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Abstract

In this paper, we investigate the universal approximation property of deep, narrow
multilayer perceptrons (MLPs) for C1 functions under the Sobolev norm, specif-
ically the W 1,∞ norm. Although the optimal width of deep, narrow MLPs for
approximating continuous functions has been extensively studied, significantly
less is known about the corresponding optimal width for C1 functions. We demon-
strate that the optimal width can be determined in a wide range of cases within
the C1 setting. Our approach consists of two main steps. First, leveraging control
theory, we show that any diffeomorphism can be approximated by deep, narrow
MLPs. Second, using the Borsuk-Ulam theorem and various results from differ-
ential geometry, we prove that the optimal width for approximating arbitrary C1

functions via diffeomorphisms is min(n+m,max(2n+ 1,m)) in certain cases,
including (n,m) = (8, 8) and (16, 8), where n and m denote the input and output
dimensions, respectively. Our results apply to a broad class of activation functions.

1 Introduction

The choice of neural network architecture plays a crucial role in determining performance. However,
in practice, architectural decisions are often made through trial and error. It is therefore important to
provide theoretical guidance on what should be avoided and how to select appropriate width and depth
based on the input space, target function, and specific tasks. The universal approximation property
(UAP) refers to the ability of deep learning models to approximate a given class of functions. Since
deep networks must approximate general functions to perform specific tasks, the UAP has received
considerable attention as a theoretical foundation. While various forms of universal approximation
theorems exist depending on the network type and its characteristics, one actively studied setting is
the universal approximation property of deep, narrow multilayer perceptrons (deep, narrow MLPs),
which reflects the practical scenario where networks are deep but relatively narrow in width.

MLPs with fixed width and arbitrarily large depth exhibit different universal approximation behavior
depending on whether their width exceeds a critical threshold (Johnson, 2018; Kidger & Lyons, 2020).
This threshold is called the minimum width, and numerous studies have investigated upper and lower
bounds for this threshold based on the input dimension n, output dimension m, and the choice of
activation function.

The most intensively studied case involves the approximation of continuous functions under the
uniform norm. Notable results include the upper bound n + m + c(σ), where c(σ) is a constant
depending on the activation function, shown by Hanin & Sellke (2017); Kidger & Lyons (2020).
More recently, Hwang (2023) improved this upper bound to max(2n+ 1, n).
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For lower bounds, Johnson (2018); Cai (2022); Kim et al. (2023) proved that the minimum width must
be at least n+ 1 or m+ 1d<m≤2n, depending on the setting. However, few studies have succeeded
in narrowing the gap between known lower and upper bounds. Among the few, Park et al. (2020);
Hwang (2023) proved optimality in specific cases: the minimum width is 3 for (n,m) = (1, 2) and 4
for (2, 2).

Beyond the uniform norm, there has also been research under other norms. Park et al. (2020)
established the optimal minimum width of deep, narrow MLPs with ReLU activation in the Lp norm.
However, research on general norms beyond the Lp and uniform norms remains limited.

However, there has been a scarce number of papers that study norms involving derivatives of functions
in the setting of deep narrow MLPs. Many deep learning techniques directly penalize the difference
between the derivative of the target function and that of the network. These include Sobolev Training
(Czarnecki et al., 2017), Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019), and
Generative Adversarial Networks with gradient penalty (Gulrajani et al., 2017; Arbel et al., 2018).

In this work, we determine the minimum width required to approximate continuously differentiable
functions in Sobolev spaces. Specifically, we focus on approximation with respect to the W 1,∞ norm.
Compared to the uniform norm, the topology of the Sobolev norm W 1,∞ is finer, enabling tighter
lower bound estimates. For the upper bound, tools from control theory allow us to match the upper
bounds known in the uniform norm setting. Using these ideas, we compute both upper and lower
bounds for approximation in Sobolev spaces. In some cases, the lower bound coincides with the
upper bound, thus identifying the optimal minimum width. This includes interesting cases such as
(8, 8) and (16, 8). The exact pairs to which our result applies can be found in Theorem 5.9.

Our contributions are as follows:

• We show that deep, narrow MLPs can approximate arbitrary diffeomorphisms with respect
to the Sobolev norm W 1,∞. (Theorem 4.1)

• We precisely characterize the additional width required to approximate arbitrary continuously
differentiable functions as compositions of diffeomorphisms and linear transformations.
(Definition 4.3 and Theorem 4.6)

• Using these results, we prove that the known upper bounds n + m and max(2n + 1,m)
under the uniform norm also hold under the Sobolev norm W 1,∞. (Theorem 5.1)

• We prove that these upper bounds are also lower bounds for infinitely many combinations of
n and m, and therefore, these values represent the optimal minimum width in those cases.
(Theorem 5.9)

2 Related Words

In this section, we review previous studies on the universal approximation property (UAP). Cybenko
(1989) proved that a two-layer MLP possesses the UAP in the space of continuous functions. This
result was extended by Leshno et al. (1993) to more general activation functions.

While these early results focus on two-layer networks, subsequent research has investigated the UAP
of deep, narrow MLPs. Hanin & Sellke (2017) established a universal approximation theorem for
deep, narrow MLPs with ReLU activation, providing both lower and upper bounds on the minimum
width. Johnson (2018) showed that a width of at least n+ 1 is required for networks with monotonic
activation functions. Kidger & Lyons (2020) proved that a width of n+m+ 1 suffices for general
non-polynomial activation functions, while n+m+ 2 is sufficient for polynomial activations. Park
et al. (2020) demonstrated that the optimal minimum width is three when n = 1 and m = 2 with
ReLU. Cai (2022) showed that a width of at least max(n,m) is necessary for general activation
functions. Kim et al. (2023) proved a lower bound of m+ 1n<m≤2m. Hwang (2023) established an
upper bound of max(2n+ 1,m) for networks using the Leaky-ReLU activation and showed that the
optimal minimum width is four when n = m = 2.

There have also been investigations of the UAP under norms other than the uniform norm. Park et al.
(2020) showed that the optimal minimum width is max(n + 1,m) in the Lp(Rn,Rm) space for
ReLU networks. Additionally, Kim et al. (2024) demonstrated that in the Lp([0, 1]

n,Rm) setting, the
optimal minimum width becomes min(n,m, 2).
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In addition to studies on MLPs, there has been significant progress in understanding the universal
approximation property of residual networks (ResNets). Lin & Jegelka (2018) demonstrated that
even ResNets with one-neuron hidden layers can serve as universal approximators, highlighting the
expressive power that arises from their residual structure. Aizawa et al. (2020) extended this line of
research by analyzing both ResNets and ODENets, providing rigorous mathematical results along
with supporting numerical experiments. More recently, Tabuada & Gharesifard (2022) investigated
ResNets from a control-theoretic perspective.

Beyond function value approximation, some universal approximation theorems also consider deriva-
tives. Li (1996) proved that a two-layer MLP can approximate arbitrary derivatives of a function,
provided the activation function is sufficiently smooth.

However, these results do not cover the Sobolev norm in the context of deep narrow MLPs. In this
paper, we provide a partial answer to this open question by establishing results under the W 1,∞ norm.

3 Notation and Definition

In this section, we introduce the notations and definitions used throughout this paper: N denotes the
set of natural numbers, and N0 = N ∪ {0}. Bn(r) denotes the open ball in Rn centered at the origin
with radius r. For a set A ⊂ Rd, A denotes the closure of A with respect to the Euclidean norm.

For two open sets V ⊂ U ⊂ Rd, we say that V is a precompact subset of U if V ⊂ Rd is compact
and V ⊂ U . We denote this as V ⋐ U . For sets A,B ⊂ Rd, the Minkowski sum is defined as
A+B = {x+ y ∈ Rd | x ∈ A, y ∈ B}.

For a d-dimensional vector x ∈ Rd, we denote by xi the i-th component of x; in other words,
x = (x1, x2, . . . , xd). Similarly, for a function f : X → Rn, we write fi to denote the i-th component
function, so that f(x) = (f1(x), . . . , fn(x)). We use xi:j to represent the (j − i+ 1)-dimensional
subvector (xi, xi+1, . . . , xj). For vectors x, y ∈ Rd, the dot product is denoted by x · y ∈ R and
defined as x · y :=

∑d
i=1 xiyi. For vectors x = (x1, . . . , xd1

) ∈ Rd1 and y = (y1, . . . , yd2
) ∈ Rd2 ,

we define the operation ⊕ as x⊕ y := (x1, . . . , xd1
, y1, . . . , yd2

) ∈ Rd1+d2 . Similarly, for functions
f : X → Rd1 and g : X → Rd2 , we define f ⊕ g : X → Rd1+d2 by (f ⊕ g)(x) := f(x)⊕ g(x).

Let Affn,m denote the set of affine transformations from Rn to Rm. For a function f : X → Y
and a subset X ′ ⊂ X , we write f |X′ to denote the restriction of f to the domain X ′. For r ∈ N0,
the space Cr(X;Y ) denotes the set of functions that are r-times continuously differentiable. For
U ⊂ Rn and r = (r1, . . . , rn) ∈ Nn

0 , the space Cr(U ;Rm) consists of functions f such that the
mixed partial derivative ∂r1+···+rnf

∂x
r1
1 ...∂xrn

n
exists and is continuous. For k ∈ N0 and r ∈ [0, 1], the space

Ck,r(U ;Rm) consists of functions whose k-th order partial derivatives are Hölder continuous with
exponent r. In particular, C0,1(U ;Rm) denotes the space of Lipschitz continuous functions. We
define C0,1

loc (U ;Rm) as the space of locally Lipschitz continuous functions: that is, f ∈ C0,1
loc (U ;Rm)

if for every precompact set V ⋐ U , there exists a constant LV such that ∥f(x)−f(y)∥ ≤ LV ∥x−y∥
for all x, y ∈ V . We denote the Lipschitz constant of f on V by LV (f).

