contain more detailed geometry and texture. Compared with
recent work EG3D [8]. We achieve comparable performance on generating 2D images (FID-ori),
while we significantly improve on 3D shape synthesis in terms of FID-3D, which demonstrates the
effectiveness of our model on learning actual 3D geometry and texture.

Since we synthesize textured meshes, we can export our shapes into Blender1. We show rendering
results in Fig. 1 and 5. GET3D is able to generate shapes with diverse and high quality geometry and
topology, very thin structures (motorbikes), as well as complex textures on cars, animals, and houses.

Shape Interpolation GET3D also enables shape interpolation, which can be useful for editing
purposes. We explore the latent space of GET3D in Fig. 6, where we interpolate the latent codes to
generate each shape from left to right. GET3D is able to faithfully generate a smooth and meaningful
transition from one shape to another. We further explore the local latent space by slightly perturbing
the latent codes to a random direction. GET3D produces novel and diverse shapes when applying
local editing in the latent space (Fig. 7).

4.2 Ablations

We ablate our model in two ways: 1) w/ and w/o volume subdivision, 2) training using different
image resolutions. Further ablations are provided in the Appendix C.3.

Class Img Res COV (%, ↑) MMD (↓) FID (↓)
LFD CD LFD CD

Car
1282 9.28 8.25 2224 1.30 39.21
5122 52.32 44.13 1593 0.80 13.19

10242 66.78 58.39 1491 0.71 10.25

Chair
1282 38.25 33.98 3886 5.90 43.04
5122 68.80 69.92 3149 3.90 30.16

10242 69.08 67.87 3167 3.74 23.28

Mbike 5122 68.49 65.75 3421 1.74 74.04
10242 67.12 64.38 3631 1.73 65.60

Animal 5122 77.53 78.65 3828 2.01 29.75
10242 79.78 78.65 3798 2.03 28.33

Table 3: Ablating the image resolution. ↑: higher
is better, ↓: lower is better.

Ablation of Volume Subdivision As shown in
Tbl. 2, volume subdivision significantly improves
the performance on classes with thin structures
(e.g., motorbikes), while not getting gains on other
classes. We hypothesize that the initial tetrahedral
resolution is already sufficient to capture the de-
tailed geometry on Chairs and Cars, and hence the
subdivision cannot provide further improvements.

Ablating Different Image Resolutions We ab-
late the effect of the training image resolution in
Tbl. 3. As expected, increased image resolution

1We use xatlas [61] to get texture coordinates for the extracted mesh, from where we can warp our 3D mesh
into a 2D plane and obtain the corresponding 3D location on the mesh surface for any position on the 2D plane.
We then discretize the 2D plane into an image, and for each pixel, we query the texture field using corresponding
3D location to obtain the RGB color to get the texture map.
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Base Color Roughness Metallic Normal Relight 1 Specular 1 Relight 2 Specular 2

Figure 8: Material generation and relighting. Despite being unsupervised, our model generates
reasonable material properties, and can be realistically rendered with real-world HDR panoramas
(bottom right). Normals are computed from the generated mesh. Note how specular effects change
under two different lighting conditions.

improves the performance in terms of FID and shape quality, as the network can see more details,
which are often not available in the low-resolution images. This corroborates the importance of
training with higher image resolution, which are often hard to make use of for implicit-based methods.

4.3 Applications

4.3.1 Material Generation for View-dependent Lighting Effects

GET3D can easily be extended to also generate surface materials that are directly usable in modern
graphics engines. In particular, we follow the widely used Disney BRDF [6, 29] and describe the
materials in terms of the base color (R3), metallic (R), and roughness (R) properties. As a result, we
repurpouse our texture generator to now output a 5-channel reflectance field (instead of only RGB).
To accommodate differentiable rendering of materials, we adopt an efficient spherical Gaussian
(SG) based deferred rendering pipeline [12]. Specifically, we rasterize the reflectance field into a
G-buffer, and randomly sample an HDR image from a set of real-world outdoor HDR panoramas
Slight = {LSG}K , where LSG ∈ R32×7 is obtained by fitting 32 SG lobes to each panorama. The SG
renderer [12] then uses the camera c to render an RGB image with view-dependent lighting effects,
which we feed into the discriminator during training. Note that GET3D does not require material
supervision during training and learns to generate decomposed materials in an unsupervised manner.

