Under review as a conference paper at ICLR 2025

RECYCLED ATTENTION: EFFICIENT INFERENCE FOR
LONG-CONTEXT LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Processing long-context input imposes a heavy computational burden when de-
ploying large language models. Recently proposed inference-time methods accel-
erate generation by attending only to local context. Despite its efficiency gains,
this approach fails to capture all relevant information in the input, showing sub-
stantial performance drop in long-context benchmarks. We propose recycled at-
tention, an efficient and effective method which alternates between full context
attention and attention over a subset of input tokens. When performing partial
attention, we leverage the attention pattern of a nearby token that has performed
full attention and attend only to the top K most attended tokens. We evaluate
our methods on RULER, a suite of tasks designed to comprehensively evaluate
long-context abilities, and long-context language modeling tasks. Applying our
inference method to off-the-shelf LLMs achieves comparable speedup to base-
lines which only consider local context while improving the performance by 2x.
We further experiment with continued pre-training the model with recycled atten-
tion to improve the performance-efficiency trade-off.

1 INTRODUCTION

Recent large language models (LLMs) are trained to ingest extremely long inputs and generate long
outputs (Metal [2024; |Gemini), 2024)) to support a wide range of applications. However, deploying
such long-context LLMs can be very costly. As the context length increases, LLMs see a linear
increase in memory to store the Key-Value (KV) cache and a quadratic increase in time for attention
computation. These two factors lead to high latency during inference; |Adnan et al.| (2024) showed
that as context length increased 16x for the MPT-7B model (MosaicML/2023)), the inference latency
increased by 50x, where 40% of the increase was due to the data movement of the KV cache.

To improve efficiency, prior work put a limitation on the size of KV cache, i.e. the number of past
tokens that are available at each generation step. This leads to a meaningful gain along two axes:
memory requirement and time for attention computation. To form a smaller KV cache, they make
a locality assumption, only keeping most recent input tokens (Beltagy et al. [2020; |Child et al.
2019) along with a fixed number of globally available initial tokens (i.e., StreamingLLM (Xiao
et al.l |2023))). Another line of work (e.g., HoO (Zhang et al., [2024)), Keyformer (Adnan et al.,
2024)) maintains a dynamically constructed fixed sized KV cache by identifying key past tokens
from observed attention patterns and dynamically evicting the rest during generation.

These approaches reported little degradation in perplexity-based evaluation for the next token pre-
diction task. However, they show a significant drop in performance (Sun et al., 2024)) on long-context
benchmarks that require synthesizing information from non-local contexts (Hsieh et al., 2024). For
example, on the simple needle-in-a-haystack (NIAH) task, both StreamingL. LM (Xiao et al., [2023))
and H2O (Zhang et al., [2024) report less than 8% accuracy compared to 100% for vanilla attention.
Keeping a smaller KV cache is problematic when LLMs is tasked with synthesizing information
from long context, going beyond next token prediction where local contexts suffice. Once a key in-
put token is eliminated from the KV cache (either through locality assumption or by eviction during
the generation process), there is no way to recover access to the eliminated token. When LLMs are
tasked to generate long text, it gets harder to predict which input tokens are useful in advance.

In this work, we propose a novel approach, Recycled Attention, that focuses on reducing inference
time while comprehensively capturing long-context inputs. We keep the full KV cache throughout
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Figure 1: Illustration of our Recycled Attention method (right) compared to baselines (left). Our
approach alternates between full attention steps (i.e. over all past tokens) and recycled attention
steps (i.e. over a reduced KV cache of key tokens) during generation. By restricting the full attention
computation to once in every S steps, Recycled Attention is able to achieve comparable speedups to
baseline models with smaller KV without degrading performance on long-context benchmarks.

the inference (thus no gain in memory footprint), but perform attention over a dynamically con-
structed smaller KV cache, retaining gain in inference speedups. Our method flexibly alternates
between two modes of generation: generation that involves an attention over the full KV cache and
generation that computes an attention over a subset of tokens (see Figure[T). We choose this subset
of tokens by taking top K attended tokens from the most recent generation step involving attention
over the full KV cache (thus the term recycling attention). In this work, we have a fixed strategy for
alternation: full attention every S steps and recycled attention for the next S — 1 steps. Our design
choices is supported by the analysis that neighboring tokens during generation place high attention
mass over a similar subset of past tokens. Our work (no KV eviction, dynamically constructed
smaller KV) establishes a middle ground between full attention (no KV eviction, high latency, high
performance) and sparse attention (KV eviction, reduced latency, low performance).

We evaluate our approach in language modeling task and RULER (Hsieh et al., 2024)) benchmark,
a suite of tasks designed to evaluate long-context models, as well as datasets from LongBench(Bai
et al.| [2023). Applying our inference method to two off-the-shelf LLMs (Metal |2024; |Yang et al.,
2024a)) achieves comparable speedup to prior work with limited KV cache while improving the
performance on long-context benchmark by 2x. We further experiment to continued pre-training the
model with recycled attention, bringing further gains. To summarize, our contributions are

* We propose recycled attention, an inference-time method to accelerate generation with long input.

* We comprehensively evaluate our methods to two long-context models and a suite of long-context
tasks, including downstream tasks and language modelling tasks. We find that our method
achieves up to 2x wall clock time speedup while preserving performance, especially on down-
stream tasks which require access to information throughout the input.

* We investigate further improvements: continued pre-training LLM with recycled attention and
deciding when to perform full attention based on query similarity.