3.1 Sobolev Space

We define the Sobolev space as follows: We denote the weak derivative of u by Du.
Definition 3.1 (Sobolev Space). Let n, k ∈ N, p ∈ N ∪ {∞}, and let U ⊂ Rn be an open set. The
Sobolev space W k,p(U) is defined by

W k,p(U) := {u ∈ Lp(U) | Dαu ∈ Lp(U) for all multi-indices α with |α| ≤ k} , (1)

equipped with the norm
∥u∥Wk,p(U) :=

∑
|α|≤k

∥Dαu∥Lp(U). (2)

The vector-valued Sobolev space W k,p(U ;Rm) for m, k ∈ N is defined as

W k,p(U ;Rm) :=
{
u = (u1, . . . , um)

∣∣ ui ∈W k,p(U)
}
, (3)
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with the norm

∥u∥Wk,p(U ;Rm) :=

m∑
i=1

∥ui∥Wk,p(U). (4)

More specifically, we focus on the following local Sobolev space, considering compact domains:

Definition 3.2 (Local Sobolev Space). Let U ⊂ Rm, r ∈ N0, and p ∈ [1,∞]. The local Sobolev
space W r,p

loc (U ;Rn) is defined as the projective limit:

W r,p
loc (U ;Rn) := lim←−

V⋐U

W r,p(V ;Rn), (5)

where the right-hand side is given explicitly as{
(fV )V ∈

∏
V⋐U

W r,p(V ;Rn)

∣∣∣∣∣ fV1
|V2

= fV2
for all V2 ⊂ V1

}
. (6)

The local Sobolev space is equipped with the relative topology inherited from the product topology of
the spaces W r,p(V ;Rn).

In this paper, we focus on the Sobolev norm W 1,∞. It is well known that W 1,∞
loc = C0,1

loc . See
Theorem 4.5, p.155 in Evans (2018) for details. It is also known that for convex domains, the
Sobolev and Lipschitz spaces coincide (Theorem 4.1 in Heinonen (2005)): if V ⊂ Rd is convex, then
W 1,∞(V ) = C0,1(V ). Moreover, there exist constants C1, C2 > 0 depending only on d and n such
that (see Theorem 4, p.279 and Theorem 6, p.281 in Evans (2022)):

C1∥f∥W 1,∞(V ;Rn) ≤ LV (f) + ∥f∥L∞(V ) ≤ C2∥f∥W 1,∞(V ;Rn). (7)

For convenience, we will always take the continuous representative among functions that differ only
on a set of Lebesgue measure zero.

For a set of functions A ⊂W 1,p(U ;Rm), we denote by AW 1,∞

= A the closure of A with respect
to the norm ∥ · ∥W 1,p(U ;Rm). Similarly, for a set of functions A ⊂ W 1,p

loc (U ;Rm), we denote the

closure in the local Sobolev topology by AW 1,∞
loc = Aloc

.

3.2 Activation Function

We adopt the commonly used condition on activation functions, as proposed by Kidger & Lyons
(2020).

Condition 1. There exist constants α ∈ R and ϵ ∈ R+ such that a nonlinear activation function σ is
a C1 function on the interval (α− ϵ, α+ ϵ), and σ′(α) ̸= 0.

The ReLU activation function is defined as

ReLU(x) :=

{
x if x ≥ 0,

0 if x < 0
(8)

and the Leaky-ReLU activation function is defined as

LRβ(x) :=

{
x if x ≥ 0,

βx if x < 0
, (9)

We consider MLPs with sets of activation functions. For example, MLPs with the Leaky-ReLU
activation function select an activation function from the following set at each layer:

LR := {LRβ | β ∈ R+} . (10)

We use the symbols σ and Σ to denote an activation function and a set of activation functions,
respectively. We define Leaky-ReLU-like activation functions as follows:
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Definition 3.3 (Leaky-ReLU-like). A set of activation functions Σ is called Leaky-ReLU-like if and
only if for each β ∈ R+, there exists a C1 activation function σβ ∈ Σ such that

lim
x→∞

σβ(x)

x
= 1, lim

x→−∞

σβ(x)

x
= β, (11)

and
sup
x∈R
|Dσβ(x)− 1| −−−→

β→1
0. (12)

We also denote the identity function by id:

id(x) := x. (13)

Activation functions applied to vectors operate componentwise. For a set of activation functions Σ,
define Σd as

Σd :=
{
f : Rd → Rd

∣∣ fi ∈ Σ
}
. (14)

3.3 Deep Narrow MLP

We define the set of deep, narrow MLPs with a set of activation functions Σ, arbitrary depth, input
dimension n, output dimension m, and at most w intermediate dimensions as ∆Σ

n,m,w. (The exact
definition is provided in Appendix A.1.) For a singleton activation function σ, we define:

∆σ
n,m,w := ∆{σ}

n,m,w. (15)

For natural numbers n ≥ m ∈ N, we define the natural projection pn,m : Rn → Rm and the
zero-padding inclusion qm,n : Rm → Rn as:

pn,m(x1, . . . , xn) := (x1, . . . , xm), (16)

qm,n(x1, . . . , xm) := (x1, . . . , xm, 0, . . . , 0). (17)

Any function f ∈ ∆Σ
n,m,w can be decomposed as:

f = pw,n ◦ g ◦ qn,w, (18)

where g ∈ ∆Σ
w,w,w. Note that if g1, g2 ∈ ∆Σ

w,w,w, then their composition g1 ◦ g2 also belongs to
∆Σ

w,w,w.

From this point on, we will use the notation σ to refer to either a single activation function or a set of
activation functions Σ, depending on the context.

3.4 Subsets of Diffeomorphisms

We define the sets of diffeomorphisms. For definitions of concepts from differential geometry, see
Appendix A.2.
Definition 3.4 (Diffeomorphism:Dr(U)). Let U ⊂ Rd be an open subset, and let r be a non-negative
integer or infinity. Then Dr(U) denotes the set of Cr-diffeomorphisms from U to Rd.

4 Universal Approximation

4.1 Problem Formulation

Our primary goal is to identify the minimum width wW 1,∞

min ∈ N such that any continuously differen-
tiable function f ∈ C1(Rn;Rm) can be approximated by elements of ∆σ

n,m,wW1,∞
min

in the topology

of W 1,∞
loc (Rn;Rm). In other words, our aim is to determine the value of wW 1,∞

min (n,m, σ) such that

wW 1,∞

min (n,m, σ) := min

{
l ∈ N

∣∣∣∣C1(Rn;Rm) ⊂ ∆σ
n,m,l

W 1,∞
loc

}
. (19)

wW 1,∞

min (n,m, σ) denotes the minimum width for which MLPs of this width and arbitrary depth can
approximate C1 functions to any accuracy in the W 1,∞ norm.
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4.2 Diffeomorphisms and Continuously Differentiable Functions

Our proof strategy is divided into two parts. First, we approximate a diffeomorphism using deep
narrow MLPs with a small additional width. Next, we show that any continuously differentiable
function can be approximated by a composition of affine transformations and diffeomorphisms, and
we rigorously estimate the required width. In this subsection, we aim to prove the following theorem,
which asserts that a diffeomorphism can be approximated by deep narrow MLPs.
Theorem 4.1. Let σ be one of a non-polynomial C1,1-function, LR, ReLU, or Leaky-ReLU-like
activation functions. Then, for any natural number d ∈ N, the following relation holds:

D1(Rd) ⊂ ∆σ
d,d,d+α(σ)

loc
, (20)

where

α(σ) =

{
0 if σ = LR or σ is Leaky-ReLU-like
1 if σ = ReLU or σ is a non-polynomial C1,1-function

. (21)

The theorem states that deep, narrow MLPs with a small additional width can approximate arbitrary
diffeomorphisms. The proof relies on techniques from control theory. Approximating an entire
diffeomorphism directly using a neural network is challenging. To address this, we interpret a
diffeomorphism as the solution of an ordinary differential equation evolving over time. In other words,
the existence of a diffeomorphism implies the existence of a continuous flow connecting the identity
map to the diffeomorphism. The direction and magnitude of this flow are determined by a vector field.
The problem then reduces to approximating this continuous flow step by step, which is equivalent
to approximating a vector field. Deep, narrow MLPs can approximate such flows over sufficiently
small time intervals by leveraging the universal approximation property. Then, by approximating the
flow generated by this two-layer MLP using a deep narrow MLP, we complete the argument. The full
proof is provided in Appendix C.1.

Now, we introduce a quantity Ω(n,m) such that any continuously differentiable function from [0, 1]n

to Rm can be approximated by a composition of affine transformations and Ω(n,m)-dimensional
diffeomorphisms. We further show that this width is optimal. To this end, we begin with the following
lemma.
Lemma 4.2 (Theorem C of Palais (1960)). Let n,m ∈ N with n ≤ m, and let f : K = [0, 1]n → Rm

be a smooth embedding. Then, there exists a smooth diffeomorphism F : Rm → Rm such that the
following equation holds:

F ◦ qn,m = f. (22)

The lemma implies that any smooth embedding can be decomposed into an affine transformation
followed by a diffeomorphism. Now, let Emb(X,Y ) denote the set of smooth embeddings from X
to Y . We define the quantity Ω(n,m) as follows:
Definition 4.3 (Ω(n,m)).

Ω(n,m) := min
{
l ∈ N0

∣∣∣pl,m (
Emb([0, 1]n,Rl)

)
= C1([0, 1]n;Rm)

}
, (23)

where the closure is taken with respect to the C1-norm.

Using the lemma above and the definition of Ω(n,m), we state the following theorem:
Theorem 4.4. Let σ be one of a non-polynomial C1,1-function, LR, ReLU, or Leaky-ReLU-like
activation functions. Then, for any natural numbers n and m, the following relation holds:

C1(Rn;Rm) ⊂ ∆σ
n,m,Ω(n,m)+α(σ)

loc
, (24)

where

α(σ) =

{
0 if σ = LR or σ is Leaky-ReLU-like
1 if σ = ReLU or σ is a non-polynomial C1,1-function

. (25)

The proof of the theorem is provided in Appendix D.1. The preceding theorem shows that Ω(n,m) is
a sufficient width for approximating functions with n-dimensional input and m-dimensional output.
Conversely, the following proposition demonstrates that Ω(n,m) is also a necessary width for such
approximation.

6



Proposition 4.5. Let σ be a set of non-decreasing, C1 activation functions. Then, for natural numbers
n and m, the following relation holds:

C1(Rn;Rm) ̸⊂ ∆σ
n,m,Ω(n,m)−1

loc
. (26)

The proof of this proposition is provided in Appendix D.2. By combining the previous theorems
with this proposition, we derive the following result. This theorem demonstrates that the purely
geometrically defined quantity Ω(n,m) has a fundamental connection to the minimum width of deep
narrow MLPs.

