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Abstract

Knowledge-editing updates knowledge of large
language models (LLMs) and contributes to the
interpretability and application of LLMs. How-
ever, knowledge applying is context-consistent:
LLM:s can recall the same knowledge in differ-
ent contexts. Existing works ignore this prop-
erty and the editing lacks generalization. Based
on empirical evidence, we have observed that
the effect of different contexts in recalling the
same knowledge follows a Gaussian-like distri-
bution. Hence, when editing LLMs, we sample
Gaussian noises to simulate the effect of differ-
ent contexts rather than requiring real contexts.
‘We make LLMs see the unseen contexts where
edited knowledge will be applied, thereby im-
proving editing generalization. Experimental
results on three LLMs demonstrate the effec-
tiveness of our method and distinguish ours
from the others of fine-tuning LLMs via noises.

1 Introduction

Transformers-based large language models (LLMs)
recall the same knowledge in different contexts.
How can we edit the knowledge and ensure that the
knowledge applied remains context-consistency?
LLMs Radford et al. (2019); Brown et al. (2020);
Wang and Komatsuzaki (2021); Andonian et al.
(2023) can recall knowledge Petroni et al. (2020),
e.g., "Leo Messi plays soccer", but can be unaware
of new information Lazaridou et al. (2021); Agar-
wal and Nenkova (2022) or generate unexpected
facts Zhang et al. (2023). Thus, knowledge-editing
is proposed to edit LLMs’ factual knowledge by
updating LLLMs’ parameters Wang et al. (2023b).
Knowledge-editing has considerably improved
the interpretability of Transformers Vaswani et al.
(2017). The recent success of editing Feed-Forward
Networks (FFNs) Meng et al. (2022, 2023) strongly
supports the view that FFNs are key-value memo-
ries where Transformers store the knowledge Geva
et al. (2021). FFNs need be context-consistent so

that LLMs can recall the same knowledge in differ-
ent contexts (Figure 1). But recent interpretability
researches of Transformers Bricken et al. (2023);
Cunningham et al. (2023); Voita et al. (2023) have
revealed that FFNs produce different activations to
different contextual patterns, such as the active or
passive voice. How FFNs reconcile the knowledge
context-consistency and contextual responsiveness,
i.e, how can FFNs be consistent in recalling knowl-
edge and also be responsive to the diverse patterns?

Existing editing methods also ignore the knowl-
edge context-consistency, resulting in the lack of
generalization. Such works include hyper-network
training Cao et al. (2021); Mitchell et al. (2022a,b),
constrained fine-tuning Zhu et al. (2020), rank-one
or cross-layers editing Meng et al. (2022, 2023); Li
et al. (2023), and focus on improving editing effec-
tiveness and locality, or editing multiple knowledge.
However, it is unrecognized that the editing should
be generalized and according with the knowledge
context-consistency. For example, if knowledge is
edited from "Leo Messi plays soccer” to "... basket-
ball", the one editing context is "Leo Messi plays
basketball" but the applied context can be any ones
such as "We both like Leo Messi, a star in basket-
ball". To accomplish this level of editing general-
ization, knowledge context-consistency is one of
the fundamental issues that we should investigate.

Based on the most recent works on Transformers
interpreting and knowledge editing, we narrow our
research scope to FFNs’ activations. Specifically,
we use paraphrased texts to study how activations
change in different contexts of both the knowledge-
related tokens and normal-strings tokens (Section
3.1) and do some discussions (Section 3.2). The
following highlights our major observation: differ-
ent contexts only produce small shifts, which fol-
low a rather narrow Gaussian -like distribution, to
the FFNs’ activations on knowledge-related tokens.
We adopt our observation to improve the editing
generalization by adding Gaussian noises to the ac-
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Figure 1: Different contexts only produce shifts that follow a Gaussian -like distribution to FFNs’ activations on
knowledge tokens. We sample noises to simulate the effect and achieve more context-consistent knowledge-editing.

tivations when editing LLMs (Section 4 and Figure
1). The noises can simulate the effects of differ-
ent contexts and make LLMs see the unseen con-
texts where the edited knowledge will be applied.
Experiments on two benchmarks and three LLMs
show significant generalization improvements. Our
method coincides with adding noises in fine-tuning
LLMs Wu et al. (2022); Jain et al. (2023b). The
experimental results demonstrate that our method
particularly well-fit for knowledge-editing tasks.

