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ABSTRACT

As a neural network’s depth increases, it can achieve strong generalization per-
formance. Training, however, becomes challenging due to gradient issues. Theo-
retical research and various methods have been introduced to address this issues.
However, research on weight initialization methods that can be effectively applied
to tanh neural networks of varying sizes still needs to be completed. This paper
presents a novel weight initialization method for Feedforward Neural Networks
with tanh activation function. Based on an analysis of the fixed points of the func-
tion tanh(ax), our proposed method aims to determine values of a that prevent the
saturation of activations. A series of experiments on various classification datasets
demonstrate that the proposed method is more robust to network size variations
than the existing method. Furthermore, when applied to Physics-Informed Neural
Networks, the method exhibits faster convergence and robustness to variations of
the network size compared to Xavier initialization in problems of Partial Differ-
ential Equations.

1 INTRODUCTION

Deep learning has enabled substantial advancements in state-of-the-art performance across various
domains (LeCun et al., 2015; [He et al.,2016). In general, the expressivity of neural networks expo-
nentially increases with depth (Poole et al.,|2016; Raghu et al.,2017), enabling strong generalization
performance. This increased depth, though, can result in vanishing or exploding gradients and poor
signal propagation throughout the model (Bengio et al., |1993), prompting the development of var-
ious weight initialization methods. Xavier initialization (Glorot & Bengiol [2010) ensures signals
stay in the non-saturated region for sigmoid and hyperbolic tangent activations, while He initial-
ization (He et al., [2015)) maintains stable variance for ReLLU networks. Especially in ReLU neural
networks, several weight initialization methods have been proposed to mitigate the dying ReLU
problem, which hinders signal propagation in deep networks (Lu et al., 2019} |[Lee et al.| 2024).
However, to the best of our knowledge, research on the initialization method to tackle the stabil-
ity of extremely deep tanh networks during training is still limited. Such networks commonly use
Xavier initialization (Raissi et al.,|2019; Jagtap et al.,|2022; Rathore et al.| 2024)) and are widely ap-
plied in various domains, such as Physics-Informed Neural Networks (PINNs) (Raissi et al., [2019)
and Recurrent Neural Networks (RNNs) (Rumelhart et al.| |1986)), with performance often dependent
on model size and initialization randomness (Liu et al.| [2022).

The main contribution of this paper is the proposal of a simple weight initialization method for Feed-
Forward Neural Networks (FFNNs) with tanh activation function. This method facilitates effective
learning across a range of network sizes, outperforming Xavier initialization by reducing the need
for extensive hyperparameter tuning such as the number of hidden layers and units. The theoretical
foundation for this approach is provided through the fixed point of the function tanh(az). We ex-
perimentally demonstrate that the proposed method achieves higher validation accuracy and lower
validation loss compared to the Xavier initialization method across various FFNN network sizes on
the MNIST, Fashion MNIST, and CIFAR-10 datasets. Additionally, the proposed method demon-
strates its effectiveness in training across various network configurations within PINNs. Notably,
while Xavier initialization shows decreasing loss as network depth increases, it fails to maintain
performance beyond a certain depth, leading to increased loss and poor training outcomes. In con-
trast, the proposed method continues to improve performance even at greater depths, ensuring stable
training and better results.
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Contributions. Our contributions can be summarised as follows:

¢ We show the conditions under which activation values do not vanish as we increase the
depth of the neural network, using a fixed-point analysis (Section [3.1]and [3.2).

* We propose a novel weight initialization method for tanh-based neural networks that has
strong robustness to variations in network size (Section [3.2|and [3.3).

* We experimentally demonstrate that the proposed method is more robust to variations in
network size than Xavier initialization on image benchmark datasets and PINNs (Sec-

tion[d).

2 RELATED WORKS

The expressivity of neural networks typically grows exponentially with depth, resulting in improved
generalization performance (Poole et al.| 2016} |[Raghu et al., 2017). Weight initialization is crucial
for training deep networks effectively (Saxe et al.| 2014} Mishkin & Matas, 2016)). Xavier (Glorot
& Bengiol 2010) and He He et al.| (2015)) initialization are common initialization methods typically
used with tanh and ReLLU activation functions, respectively. Various initialization methods have been
proposed to facilitate the training of deeper ReLU neural networks (Lu et al., 2019} Bachlechner
et al.|[2021; Zhao et al., 2022} |Lee et al.,|2024). However, to the best of our knowledge, research on
weight initialization for neural networks with tanh activation remains limited. Tanh neural networks
have been increasingly used, particularly in physics-informed neural networks (PINNs).