Theorem 4.6. The following relation holds:

wW 1,∞

min (n,m, σ) = Ω(n,m) (27)

for a Leaky-ReLU-like σ in which every element is increasing, and

Ω(n,m) ≤ wW 1,∞

min (n,m, σ) ≤ Ω(n,m) + 1, (28)

for a set of C1,1 increasing activation functions σ.

5 Calculation of Ω(n,m)

In the previous section, we showed that Ω(n,m) nearly determines the minimum width required for
universal approximation. In this section, we provide general bounds for Ω(n,m) and compute exact
values for specific cases.

5.1 Upper Bound of Ω(n,m)

We begin by establishing the following general upper bound.

Theorem 5.1. The following relation holds:

Ω(n,m) ≤ min(n+m,max(2n+ 1,m)). (29)

Proof. The inequality Ω(n,m) ≤ n+m follows directly from the definition of Ω(n,m). Ω(n,m) ≤
max (2n+ 1,m) is by Lemma 5.2.

Lemma 5.2. Consider natural numbers n and m where m > 2n. Let f ∈ C1(Rn;Rm) be a
continuously differentiable function. Then, for a bounded open set U ⊂ Rn and a positive number
ϵ ∈ R+, there exists a smooth embedding g : U → Rm such that

∥f − g∥W 1,∞(U,Rm) < ϵ. (30)

Proof. This is a direct consequence of the transversality theorem. (See Chapter 3, Theorem 2.1 of
Hirsch (2012) for details)

In some cases, we can improve the general bound established above.

Lemma 5.3. For even k, the following eqaution holds:

Ω(k, 2k − 1) = 2k. (31)

Proof. By Kim et al. (2023), we have Ω(k, 2k − 1) ≥ 2k. Thus, it suffices to prove that Ω(k, 2k −
1) ≤ 2k. As immersions are dense in C1(Rk,R2k−1), it is enough to approximate an immersion
f . By Corollary 3.2 of Lashof & Smale (1959), there exists a smooth embedding g such that
∥p2k,2k−1 ◦ g− f∥W 1,∞(U ;Rm) < ϵ. Note that while the original result is stated for the uniform norm,
the same proof applies directly in the C1 norm setting.
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5.2 Lower Bound of Ω(n,m)

In this subsection, we present a lower bound for certain cases, which coincides with the upper bound
established in the previous section, thereby yielding the optimal minimum width. To prove the lower
bound, we require an argument of the following form: Given a function f : Rn → Rm, there exists
ϵ > 0 such that if the codomain dimension of another function g is small, then the concatenation
f ⊕ g cannot be an embedding. To this end, we construct a function f whose self-intersection is
transversal and has the structure of a sphere Sr. If all antipodal points on the sphere are mapped to
the same value by f , then we can apply the Borsuk–Ulam theorem.
Lemma 5.4 (Borsuk–Ulam Theorem). Let h : Sn → Rn be a continuous function. Then there exists
a point x ∈ Sn such that

h(x) = h(−x). (32)

The Borsuk–Ulam theorem states that every continuous map from an n-dimensional sphere to
Rn maps some pair of antipodal points to the same point. Now, suppose we have an embedding
Sr ↪→ Rn and a map f such that f(x) = f(−x) for all antipodal points x ∈ Sr. Then, for any
function g : Rr → Rr, there exists a pair of antipodal points on Sr that are mapped to the same value
by g. Therefore, the map G = f ⊕ g cannot be injective, and hence cannot be an embedding. This
leads to the conclusion Ω(n,m) ≥ m+ r + 1.

The difficulty, however, lies in the fact that we must consider a map G such that ∥pm+r,n ◦G− f∥ is
small, rather than requiring exact equality pm+r,n ◦G = f . The following lemma guarantees that
the diffeomorphic structure of the self-intersection is preserved under small perturbations in the C1

norm.
Lemma 5.5 (Ehresmann’s Lemma for Intersection). For n,m ∈ N with 2n > m, consider a
precompact set U ⊂ Rn and a C1 function f : U → Rm in transversal position. Then there exists
ϵ > 0 such that the following holds: Consider arbitrary g ∈ C1(U ;Rm) satisfying

∥f − g∥W 1,∞(U ;Rm) < ϵ. (33)

Define the diagonal ∆ of U × U as

∆ := {(x, x) ∈ U × U | x ∈ U}. (34)

Define f̃ : U × U −∆→ Rm as

f̃(x, y) := f(x)− f(y). (35)

Similarly, define g̃ as
g̃(x, y) := g(x)− g(y). (36)

Then, there exists a C1 diffeomorphism Φ : f̃−1(0)→ g̃−1(0) such that

Φ(x, y) = T (Φ(y, x)), (37)

where T denotes the involution (x, y) 7→ (y, x).

The proof of Lemma 5.5 is provided in Appendix E.1. Now, the only remaining task is to construct a
function with such a self-intersection structure. The following two lemmas provide results for specific
cases.
Lemma 5.6. Assume that there exists a submersion f : RPn−1× (−1, 1)→ Rm. Then, the following
relation holds:

Ω(n,m) = n+m. (38)

Proof. Let f : RPn−1 × (−1, 1) → Rm be a submersion. Then, there exists a lifting f̃ : Sn−1 ×
(−1, 1)→ Rm such that for a canonical two-to-one covering p : Sn−1×(−1, 1)→ RPn−1×(−1, 1),
we have p ◦ f̃ = f . Then, as all antipodal points have the same f̃ values and the intersection is
transversal, it follows from the previous arguments that Ω(n,m) ≥ n + m. This completes the
proof.

Lemma 5.7 (Projective Space Submersion Lemma). For n ∈ N, consider a, b, c ∈ N0 such that
n+ 1 = 24a+b × c, where 0 ≤ b ≤ 3 and c is an odd number. Then, for any natural number m ∈ N
satisfying m ≤ 8a+ 2b, RPn × (−1, 1) can be submerged into Rm.
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Proof. By Theorem B of Phillips (1967), there exists a submersion M → Rm if and only if there
exists a section in Fm(M) where Fm(M) is the bundle of m-frames tangent to M . This condition
is equivalent to the existence of m linearly independent vector fields. By Theorem 1.1 of Davis
(2012), the maximum number of linearly independent vector fields on RPn equals 8a+2b − 1 where
n+ 1 = 24a+b × c for 0 ≤ b ≤ 3 and an odd number c ∈ N. Therefore, RPn × (−ϵ, ϵ) has 8a+ 2b

independent vector fields, and thus can be submerged into R8a+2b .

Lemma 5.8 (Theorem 3 of Miller (1969)). Given n and m, 3n+ 1 < 2m ≤ 4n. Then if n+ 1 ∼=
0 (modc2n−m) there exists a transversal immersion Sn → Rm+1 with self-intersection RP2n−m−1.
Here, cm is defined as

cm =


24r if m = 8r,

24r+1 if m = 8r + 1,

24r+2 if m = 8r + 2 or 8r + 3,

24r+3 if m = 8r + 4, 8r + 5, 8r + 6, or 8r + 7.

(39)

By combining all the results, we obtain the following theorem.

Theorem 5.9. If 24a+b|n for a, b ∈ N0 satisfying 0 ≤ b ≤ 3 and m ≤ 8a+ 2b,

Ω(n,m) = m+ n. (40)

If 3n+1
2 < m ≤ 2n and n+ 1 ∼= 0 (modc2n−m),

Ω(n,m) = 2n+ 1. (41)

If 2n+ 1 ≤ m,
Ω(n,m) = m. (42)

Remark 5.10. At first glance, the dependence of the optimal minimum width on the parity of the
input and output dimensions may appear somewhat artificial. However, Lemma 5.3 and Theorem 5.9
together yield the relation

Ω(k, 2k − 1) =

{
2k, if k is even,
2k + 1, if k is odd,

(43)

which provides strong evidence that this parity dependence may be a fundamental property.

6 Limitation

Although our results yield optimal values in many cases—such as Ω(8, 8) = 16 and Ω(16, 8) =
24—they do not apply to all combinations of n and m. Our analysis is asymptotically valid primarily
when m is either much smaller than n or significantly larger, specifically in the regime where
3n < 2m. Developing a theoretical framework that addresses the intermediate regime not covered by
our theory would be a compelling direction for future research. Furthermore, determining the exact
lower bound in cases where n+ 1 is not divisible by a power of 2 remains an open and intriguing
problem.

Also, our analysis is non-constructive and asymptotic in nature. In particular, we do not provide
explicit rates of approximation or quantitative bounds on the depth required for a network to achieve
a given precision. As a result, our results establish existence guarantees but leave open the practical
question of how deep a network must be to approximate a target function within a prescribed accuracy.
This limitation stands in contrast to constructive approximation results that do provide explicit
dependence on approximation error.

Furthermore, our work does not characterize the role of the smoothness of the target function in
the approximation behavior. It is natural to expect that smoother functions should be easier to
approximate, and indeed prior studies have demonstrated this by analyzing approximation rates
in terms of Sobolev smoothness classes (Schmidt-Hieber, 2020). Incorporating such smoothness-
dependent considerations into the analysis of deep, narrow networks remains an important direction
for future work.
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7 Conclusion

In this study, we investigated the minimum width of deep narrow MLPs required to approximate
continuously differentiable functions under the Sobolev norm. Our analysis established optimality
in a broad range of cases. However, our proof techniques rely on the robustness of the topological
structure under small perturbations in the derivatives of the target functions and therefore do not
directly extend to the uniform norm. Nonetheless, the structure of the proofs suggests that similar
bounds may still hold under the uniform norm. Developing more refined algebraic topological tools
to rigorously bridge this gap presents an interesting direction for future research.
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A Definitions and Notations

A.1 Sets of Neural Networks

For a set of activation functions Σ, the set of MLPs denoted by NΣ
d0,d1,...,dN

is defined as:

NΣ
d0,d1,...,dN

:=
{
f : Rd0 → RdN

∣∣ Wi ∈ Affdi−1,di
, gi ∈ Σdi , f = WN ◦ gN−1 ◦ · · · ◦ g1 ◦W1

}
.