2 RECYCLED ATTENTION FOR LONG-CONTEXT LLMS

2.1 PROBLEM SETTING AND NOTATION

Let M be a language model trained to estimate the conditional probability of all output sequences
given an input z. At inference time, M generates an output § ~ M (z) in two steps: (1) Pre-filling
stage: M ingests the input x = z1,--- 2 and stores the KV cache for all L tokens across all
layers of the transformer model, and (2) Generation stage: generate one token y; at a time from the
conditional distribution Pys(y;|2z, 41 - - - yi—1). At each step, the model attends to the KV cache of
all previous tokens, and also updates the KV cache to include the current token’s key-value pairs.
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Our goal is to reduce the inference latency during this second stage of the generation process.
There are two main factors that contribute to this increased latencys; first, the attention computation
increases quadratically with input length L. Second, a large L necessitates maintaining a large KV
cache of past tokens, and 40% of the inference latency can be attributed to the data movement of
this large KV cache from the GPU HBM (Adnan et al., 2024).

Prior approaches (Xiao et al.,[2023; |Zhang et al. |2024; |/Adnan et al.| [2024) achieve inference time
speed-ups by limiting the size of the KV cache to a fixed size K. StreamingLLM (Xiao et al.
2023)) constructs this fixed size KV cache by retaining only the initial and recent tokens (illustrated
in Figure [I{b)) while H,O (Zhang et al.| 2024) retain a mix of local tokens and key past tokens
dynamically identified during generation (see Figure [I[c)). For both approaches, once tokens are
evicted from the KV cache, they cannot be recovered in subsequent generation steps. This can be
particularly catastrophic in long-context scenarios where key tokens are challenging to identify in
advance, e.g. cases where instructions inquiring about the past tokens are located towards the end of
the input. Consequently, methods that evict tokens from the KV cache often report poor performance
on benchmarks like RULER (Hsieh et al.,[2024) that are designed to test reasoning and information
synthesis capabilities over long-contexts.

Instead of permanently evicting tokens for all future steps, we ask: can we distinguish between
important and unimportant tokens for the attention computation for the next S time steps?
Our key hypothesis is that consecutive tokens in a sequence likely place the majority of the atten-
tion weights over a similar subset of tokens in the context, and this can be leveraged to increased
inference efficiency. We test this hypothesis for the LLaMA-3.1-8B model in the subsection below.

2.2 ATTENTION MASS OVERLAP BETWEEN NEIGHBORING TOKENS

Setting: We randomly sample five examples from the
Arxiv split of the RedPajama dataset (Together, |2023)
and compute the attention weights over past tokens for
all layers and all time steps. Next, for time step ¢t = 8K,
we identify the topK(= 1024) past tokens based on at-
tention weights independently for each layer. Then, for
subsequent attention computations for tokens at times
steps t = 8K + 4, varying ¢ from 1 to 10, we compute
the fraction of the attention mass placed on ¢ = 8K’s
topK tokens. Figure [2] shows this attention recovery rate Time step I from full attention step
for different step ¢ from the full attention step, averaged
across all layers of the transformer model (shown in blue).
The graph clearly demonstrates that the topK tokens at
t = 8K include the past tokens that contribute, on aver-
age, more than 90% of the attention weights at subsequent
times ¢ = 8K + ¢. Based on this observation, our key
idea is to alternate between full attention over the entire
KV cache of past tokens every S steps, and a more time-
efficient attention over only K tokens for the next S — 1
steps, where these K tokens are selected to be the highest
weighted tokens during the previous full attention step. We call this strategy Recycled Attention, as
we recycle the topK tokens from a previous time step in lieu of full attention.
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Figure 2: Fraction of the total attention
mass recovered at time t = T + ¢ by
the topK past tokens in the KV cache,
where these topK tokens are selected
based on attention scores at t = T.
Compared to StreamingLLLM, topK to-
kens recover a larger fraction of the total
attention mass.

Note that the graph in Figure [2]also reports the fraction of the full attention weight placed on tokens
corresponding to Streamingl.LM’s cache of similar size K (shown in orange), comprising of the
initial “sink” tokens and the local tokens (see Figure|lb for KV construction strategy). Compared
to our proposed strategy, Streamingl.LLLM reports a much lower attention mass recovery rate (~ 0.65
compared to 0.9 for our approach) and is consequently worse at approximating full attention.

2.3 METHODOLOGY AND IMPLEMENTATION

Given a language model M and a sequence of input tokens z1, ..., 1, we present the pseudocode
for generating the output sequence of tokens using Recycled Attention in Figure
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Algorithm 1: Generation using Recycled Attention itlallzatlon
- Full KV Cache (Cy) Size = L tokens
Input: Language model M, input x,, ..., x;
Hyperparameters: recycle cache size K, stride §
Output: Sequence of generated tokens O R[e]c%(gd KV Cache (C) Size K
g 1. Prefill M with Xpseo o Xy tokens (local + topK tol;ens from ay)
£ 1. Initialize full KV cache C;
= 2. Let a; « attention scores for x;over past tokens for all layers. Recycle Steps -
< L. T Attention  C, update
£ 3. Initialize recycle KV cache C, « reverse(arg top- xecfaL) /\ (eviet and add)
= 2. 0«1l // Initialize empty output sequence ’/_’/\ P—
- =1 [ W
3. forie 1,2,---,Tdo S
- 4 if (. mod S # 0) then // Recycle Steps a0
£ 5. o~ M(C,)i O.append(o) /I Generate using recycle KV Full Attention Step
g 6. C.=CJ1:]1+KV(L +1i) //Update recycle KV C, Cyupdate (include new tokens from C,)
=4 7 else if (i mod S = 0) then // Full Attention Step [N
O3 Cf — [Cf; Cl-S:11 // Update C/with new tokens in C,. Ful
9 0,4 < M(Cf), O.append(o) // Generate using full attention Alitention m.
10. C, < reverse(arg top-kxecfa)// Re-initialize C, with topK tokens
Re-initialize Recycled E-
11. return O KV Cache (C,)

Figure 3: Pseudocode for Recycled Attention. We use M (C) to denote performing a forward pass
with the language model while computing attention over the key-value pairs in cache C'.