PINNs have shown promising results in solving forward, inverse, and multiphysics problems aris-
ing in science and engineering. (Lu et al.| 2021; |[Karniadakis et al.l 2021} |Cuomo et al., [2022bza;
Yin et al.| 2021} Wu et al.| [2023; Hanna et al., [2022; Bararnia & Esmaeilpour, 2022} [Shukla et al.,
2020; Zhu et al., 2024; Hosseini et al., 2023; Mao et al., [2020). PINNs approximate solutions to
partial differential equations (PDEs) using neural networks and are typically trained by minimizing
a loss defined by the sum of least-squares that incorporates the residual of PDE, boundary condi-
tions, and initial conditions. This loss is usually minimized using gradient-based optimizers such
as Adam (Kingma, 2014), L-BFGS (Liu & Nocedal, |1989), or a combination of both. Univer-
sal approximation theories (Cybenko| [1989; |Hornik et al., [1989; |Hornikl |1991}; [Park et al.| |2020;
Guliyev & Ismailovl [2018b; [Shen et al., 2022; |Guliyev & Ismailov} 2018a; Maiorov & Pinkus)
1999; |Yarotsky, 2017} |Gripenberg| [2003) guarantee the capability and performance of neural net-
works as an approximation of the analytic solution to PDE. However, PINNss still face challenges
in accuracy, stability, computational complexity, and tuning optimal hyperparameters of loss terms.
To alleviate these issues, many authors have introduced enhanced versions of PINNs: (1) the self-
adaptive loss balanced PINNs (IbPINNs) that automatically adjust the hyperparameters of loss terms
during the training process (Xiang et al., 2022), (2) the Bayesian PINNs (B-PINNs) that are spe-
cialized to deal with forward and inverse nonlinear problems with noisy data (Yang et al.| |2021)),
(3) Rectified PINNs (RPINNs) that are trained with the gradient information from the numerical
solution by the multigrid method and designed for solving stationary PDEs (Peng et al., [2022)),
(4) Auxiliary Pinns (A-PINNGs) that effectively handle integro-differential equations (Yuan et al.,
2022), (5) conservative PINNs (cPINNs) and exetended PINNs (XPINNs) that adopt the domain
decomposition technique (Jagtap et al.l [2020; Jagtap & Karniadakis, 2020), (6) parrel PINNs that
reduces the computational cost of cPINNs and XPINNs (Shukla et al., 2021), (7) gradient-enhanced
PINNs (gPINNs) that use the gradient of the PDE loss term with respect to the network inputs (Yu
et al., [2022).

PINNs primarily employ Xavier initialization for training (Jin et al.l 2021} [Son et al., 2023} [Yao
et al.| 2023} |Gnanasambandam et al., 2023 |Song et al., 2024), but our experimental results indicate
that this method limits the performance of larger network sizes. Although there have been recent
results on initialization methods for PINNs, most of them have relied on transfer learning (Tarbiyati
& Nemati Saray, 2023). Thus, we propose a weight initialization method that does not require
transfer learning and is robust to variations in network size.
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Figure 1: Difference between maximum and minimum activation values at each layer when prop-
agating 3, 000 input data through a 10, 000-layer tanh FENN, using Xavier initialization (Left) and
the proposed initialization (Right). Experiments were conducted on networks with 10,000 hidden
layers, each having the same number of nodes: 16, 32, 64, or 128.

3  PROPOSED WEIGHT INITIALIZATION METHOD

In this section, we discuss the proposed weight initialization method. Subsection [3.T]introduces the
theoretical motivation behind the methodology. Subsection [3.2] presents how to derive the initial
weight matrix that satisfies the conditions outlined in Subsection [3.1] Finally, in Subsection [3.3] we
suggest the optimal hyperparameter o, in the proposed method.