Note that, in general, an MLP can have different activation functions in each layer. If the set Σ is a
singleton, i.e., Σ = {σ}, we omit the set notation and simply write:

N σ
d0,d1,...,dN

:= N {σ}
d0,d1,...,dN

. (44)

We define the set of deep, narrow MLPs with input dimension n, output dimension m, and at most w
intermediate dimensions as:

∆Σ
n,m,w :=

⋃
N∈N0

⋃
1≤d1,...,dN≤w

NΣ
n,d1,...,dN ,m. (45)

A.2 Some Definitions from Differential Geometry

Definition A.1 (Diffeomorphism). For natural numbers d, r ∈ N and open sets U1, U2 ⊂ Rd, a
function f : U1 → U2 is a Cr-diffeomorphism if and only if it is bijective, r-times continuously
differentiable, and its inverse f−1 is r-times continuously differentiable.
Definition A.2 (Immersion). Let M and N be smooth manifolds, and let f : M → N be a C1-map.
The map f is called an immersion if for every point p ∈M , the differential

dfp : TpM → Tf(p)N (46)

is injective.
Definition A.3 (Submersion). Let M and N be smooth manifolds, and let f : M → N be a C1-map.
The map f is called a submersion if, for every point p ∈M , the differential

dfp : TpM → Tf(p)N (47)

is surjective.
Definition A.4 (Embedding). Let M and N be smooth manifolds, and let f : M → N be a C1-map.
The map f is called an embedding if it is an immersion and a homeomorphism onto its image f(M),
where f(M) is equipped with the subspace topology from N .
Definition A.5 (Transversality). Let M,N,P be smooth manifolds and let f : M → P , g : N → P
be smooth maps. We say that f and g are transverse (written f ⋔ g) if for every pair of points p ∈M ,
q ∈ N with f(p) = g(q), we have

dfp(TpM) + dgq(TqN) = Tf(p)P. (48)

That is, the images of the differentials at p and q together span the tangent space of P at f(p) = g(q).

B Practical Lemmas

In this section, we present several useful lemmas that are employed throughout the paper. The
composition of functions is addressed by the following lemma.

Lemma B.1. Let fi → f in the W 1,∞
loc (Rm;Rl) topology and gi → g in the W 1,∞

loc (Rn;Rm)

topology. Then fi ◦ gi → f ◦ g in the W 1,∞
loc (Rn;Rl) topology.

Proof. It is sufficient to prove that, for each V ⋐ Rn, the Lipschitz constant of f ◦ g − fi ◦ gi on V
converges to zero as i increases. Choose a sufficiently large number i0 such that for any i ≥ i0, we
have ∥g − gi∥L∞(V ;Rm) < 1. Then,

LV (f ◦ g − fi ◦ gi) ≤ LV (f ◦ g − f ◦ gi) + LV (f ◦ gi − fi ◦ gi)

≤ Lg(V )+Bm(1)(f)LV (g − gi) + Lg(V )+Bm(1)(f − fi)
i→∞−−−→ 0, (49)

where g(V ) +Bn(1) is the Minkowski sums.
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This lemma implies that if each function can be approximated by neural networks in the local Sobolev
topology, then their composition can also be approximated in the same topology.

We can apply a partial activation function using the following lemma.
Lemma B.2. For natural numbers n,m,w ∈ N, and an activation function σ satisfying Condition 1,
the following relation holds:

∆σ
n,m,w

loc ⊃ ∆{σ,id}
n,m,w. (50)

Proof. For each f ∈ ∆
{σ,id}
n,m,w, f can be represented as:

f = pw,m ◦ g ◦ qn,w, (51)

where g ∈ ∆
{σ,id}
w,w,w. By the definition of ∆{σ,id}

w,w,w, there exists a natural number N ∈ N such that the
following equation holds:

g = WN ◦ gN−1 ◦ · · · ◦ g1 ◦W1, (52)

where Wi ∈ Affw,w, gi ∈ {σ, id}w for each i ∈ [1, N ]N. By Lemma B.1, if Wi, gi ∈ ∆σ
w,w,w

loc
for

each i ∈ [1, N ]N, the composition g is also in ∆σ
w,w,w

loc
, again, leading to f ∈ ∆σ

n,m,w

loc
. Obviously,

Wi ∈ ∆σ
w,w,w

loc
, and it is sufficient to prove that ∆σ

w,w,w

loc ⊃ {σ, id}w. For g ∈ {σ, id}w, consider
I ⊂ [1, w]N such that gi(x) = σ(x) if i ∈ I and gi(x) = x if i /∈ I . By Condition 1, there exists
α ∈ R and ϵ ∈ R+ such that σ′(α) ̸= 0 and σ is C1 function in (α − ϵ, α + ϵ). For an arbitrary
precompact set V ⋐ R and sufficiently large M so that α+ x

M ⊂ (α− ϵ, α+ ϵ) for any x ∈ V , the
following relation holds:∥∥∥∥∥M

(
σ
(
α+ x

M

)
− σ(α)

)
σ′(α)

− x

∥∥∥∥∥
W 1,∞(V )

M→∞−−−−→ 0. (53)

Because
M(σ(α+ x

M )−σ(α))
σ′(α) ∈ N σ

1,1,1, the identity function x 7→ x ∈ N σ
1,1,1

loc
. Define fi ∈ N σ

1,1,1
as

fi(x) =

{
σ(x) if x ∈ I
M(σ(α+ x

M )−σ(α))
σ′(α) if x /∈ I

, (54)

and concatenation fM ∈ N σ
w,w,w as fM (x) := (f1(x1), . . . , fw(xw)). Then, for arbitrary precom-

pact set V ⋐ Rw,
∥g − fM∥W 1,∞(V ;Rw)

M→∞−−−−→ 0. (55)

Therefore, g ∈ ∆σ
w,w,w

loc
, and this completes the proof.

C Proof of Theorem 4.1

C.1 Main Proof of Theorem 4.1

The theorem is proved using the following lemma, which states that any continuously differentiable
function can be approximated by a two-layer neural network.
Lemma C.1 (Theorem 2.1. of Li (1996)). Let K be a compact subset of Rs, s ≥ 1, and f ∈
Cm1(K)∩· · ·∩Cmq (K), where mi ∈ Ns

0 for 1 ≤ i ≤ q. Also, let σ be any non-polynomial function
in Cn(R), where n = max {|mi| : 1 ≤ i ≤ q}. Then for any ϵ > 0, there is a network

N(x) =

v∑
i=0

ciσ (wi · x+ θi) , x ∈ Rs, (56)

where ci ∈ R,wi ∈ Rs, and θi ∈ R, 0 ≤ i ≤ v, such that∥∥Dkf −DkN
∥∥
L∞(K)

< ϵ, k ∈ Ns
0,k ≤mi, for some i, 1 ≤ i ≤ q (57)

The following two lemmas state that any arbitrary increasing function can be approximated using
Leaky-ReLU and Leaky-ReLU-like activation functions, respectively.
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Lemma C.2 (Increasing Functions to Leaky-ReLU). For any increasing C1 function f ,

f ∈ ∆LR
1,1,1

loc
. (58)

The proof of Lemma C.2 is provided in Appendix C.2.

Lemma C.3. Let Σ = {σβ | β ∈ R+} be a set of Leaky-ReLU-like activation functions. Then, for
any increasing C1 function f ,

f ∈ ∆Σ
1,1,1

loc
. (59)

The proof of Lemma C.3 is provided in Appendix C.3. The two lemmas yield the following corollary.

Corollary C.4 (Generalization of Activation). For a natural number d ∈ N and any increasing, C1

activation function ρ, the following relation holds:

∆ρ
d,d,d ⊂ ∆σ

d,d,d

loc
, (60)

where σ is the Leaky-ReLU or a set of Leaky-ReLU-like activation functions.

The following lemma is a technical result used to approximate a vector field with deep narrow MLPs.

Lemma C.5. For t, b ∈ R, and w ∈ Rd, define ft : Rd → Rd as:

ft : x = (x1, . . . , xd) 7→ (x1, . . . , xd−1, xd + t tanh(w · x+ b)), (61)

Let σ be the Leaky-ReLU or a set of Leaky-ReLU-like activation functions. Then, there exists a
positive real number δ ∈ R+ such that, for |t| < δ, the following relation holds:

ft ∈ ∆σ
d,d,d

loc
. (62)

The proof of Lemma C.5 is provided in Appendix C.4. The following lemma states that any smooth
diffeomorphism can be approximated by flows generated by (time-dependent) vector fields. The
definition of a vector field is as follows:

Definition C.6 (Flow of a Vector Field). Let f : Rd × R → Rd be a function that is Lipschitz
continuous with respect to x and a piecewise continuous with respect to t. For each f ∈ A, consider
a ODE system

ẋ(t) = f(x(t), t), (63)

where x : R→ Rd. We define a flow map ϕt,s
f : Rd → Rd, corresponding to f as follows:

ϕt,s
f : x(t) 7→ x(t+ s). (64)

For t = 0, we omit t and just denote it as ϕs
f :

ϕs
f = ϕ0,s

f (65)

We define the maximal domainMf ⊂ Rd × R as the set which satisfies (x, t) ∈Mf if and only if
the solution ϕt

f (x) is well-defined. It is well known thatMf is an open set. It is also well known that
if f is a Ck-function with respect to x and t, then ϕt

f (x) is also Ck-function with respect to x and t.
(See Theorem B.41 of Biagi & Bonfiglioli (2019) for example.)