Our approach maintains two separate KV caches C'y and C,. (size oc K), corresponding to the full
and recycle attention steps respectively. Given input x1, ..., x,, we first prefill M using the vanilla
full attention computation and initialize our full KV cache C; with the first L tokens. We also obtain
the attention scores ay, for the last token x, at each layer of model M. We initialize our recycle KV
cache C, with the key-value pairs of the topK tokens at each layer based on attention scores.

At each recycle steps, i.e. S — 1 contiguous steps after every full attention step, we generate the next
token y; ~ M (C,) using the smaller recycled KV cache C,. to compute attention. This leads to a
reduction in both the attention computation FLOPs as well as the latency due to movement of KV
cache (we only move the smaller KV C, instead of the larger full KV Cy, where |C,| << |C})).
As C) is updated with the KV cache of the new input tokens (i.e. the generated token from previous
step) in the forward pass, we remove the recycled token which received the lowest attention score
from C,. to maintain a fixed size.

At each full attention step that occurs every S steps, we first update the C'y KV cache with the key-
value pairs of the S — 1 tokens from the recycle step. Next, we generate the next token y; ~ M (Cy)
using the full KV cache Cy. Finally, we follow the same procedure as above to reset the recycle
cache C, with the topK tokens from each layer of the current time step.

Compatibility with Flash Attention FlashAttention (Daol |2024) improves standard attention
computation on GPU by reducing data movement, significantly improving the memory and speed
efficiency. It achieves this by directly producing the output for the attention blocks, without storing
the O(L?) attention matrix. However, we rely on these attention scores to select the topK tokens
during the full attention steps and construct our recycled KV cache C,. (lines 9-10 of Algorithm 3).
To make our method compatible with FlashAttention, we implement an extra step to re-compute the
attention score when we perform full attention. As we only perform full attention at stride of .S, this
does not introduce significant overhead. Additionally, note that other methods that use attention pat-
terns (e.g. HoO) will also show reduced speed-gain when using in conjunction with FlashAttention.

Memory and time requirements Table|l|shows a comparison of the memory and attention com-
pute requirements for our Recycle Attention method and baseline approaches. Recycle Attention
uses a similarly sized KV cache memory compared to vanilla attention (L+ K vs L, where K << L)
but larger than efficient KV strategies like Streamingl.LM and H»O . Our method substantially re-
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Table 1: Comparison of the time and memory requirements of Recycle Attention and baseline ap-
proaches. Suppose an LLM ingests a sequence of L input tokens and generates 7" output tokens. We
report the memory requirement for storing the input KV cache and time required to generate the T’
output tokens. Let K denote the size of the reduced KV cache of baseline non-vanilla approaches.
We use the same size K for our recycle KV cache in Recycle Attention and use S to denote the
stride. Additionally, we report NIAH performance measured for the Llama-3.1-8B model, with
K = 4096 and L = 32, 768 for all approaches.

Vanilla H>O  StreamingLLM SnapKV Recycled Attention (Ours)

Memory L K K K L+ K
Time TxL TxK TxK Tx(K+T) TxL+TxK
NIAH Accuracy 100 8 7 77 98

duces the time for the attention computation compared to vanilla attention by setting the recycle KV
size K << L. Our strategy also allows us to remain performant on tasks such as NIAH compared
to vanilla attention, in contrast with other KV eviction strategies. We provide a detailed comparison
of wallclock times and performances on various tasks against baslines in Section [3]

3 EXPERIMENTAL SETTINGS

We evaluate our method on two long-context language models Llama-3.1-8b (Metal, 2024) and
Qwen-2-7b (Yang et al., 2024a)). Llama-3.1 is pre-trained with 8K tokens, followed by a continued
pre-training stage to increase the context window to 128K. Qwen-2 is continued pre-trained with up
to 32k tokens, and adopted YARN (Peng et al., 2024) and Dual Chunk Attention (An et al., [2024)) to
enable processing of up to 128k tokens. As both models employ Grouped Query Attention (Ainslie
et al., 2023)), we use a single aggregated attention score for all query heads (max over all query
heads) in the same group to identify the top K tokensﬂ

3.1 TASKS

We evaluate our approach on language modeling and a suite of downstream proxy tasks for long-
context evaluation (Hsieh et al., |2024). For both tasks, report the task performance and inference
speed measured by wall clock time.

Downstream tasks We test our method on RULER (Hsieh et al.| 2024)), a suite of tasks designed
to evaluate long-context models. It includes tasks that require retrieval capabilities (e.g. Needle-
in-a-Haystack) as well as those that require aggregating information over the long context. We
follow [Hsieh et al.| (2024) and evaluate our methods on 13 tasks from four categories of RULER.
We evaluate on context length of 32K and 64K, with 100 examples for each {task, context length}.
We additionally report on two tasks from LongBench in Section in the Appendix.

Language Modeling We evaluate language modeling perplexity on the Arxiv and Book split of
RedPajama (Together, 2023), and PG19 (Rae et al., [2019). We evaluate on 16k and 100k context
size for the two respectively. We report results on 100 sequences for each domain. Following prior
work (Yen et al.,[2024b), we report the perplexity on the last 256 tokens of each sequence.