2 Background and Related Works

2.1 Knowledge-Editing: the Task Setting

LLMs can recall knowledge Petroni et al. (2020);
Jiang et al. (2020); Chowdhery et al. (2023). Let us
write knowledge of facts in triplet formats (subject
s, relation r, object 0), e.g., (s =Leo Messi, r=plays
sport, o=soccer) in Figure 1. And we claim a LLM
G can recall a fact (s;, r;, 0;) if it predicts the next
token(s), which represents o; (soccer), to a natural
language prompt p, =p(s;, ;) ("Leo Messi plays").

Let a list of knowledge to edit be the following:

M= {(sronip) [iENE
s..YV4,5 (si = s5) A (r; =rj) — (0; = 05)

where |M| > 1 indicates editing multi-knowledge
and constraints ensure knowledge without conflicts.
Knowledge-editing requires to change G’s predic-
tions from o; to another object, e.g., M = {(Leo
Messi, plays sport, basketball; "Leo Messi plays")}.
As for the evaluation metrics, let G’ be the edited
LLM. We need G’ to be effective that G’ can as-
sign a higher probability to the target o; (basket-
ball) than the original o; (soccer) given p,. Current
benchmarks provide one p, to edit G. In case that
G’ overfits p;, we evaluate G"’s generalization by
paraphrasing p, into different contexts, e.g., "What

sport does Leo Messi play professionally?" and test-
ing G”’s effectiveness. We also need the the editing
to be specific that G’ should not change any unre-
lated knowledge, e.g., "What sport Micheal Jordan
plays?". Other metrics such as fluency is included.

2.2 Related Works on Knowledge-Editing

Different methods share to maximize the probabil-
ity of o; given p, but diverse in updating parameters
and how to ensure generalization and specificity.
The constrained fine-tuning Zhu et al. (2020);
Sinitsin et al. (2020) or hyper-network Cao et al.
(2021); Mitchell et al. (2022a,b) updates all LLMs’
parameters with additional losses or techniques like
meta-learning. Rank-one model editing (ROME)
Meng et al. (2022) finds that FFNs store the knowl-
edge in a LLM therefore only update their parame-
ters by solving a constrained linear problem. While
ROME updates FENs of one layer, recent methods,
MEMIT Meng et al. (2023) and Gao et al. (2023),
follow ROME but update FFNs in multi-layers by
solving normal equations Strang (2022) and can
edit [M|=10,000 items. Conventional fine-tuning
methods such as LoRA Hu et al. (2022) by contrast
show a suboptimal performance Yao et al. (2023).

2.3 Interpretability of Transformers

Knowledge-editing receives some criticism Pinter
and Elhadad (2023); Zhong et al. (2023) for they
mainly focus on one-hop facts. Nevertheless, edit-
ing research has contributed to the interpretability
of Transformers. Especially, ROME’s success of lo-
cating and editing knowledge empirically supports
that FFNs are the key-value memories where Trans-
formers store knowledge Geva et al. (2021). Let
W; € R&xdn p, ¢ R W; € R%¥% and f(.)
be a non-linear function. FFNs’ operations are:

ho = f(Wi-h;) - W, 2



Denote the activations f(W;-h;) to be hy, € R%.
FFNs being key-value memories says that different
subjects s; activate different by, that multiply W, to
get the correct h,, of an object o;. Correspondingly,
knowledge-editing is to update W,, such as making
"Leo Messi" can query out "basketball". Although
being simple, following these ideas, ROME and
MEMIT achieve the state-of-the-art performance.
Another interpretability thread called Transform-
ers circuits suggests that hy is contextual respon-
sive, i.e., hy will produce different activations ac-
cording to different contextual patterns such as ac-
tive or passive voice Elhage et al. (2021); Cunning-
ham et al. (2023). But as Figure 1 illustrates, hy, is
also context-consistent, i.e., hi will query out h,
for the same object in different contexts. It is un-
known that how FFNs reconcile the two properties.