3.1 THEORETICAL MOTIVATION

Experimental results in Figure [I| reveal that when Xavier initialization is employed in FFNNs with
tanh activation, the distribution of activation values tends to cluster around zero in deeper layers.
This vanishing of activation values can hinder the training process due to a discrepancy between
the activation values and the desired output. However, theoretically preventing this phenomena is
not straightforward. In this subsection, we gives a theoretical analysis based on a fixed point of
tanh(ax) to bypass the phenomena. Before giving the theoretical foundations, consider the basic
results for a tanh activation function. Recall that z* is a fixed point of a function f if * belongs to
both the domain and the codomain of f, and f(z*) = z*. The proofs of Lemmaand Lemma are
provided in Appendix [A]

Lemma 1. For a fixed a > 0 define the function ¢, : R — R given as
¢a () = tanh(ax).
Then, there exists a fixed point x*. Furthermore,
(1) if 0 < a < 1, then ¢ has a unique fixed point x* = 0.
(2) ifa > 1, then ¢ has three distinct fixed points: ©* = —&,, 0, &, such that &, > 0.

Remark that the function ¢, can be considered as one-layer tanh FFNN.

Lemma 2. For a given initial value xo > 0 define
Tpt1 = Ga(Trn), n=0,1,2,....
Then {x,}°2 , converges regardless of the positive initial value xo > 0. Moreover,
(1) f0<a <1, thenz, — 0asn — occ.
(2) ifa > 1, then x,, — &, as n — oo.

Note that the parameter @ in Lemma [2] does not change across all iterations. In Propositions [3] and
Corollary ] we address cases where the value of a varies with each iteration.
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Proposition 3. Let {a,,}5° ; be a positive real sequence, i.e., a, > 0 for all n € N, such that only
finitely many elements are greater than 1. Suppose that {q)m}mfl is a sequence of functions defined

as for each m € N
m :¢amo¢am71 o-~-0¢a1,

Then for any x € R
lim &,,(z) =0.
m—r o0
Proof. Set N = max{n|a, > 1}. Define the sequences {b,}5>, and {c,}>2; such that b,, =

¢n = ap forn < N, with b, = 0 and ¢,, = 1 for n > N. Suppose that {®,,}°°_, and {®,,}>°_,
are sequences of functions defined as for each m € N

m = @b, © P, O O P, P = e, ©Pe,, 0 0Py

Then, the inequality fiDm < &,, < ®,, holds for all m. By Lemma (1} for any x > 0, we
have lim,, o ®,, = 0 and lim,,, , o, ®,, = 0. Therefore, the Squeeze Theorem guarantees that
limy, 500 P (z) = 0.

O

Corollary 4. Let € > 0 be given. Suppose that {a,, }°2 ;| be a positive real sequence such that only
finitely many elements are lower than 1 + €. Then for any x € R\ {0}

lim ‘I)m(ﬂf) 2€1+5

m—r 00

Proof. Set N = max{n | a, < 1+ €}. Define the sequence {b,,}22; such that b,, = a,, for
n < N,and b, = 1+ e forn > N. The remainder of the proof is analogous to the proof of
Proposition 3] O

3.2 THE DERIVATION OF THE PROPOSED WEIGHT INITIALIZATION METHOD

To establish the notation, consider a feedforward neural network with L layers. The network pro-
cesses K training samples, denoted as pairs {(z;,y;)}X |, where &; € R"= is training input and
€ RV is its corresponding output. The iterative computation at each layer / is defined as follows:

x’ = tanh(Wiz"~ 1 + b%) e RM forallt=1,... L,

where W¥ € RNexNe-1 is the weight matrix, b? € R™ is the bias, and tanh(-) is an element-wise
activation hyperbolic tangent function.

We present a simplified analysis of signal propagation in FFNNs with the tanh activation function.
For notational convenience, it is assumed that all hidden layers, as well as the input and output layers,
have a dimension of n, i.e., Ny = n for all £. Given an arbitrary input vector * = (z1, ..., zy,), the
first layer activation & = tanh(W!x) can be expressed component-wise as:

whi;
x = tanh( Zl:vl +-+ wmxn) = tanh ((w” + Z it )%) fort=1,.