3.2 BASELINES

We compare Recycle Attention against the following baselines: (1) Vanilla attention baseline which
uses the entire KV cache to generate tokens. (2) StreamingLLLM (Xiao et al., 2023) inferences by
attending to a KV cache consisting of “sink tokens” and recent tokens, discarding all other tokens.
Following previous work, we maintain a cache with 4 sink tokens and K - 4 recent tokens. (3)

'Our ablations show that taking the max outperforms other aggregation method such as mean, or relying
solely on one of the query head in the group. We detail this more in Tablein the Appendix.
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Table 2: Performance on the RULER benchmark for LLama-3.1-8B and Qwen-2-7B. The results
show that Recycled Attention achieves a comparable speedup to prior approaches, while substan-
tially outperforming them based on accuracy across all settings.

LLama-3.1 QWEN-2
32K 64K 32K 64K
Method stride K Acc 1 time(s) | |Acc T time(s) | |Acc T time(s) | |Acc T time(s) |
Vanilla - - 90 1.71 82 2.40 79 2.55 57 4.93
H->0 - 4096 | 21 2.15 11 2.29 16 1.94 11 1.94
Streamingl.LM - 4096| 22 1.23 17 1.21 21 1.17 11 1.19
StreamingLLM++ 50 4096| 22 1.25 17 1.33 21 1.21 11 1.29
SnapKV (kernel=7, w=32) - 4096 | 72 1.64 62 1.73 57 1.43 31 1.60
Recycled 50 4096 | 63 1.27 50 1.29 32 1.21 20 1.20
Recycled (kernel=7) 50 4096 79 1.26 65 1.29 58 1.20 31 1.20

StreamingLLM++: we also implement a modified version of Streamingl.LM that is equivalent to
our Recycled Attention method in terms of both computation and memory requirements. Similar to
our approach, StreamingLLM++ performs full attention at a stride S, i.e. every S steps, to match
the attention operations of Recycle Attention. (4) HoO (Zhang et al., |2023) maintains a KV cache
which contains recent tokens and “heavy hitters”, defined by high cumulative attention scores. We
set the heavy hitter size and recent cache size to be K /2. (5) SnapKV (Li et al.,[2024) considers the
average attention scores of the last few tokens (“observation window”) in the prompt to decide the
KV cache to keep. It further applies max pooling over consecutive tokens’ attention score, instead
of relying on the token’s attention score, to decide token to keep. We set the observation window
size to 32 and kernel size to 7 following|Li et al. (2024)

3.3 INFERENCE SETTINGS

We prefill the model with the input and measure wall clock time for the generation phase for each of
the method. We generate 50 tokens for the RULER tasks and 256 tokens for the language modeling
task. We perform our experiments on 1 A100 80GB GPU with Flash Attention (Daol [2024). We
report a fixed set of K and S for the tasks, and perform ablation study on varying these two hyper-
parameters in Section in the Appendix. We include a variant of Recycled Attention with max
pooling with kernel size=7 to cluster KV cache, same as SnapKV.

4 RESULTS

RULER For this set of experiments, we set K = 4096 for all baseline models, where applicable.
For Recycled attention and Streaming++, we set stride .S = 50.

Aggregate accuracy results and the generation time per example for the RULER benchmark are re-
ported in Table[2] All methods aiming to achieve inference speedup by evicting tokens from the KV
cache permanently (e.g. StreamingL.LM, H5O) shows substantial degradation. Recycled attention
significantly outperforms other non-vanilla approaches by over 2x in terms of aggregate accu-
racy. However, we note that the performance degrades substantially compared to vanilla attention.
In terms of speed-up, our method achieves similar speedup to StreamingLLM/Streamingl. LM+, fol-
lowed by H>O model. As input context length increases, inference time for vanilla method scales
linearly, while the other methods’ inference time remain at the same ballpark with a fixed K.

Note that H,O relies on calculating attention scores at each time step to identify the “heavy hitter”
tokens which FlashAttention does not store. Thus, the inference speed-up is not as significant in
certain setting (with 1/8 KV cache size for 32K input) when used with Flash Attention. For our
Recycled Attention approach, we only explicitly re-compute the attention score every S steps, which
do not introduce as heavy an overhead.

2Our proposed method of constructing the top K cache is equivalent to SnapKV with a window size of 1 and
kernel size of 1. While it is not feasible to apply a window size greater than 1 for our method as it will require
access to attention scores at each decoding step, it is possible to apply the kernel method to our approach.
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Table 3: Per-task performance of Llama-3.1-8B on RULER subtasks. For non-vanilla methods, we
set the K = 4096.

Method \niahjingle multi_key multi_query multi_value fwe vt cwe qa
Context size: 32K
Vanilla 100 98 99 99 93 99 65 61
H>O 7 7 6 6 78 38 39 34
Streaming 8 13 13 13 93 12 4 42
StreamingLLM++ 8 14 13 13 93 18 8 50
SnapKV (kernel=7, w=32) 77 68 99 98 83 99 56 61
Recycled 98 35 59 37 90 99 20 59
Recycled (kernel=7) 99 60 98 99 83 99 44 63
Context size: 64K
Vanilla 100 90 96 99 91 98 3 54
H>O 3 2 2 4 523 8 20
Streaming 8 7 7 8 %9 5 0 33
StreamingLLM++ 8 7 7 8 %9 5 0 35
SnapKV (kernel=7, w=32) 74 42 90 88 71 92 5 48
Recycled 80 30 26 17 79 95 3 51
Recycled (kernel=7) 96 41 85 84 72 93 4 49

As RULER consists of a diverse range of task, we report per-task fine-grained performance for
Llama-3.1 in Table 3] Recycled attention performs the best at tasks that require retrieving a piece
of information in the context (including Needle-in-a-haystack (NIAH), Question Answering (QA)
and Variable Tracking (VT)). H;O and Streamingl.LM suffers at these tasks as the information
falls out of the KV cache. However, recycled attention does not perform well for task that requires
aggregating the information in the context, such as frequent word extraction (fwe), lagging behind
H50 and Streamingl.LM. Performances for tasks which requires retrieving for multiple pieces of
information (multiple keys or multiple queries) are worse compared to the task with (single key,
single value) when using the same K. We later show in ablation study in Section[A.T]increasing the
size of K leads to improvements in such tasks.