3 The Knowledge Context-Consistency

Contexts can affect LLMs’ behavior Petroni et al.
(2020), e.g., the prompting Liu et al. (2023) and the
in-context learning Brown et al. (2020). We aim
at studying the special issue of knowledge context-
consistency, i.e., how LLMs can recall the same
knowledge in different contexts. Following ROME
Meng et al. (2022) and Transformers circuits El-
hage et al. (2021); Bricken et al. (2023), we analyze
the FFNs activations. We select the GPT2-x1 (1.5B)
Radford et al. (2019) and the GPT-J (6B) Wang and
Komatsuzaki (2021) as our analyzed LLMs G.

3.1 FFNs Activation in Paraphrased Contexts

We use the paraphrased texts in knowledge-editing
benchmarks Meng et al. (2022) to simulate the vari-
ation of contexts. Each data d provides one p for
editing and several paraphrased p* for evaluation.
For example, p is "The mother tongue of Danielle
Darrieux is English" and p* is "Shayna dose this
and Yossel goes still and dies. Danielle Darrieux,
a native English". We first show how p and p* are
lexically different. Considering p as the reference
and p* as the predictions, we use BLEU Papineni
et al. (2002) and ROUGE Lin (2004) to evaluate
their lexical similarities. Table 1 shows d nums and
the results that p and p* greatly differ in lexical.

dnums | BLEU | ROUGE-1 | ROUGE-2 | ROUGE-L

20877 | 0017 | 0203 | 0055 | 0.197

Table 1: p and p* have little lexical similarity. Note that
the same subject-string s are deleted from p and p*.

And we then study the FFNs’ activations: hy =
f(W; - h;) in equation 2. Note that the G predicts
o by p(s,r) and G stacks layers of Transformers.
Neither each token in p nor each layer in G plays
the same roles in recalling knowledge. Therefore,
following Meng et al. (2022, 2023), we select hy,
of the last token in s, denoted as hg, of the 18t
layer in GPT2-x1 and the 9" layer in GPT-J. Let
hE be the activations in p and h5" be the ones in p*.
We collect an experimental set H, = {h5} U {h5"}
of the last subject token and one control set H,. =
{h2}U{RE"} of another normal-strings token. For a
better comparison, we manually insert one control
token "(" before the subject tokens in p and p*.!
By such, we can make sure that the control tokens
are lexically equal in all p and p*, and have almost
the same contexts with the subject tokens. Then,
to study the knowledge context-consistency, we
need compare the activations in different contexts.
Therefore*, we can collect two difference sets: Dg =
{hi=hE —h2 | (p,p") € {d}} and D, = {h¢ =
hE"—h2 | (p,p*) € {d}}. We plot the histograms
of all the activation neurons, i.e., flatting scalars in
each dimensions of all & and plot them together.
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The above figures plot the results where the black
rectangles plot the experimental sets and the whites
plot the control sets. From Figure 2 and 4, both con-
trol and experimental sets on GPT2-x1 and GPT-J
have their activation scalars,” with a major propor-

'We can insert different control tokens for different (p, p*).
The two G both use the "new-gelu" non-linear function f.



tions, fallen in the interval of (—0.2,0). However,
the difference sets perform a significant difference.
The experimental sets s have their scalars mostly
concentrated around 0 and descend symmetrically
and evenly to the both sides while the control sets
D, show a greater skewness when descending. We
calculate the skewness and kurtosis of the both sets
(shown in Table 2). From the histograms and the

GPT2-x1 GPT-]
Sets
Skewness | Kurtosis | Skewness | Kurtosis
Ds -0.53 40.98 -0.20 38.29
D. -5.12 161.84 0.45 42.70

Table 2: Skewness and Kurtosis of the two sets.

quantitative results, D follows a Gaussian-like dis-
tribution, where the much larger kurtosis differs D,
from the normal Gaussian. This is understandable
for the raw scalars majorly have small values.

3.2 What are the Factors?

We have shown that, for knowledge-related tokens,
contexts that of great lexical differences (Table 1)
can only place small shifts, which follow a consid-
erably narrow Gaussian-like distribution (Figure
3,5 and Table 2), in FENs’ activations. In this sec-
tion, we discuss its factors from two possible sides:

1. knowledge-related tokens have narrow atten-
tion scopes therefore being context-consistent.