When we consider Df , we only consider a Jacobian with respect to x:

Df(x, t) := Dxf(x, t). (66)

Lemma C.7 (Theorem 5 of Caponigro (2011)). Any orientation preserving diffeomorphism can be
represented by a flow map: For any diffeomorphism f ∈ D∞(Rd) with det(Df) > 0, there exists a
flow map ϕt

F generated by a ODE system ẋ = F (x, t) with a smooth vector field F : Rd × R→ Rd

such that the following equation holds:
f = ϕ1

F . (67)

If two vector fields are close, then the flows they generate are also close.
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Lemma C.8. Consider C1,1 functions f1, f2 : Rd × R→ Rd. Define two ODE systems ẋ = fi(x, t)
for i = 1, 2 and let ϕt

i := ϕt
fi

be a flow map defined by each fi. Assume that V × [0, τ ] ⊂Mf1 for a

precompact set V ⋐ Rd and τ ∈ R+. Define Ṽ as

Ṽ :=
{
ϕt
1(x) ∈ Rd | t ∈ [0, τ ], x ∈ V

}
+Bd(1). (68)

Then, for any ϵ ∈ R+, there exists a positive number δ ∈ (0, 1) such that if

∥f1(·, t)− f2(·, t)∥W 1,∞(Ṽ ;Rd) < δ, (69)

for all t ∈ [0, τ ], then,
∥ϕτ

1 − ϕτ
2∥W 1,∞(V ;Rd) < ϵ. (70)

The proof of Lemma C.8 is provided in Appendix C.5.

Now, we approximate a two-layered-MLP-like vector field using deep narrow MLPs.
Lemma C.9. For i ∈ [1, N ]N and C1,1-functions vi : Rd × R→ Rd, let

v(x, t) :=

N∑
i=1

vi(x, t). (71)

For a real number τ ∈ R+ and a precompact set U ⋐ Rd, assume that U × [0, τ ] ⊂Mf .

Consider n ∈ N, tk := kτ
n , ∆t := τ

n ,

fi,k : x 7→ x+∆tvi(x, tk−1), (72)

Tk := fN,k ◦ fN−1,k ◦ · · · ◦ f1,k, (73)
and

Sk := Tk ◦ · · · ◦ T1. (74)
Then, there exists a natural number n0 ∈ N such that if n ≥ n0, the following relation holds:

∥ϕτ
v − Sn∥W 1,∞(V ;Rd) < ϵ. (75)

The proof of Lemma C.9 is provided in Appendix C.6.

By combining all the lemmas, we prove the theorem.

Proof of Theorem 4.1. By Theorem 2.7, p.50 in Hirsch (2012), we only have to consider D∞(Rd).
If f is an orientation reversing diffeomorphism, g ◦ f is orientation preserving where g ∈ ∆LR

d,d,d is
defined as:

g : (x1, . . . , xd) 7→ (−x1, x2, x3, . . . , xd). (76)

Therefore, we only consider an orientation preserving diffeomorphism f ∈ D∞(Rd). Consider an
arbitrary precompact set V ⋐ Rd and ϵ ∈ R+. By Lemma C.7, there exists an ODE flow induced by
F ∈ C∞(Rd × R;Rd) such that

f = ϕ1
F . (77)

By Lemma C.8, there exists δ ∈ R+ and Ṽ ⋐ Rd such that if ∥F (·, t) − F2(·, t)∥W 1,∞(Ṽ ;Rd) < δ

for all t ∈ [0, 1], then, ∥ϕ1
F − ϕ1

F2
∥W 1,∞(V ;Rd) < ϵ. Consider a compact set K such that Ṽ ⊂ K. By

Lemma C.1, there exists a F2 : Rd × R→ Rd such that

∥F − F2∥L∞(K×[0,τ ]) + ∥DF −DF2∥L∞(K×[0,τ ]) < δ. (78)

where F2 is represented as

F2 :=

N∑
i=1

ciρ(wi · x+ ait+ bi), (79)

where ai, bi, ci ∈ R, and wi ∈ Rd. Here, ρ = tanh if σ is Leaky-ReLU or Leaky-ReLU-like, and ρ
equals to σ if σ is an activation function satisfying Condition 1. As both F and F2 are C1,1 functions,

∥F (·, t)− F2(·, t)∥W 1,∞(Ṽ ;Rd) < δ, (80)
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for all t ∈ [0, τ ]. Thus, ∥ϕ1
F − ϕ1

F2
∥W 1,∞(V ;Rd) <

ϵ
2 . Then, by Lemma C.9, there exists a natural

number n0 ∈ N so that if n ≥ n0, then, for tk := kτ
n , ∆t = τ

n ,

fi,k : x 7→ x+∆tciρ(wi · x+ aitk + bi), (81)

Tk := fn,k ◦ fn−1,k ◦ · · · ◦ f1,k, (82)
and

Sk := Tk ◦ · · · ◦ T1, (83)
the following inequality holds: ∥∥ϕ1

F2
− Sn

∥∥
W 1,∞(V ;Rd)

<
ϵ

2
. (84)

For the Leaky-ReLU or Leaky-ReLU like σ, by Lemma C.5, there exists i ∈ [1, N ]N, k ∈ [1, n]N, and
δi,k ∈ R+ such that if |t| < δi, then, fi,k ∈ ∆σ

d,d,d

loc
. Choose sufficiently large n so that |∆tci| < δi

for all , each fi,k ∈ ∆σ
d,d,d

loc
. Then, Sn ∈ ∆σ

d,d,d

loc
. For σ satisfying Condition 1, fi,k ∈ ∆σ

d,d,d+1

loc
,

thus, Sn ∈ ∆σ
d,d,d+1

loc
. Thus, ∥ϕ1

F − Sn∥W 1,∞(V ;Rd) < ϵ for Sn ∈ ∆σ
d,d,d+α(σ)

loc
. This completes

the proof.

C.2 Proof of Lemma C.2

Proof. ∆LR
1,1,1 is the set of strictly increasing piecewise linear functions with finite segments. Consider

any increasing C1 function σ : R→ R, a compact set K ⊂ R, and a positive real number ϵ ∈ R+.
We will construct a function f ∈ U such that ∥σ−f∥W 1,∞ < ϵ. Consider a closed interval [a, b] ⊃ K.
Then, there exists a natural number n ∈ N such that ∥f(x)−f(y)∥ < ϵ

4 and ∥Df(x)−Df(y)∥ < ϵ
4

for ∥x−y∥ < 1
n . Define f ∈ U as a piecewise linear function with breaking points x = a+(b−a)i/n

for 0 ≤ i ≤ n, which has the same values with f in each breaking point. For all x ∈ K and the
closest breaking point y ∈ [a, b], |x− y| < ϵ. Then,

|σ(x)− f(x)| < |σ(x)− σ(y)|+ |σ(y)− f(y)|+ |f(y)− f(x)| < ϵ

2
. (85)

And for two adjacent breaking points y0, y1 such that x ∈ [y0, y1],

|Df(x)−Dσ(x)| =
∣∣∣∣f(y1)− f(y0)

y1 − y0
−Dσ(x)

∣∣∣∣ = |Df(c)−Df(x)| < ϵ

4
(86)

for a c ∈ (y0, y1) by mean value theorem, almost everywhere. Therefore, ∥σ(x)−f(x)∥W 1,∞(K) < ϵ.

Because the selection of a compact set K ⊂ R is arbitrary, σ ∈ ∆LR
1,1,1

loc
, and this completes the

proof.

C.3 Proof of Lemma C.3

Proof. As strictly increasing C1 functions are dense in the set of increasing C1 functions in C1

topology, we only need to approximate a strictly increasing C1 function f . Consider an arbitrarily
small error ϵ ∈ R+ and an open interval (a, b). It is sufficient to prove that there exists g ∈ ∆σ

1,1,1

loc

such that
∥f − g∥W 1,∞((a,b);R) < ϵ. (87)

Define L1, L2 ∈ R+ as uniquely determined value as follows:

[L1, L2] = {Df(x) ∈ R+ | x ∈ [a, b]} . (88)

Define b : R+ → R as

b(β) := sup
x
∥Dσβ(x)− 1∥ β→1−−−→ 0 (89)

Choose a sufficiently small ϵ′ ∈ R+ so that (6L2 + 4)b(1+ϵ′)+2ϵ′ < ϵ. There exists a natural number
N ∈ N such that if ∥x− y∥ < 1

N , then, ∥f(x)− f(y)∥ < ϵ
4 and ∥Df(x)−Df(y)∥ < min

(
ϵ
4 , ϵ

′).
Define h as a piecewise linear function with breaking points αi = a+ (b− a)i/N for 0 ≤ i ≤ N ,
which has the same values with σ in each breaking point. Then,

∥f − h∥W 1,∞((a,b);R) < ϵ. (90)
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Now, it is sufficient to prove that there exists a function h′ ∈ ∆σ
1,1,1 such that

∥h− h′∥W 1,∞((a,b);R) < ϵ. (91)

Define γi as

γi :=
f(αi+1)− f(αi)

αi+1 − αi
, (92)

so that γi be the slope of h in (αi, αi+1). We use mathematical induction on n to prove the following:
There exists a fn,m ∈ ∆σ

1,1,1 such that

1. ∥h− fn,m∥L∞((a,αn+1))
m→∞−−−−→ 0,

2. there exists a natural number M such that if m ≥M , then, ∥Dh−Dfn,m∥L∞((a,αn+1)) <
ϵ
2 ,

3. and, for an arbitrary δ ∈
(
0, 1

N

)
, ∥fn,m − (γn(x− αn+1) + f(αn+1))∥W 1,∞((αn+δ,b);R)

m→∞−−−−→
0

For n = 0, there is nothing to prove. Assume that the induction hypothesis is satisfied for n. Define
fn+1,m ∈ ∆σ

1,1,1 as

fn+1,m(x) :=
γn+1

γn

σ γn
γn+1

(m(fn,m(x)− f(αn+1)))

m
+ f(αn+1). (93)

As σβ(mx)
m

m→∞−−−−→ LRβ(x) in C0-topology,

fn+1,m
m→∞−−−−→ γn+1

γn

LR γn
γn+1

(h− f(αn+1)))

m
+ f(αn+1)

=

{
h in (a, αn+1)

γn+1(x− αn+1) + f(αn+1) in (αn+1, b) = γn+1(x− αn+2) + f(αn+2)
, (94)

with C0-topology. Now, it is sufficient to prove that the derivate-related assumptions. Dfn+1,m can
be calculated as

Dfn+1,m(x) =
γn+1

γn
Dσ γn

γn+1
(m(fn,m(x)− f(αn+1)))Dfn,m(x) (95)

Then, for any δ ∈ R+ and x ∈ [a, αn+1 − δ],

sup
x∈[a,αn+1−δ]

∥Dfn+1,m(x)−Dfn,m(x)∥

≤ sup
x∈[a,αn+1−δ]