Language Modeling For context size 16K, we fix K = 2048 and S = 10 both LLaMA-3.1 and
QWEN-2. For context size 100K, we report results using K = 2048 and 32, 768, and .S = 256.

Table [ outlines the perplexity-based performance of the baselines and recycled attention approach.
For LLaMA-3.1, recycled attention achieves better perplexity and comparable inference speeds com-
pared to StreaminglL.LM when the KV cache size is 1/8 of a 16K context. This shows that the model
benefits from attending to tokens outside of local context window. We observe that H,O outperforms
our approach by a small margin, but at the cost of a substantially higher inference time per example
(10.77 for HO vs 6.05 for our method). Overall, our recycled attention approach achieves a bet-
ter trade-off between inference speeds and task accuracy compared to non-vanilla approaches
for both LLaMA-3.1 and QWEN-2 models for the 16K context size setting.

When we scale up the context length to 100K, we find differing trends between the LLaMA-3.1 and
QWEN-2 models. For LLaMA-3.1, we observe that recycled attention reports better perplexity but
worse inference speeds compared to non-vanilla baseline methods. However, baseline approaches
outperform recycle attention for the QWEN-2 model. We analyze the attention pattern to investigate
this in Section[A1]

5 CONTINUED PRE-TRAINING WITH RECYCLED ATTENTION

So far, we use the off-the-shelf LLMs as is, only modifying the inference method. This creates a
discrepancy between model training and inference assuming LLM is trained with vanilla full at-
tention setting. In this section, we experiment with continued pre-training the model with recycled
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Table 4: Perplexity results on language modeling task for LLama-3.1-8B and QWEN-2-7B. We
report performances for Arxiv (the first number) and Book (the second number) and PG19.

. LLama-3.1-8B QWEN-2-7B
Method K Stride | o0 91  PPL| |times)| PPL
Context size: 16 K (Arxiv and Book)
Vanilla - - 7.63 2.22/17.07 8.85 2.33/8.26
H2O 2048 - 10.77 2.48/7.60 11.57 2.68/9.02
StreamingLLM 2048 - 6.92 2.62/7.94 5.71 2.75/9.10
StreamingLLM++ 2048 10 7.21 2.59/7.88 6.08 2.7179.05
SnapKV (kernel=7, w=32) 2048 - 7.77 2.48/17.68 6.90 2.65/8.97
Recycled 2048 10 7.14 2.36/7.49 6.33 2.57/9.01
Recycled (kernel=7) 2048 10 7.14 2.32/17.40 6.33 247/ 8.73
Context size: 100 K (PG19)
Vanilla - - 18.11 8.24 40.42 13.28
H20 2048 - 10.56 17.04 9.96 13.39
StreamingLLM 2048 - 5.94 9.53 5.72 13.58
StreamingLLM++ 2048 256 6.04 9.53 5.92 13.58
Recycled 2048 256 6.10 9.31 5.90 14.90
H20 32,768 - 26.89 8.63 23.55 13.36
StreamingLLM 32,768 - 13.38 8.55 15.81 12.31
StreamingLLM++ 32,768 256 13.43 8.55 15.87 12.32
Recycled 32,768 256 13.52 8.46 15.89 13.50

attention, with the goal of teaching the models to adapt to attending over discontinuous tokens in the
recycled cache.

Data We sample 200k data from the Arxiv split of RedPajama dataseﬂ and filter out sequences
with less than 8192 tokens. We split the data into 80%, 10% and 10% train/dev/test splits, resulting
in 120k training data.

Training We train the model to adapt to recycled attention when predicting a sequence with 8142
with a prefilling length of 8092, K = 2048 and a stride of 50. Concretely, for the last 50 tokens ¢;
in the sequence, attention is calculated over the 2048 tokens that received the highest attention score
according to tggga, as well as {tgog3, ... t;}. For {¢o, ... tg092}, attention is calculated with regular
causal mask. We train the model with next token prediction loss for all the tokens in the sequence.
We report implementation details in Section[A.3]in the Appendix.

Comparison sytstems We compare fine-tuning with other inference methods (Vanilla,
StreamingLLM, StreamingLL.M++). For each method, we report the base performance from the
pre-trained checkpoint (Base) and the performance after continued fine-tuning (+CPT).

Results We report the results of continued pre-training in Table [5|for both the language modelling
and the 14 RULER tasks. We see that continued pre-training does not improve performance with
vanilla inference method, likely as the model is highly optimized in this setting and trained with this
data. We also observe very little performance gain through continued pre-training in other inference
methods (StreamingL. LM, StreamingLLM++). Yet, with Recycled Attention, we see a meaningful
gain from continued pre-training in two stride setting (25, 50). Continued pre-training achieves a
lower perplexity and higher accuracy with higher stride (50) compared to base model with a smaller
stride (25), leading to a better performance-efficiency trade-off.

6 NEW SECTION: DYNAMIC STRIDE

Our experiments in Section |3|employs a fixed schedule for all layers. In this section, we explore a
dynamic scheduler to alternate between full and recycling attention steps. Intuitively, if the query
vector of a particular layer and head for the current step is similar to the query vector of the most

3https ://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T
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Table 5: Results on continued pre-training LLaMA-3.1. The context length is 8K and we decode
non-vanilla methods with K = 2048. We report perplexity on the last 50 tokens.