’L

J?él
For the k + 1-th layer, 7 = 1,. .., n, this expression can be generalized as:
n k+1 k
of = tanh (af t'2¥) , where aft! = wit! +Z iy 4 (1)
J#z

According to Lemma when a > 1, for an arbitrary initial value x¢ > 0 or zg < 0, the sequence
{z}} defined by x11 = tanh(axy) converges to &, or —¢,, respectively, as k — oo. This result
indicates that the sequence converges to the fixed point £, regardless of the initial value = and en-
sures that the activation values do not vanlsh as network depth increases. Furthermore, by Lemmal
if a¥ < 1forall N < k < L, then xl approaches zero. Therefore, to ensure that (i) a¥ remains

close to 1 and (ii) a¥ < 1 does not hold forall N < k < L, we design the initial weight matrix as
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Figure 2: Difference between maximum and minimum activation values at each layer when propa-
gating 3, 000 input data through a 10, 000-layer tanh FFNN, using the proposed initialization with
a set to 0.04,0.085,0.15, and 0.5. Network with 10,000 hidden layers, each with 32 nodes (Left),
and a network with alternating hidden layers of 64 and 32 nodes (Right).

W = D!+ 78 € RVeXNe-1 where DfJ =1ifi=j (mod Ny_1), 0 otherwise, and 7! is a noise
matrix drawn from N (0, 02), where o, is set to a/v/N?~1 and o = 0.085. Then a}™" follows the

distribution:
n CCk 2
QL N(l, 2102y (ﬁ) | @)
j=1

K2

J#i
According to Equation [2| the mean of af“
(i). For condition (ii), if #¥ becomes small relative to other elements in ¥, the variance of a
increases, as indicated by Equation [2| As a result, the probability that the absolute value of z

surpasses that of =¥ is higher. However, if o is too small, the increase in the variance of a
becomes limited. Therefore, choosing an appropriate ¢, is crucial.

is 1, so choosing an appropriate o, satisfies condition
k+1
i
k+1
i
k+1

i

3.3 PREVENTING ACTIVATION SATURATION VIA APPROPRIATE o, TUNING

In this subsection, we discuss how o, impacts the scale of the activation values. Equation[2]indicates
that a¥ follows a normal distribution, with variance depending on o,. Firstly, we experimentally
investigated the impact of o on the scale of the activation values. As demonstrated in Figure [2]
increasing o, = «/1/N;_1 causes the activation values in any layer to be distributed over a broader
range. However, setting o, to a large value can lead to saturation, where most activations converge
towards —1 and 1. If o, is too large, the probability that agk) takes values far from 1 (e.g., -10,
5, etc.) increases. This, in turn, increases the value of 1 4 € mentioned in Corollary 4, potentially
bounding the activation values in sufficiently deep layers by &;4.. Consequently, the activation
values in deeper layers become less likely to approach zero and tend to saturate toward specific
values. On the other hand, if o, is too small, as mentioned in Subsection 3.2, the variance of ai—“
becomes restricted. This is demonstrated experimentally in Figure 2] when v = 0.00001. For
this reason, we experimentally found an optimal o, = a/v N¢~1, with a = 0.085, that is neither
too large nor too small. Results from experiments solving the Burgers’ equation using PINNs with
varying o, are presented in Appendix [B:1]

4 EXPERIMENTS

In this section, we conduct a series of experiments to validate the proposed weight initialization
method. In Subsection 4.1, we evaluate the performance of an FFNN with the tanh activation func-
tion on benchmark datasets. In Subsection 4.2, we solve the Burgers’ equation and Allen-Cahn
equation using Physics-Informed Neural Networks. Both experiments are conducted across various
network sizes to verify whether the proposed method consistently performs well, independent of net-
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Table 1: Validation accuracy and loss are presented for FFNNs with varying numbers of
nodes (2,8, 32,128), each with 20 hidden layers using the tanh activation function. All models
were trained for 20 epochs, and the highest average accuracy and lowest average loss, computed
from 10 runs, are presented. When comparing different initialization methods under the same ex-
perimental settings, the better-performing method is highlighted in bold. Underlined values indicate
the highest accuracy when only the number of nodes is varied.