We provide qualitative results of generated surface materials in Fig. 8. Despite unsupervised, GET3D
discovers interesting material decomposition, e.g., the windows are correctly predicted with a smaller
roughness value to be more glossy than the car’s body, and the car’s body is discovered as more
dielectric while the window is more metallic. Generated materials enable us to produce realistic
relighting results, which can account for complex specular effects under different lighting conditions.

4.3.2 Text-Guided 3D Synthesis

Similar to image GANs, GET3D also supports text-guided 3D content synthesis by fine-tuning
a pre-trained model under the guidance of CLIP [51]. Note that our final synthesis result is a
textured 3D mesh. To this end, we follow the dual-generator design from styleGAN-NADA [19],
where a trainable copy Gt and a frozen copy Gf of the pre-trained generator are adopted. During
optimization Gt and Gf both render images from 16 random camera views. Given a text query, we
sample 500 pairs of noise vectors z1 and z2. For each sample, we optimize the parameters of Gt to
minimize the directional CLIP loss [19] (the source text labels are “car”, “animal” and “house” for
the corresponding categories), and select the samples with minimal loss. To accelerate this process,
we first run a small number of optimization steps for the 500 samples, then choose the top 50 samples
with the lowest losses, and run the optimization for 300 steps. The results and comparison against a
SOTA text-driven mesh stylization method, Text2Mesh [39], are provided in Fig. 9. Note that, [39]
requires a mesh of the shape as an input to the method. We provide our generated meshes from the
frozen generator as input meshes to it. Since it needs mesh vertices to be dense to synthesize surface
details with vertex displacements, we further subdivide the input meshes with mid-point subdivision
to make sure each mesh has 50k-150k vertices on average.
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Figure 9: Text-guided 3D synthesis. Note that Text2Mesh [39] requires 3D mesh geometry as input.
To fulfil the requirement, we provide our generated geometry as its input mesh.

5 Conclusion
We introduced GET3D, a novel 3D generative model that is able to synthesize high-quality 3D
textured meshes with arbitrary topology. GET3D is trained using only 2D images as supervision.
We experimentally demonstrated significant improvements on generating 3D shapes over previous
state-of-the-art methods on multiple categories. We hope that this work brings us one step closer to
democratizing 3D content creation using A.I..

Limitations While GET3D makes a significant step towards a practically useful 3D generative
model of 3D textured shapes, it still has some limitations. In particular, we still rely on 2D silhouettes
as well as the knowledge of camera distribution during training. As a consequence, GET3D was
currently only evaluated on synthetic data. A promising extension could use the advances in instance
segmentation and camera pose estimation to mitigate this issue and extend GET3D to real-world
data. GET3D is also trained per-category; extending it to multiple categories in the future, could
help us better represent the inter-category diversity.

Broader Impact We proposed a novel 3D generative model that generates 3D textured meshes,
which can be readily imported into current graphics engines. Our model is able to generate shapes with
arbitrary topology, high quality textures and rich geometric details, paving the path for democratizing
A.I. tool for 3D content creation. As all machine learning models, GET3D is also prone to biases
introduced in the training data. Therefore, an abundance of caution should be applied when dealing
with sensitive applications, such as generating 3D human bodies, as GET3D is not tailored for these
applications. We do not recommend using GET3D if privacy or erroneous recognition could lead to
potential misuse or any other harmful applications. Instead, we do encourage practitioners to carefully
inspect and de-bias the datasets before training our model to depict a fair and wide distribution of
possible skin tones, races or gender identities.

6 Disclosure of Funding

This work was funded by NVIDIA. Jun Gao, Tianchang Shen, Zian Wang and Wenzheng Chen
acknowledge additional revenue in the form of student scholarships from University of Toronto and
the Vector Institute, which are not in direct support of this work.
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