Model Method Stride DevPPL Test PPL RULER Acc
Base Vanilla - 2.83 2.68 93
+CPT  Vanilla - 2.83 2.68 93
Base Streaming - 3.20 3.14 37
+ CPT  Streaming - 3.19 3.14 37
Base Streaming++ 50 3.19 3.13 37
+ CPT  Streaming++ 50 3.18 3.13 36
Base Recycled 50 3.09 2.96 83
+CPT Recycled 50 3.01 2.87 84
Base Recycled 25 3.03 2.90 83
+ CPT  Recycled 25 297 2.81 85

recent full attention step, the attention pattern should be similar. Based on this, for dynamic schedul-
ing, we only perform the full attention step when this similarity falls below a threshold.

Approach Atevery S*" decode step, we first determine whether we need to perform full attention
instead of always performing full attention by default. We calculate the cosine similarity between
query vectors of the input token ¢ averaged across all query heads in layer [, with the averaged query
vector of the most recent full attention step for that layer. If the similarity is higher than a threshold
s, we decode with recycle cache, and otherwise use full attention for layer [. Our approach offers the
flexibility of using different schedules for different layers, but uses the same schedule for all heads
in the same layer. Since we perform this similarity check every S steps, setting threshold s = 1 is
equivalent to decoding with the fixed stride S. We perform the comparison only every S steps to
reduce computational overhead; we call this query comparison (QC) stride.

Setup We run experiments with Llama-3.1-8B on the Arxiv and Books corpus. As before, we
report perplexity and decoding time measured on one A100 with batch size of 1 for the last 256
tokens of each test sequence. We run dynamic scheduler with two different query comparison strides
{5, 10} and a similarity threshold of 0.8. We compare against Recycled Attention with fixed strides
10 and 15. For RULER, we report performance on two tasks which require generating longer outputs
(multi-query and multi-value). We run a dynamic scheduler with two different query comparison
strides 10 and a similarity threshold of {0.8, 0.9}. We compare against Recycled Attention with
fixed strides {10, 15}. For dynamic schedules, we report the effective stride across layers, i.e. the
average stride at which full attention is performed.

Dynamic stride strategy improves perplexity compared to fixed strategy when using similar
decoding times. Table [6] reports our results. We observe that using dynamic strides improves
the performance-efficiency trade-off across all settings. Compared to fixed stride of 10 (row 2),
dynamic stride with query comparison stride of 5 (row 3) achieves lower perplexity with a slightly
faster decoding time on both domains. Similarly, employing a dynamic stride with query comparison
stride of 10 (last row) achieves better or on-par performance with less decoding time compared to
having a fixed stride of 15 (row 4). We observe a similar trend for RULER tasks. This better trade-off
can be attributed to the larger effective stride size, i.e. less frequent full attention steps, that result
from using dynamic schedules. Overall, our experiment demonstrates that dynamically deciding
when to refresh the recycle cache can improve performance when using similar decode times.

7 RELATED WORK

Efficient inference methods There are multiple paths to improve decoding efficiency of long-
context LMs. Prior work (Daol |2024) achieves significant gain in inference latency by optimizing
attention computations on GPUs. A line of work (Xiao et al.l 2022)) achieves efficiency through
quantization of KV caches. We note that these are orthogonal to and can be combined with our ap-
proach. Other lines of work introduce changes to model architecture, which involves further training
the model: |Cai et al.| (2024a)) adds extra decoding heads to predict multiple subsequent tokens in par-
allel to further speed-up speculative decoding (Leviathan et al., 2022). [Yen et al.| (2024a) encodes
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Table 6: Results comparing fixed stride and dynamic stride based on query similarity.

Method  Schedule Language Modeling

Time PPL Stride Time PPL Stride

Arxiv Book
Vanilla - 7.63 222 - 7.63  7.07 -
Recycled  Fixed 7.17 236 10 7.17 749 10
Recycled Dynamic (QC =5, s=0.8) 7.07 232 25 7.07  7.42 24
Recycled  Fixed 6.88 241 15 6.94  7.53 15
Recycled Dynamic (QC=10,s=0.8) 6.86  2.36 32 6.83 7.54 31
RULER
Time Acc Stride Time Acc Stride
multi-query multi-value

Vanilla - 1.71 99 - 1.71 99 -
Recycled  Fixed 1.48 69 10 1.48 44 10
Recycled Dynamic (QC=10, s=0.9) 1.32 69 15 1.32 44 17
Recycled  Fixed 1.43 62 15 1.43 37 15

Recycled Dynamic (QC=10, s=0.8) 1.26 62 36 1.24 40 38

chunks of long context in parallel with an encoder model, which are used as input to the decoder
model. We note that our method can be used as a training-free method, and show that it is possible
to fine-tune the model to further improve the performance-efficiency trade-off.

Dynamic KV cache Recent work (Sun et al.||2024)) introduces a hierarchical speculative decoding
method, which uses the model with a small KV cache constructed with attention pattern as draft
model for the model with the full cache. While we share the motivation of using the attention pattern
to construct a smaller KV cache, we directly leverages the dynamic cache to accelerate inference and
study the performance-efficiency trade-off. Another line of recent work (Xiao et al.,[2024a) proposes
building a dynamic KV cache by mapping distant tokens into chunks and retrieving chunks that are
similar to the current token, with the focus of extending the context size of the language model.
Quest (Tang et al.| [2024) uses the minimal and maximal key values to estimate import tokens for the
query embedding of the current input token and load the KV cache of these tokens to decode.