2. Such consistency is FFNs particular behavior
to knowledge-related tokens even in the first layer.
Does Attention Differ? For the first side, we col-
lect the attention scores of the subject/control token
to other tokens in p, p* from the first Transformer
layer to the layer where we pick-up the activations.
We then plot the histograms of the attention scores.
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The Figure 6 and Figure 7 displays the results. We
can see that the black rectangles and the white ones
are almost overlapped, indicating that the attention
scopes between the subject tokens and the control

tokens are nearly the same otherwise the black rect-
angles should concentrate on larger values.

FFNs Particular Behavior. If the attention does
not response for the context-consistency, then FFNs
should themselves have particular actions to knowl-
edge tokens. We conclude such property by empir-
ically showing that FFNs in different layers have
the same behavior. We re-collect the FFNs activa-
tions from the first Transformer layer to the layer
that we previously selected. Because of the page
space limitations, we only plot Dg, D, of the first,
the middle, and the last layer here and refer readers
to the Appendix A for the integrated results. The
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Figure 8: D, D, of the GPT2-xI’s 1*', 9™ and 18" layer.
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Figure 9: I,, D, of the GPT-J’s 1%, 5™ and 9" layer.

Figures 8 and 9 plot the results, where the black
rectangles plot the experimental sets and the white
ones plot the control sets. We can see that the FFNs’
activations even in the first layer where the activa-
tions are largely affected by the input embedding,
i.e., the token strings, show a great differences on
the knowledge-related subject tokens and other nor-
mal tokens. From the above results, we argue that
LLMs’ knowledge context-consistency arises from
FFNs particular behaviors on knowledge tokens.

Transformers Interpretability. As FFNs consume
nearly two-thirds of the LLMs parameters and pose
the major non-linearty in Transformers Elhage et al.
(2021), their interpretability has received great in-
terests. Either viewing FFNs as key-value memo-
ries Geva et al. (2021) or using sparse auto-encoder
to find interpretable neurons Bricken et al. (2023);
Cunningham et al. (2023); Voita et al. (2023) sug-
gests that FFNs’s activations are sensitive to differ-
ent text-patterns. Our finding corresponds to their
results on normal-string tokens, for these tokens’
activations change greatly in different contexts. We
say "change greatly" because their raw activation



scalars largely fall within the interval (-0.2, 0), as
shown in Figure 2,4, while the changing, as shown
in Figure 3,7, reaches -0.2 often. However, our find-
ing further suggests that, for the knowledge-related
tokens, FFNs may produce kinds of ’"dominate’ ac-
tivations which different contexts only place small
shifts on. This can raise other questions, for exam-
ple, whether sparse auto-encoder can work well on
decomposing these highly-correlated activations?

4 See the Unseen: Deep Noise Editing

We have empirically revealed the relationships be-
tween FFNs activations and the knowledge context-
consistency. And the remain question is that, LLMs
can generate unexpected facts Zhang et al. (2023)
or be unaware of fresh information Lazaridou et al.
(2021); Agarwal and Nenkova (2022), therefore,
how we can edit LLMs’ knowledge while maintain
such context-consistency. One desirable way is to
feed G with as many contexts as possible where the
edited knowledge is going to be applied. However,
this is not efficient and, in current benchmarks, we
edit G with only one example p and test G’’s gener-
alization in different p*. Existing editing methods
do not well achieve such context-consistency.

We have shown that different contexts only place
small shifts on FFNs’ activations. Therefore, why
not just add the-like noises on the FFNs activations?
By so, we can simulate the effects of different con-
texts and pretend editing knowledge where G can
see the unseen contexts in which the edited knowl-
edge will be applied. We call it deep noise editing.