∥Dfn,m(x)∥
∥∥∥∥1− γn+1

γn
σ γn

γn+1
(m(fn,m(x)− f(αn+1)))

∥∥∥∥ m→∞−−−−→ 0. (96)

And, for x ∈ [αn+1 + δ, b], limm→∞ supx∈[αn+1+δ,b] ∥Dfn,m(x)− γn∥ = 0, and therefore,

lim
m→∞

sup
x∈[αn+1+δ,b]

∥Dfn+1,m(x)− γn+1∥

= lim
m→∞

sup
x∈[αn+1+δ,b]

γn+1

∥∥∥Dσ γn
γn+1

(m(fn,m(x)− f(αn+1)))
∥∥∥ = γn+1. (97)

Therefore, the induction hypothesis 3 is satisfied. As h(x) = γn+1(x − αn+2) + f(αn+2) for
x ∈ [αn+1, αn+2],

∥Dh−Dfn+1,m∥L∞((αn+1+δ,αn+2))
m→∞−−−−→ 0. (98)

Now, it remains to prove that there exists a natural number M ′ such that if m ≥ M ′, then ∥Dh−
Dfn+1,m∥L∞((αn+1−δ,αn+1+δ)) < ϵ. Choose sufficiently large M ′ so that if m ≥M ′, then,

sup
x∈(αn+1−δ,αn+1+δ)

∥Dfn,m(x)− γi∥ ≤ min (ϵ, 1) . (99)
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Then, for x ∈ (αn+1 − δ, αn+1 + δ),

∥γi+1 −Dfn+1,m(x)∥ =
∥∥∥∥γi+1 −

γi+1

γi
Dσ γi

γi+1

(m(fn,m(x)− f(αn+1)))Dfn,m(x)

∥∥∥∥
≤ γi+1

γi
∥Dfn,m(x)∥

∥∥∥Dσ γi
γi+1

(m(fn,m(x)− f(αn+1)))− 1
∥∥∥+

∥∥∥∥γi+1 −
γi+1

γi
Dfn,m(x)

∥∥∥∥
≤ γi+1

γi
∥Dfn,m(x)∥b

(
γi

γi+1

)
+

∥∥∥∥γi+1 −
γi+1

γi
Dfn,m(x)

∥∥∥∥
≤ (1 + 1) (L2 + 1) b(1 + ϵ′) + L2ϵ

′ ≤ (3L2 + 2)b(1 + ϵ′) <
ϵ

2
, (100)

and

∥γi−Dfn+1,m(x)∥ ≤ ∥γi+1−Dfn+1,m(x)∥+∥γi+1−γi∥ ≤ (3L2+2)b(1+ϵ′)+ϵ′ <
ϵ

2
. (101)

Therefore, for x ∈ (αn+1 − δ, αn+1 + δ),

∥Dh(x)−Dfn+1,m(x)∥ < ϵ

2
. (102)

By mathematical induction, we conclude that there exists fN,m ∈ ∆σ
1,1,1 and M ∈ N such that if

m ≥M , then,
∥h− fN,m∥W 1,∞((a,b);R) < ϵ. (103)

This completes the proof.

C.4 Proof of Lemma C.5

Proof. For w = (w1, . . . , wd), if wi = 0 for i ∈ [1, d− 1]N, the last term of ft can be calculated as:

xd + t tanh(wdxd + b). (104)

For sufficiently small δ ∈ R+ and |t| < δ, this function is increasing. Thus, by Corollary C.4, the
following relations holds:

∆
{x7→x+t tanh(wx+b),id}
d,d,d ⊂ ∆σ

d,d,d

loc
, (105)

Also, the following relation holds:

∆
{tanh,id}
d,d,d ,∆

{tanh−1,id}
d,d,d ⊂ ∆σ

d,d,d

loc
. (106)

Now assume that there exists i ∈ [1, d − 1]N such that wi ̸= 0. Further, without loss of generality,
assume that w1 ̸= 0. Then, the following functions are elements of ∆σ

d,d,d

loc

f1 : (x1, . . . , xd) 7→ (w · x+ b, x2, . . . , xd), (107)

f2 : (x1, . . . , xd) 7→ (tanh(x1), x2, . . . , xd), (108)

f3 : (x1, . . . , xd) 7→ (x1, . . . , xd−1, xd + tx1), (109)

f4 : (x1, . . . , xd) 7→ (tanh−1(x1), x2, . . . , xd), (110)

f5 : (x1, . . . , xd) 7→ (x1 + wdt tanh(x1), x2, . . . , xd), (111)

and

f6 : (x1, . . . , xd) 7→
(
x1 − wdxd − w2:d−1 · x2:d−1 − b

w1
, x2, . . . , xd

)
. (112)

Then, the composition f6 ◦ f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1 becomes

f6 ◦ f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1 : x 7→ (x1, . . . , xd−1, xd + t tanh(w · x+ b)). (113)
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C.5 Proof of Lemma C.8

Proof. Let L and L′ be a Lipschitz constant of f1 and Df1 with respect to x in Ṽ , respectively.
Restrict δ to

δ < min

(
1,

1

2τeLτ

)
. (114)

We first prove that, for all x ∈ V and t ∈ [0, τ ], ϕt
2 ∈ Ṽ . Define T as

T :=
{
t ∈ [0, τ ] | V × {t} ⊂ Mf2 and ϕt

2(x) ∈ Ṽ for all x ∈ V
}
. (115)

1. Obviously, 0 ∈ T .

2. And T is an open set relative to [0, τ ]: Assume that t ∈ T . Then, as ϕt
2(x) ∈ Ṽ for all

x ∈ V , andMf2 and Ṽ is open, there exist ϵ1,x, ϵ2,x ∈ R+ such that if ∥y − x∥ < ϵ1,x
and |t′ − t| ≤ ϵ2,x, then, ϕt′

2 (y) ∈ Ṽ . Because V is compact, we can choose a finite cover
{{x}+Bd(ϵ1,x)}x∈S of V . Then, [t, t+minx∈S ϵ2,x) ⊂ T , and T becomes an open set.

3. T is closed relative to [0, τ ]: Assume that T = [0, t) for t ∈ (0, τ ]. It is sufficient to prove
that

ϕt
2(x) = x+

∫ t

0

f2(ϕ
s
2(x), s)ds (116)

is finite and in Ṽ . Define e(x, t) as

e(x, t) := ϕt
1(x)− ϕt

2(x). (117)

Then, the following equation holds:

e(x, t) =

∫ t

0

f1(ϕ
s
1(x), s)− f2(ϕ

s
2(x), s)ds. (118)

Then, as ϕs
1(x), ϕ

s
1(x) ∈ Ṽ for s ∈ [0, t), the following inequalities hold:

∥e(x, t)∥ ≤
∫ t

0

∥f1(ϕs
1(x), s)−f1(ϕ

s
2(x), s)∥ds+

∫ t

0

∥f1(ϕs
2(x), s)−f2(ϕ

s
2(x), s)∥ds

≤
∫ t

0

∥Le(x, s)∥+ δds ≤ δt+ L

∫ t

0

∥e(x, s)∥ds ≤ δteLt, (119)

where the last inequality is by Gronwall’s inequality. As δteLt < δτeLτ < 1,

ϕt
2(x) = ϕt

1(x) + e(x, t) ∈ Ṽ , (120)

for all x ∈ V , which leads to t ∈ T .

4. We conclude that T = [0, τ ].

Next, we prove that ∥e(x, t)∥ can be bounded. It is already proven by setting δ < ϵ
2τeLτ . Then,

∥e(x, t)∥ < ϵ
2 .

Finally, we will prove that ∥De(x, t)∥ can be bounded.

De(x, t) =

∫ t

0

Df1(ϕ
s
1(x), s)Dϕs

1(x)−Df2(ϕ
s
2(x), s)Dϕs

2(x)ds. (121)
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Then,

∥De(x, t)∥ ≤
∫ t

0

∥Df1(ϕ
s
1(x), s)Dϕs

1(x)−Df1(ϕ
s
2(x), s)Dϕs

1(x)∥ ds

+

∫ t

0

∥Df1(ϕ
s
2(x), s)Dϕs

1(x)−Df2(ϕ
s
2(x), s)Dϕs

1(x)∥ ds

+

∫ t

0

∥Df2(ϕ
s
2(x), s)Dϕs

1(x)−Df2(ϕ
s
2(x), s)Dϕs

2(x)∥ ds

≤
∫ t

0

L2∥e(x, s)∥+ δL+ L∥De(x, t)∥ds ≤
∫ t

0

LL′δseLs + δL+ LL′∥De(x, t)∥ds

≤ δeLt(Lt− 1) + δ + δLt+ LL′
∫ t

0

∥De(x, t)∥ds ≤ δ
(
eLt(Lt− 1) + 1 + Lt

)
eLL′t, (122)

where the last inequality is by Gronwall’s inequality again. By setting sufficiently small δ, we get

∥e(x, t)∥+ ∥De(x, t)∥ < ϵ, (123)

for all x ∈ V and t ∈ [0, τ ]. This completes the proof.

C.6 Proof of Lemma C.9

Proof. Define V 0 ⊂ Rd × R and V 0
t ⊂ Rd as

V 0
t := {ϕt

v(x) | x ∈ U}. (124)

and
V 0 :=

{
(x, t) ∈ Rd × R | x ∈ V 0

t

}
. (125)

As V 0 is compact, there exists a positive number δ ∈ R+ such that

Vt :=
(
V 0
t +Bd(δ)

)
× [0, τ − t] ⋐Mf , (126)

for all t ∈ [0, τ ]. Define V ⊂ Rd × R as

V :=
{
(x, t) ∈ Rd × R | x ∈ Vt

}
. (127)

We will conduct all our discussions on V where ϕt
v is well-defined. Denote the supremum and the

Lipschitz constant of v in V as C and L, respectively. Also, denote the supremum and the Lipschitz
constant (as operator norm) of Dv in V as C ′ and L′.

In this proof, we will use a big-O notation with respect to ∆t; that is, a function f : R→ R is denoted
as

f = O
(
∆ti

)
, (128)

if and only if
|f(∆t)| < c∆ti, (129)

where c is a constant independent of ∆t and polynomially dependent on N,L,C,L′, C ′.