KV cache eviction As performing attention over the full KV cache imposes a high memory and
computation burden, KV cache eviction methods have been extensively studied. Strategies include
keeping only “sink” and recent tokens in the KV cache (Xiao et al. |2023)); or tokens with high
accumulative attention scores (Zhang et al.| 2024). Building on the idea of attention-based eviction
strategy, PyramidInfer(Yang et al.,2024b) retains different number of tokens per layer. Another line
of work proposed query-aware eviction strategies, using the attention scores of the last few tokens
in the prompt to select tokens to keep (L1 et al., [2024; |Cai1 et al., 2024bj, (Chen et al., [2024). Other
works design eviction strategies based on attention patterns of different heads (Ge et al.| [2024; Xiao
et al.,[2024b) or different layers (Yang et al.,|2024b).

8 CONCLUSION

We propose recycled attention, an inference-time method which maintains a small, dynamic KV
cache based on attention patterns of neighboring tokens. Our work follows a line of work leveraging
the locality assumption during the attention computation. Instead of using locality to directly decide
which tokens to attend to (only selecting nearby tokens), we recycle the attention pattern of nearby
tokens, allowing more flexible and dynamic sparse attention patterns. We apply our method to two
off-the-shelf long-context model and show that our method reduces inference wall-clock time while
better preserving performance compared to prior methods which keep a KV cache of recent tokens.
Finally, we show that continued pre-training the model with recycled attention and employing a
dynamic stride can further improve the performance-efficiency trade-off.

10
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A APPENDIX

A.1 ABLATING K AND S

Our method depends on two hyperparameters, the size of the recycle cache K and the stride S which
governs how often we perform full attention and update the recycle KV cache. Here, we analyze
the impact of varying these two values for Llama-3.1. We experiment with 100 ArXiv sequences
with L = 16,354 and 14 RULER tasks with L = 32,768. Results are reported in Table [I0] and
Figure f] We see that Recycled Attention outperforms baselines with similar inference time budget
for both tasks. For example, Recycled Attention with K = 2048, .S = 16 achieves better perplexity
than StreamingLLM with K = 4096. In fact, Recycled Attention with K = 4096 achieves better
accuracy than Streamingl.LM with a larger K = 8192 for RULER. Overall, we find that increasing
K is more effective than decreasing the stride S. While decreasing stride S generally benefits
Recycled Attention, it has negligible effect on StreamingLLM++. This shows that the improvement
does not merely come from performing full attention, but also from refreshing the recycle cache.
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Table 7: Results comparing different methods to aggregate attention scores for GQA models. We
evaluate perplexity on sequences of length 16K for Llama-3.1-8B, where 4 query heads share the
same KV head. We experiment with taking the attention score of the first query head, the average
attention scores of the four query heads and the max of the four query heads to select top K KV

cache.

Method K Stride Agg ArxivPPL Book PPL
Vanilla - - - 222 7.07
StreamingLLM 2048 - - 2.62 7.94
StreamingLLM++ 2048 10 - 2.57 7.85
Retrieval 2048 10 First 243 7.62
Retrieval 2048 10 Mean 2.39 7.51
Retrieval 2048 10 Max 2.36 7.49

Table 8: Updated: Recycled attention and baseline performances when varying K and .S on RULER
tasks with 32K context length (left) and Arxiv with 16K context length (right). We report results for
LLama-3.1-8B with decoding time measured on a single A100 machine.

Method K S PPL Time K S Accuracy Time
ArXiv Perplexity (16K) RULER performance (32K)
Vanilla - - 222 739 - - 90 1.71
Streaming 2048 - 262 6.64 4096 - 22 1.23
Streaming++ 2048 32 2.61 6.61 4096 50 22 1.25
Recycled 2048 32 248 6.72 4096 50 63 1.27
Streaming++ 2048 16 259 6.77 4096 10 22 1.4
Recycled 2048 16 240 690 4096 10 65 1.48
Streaming 4096 - 244 694 8192 - 26 1.46
Streaming++ 4096 32 243 7.05 8192 50 26 1.47
Recycled 4096 32 233 7.2 8192 50 70 1.48
B Vanilla StreamingLLM 4 StreamingLLM++ 4 Recycled
2.7 95
A8 ) 2018516 - K=8192, $=50
= 2.55 [K=2048,5=32 - 73.75
2 _ _ g /‘
3 ,,EXO%’ S L 4 K=4096, S=10
g 24 | K2048.5-82 K=4096, S=32 § 525 | K=4096, 5=50
t K=2048, S=16 ‘\K:ﬁgﬁ, S=16 ¢
= w
X K=4096, S=32
& 225 = 2' 31.25 K=4096, S=50
A A
2.1 10 K=4096, S=10
6.5 6.725 6.95 7175 7.4 1.15 1.313 1.475

Decoding time (s/example)

1.8

Figure 4: New: Recycled Attention and baseline performances when varying K and S on Arxiv
with 16K context length (left) and RULER tasks with 32K context length (right) for Llama-3.1-8B.
Recycled Attention achieves better performance than baselines (Streamingl.LM, Streamingl. LM++)
with the same or less decoding time for both task.
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Figure 5: Recovery rate of Streamingl.LLM and recycled attention on 5 samples from the Arxiv split
of RedPajama (Left: LLaMA-3.1, Right: Qwen-2). We calculate recovery rate with a prefill length
of 8K, K of 1024 and S = 256.

A.2 LONGBENCH EXPERIMENTS

We evaluate our method on two long-context tasks with average input length is longer than 10K from

LongBench(Bai et al.|[2023): NarrativeQA(Kocisky et al., [2018), Musique(Trivedi et al.,[2022). We

generate up to 50 tokens for each task.