In this section, we provide necessary details of
ROME Meng et al. (2022) and MEMIT Meng et al.
(2023) for readers to understand where and how we
add noises to LLMs while editing. We refer read-
ers to their papers for the detailed implementation.
ROME and MEMIT both have two steps. In the
first step, they find a delta vector §, which adds to
the original hidden states of the subject token in
one certain layer in G, to maximize the probability
of the edited knowledge object o; in p(s;, r;):

§; = argamin —IOgPG(hSI;_*_:(;Z_) [0 p;(sis1i)] (3)
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where G(hsLi += ¢;) indicates to intervene G’s
forward by modifying hidden states hSLl_ in layer L
with (h%+4;). This is called "hooking" in PyTorch.
In the second step, they transfer §; to the delta(s)
of the FFNs parameters, i.e., W, in equation 2, and

edit G to G’ by summing W, of its delta:

bw, < Alg.rome,memrr (0:) 4)
G’ 1w, + w, + (5)

where the Alg. is solving some linear equations.

By deep noise editing, we further intervene G’s
forward by adding Gaussian-like noise into FFNs
activations, i.e., f(W;-hs, ) in equation 2. The work-
ing flow of our noised FFNs in layer [ goes as:

Wl = f(W; hl)+axe, e~N(0,1)
hi = hl W,

Except noising FFNs activations, the other parts
follows exactly with ROME and MEMIT. By nois-
ing, equation 3 can find a more desirable §; that can
maximize the probability of o; in different unseen
contexts rather than solely in p(s;, r;). There have
two things to note with. First, we call "deep noise"
for we find that noising FENs from the first layer to
the layer L selected by ROME and MEMIT returns
much higher results than solely noising the layer L.
We contribute this to that different layers process
different information, therefore, deep noising allow
G to see more different contexts. Second, we add
an « to control the magnitude of the noise because,
as shown in Table 2, the activations’ shifts of dif-
ferent contexts have a large kurtosis. And we also
find that tuning o makes our method better fit in
batch-editing multiple knowledge with MEMIT.

(6)

S Experiments & Results
5.1 Experimental Settings

Our main experiments include two auto-regressive
LLMs, GPT2-xl (1.5B) and GPT-J (6B), with two
editing datasets. We also run extra experiments on
LLaMA-2 (7B), whose FFNs activation functions
are different from those GPT-series models (equa-
tion 2). All our experiments are based on the two
open-sources: MEMIT? and EasyEdit* Wang et al.
(2023a). We exactly follow the settings of all hyper-
parameters and the « sets [0.5, 0.4, 0.3, 0.2, 0.1]
for [1e°, 1e!, 1e2, 1e3, 1e*] edits. Our methods are
easy to implement and we will make all our codes
open-sourced. As for baselines, we apply our nois-
ing methods onto the two state-of-the-art methods,
ROME and MEMIT, and only compare with their
results (also MEMIT’s improvements PMET) of
without noising. For results of other methods, we
refer readers to the records in the two open-sources.

3https://github.com/kmeng01/memit
*https://github.com/zjunlp/EasyEdit


https://github.com/kmeng01/memit
https://github.com/zjunlp/EasyEdit

5.2 Knowledge-Editing using zsRE

We first conduct experiments on zsRE Levy et al.
(2017), which is a question-answering task contain-
ing real-world facts and test the ability of adding
correct information to LLMs. zsRE is a prediction
task and only prediction-based metrics are evalu-
ated. The metrics include: Efficacy that measures
the proportion where o has the maximal probability
that G’ predicts given the p(s,r), Paraphrase is
the same but evaluated on the paraphrases p*(s, r),
Specificity is the G'’s accuracies on a randomly-
sampled unrelated (s, r, 0; p), and Score calculates
the harmonic mean of the above three metrics. For

M| |  Editor | S.t | Effi.t | Parat | Spec.?
ROME 48.01 99.77 (0.0) 87.88 (0.4) 24.34 (0.4)
ROMEpNE 48.40 99.78 (0.0) 91.98 (0.3) 24.34 (0.4)