We will check that ∥∥ϕtk,tk+1
v − Tk+1

∥∥
L∞(Vtk

;Rd) = O
(
∆t2

)
. (130)

We define Ul,k ∈ C1(Rd;Rd) as

Ul,k : x 7→ x+∆t

l∑
i=1

vi(x, tk−1). (131)

And define Uk as
Uk := UN,k. (132)

Then, it is sufficient to bound two terms:∥∥ϕtk,tk+1
v − Uk+1

∥∥
L∞(Vtk

;Rd) and ∥Tk+1 − Uk+1∥L∞(Vtk
;Rd) . (133)
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The first term can be calculated as

∥∥ϕtk,tk+1
v − Uk+1

∥∥
L∞(Vtk

;Rd) =

∥∥∥∥∫ tk+1

tk

v
(
ϕtk,s
v , s

)
ds−∆tv(·, tk)

∥∥∥∥
L∞(Vtk

;Rd)

=

∥∥∥∥∫ tk+1

tk

v
(
ϕtk,s
v , s

)
− v(·, tk)ds

∥∥∥∥
L∞(Vtk

;Rd)
≤ sup

x∈Vtk

∫ tk+1

tk

∥∥v (ϕtk,s
v (x), s

)
− v(x, tk)

∥∥ ds
≤ ∆t sup

x∈Vtk

sup
s∈[tk,tk+1]

∥∥v (ϕtk,s
v , s

)
− v(x, tk)

∥∥ ≤ C (∆t)
2 (

eL∆t + L
)
, (134)

where the last equality is by the following arguments: for any k and x ∈ Vk,

∥ϕtk,s
v (x)− x∥ =

∥∥∥∥∫ s

tk

v(ϕtk,r
v (x), r)dr

∥∥∥∥ =

∥∥∥∥∫ s

tk

v(ϕtk,r
v (x), r)− v(x, r) + v(x, r)dr

∥∥∥∥
≤ L

∫ s

tk

∥ϕtk,r
v (x)− x∥dr + C(s− tk) ≤ C(s− tk)e

L(s−tk) ≤ C∆teL∆t, (135)

where the second last inequality is by Gronwall’s inequality. Therefore,∥∥v (ϕtk,s
v , s

)
− v(x, tk)

∥∥ ≤ CL∆teL∆t + L∆t, (136)

and the bound is independent of k. To calculate the second term ∥Tk+1 − Uk+1∥W 1,∞(Vtk
;Rd), for

l ∈ [1, N ]N, define Tl,k ∈ C1(Rd;Rd) as

Tl,k := fl,k ◦ fl−1,k ◦ · · · ◦ f1,k. (137)

Then, TN,k = Tk. We inductively bound

∥Tl,k − Ul,k∥L∞(Vtk−1
;Rd). (138)

When l = 1, T1,k = U1,k = f1,k, and there is nothing to prove. Assume that the above induction
hypothesis is satisfied for l. Then,

Tl+1,k(x) = fl+1,k ◦ Tl,k(x) = Tl,k(x) + ∆tvl+1(Tl,k(x), tk−1). (139)

Therefore,

∥Tl+1,k − Ul+1,k∥L∞(Vtk−1
;Rd) ≤ sup

x∈Vtk−1

∥Tl+1,k(x)− Ul+1,k(x)∥

≤ sup
x∈Vtk−1

∥Tl,k(x) + ∆tvl+1(Tl,k(x), tk−1)− (Ul,k(x) + ∆tvl+1(x, tk−1)) ∥

≤ sup
x∈Vtk−1

∥Tl,k(x)− Ul,k(x)∥+∆t ∥vl+1(Tl,k(x), tk−1)− vl+1(x, tk−1)∥

≤ (∆t)
2
CNL. (140)

Therefore,
∥Tk − Uk∥L∞(Vtk−1

;Rd) ≤ (∆t)
2
CN2L. (141)

And thus, ∥∥ϕtk,tk+1
v − Tk+1

∥∥
L∞(Vtk

;Rd) ≤ (∆t)
2 (

CN2L+ L+ eL∆t
)
=: c1 (∆t)

2
. (142)

Now, define ek : Rd → Rd as
ek := ϕtk

v − Sk. (143)

We restrict ∆t sufficiently small so that

eLτ − 1

L
c1(∆t) < min

( ϵ

2
, δ
)
. (144)
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Under this assumption, we use the mathematical induction on k to prove that Sk(x) ∈ Vtk for an
arbitrary k ∈ [1, n]N. It is obvious when k = 0. Assume that the induction hypothesis is satisfied for
k = k0. For x ∈ U and k ≤ k0,

∥ek+1(x)∥ = ∥ϕtk+1
v (x)− Sk+1(x)∥ = ∥ϕtk,tk+1

v ◦ ϕtk
v (x)− Tk+1 ◦ Sk(x)∥

≤ ∥ϕtk,tk+1
v ◦ ϕtk

v (x)− ϕtk,tk+1
v ◦ Sk(x)∥+ ∥ϕtk,tk+1

v ◦ Sk(x)− Tk+1 ◦ Sk(x)∥
≤ LVtk

(ϕtk,tk+1
v )∥ek(x)∥+ ∥ϕtk,tk+1

v − Tk+1∥L∞(Vtk
;Rd) < (1 + L∆t)∥ek(x)∥+∆tc1(∆t).

(145)

Then, for any k ≤ τ
∆t ,

∥ek(x)∥ = (1 + L∆t)k∥e0(x)∥+
(1 + L∆t)k − 1

L∆t
∆tc1(∆t) ≤ eLτ − 1

L
c1(∆t) <

ϵ

2
. (146)

As Sk+1(x) = ϕ
tk+1
v (x) + ek+1(x) ∈ Vtk+1

, the induction hypothesis is satisfied. Also,
∥ek∥L∞(U ;Rd) <

ϵ
2 .

Now, we bound Dϕt
v(x). First, we bound a derivative D

(
ϕ
tk,tk+1
v − Id

)
. For arbitrary s, t ∈ [0, τ ]

and x ∈ Vs, consider the following equation.

ϕs,t
v (x)− x =

∫ t

s

v(ϕs,r
v (x), r)dr. (147)

Apply derivative to both sides, and we get

∥Dϕs,t
v (x)− Id∥ =

∥∥∥∥∫ t

s

Dv(ϕs,r
v (x), r)Dϕs,r

v (x)dr

∥∥∥∥ ≤ ∫ t

s

L′ ∥Dϕs,r
v (x)∥ dr

≤
∫ t

s

L′ ∥Dϕs,r
v (x)− Id∥+ dL′dr ≤ dL′(t− s)eL

′t ≤ dL′(t− s)eL
′τ , (148)

where the last inequality is by the Gronwall’s inequality. Denote the last constant as L′
1 := dL′eL

′τ ;
that is,

∥Dϕs,t
v (x)− Id∥ ≤ L′

1(t− s). (149)

Calculate the Lipschitz constant of Dϕ
tk,tk+1
v . For s, t ∈ [tk, tk+1], and x, y ∈ Vtk .

∥∥Dϕs,t
v (x)−Dϕs,t

v (y)
∥∥ ≤ ∥∥∥∥∫ t

s

Dv(ϕs,r
v (x), r)Dϕs,r

v (x)dr −
∫ t

s

Dv(ϕs,r
v (y), r)Dϕs,r

v (y)dr

∥∥∥∥
≤

∥∥∥∥∫ t

s

Dv(ϕs,r
v (x), r)Dϕs,r

v (x)dr −Dv(ϕs,r
v (x), r)Dϕs,r

v (y)dr

∥∥∥∥
+

∥∥∥∥∫ t

s

Dv(ϕs,r
v (x), r)Dϕs,r

v (y)dr −Dv(ϕs,r
v (y), r)Dϕs,r

v (y)dr

∥∥∥∥
≤ (1 + L′

1(t− s))

∫ t

s

∥Dϕs,r
v (x)−Dϕs,r

v (y)∥ dr + 2L′
∫ t

s

∥ϕs,r
v (x)− ϕs,r

v (y)∥dr

≤ (1 + L′(t− s))

∫ t

s

∥Dϕs,r
v (x)−Dϕs,r

v (y)∥ dr + 2L′C ′∆t∥x− y∥

≤ 2L′∆t∥x− y∥e1+L′
1(t−s) ≤ 4L′C ′∆t∥x− y∥e2, (150)

where the second last inequality is by Gronwall’s inequality. Denote the last constant as L′
2 :=

4L′C ′e2; that is, ∥∥Dϕs,t
v (x)−Dϕs,t

v (y)
∥∥ ≤ L′

2∆t∥x− y∥. (151)

Now we calculate the followings:∥∥Dϕtk,tk+1
v −DTk+1

∥∥
L∞(Vtk

;Rd) = O (∆t)
2
. (152)
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∥∥Dϕtk,tk+1
v (x)−DUk+1(x)

∥∥ =

∥∥∥∥∫ tk+1

tk

Dv
(
ϕtk,s
v (x), s

)
Dϕtk,s

v (x)−Dv(x, tk)ds

∥∥∥∥
≤

∫ tk+1

tk

∥∥Dv
(
ϕtk,s
v (x), s

)
−Dv(x, tk)

∥∥ ds+ ∫ tk+1

tk

∥∥Dv
(
ϕtk,s
v (x), s

)
(Dϕtk,s

v (x)− Id)
∥∥ ds

= O
(
∆t2

)
. (153)

We use the mathematical induction on l to prove that

∥DTl,k −DUl,k∥L∞(Vtk−1
;Rd) = O

(
∆t2

)
. (154)

When l = 1, T1,k = U1,k = f1,k, and there is nothing to prove. Assume that the above induction
hypothesis is satisfied for l. Then,

DTl+1,k(x) = Dfl+1,k(Tl,k(x))DTl,k(x) = (Id +∆tDvl+1(Tl,k(x), tk−1))DTl,k(x) (155)

Therefore,

∥DTl+1,k −DUl+1,k∥L∞(Vtk−1
;Rd) ≤ sup

x∈Vtk−1

∥DTl+1,k(x)−DUl+1,k(x)∥

≤ sup
x∈Vtk−1

∥(Id +∆tDvl+1(Tl,k(x), tk−1))DTl,k(x)− (DUl,k(x) + ∆tDvl+1(x, tk−1))) ∥

≤ sup
x∈Vtk−1

∥DTl,k −DUl,k∥+∆t∥Dvl+1(Tl,k(x), tk−1)DTl,k(x)−Dvl+1(x, tk−1))∥

= O
(
∆t2

)
. (156)

Therefore, the induction hypothesis is satisfied.