2 8 32 128
MNIST Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss

Xavier 49.78 1.632 68 0.958 91.67 0.277 95.45 0.154
Proposed 62.82 1.185 77.95 0.706 92.51 0.255 96.12 0.134

FMNIST  Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss

Xavier 42.89 1.559 68.55 0.890 81.03 0.533 86.2 0.389
Proposed 51.65 1.324 71.31 0.777 83.06 0.475 87.12 0.359

CIFARIO Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss

Xavier 32.82 1.921 43.51 1.608 48.62 1.473 47.58 1.510
Proposed 38.16 1.780 47.04 1.505 48.80 1.463 48.51 1.471

work depth and width. The experiments were conducted in TensorFlow without skip connections,
normalization layers, and learning rate decay in any of the experiments.

4.1 WIDTH INDEPENDENCE IN CLASSIFICATION TASK

To evaluate the effectiveness of the proposed weight initialization method, we conduct experiments
on the MNIST, Fashion MNIST, and CIFAR-10 (Krizhevsky & Hinton, [2009) datasets, utilizing
the Adam optimizer. All experiments are conducted with a batch size of 64 and a learning rate of
0.0001. Fifteen percent of the total dataset is allocated for validation.

We apply the proposed weight initialization method to evaluate its effectiveness in training tanh
FFNNs, emphasizing its robustness to variations in network width. Four tanh FFNNs are created,
each with 20 hidden layers, and with 2, 8, 32, and 128 nodes per hidden layer, respectively. In
Table[T] for both the MNIST and Fashion MNIST datasets, the network with 128 nodes achieves the
highest accuracy and lowest loss when our proposed method is employed. However, for the CIFAR-
10 dataset, the network with 32 nodes yields the highest accuracy and lowest loss when employing
the proposed method. In summary, our proposed method demonstrates robustness regardless of the
number of nodes in tanh FFNNs. We provide more detailed experimental results in Appendix [B.2]

Table 2: Validation accuracy and loss are presented for FFNNs with varying numbers of lay-
ers (10,50,100), each with 64 number of nodes using the tanh activation function. All models
were trained for 40 epochs, and the highest average accuracy and lowest average loss, computed
from 10 runs, are presented.

10 50 100
MNIST Accuracy Loss Accuracy Loss Accuracy Loss

Xavier 96.55 0.112 96.57 0.123 94.08 0.194
Proposed 97.04 0.102 96.72 0.109 96.06 0.132

FMNIST  Accuracy Loss Accuracy Loss Accuracy Loss

Xavier 88.73 0.319 87.72 0.344 83.41 0.463
Proposed 89.42 0.305 88.51 0.324 86.01 0.382

CIFAR10 Accuracy Loss Accuracy Loss Accuracy Loss

Xavier 48.39 1.468 47.87 1.474 46.71 1.503
Proposed 48.41 1.458 48.71 1.461 48.96 1.437
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Figure 3: Validation accuracy and loss for a tanh FFNN with 60 hidden layers, where the number of
nodes alternates between 32 and 16 across layers, repeated 30 times. The model was trained for 20
epochs on the MNIST and CIFAR-10 datasets.

4.2 DEPTH INDEPENDENCE IN CLASSIFICATION TASK

It is well known that the expressivity of neural networks generally increases exponentially with
depth, enabling strong generalization performance (Poole et al., |2016; Raghu et al.l |2017). There-
fore, we employ the proposed weight initialization method to investigate its effectiveness in training
deep FFNNs with the tanh activation function, emphasizing its robustness to variations in network
depth. We create three tanh FFNNs, each with 64 nodes in all hidden layers, but with 10, 50, and
100 hidden layers, respectively. In Table 2] for both the MNIST and Fashion MNIST datasets, the
network with 10 hidden layers achieves the highest accuracy and lowest loss when our proposed
method is employed. Both initialization methods perform best in networks with the fewest layers,
with performance degrading as the depth increases. However, for the CIFAR-10 dataset, we observe
that the performance of the proposed method improves as the number of layers increases.