10

¢ MEMIT 39.55 66.66 (0.5) 50.63 (0.5) 24.33 (0.4)
PMET 27.78 32.46 (0.5) 27.74 (0.4) 24.32 (0.4)
MEMITpNE 44.48 80.31 (0.4) 72.17 (0.5) 24.31 (0.4)
MEMIT 44.22 80.08 (0.4) 70.04 (0.5) 24.34 (0.4)
le! PMET 30.95 38.06 (0.5) 33.87(0.5) 24.32 (0.4)
MEMITpNE 46.69 88.37 (0.3) 83.79 (0.4) 24.39 (0.4)
MEMIT 45.52 83.80 (0.4) 74.77 (0.5) 24.63 (0.4)
1e2 PMET 32.00 | 4024 (0.5) | 35.79(0.5) | 24.42 (0.4)
MEMITpne | 47.31 | 89.31(0.3) | 8430 (0.4) | 24.78 (0.4)
MEMIT | 4583 | 79.40 (0.4) | 72.34(0.5) | 25.61(0.4)
1e° PMET 32.99 41.65 (0.5) 37.64 (0.5) 24.78 (0.4)
MEMITpng 46.32 81.47 (0.4) 76.04 (0.5) 25.42 (0.4)
MEMIT | 41.87 | 63.01(0.5 | 58.50(0.6) | 25.85(0.4)
le* PMET 31.02 36.28 (0.5) 34.06 (0.5) 25.13(0.4)
MEMITpNE 41.57 63.47 (0.5) 58.59 (0.6) 25.42 (0.4)

Table 3: Editing GPT2-x1 on zsRE from 1e° to le* edits.

space limitation, we report the results of editing
GPT2-xl in Table 3 while leaving results of GPT-J
(6B) in Appendix B. With deep noise editing (DNE;
rows in gray), we can largely improve the editing
generalization, i.e. metrics of Paraphrase. It is sur-
prising that, in some cases, the Specificity is also
improved. However, in le* edits, DNE decreases
the Specificity therefore achieves a lower Score.

5.3 Knowledge-Editing using Counterfacts

We next run experiments on Counterfacts Meng
et al. (2022), which collects factual statements to
test the ability of adding counterfactual/specialized
information. Following Meng et al. (2023, 2022),
the evaluation metrics include: Efficacy Success
(ES) counts the proportion that G’ predicts higher
probabilities to the counterfactual o’ than the true
fact o given p(s, r), Paraphrase Success (PS) and
Paraphrase Accuracy (PA) are the same but evalu-
ated on paraphrases p*(s, r) (PA evaluates whether
the probability is the maximum while PS compares
the two relative probabilities), Neighborhood Suc-

cess (NS) evaluates whether a true fact o* remains
achieving the highest probability given distinct but
semantically-related p(s*, r), and Editing Score (S)
calculates the harmonic mean of the above three
metrics. Besides, we also report metrics that evalu-
ate the generation quality of G’. Reference Score
(RS) compares G’’s generations to Wikipedia texts
about o to evaluate the semantics consistency. Gen-
eration Entropy (GE) computes the weighted sum
of entropy of the n-gram distributions of the gener-
ated texts to evaluate fluency degeneration.’ Again,
for space limitation, we report the results of edit-
ing GPT-J (6B) in Table 4 while leaving results of
GPT2-xl in Appendix B. While the results show
some disagreements, DNE can largely improve
the editing generalization, especially the PA as the
PS is already high enough, on editing not too many
cases. DNE boosts MEMIT to new state-of-the-art
in all cases. There are two things to discuss with:
1.DNE results in remarkably lower "Fluency’. Does
this really mean the generation degradation?
2.Why the generalization of DNE gets lower when
the editing cases gets much more?

Discussions about the Fluency: Actually, the "Flu-
ency’ is represented by the entropy of the n-gram
distributions of the generation texts, which means
that the texts are more fluent if they contain more
diverse words. This is definitely not the Fluency in

our common sense. We give some cases below:
a.Danielle Darrieux’s mother tongue is English, her father’s
language is French. She has been acting since the age of three
and is a graduate of the Royal Academy of Dramatic Art and
has won several awards, including the BAFTA Award for Most
Promising Newcomer. She has also appeared in a number of
films. In the past decade, she has become a household name
with her appearances in the films *Bridget Jones’, *Alfie’ and
’Bend - by MEMIT with NS=634.89.

b.Danielle Darrieux’s mother tongue is English, she is an
American citizen, and she is a lawyer. But the English is
not flawless, and she is not American. Her mother tongue
is the English of the British Empire, and her father’s mother
tongue is the English of the United States. Her first language
is English, the second is American (she was born in the United
States), and her third is British. She speaks English, but she
speaks it with an accent. - by MEMITpng with NS=622.64.