For any x ∈ U and k, we have

∥Dek+1(x)∥ = ∥Dϕtk+1
v (x)−DSk+1(x)∥ =

∥∥Dϕtk,tk+1
v (ϕtk

v (x))Dϕtk
v (x)−DTk+1(Sk(x))DSk(x)

∥∥
≤

∥∥Dϕtk,tk+1
v (ϕtk

v (x))Dϕtk
v (x)−Dϕtk,tk+1

v (ϕtk
v (x))DSk(x)

∥∥
+
∥∥Dϕtk,tk+1

v (ϕtk
v (x))DSk(x)−Dϕtk,tk+1

v (Sk(x))DSk(x)
∥∥

+
∥∥Dϕtk,tk+1

v (Sk(x))DSk(x)−DTk+1(Sk(x))DSk(x)
∥∥ . (157)

For the first term, we have∥∥Dϕtk,tk+1
v (ϕtk

v (x))Dϕtk
v (x)−Dϕtk,tk+1

v (ϕtk
v (x))DSk(x)

∥∥
≤ ∥Dϕtk

v (x)−DSk(x)∥+
∥∥(Dϕtk,tk+1

v (ϕtk
v (x))− Id

) (
Dϕtk

v (x)−DSk(x)
)∥∥

≤ (1 + L′
1∆t)∥Dek(x)∥. (158)

For the second term, there exists a constant c2 ∈ R+ satisfying∥∥Dϕtk,tk+1
v (ϕtk

v (x))DSk(x)−Dϕtk,tk+1
v (Sk(x))DSk(x)

∥∥
≤ LVtk

(
Dϕtk,tk+1

v

)
∥DSk(x)∥∥ek(x)∥ ≤ L′

2∆t∥ek(x)∥∥DSk(x)∥ ≤ c2∆t∥ek(x)∥. (159)

For the last term, we have∥∥Dϕtk,tk+1
v (Sk(x))DSk(x)−DTk+1(Sk(x))DSk(x)

∥∥ = O
(
∆t2

)
. (160)

Then, by selecting a sufficiently small ∆t, we have

∥Dek+1(x)∥ ≤ (1 + L′
1∆t)∥Dek(x)∥+ c2∆t∥ek(x)∥+O

(
∆t2

)
≤ (1 + L′

1∆t)∥Dek(x)∥+ c3∆t2 ≤ eL
′
1τ−1

L′
1

c3(∆t) <
ϵ

2
, (161)

for a constant c3 ∈ R+. We conclude that

∥ek+1(x)∥+ ∥Dek+1(x)∥ < ϵ, (162)

and this completes the proof.
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D Proofs of Approximation Lemmas

D.1 Proof of Theorem 4.4

Proof. Consider a function f ∈ C1(Rn;Rm) and a precompact set V ⋐ Rn. It is sufficient to prove
that, for any ϵ ∈ R+, there exists a function f̃ ∈ ∆σ

n,m,Ω(n,m)+α(σ) such that ∥f−f̃∥W 1,∞(V ;Rm) < ϵ.
Because ∆σ

n,m,Ω(n,m)+α(σ) is closed under affine transformation composition, we only need to
consider V satisfying V ⋐ (0, 1)n. By the definition of Ω(n,m), for any ϵ ∈ R+, there exists an
embedding g ∈ Emb([0, 1]n,RΩ(n,m)) such that

∥f − pΩ(n,m),n ◦ g∥C1([0,1]n;Rm) <
ϵ

2
. (163)

Because Ω(n,m) ≥ n, by Lemma 4.2, for qn,Ω(n,m) : (x1, . . . , xn) 7→ (x1, . . . , xn, 0, . . . , 0), there
exists a smooth diffeomorphism G such that g = G ◦ qn,Ω(n,m). By Theorem 4.1, there exists an
MLP H ∈ ∆σ

Ω(n,m),Ω(n,m),Ω(n,m)+α(σ) such that

∥G−H∥W 1,∞(V×(0,1)Ω(n,m)−n;RΩ(n,m)) <
ϵ

2
. (164)

Then,

∥pΩ(n,m),m ◦H ◦ qn,Ω(n,m) − pΩ(n,m),m ◦G ◦ qn,Ω(n,m)∥W 1,∞(V ;Rm) <
ϵ

2
. (165)

Therefore,
∥f − pΩ(n,m),m ◦H ◦ qn,Ω(n,m)∥W 1,∞(V ;Rm) < ϵ. (166)

pΩ(n,m),m ◦H ◦ qn,Ω(n,m) ∈ ∆σ
n,m,Ω(n,m)+α(σ). This completes the proof.

D.2 Proof of Proposition 4.5

Proof. For a non-decreasing C1 activation function σ, there exist smooth, strictly increasing activation

functions σn that converge to σ in W 1,∞
loc topology. Therefore, ∆σ

d,d,d

loc ⊂ ∆
{σn|n∈N}
d,d,d

loc

, making it
sufficient to consider only a smooth, strictly increasing activation function σ.

For f ∈ ∆σ
n,m,Ω(n,m)−1, it can be decomposed as:

f = pΩ(n,m)−1,m ◦ g ◦ qn,Ω(n,m)−1, (167)

where g ∈ ∆σ
Ω(n,m)−1,Ω(n,m)−1,Ω(n,m)−1. As ∆σ

Ω(n,m)−1,Ω(n,m)−1,Ω(n,m)−1 ⊂

D∞(RΩ(n,m)−1)
loc

, g ◦ qn,Ω(n,m)−1

∣∣
(0,1)n

∈ Emb((0, 1)n,RΩ(n,m)−1)
loc

. Therefore, we
have:

f |(0,1)n ∈ pΩ(n,m)−1,m

(
Emb((0, 1)n,RΩ(n,m)−1)

loc
)
, (168)

and as the selection of f ∈ ∆σ
n,m,Ω(n,m)−1 is arbitrary, we get the following:

∆σ
n,m,Ω(n,m)−1

∣∣∣
(0,1)n

⊂ pΩ(n,m)−1,m

(
Emb((0, 1)n,RΩ(n,m)−1)

loc
)
. (169)

As Ω(n,m)− 1 < Ω(n,m), by the definition of Ω(n,m):

pΩ(n,m)−1,m

(
Emb((0, 1)n,RΩ(n,m)−1)

)
⊉ C1((0, 1)n,Rm), (170)

and thus,

∆σ
n,m,Ω(n,m)−1

∣∣∣
(0,1)n

⊉ C1((0, 1)n,Rm). (171)

Therefore, we have C1(Rn,Rm) ⊈ ∆σ
n,m,Ω(n,m)−1

loc
. This completes the proof.
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E Proofs of Topological Lemmas

E.1 Proof of Lemma 5.5

Proof. Define F : (−δ, 1 + δ)× U × U → Rm+1 as

F (α, x, y) = (α, α (f(x)− f(y)) + (1− α) (g(x)− g(y))) . (172)

Then F is a proper submersion for sufficiently small ϵ. Then, DF (α, x, y) can be calculated as

DF =

[
1 0 0

f(x)− f(y)− (g(x)− g(y)) αDf(x) + (1− α)Dg(x)) −αDf(y)− (1− α)Dg(y))

]
.

(173)
Consider a vector field Xi in (−δ, 1 + δ)× U × U for i ∈ [1,m+ 1]N which satisfy the following:

(DF )Xi = ei, (174)

where ei is the i-th coordinate vector. Then, define G : F−1(Rm+1)→ Rm+1 × F−1(0) as

G(z) := (F (z), ϕ
−F (z)m+1

Xm+1
◦ · · · ◦ ϕ−F (z)1

X1
). (175)

Then, G has a inverse G−1 : Rm+1 × F−1(0)→ F−1(Rm+1) which can be calculated as

G−1(t1, t2, . . . , tm+1, x) = ϕt1
X1
◦ · · · ◦ ϕtm+1

Xm+1
(x), (176)

for x ∈ R and x ∈ F−1(0). Then, for the projection p : Rm+1 × F−1(0)→ Rm+1, the following
equation holds:

p = F ◦G−1. (177)
Therefore, F−1(c1) is diffeomorphic to F−1(c2) for c1, c2 ∈ Rm+1.

Note that the above diffeomorphism G can be defined for all Xi that satisfy Equation (174).

We set X1 as
X1 := (DF )T

(
DF (DF )T

)−1
e1 (178)

Then, ϕ1
X1

is the diffeomorphism between F−1(0, 0) = {0}×f̃−1(0) and F−1(1, 0) = {1}×g̃−1(0).
Let X1 be represented as

X1(α, x, y) =

[
1

M1(α, x, y)
M2(α, x, y)

]
. (179)

It is enough to prove that M1(α, y, x) = M2(α, x, y). Let

A(x, y) := f(x)− f(y)− (g(x)− g(y)), (180)

and
B(α, x) = B(x) := αDf(x) + (1− α)Dg(x)). (181)

Then, A(y, x) = −A(x, y).

(DF )TDF can be represented as

DF (DF )T =

[
1 AT

A AAT +B(x)B(x)T +B(y)B(y)T

]
. (182)

Then,(
DF (DF )T

)−1
=

[
1 +AT (B(x)B(x)T +B(y)B(y)T )−1A −AT (B(x)B(x)T +B(y)B(y)T )−1

−(B(x)B(x)T +B(y)B(y)T )−1A (B(x)B(x)T +B(y)B(y)T )−1

]
.

(183)

X1 =

[
1

M1(α, x, y)
M2(α, x, y)

]
= (DF )T

(
DF (DF )T

)−1
e1 =

 1
−B(x)(B(x)B(x)T +B(y)B(y)T )−1A
B(y)(B(x)B(x)T +B(y)B(y)T )−1A

 .

(184)
M1(α, y, x) = M2(α, x, y). And this completes the proof.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: No justification

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: No justification

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: No justification
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: No justification
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

29

https://neurips.cc/public/EthicsGuidelines


generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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