Furthermore, we conduct experiments with varying hidden layer dimensions, as shown in Figure
The network consists of 60 hidden layers, where the number of nodes alternates between 32 and 16
in each layer. We demonstrate superior performance in terms of both loss and accuracy across all
epochs on the MNIST and CIFAR-10 datasets.

4.3 NETWORK SIZE INDEPENDENCE IN PINN

Xavier initialization is the primary method used for training PINNs (Jin et al., 2021} |Son et al.,
2023} |Yao et al., [2023; (Gnanasambandam et al., 2023). In this section, we experimentally demon-
strate that the method’s training performance is highly dependent on randomness and network size.
Additionally, empirical results are provided demonstrating that the proposed method is more robust
to variations in network size.

All experiments on Physics-Informed Neural Networks (PINNs) use full-batch training with a learn-
ing rate of 0.001. In this section, we solve the Allen-Cahn and Burgers’ equations using a tanh
FFNN-based PINN with 20,000 collocation points. For the Allen-Cahn equation, the diffusion co-
efficient is set to d = 0.01. The initial condition is defined as u(z,0) = z? cos(rz) for x € [—1,1],
with boundary conditions u(—1,¢) = —1 and u(1,¢) = —1, applied over the time interval ¢ € [0, 1].
Similarly, for the Burgers’ equation, a viscosity coefficient of ¥ = 0.01 is employed. The initial
condition is given by u(x,0) = —sin(nz) for 2 € [—1, 1], with boundary conditions u(—1,t) =0
and u(1,t) = 0 imposed for ¢ € [0, 1].

The Allen-Cahn equation is expressed as:

ou 0%u B ud 4+ u

ot ox2 d
where u(x,t) represents the solution, d is the diffusion coefficient, and the nonlinear term ud —u
models the phase separation dynamics.

The Burgers’ equation is given by:
ou  du  %u

o or TV oa2
where u(z, t) is the velocity field, and v is the viscosity coefficient.
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Eight tanh FFNNs are created, each with 16 nodes in all hidden layers, but with 5, 10, 20, 30, 40, 50,
60, and 80 hidden layers, respectively. As shown in Table [3| for the Allen-Cahn equation, Xavier
initialization achieves the lowest loss at a network depth of 20. However, as the depth increases, the
loss gradually rises. In contrast, the proposed method achieves the lowest loss at a depth of 50 and
maintains a loss of 0.00057 even at a depth of 80 layers. For the Burgers’ equation, the proposed
method achieves the lowest loss at a depth of 60, while at the same depth, Xavier initialization results
in a loss that is an order of magnitude higher (approximately 102 difference).

Next, we double the number of nodes to observe the impact of node size on the loss. Eight new
tanh FFNNSs are created, each with 32 nodes in all hidden layers, and with 5, 10, 20, 30, 40, 50,
60, and 80 hidden layers, respectively. As shown in Table [3] for the Allen-Cahn equation, Xavier
initialization achieves the lowest loss at a network depth of 30. However, as the depth increases,
the model becomes untrainable, with a loss of 0.694 at a depth of 80. In contrast, the proposed
method achieves the lowest loss at a depth of 40 and maintains a loss of 0.00059 even at a depth
of 80 layers. For the Burgers’ equation, both methods show similar loss values up to a depth of
30. Beyond a depth of 40, however, the loss steadily increases with the Xavier method, while the
proposed method records the lowest loss at a depth of 50.

Table 3: A PINN loss is presented for FFNNs with varying numbers of lay-
ers (5,10, 20, 30,40, 50,60, 80) using the tanh activation function. The top table shows results
with 16 nodes per layer, and the bottom table shows results with 32 nodes per layer. All models
were trained for 300 iterations using Adam and 300 iterations using L-BFGS. The median PINN
loss from the final iteration for the Burgers and Allen—Cahn equations, computed over 5 runs, is
presented.