Results Experiment results are reported in Table[§] We find that Recycled Attention with kernel
size of 7 performs comparably or better compared to SnapKV (the best performing baseline), with
faster decoding speed.
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Table 9: NEW:Performance on two datasets from LongBench. benchmark for LLama-3.1-8B and
Qwen-2-7B. We set K = 2048 for all tasks.

LLama-3.1 QWEN2
NarrativeQA Musique NarrativeQA Musique
Method stride | F1 1 time(s) | | F1 1 time(s) | [F11 time(s) | |F1 1 time(s) |
Vanilla - 40 2.93 31 1.38 15 9.33 41 1.71
H20 - 29 4.37 29 1.62 11 4.03 28 1.98
StreamingL.LM - 36 2.47 25 1.2 9 2.30 33 1.12
StreamingLLM++ 50 36 2.54 25 1.22 9 2.30 33 1.15
Recycled 50 39 2.32 31 1.22 13 2.28 40 1.15
Recycled (kernel=7) 50 41 2.32 32 1.23 13 2.28 40 1.15
SnapKV (kernel=7, w=32) - 40 3.21 32 1.47 13 2.86 41 1.33
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Figure 6: Recovery rate of StreamingL.LM and recycled attention on 5 samples each from the Arxiv
and Book split of RedPajama (Left: LLaMA-3.1, Right: Qwen-2). We calculate recovery rate with
a prefill length of 8K, K of 1024 and S' = 50.

A.3 CONTINUED PRE-TRAINING IMPLEMENTATION DETAILS

Implementation details We train Llama-3.1 for one epoch with a global batch size of 64 and a
learning rate of 5e-6. We use 20 warm-up steps and a linear schedule with O weight decay. We use
the AdamW Optimizer. We use Fully Sharded Data Parallel (Zhao et al.| [2023)) and 8-bit optimizer
(Dettmers et al.| [2021)) to improve training efficiency. Training is done on 4 H100 80 GB GPUs.

A.4 ATTENTION PATTERN ANALYSIS

We analyze the recovery rate of recycled attention and StreamingL.LM for LLaMA-3.1 and QWEN-
2 (similar to the setting in Section [2). Figure [6] shows the aggregated attention recovery rate. We
observe a consistent trend across the two domains. While for both models recycled attention recovers

more attention mass than StreamingL. LM, the gap between the two methods is much smaller for
QWEN-2.

A.5 DYNAMIC STRIDE ANALYSIS
We reported an aggregated effective stride in Table [ We further investigate the effective stride

patterns across different layers, shown in Figure [/l We can see that our method enables setting a
different stride at different layers, with the earlier layer having a larger stride.

A.6 RULER CONFIGURATION

We follow the suite of evaluation tasks introduced in |Hsieh et al.| (2024)), which consists of the 13
tasksﬂ We group them based on the types:

*nttps://github.com/hsiehjackson/RULER
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Layer-wise effective stride for Llama-3.1-8B with QC_stride=10, threshold=0.8
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Figure 7: Layer-wise effective stride for LLaMA-3.1-8B with query similarity dynamic strides.

Table 10: Recycled attention and baseline performances when varying K and .S on RULER tasks
with 32K context length (left) and Arxiv with 16K context length (right). We report results for
LLama-3.1-8B with decoding time measured on a single A100 machine.

Method K S PPL Time K S Accuracy Time
ArXiv Perplexity (16K) RULER performance (32K)

Vanilla - - 222 739 - - 90 1.71
Streaming 2048 - 262 6.64 4096 - 22 1.23
Streaming++ 2048 32 2.61 6.61 4096 50 22 1.25
Recycled 2048 32 248 6.72 4096 50 63 1.27
Streaming++ 2048 16 2.59 6.77 4096 10 22 1.4

Recycled 2048 16 240 690 4096 10 65 1.48
Streaming 4096 - 244 694 8192 - 26 1.46
Streaming++ 4096 32 243 7.05 8192 50 26 1.47
Recycled 4096 32 233 7.2 8192 50 70 1.48

Single NIAH An NIAH-styled task with one key and one value to retrieve. We include three
variations of the task with different types of key, value and haystack.

Multi-key NIAH An NIAH-styled task with distracting keys. We include three variations of the
task with different types of key, value and haystack.

Multi-values NIAH An NIAH-styled task with multiple values corresponding to the key.

Multi-queries NIAH An NIAH-styled task with multiple queries, each corresponding to a distinct
key.

Variable Tracking A NIAH-styled task that requires tracing through multiple hops.

Common word extraction and Frequent word extraction require extracting the words based on
the pattern in a list of words.

Question Answering A task that requires answering a question given a set of documents. We
include two variations of the tasks, corresponding to two question answering datasets.

We refer the readers to Hsieh et al.| (2024)) for detailed description and examples of each task.
A.7 LIMITATIONS AND FUTURE WORK
Proposed method While we focus on accelerating inference speed, our method does not reduce

memory requirement for using long-context LLMs, which can be a bottleneck for certain use cases.
Our method is focused on a setting where we generate long output given a long input. When the
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output length is very small, the efficiency gain will be minimal. In this study, we focus on employing
a fixed stride across all layers and explore dynamic scheduling based on query-similarity. Setting a
custom stride per layer, or exploring other methods for deciding when to recycle the cache could be
future avenue to improve performance.

Experimental Settings We have conducted experiment with two open-sourced long-context mod-
els and two evaluation tasks setting. We did not test out more language models and other long-
context benchmarks (An et al., |2023; |[Karpinska et al.| [2024) given our limited compute resources.
Finally, our method is not limited to the language domain. Future work can explore applying recy-
cled attention to other modalities, for instance, vision transformers.
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