Allen-Cahn (16 Nodes) 5 10 20 30 40 50 60 80
Xavier 9.58e-04 8.16e-04 7.61e-04 1.06e-03 1.1e-03  1.24e-03 3.55¢-03 1.81e-03
Proposed 9.21e-04 7.29¢-04 5.76e-04 5.29¢-04 5.37e-04 4.03e-04 4.73e-04 5.77e¢-04
Burgers (16 Nodes) 5 10 20 30 40 50 60 80
Xavier 6.97¢-03 1.11e-02  7.9e-03 9.71e-03 2.45e-02 2.65e-02 6.5¢-02 5.71e-02
Proposed 6.19¢-03 5.08e-03 5.28¢-03 9.31e-04 3.56e-03 8.27e-04 3.43e-04 2.05e-03
Allen-Cahn (32 Nodes) 5 10 20 30 40 50 60 80
Xavier 3.13e-01 5.03e-02 3.64e-03 2.37¢-03 4.03e-03 5.27e-03 1.73e-02 6.94e-01
Proposed 1.04e-03  6.92e-04 5.34e-04 4.26e-04 3.31e-04 3.52¢-04 3.85e-04 5.96e-04
Burgers (32 Nodes) 5 10 20 30 40 50 60 80
Xavier 1.12e-02  3.53e-03 2.72e-03 1.81e-03 7.60e-03 8.56e-03 9.86e-03 1.66e-01
Proposed 4.14e-03 4.11e-03 1.58e-03 1.29¢-03 7.96e-04 5.85e-04 9.80e-04 1.47¢-03

5 CONCLUSION

In this paper, we have introduced a novel weight initialization method for tanh FFNNs, grounded
in the theoretical analysis of fixed points of the tanh(ax) function. Through our fixed-point anal-
ysis, we established conditions under which the vanishing or exploding of activation values can be
prevented, even as the depth of the network increases.

Our proposed method exhibits strong robustness to variations in network size, as demonstrated
across a variety of FFNN configurations and benchmark datasets, including MNIST, Fashion
MNIST, and CIFAR-10. In contrast to Xavier initialization, which struggles to maintain stable
performance as network depth increases, the proposed method consistently achieves superior results
by preserving activation values. Furthermore, we explored the impact of the initialization hyperpa-
rameter o, on the distribution of activation values. We demonstrated both theoretically and experi-
mentally that the choice of o, plays a significant role in maintaining the proper range of activations,
balancing between vanishing and saturation. In the context of PINNs, the proposed initialization
method shows improved performance in solving PDEs such as the Burgers’ equation and the Allen-
Cahn equation. By maintaining a stable loss function and achieving faster convergence compared to
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Xavier initialization, our method demonstrates its practical utility in training networks for physical
systems.

A key advantage of the proposed method lies in its robustness to network depth and width, signif-
icantly reducing the need for extensive hyperparameter tuning. By maintaining stable performance
across varying network configurations, our approach helps to minimize the time and effort spent on
searching for optimal network architectures, allowing researchers to focus on model design and other
aspects of the training process. This makes the proposed method particularly valuable in large-scale
and resource-constrained applications where efficient training is critical.
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A PROOFS OF THE THEORETICAL RESULTS

A.1 PROOF oF LEMMA/I]

Proof. We define g(x) = tanh(ax) — z. Since g(x) is continuous, and g(—M) > 0, g(M) < 0 for
a large real number M € R™T, the Intermediate Value Theorem guarantees the existence of a point
such that g(x) = 0.

First, consider the case 0 < a < 1. Since 0 < a < 1, the derivative ¢'(z) = a - seChQ(ax) -1
satisfies —1 < ¢’(z) < a — 1 < 0 for all z. Hence, g(x) is strictly decreasing and therefore g(x)
has the unique root. At x = 0, ¢(0) = tanh(a - 0) = 0. Hence, = 0 is the unique fixed point.

Let us consider the case a > 1. For0 < z < 1, tanh(az) —x ~ (a—1)x. Since a > 1, tanh(az) —
2 > 0. On the other hand, since | tanh(az)| < 1 for all ,

. 1 < 1 _ < _
lim [-1 —2z] < wlgrgo[tanh(am) x] < Ilgg@[l x].

r—r 00
By the squeeze theorem, lim,_,[tanh(az) — 2] = —oo. By the intermediate value theorem,
therefore, there exists at least one > 0 such that tanh(az) = =z. To establish the unique-
ness of the positive fixed point, we investigate the derivative g'(z) = asech®(az) — 1. We

find the critical points to be # = +1 sec’l(ﬁ). It is straightforward to see that ¢'(z) > 0

in (—% sec_l(%), 1 sec_l(ﬁ)) and ¢'(z) < 0 in R\ (—% sec_l(ﬁ), 1 sec_l(ﬁ)). ie.
g(x) = 0 has exactly two fixed points. Because g(z) is an odd function, if 2* is a solution, then
—x* is also a solution. Thus, for @ > 1, there exists a unique positive fixed point if x > 0 and a
unique negative fixed point if z < 0. O

A.2 PROOF OF LEMMA

Proof. (1) Since (tanh(ax))’ = asech?(az) < 1 for all z > 0, it holds that z,, 1 = ¢a(z,) < Zp,
for all n € N. Thus the sequence {z,,}>2, is decreasing. Since z,, > 0 for all n € N, by the
monotone convergence theorem, it converges to the fixed point * = 0.

(2) Let &g < &,. Since ¢'(x) decreasing for z > 0, with ¢'(0) > 1 and &, is the unique fixed
point for x > 0, it holds that x,, < xp4+1 < §, for all n € N. Thus, by the monotone convergence
theorem, the sequence converges to the fixed point &,. The proof is similar when zy > &,. O
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B ADDITIONAL EXPERIMENTAL RESULTS

B.1 PREVENTING ACTIVATION SATURATION VIA APPROPRIATE ¢, TUNING

Loss According to Noise Matrix STD Loss According to Noise Matrix STD

— 00,0001

— swo

0 100 200 400 500 [ 100 200 400 500

300 300
Iterations Iterations

(a) Same dimension (b) Varying dimensions
Figure 4: Here, 'STD’ refers to o,. (a) shows the PINN loss for the Burgers’ equation, using an
FFNN with 30 layers and 32 nodes in each hidden layer. (b) shows the PINN loss for an FFNN

with 30 layers, where the hidden layers alternate between 64 and 32 nodes, repeated 15 times. Each
experiment was repeated 10 times with different random seeds.

B.2 WIDTH INDEPENDENCE IN CLASSIFICATION TASKS
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Figure 5: Validation accuracy and loss are presented for tanh FFNNs with varying numbers of
nodes (2,8, 32,128), each with 20 hidden layers. All models were trained for 20 epochs on the
MNIST dataset, with 10 different random seeds.

14



Under review as a conference paper at ICLR 2025

Number of nodes: 2 Number of nodes: 8 Number of nodes: 32 Number of nodes: 128
0.6 Xavier
Proposed 0.7 0.80 0.86
go,s
E 0.6 0.75 0.84
go4 0.70 0.82
< 05
5 0.3 0.65 0.80
3 0.4
o2 0.60 0.78
03
0.551 | 0.76
0.1
[ 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
Epochs Epochs Epochs Epochs
Number of nodes: 2 Number of nodes: 8 Number of nodes: 32 Number of nodes: 128
Yovier | L4 0.701 |
2.2 Proposed 2.0
0.65
%20 18 2
- 0.60
=2 16 10
S18 i 0.55
'(sz 1.4
216 12 0.8 0-50
g 0.45
1.4 1.0
0.6 0.40
0.8
12 0.35
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
Epochs Epochs Epochs Epochs

Figure 6: Validation accuracy and loss are presented for tanh FFNNs with varying numbers of
nodes (2,8, 32,128), each with 20 hidden layers. All models were trained for 20 epochs on the
Fashion MNIST dataset, with 10 different random seeds.
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Figure 7: Validation accuracy and loss are presented for tanh FFNNs with varying numbers of
nodes (2,8, 32,128), each with 20 hidden layers. All models were trained for 20 epochs on the
CIFAR-10 dataset, with 10 different random seeds.



	Introduction
	Related works
	Proposed Weight Initialization method
	Theoretical motivation
	The derivation of the proposed weight initialization method
	Preventing activation saturation via appropriate z tuning

	Experiments
	Width Independence in Classification Task 
	Depth Independence in Classification Task 
	Network size independence in pinn

	Conclusion
	Proofs of the theoretical results
	Proof of Lemma 1
	Proof of Lemma 2

	Additional experimental results
	Preventing activation saturation via appropriate z tuning
	Width independence in Classification tasks