We acknowledge that example b, with lower NS,
does contain repeated words English’ but b reads
even more concentrated than example a. Meng
et al. (2022, 2023) applies NS to evaluate if the
edited G’ degenerates to stupidly repeat the target
o’. We can conclude that DNE will not cause de-
generation since the RS remains high. If G’ only
repeats 0/, it should not have a good comparison
with the Wikipedia texts therefore the RS should

3See all metrics’ formal definitions in Meng et al. (2023).



M| | Editor | Score | Efficacy | Generalization | Specificity | Fluency | Consistency
‘ ‘ St ‘ ES 1t ‘ PS 1 ‘ PA 1 ‘ NS 1 ‘ GE 1 ‘ RS 1
ROME 91.98 | 99.95(0.0) | 99.46 (0.1) | 82.06 (0.4) | 79.63 (0.4) | 620.72 (0.2) 42.57 (0.2)
ROMEpng 91.63 | 99.96 (0.0) | 99.62 (0.1) | 83.50 (0.4) | 78.76 (0.4) | 620.16 (0.3) 42.73 (0.2)
0

le MEMIT 91.77 | 99.85(0.1) | 95.28 (0.2) | 67.59 (0.5) | 82.09 (0.4) | 621.97 (0.2) 41.69 (0.2)
PMET | 91.61 | 99.73 (0.1) | 94.20 (0.3) | 73.46 (0.5) | 82.61(0.3) | 621.10 (0.2) | 41.10(0.2)
MEMITpne | 92.47 | 99.75(0.1) | 99.08 (0.1) | 87.40 (0.4) | 81.14 (0.4) | 614.80 (0.4) 42.40 (0.2)
MEMIT 91.78 | 99.85 (0.1) | 95.26 (0.2) | 67.57 (0.5) | 82.14(0.4) | 621.99 (0.2) 41.72 (0.2)
le! PMET 91.65 | 99.73 (0.1) | 94.29 (0.3) | 73.65 (0.5) | 82.65(0.3) | 621.21 (0.2) 41.13 (0.2)
MEMITpne | 92.61 | 99.76 (0.1) | 98.77 (0.1) | 85.32(0.4) | 81.67 (0.4) | 618.32(0.3) 42.84 (0.2)
MEMIT | 91.70 | 99.83 (0.1) | 94.91 (0.3) | 67.10(0.5) | 82.22(0.3) | 621.92 (0.2) | 41.62(0.2)
1¢? PMET 91.74 | 99.74 (0.1) | 94.34 (0.3) | 74.08 (0.5) | 82.82(0.3) | 621.18 (0.2) 41.12 (0.2)
MEMITpne | 92.64 | 99.79 (0.1) | 97.96 (0.2) | 81.21 (0.4) | 82.27 (0.4) | 620.35(0.2) | 42.70 (0.2)
MEMIT 90.64 | 99.76 (0.1) | 93.40(0.3) | 64.32(0.5) | 80.86(0.3) | 621.66 (0.2) 41.27 (0.2)
1e? PMET 90.72 | 99.73 (0.1) | 93.90 (0.3) | 72.60 (0.5) | 80.70 (0.3) | 621.95(0.2) 41.93(0.2)
MEMITpne | 91.05 | 99.73 (0.1) | 95.61 (0.2) | 72.39 (0.5) | 80.23 (0.3) | 621.95 (0.2) 41.93 (0.2)
MEMIT 85.84 | 99.12 (0.1) | 88.57(0.4) | 56.21 (0.6) | 73.69 (0.4) | 619.17 (0.2) 40.15 (0.2)
le* PMET 85.26 | 99.26 (0.1) | 90.78 (0.3) | 65.24 (0.5) | 70.94 (0.4) | 621.59 (0.2) 40.05 (0.2)
MEMITpne | 85.87 | 99.26 (0.1) | 89.92(0.4) | 58.43(0.6) | 72.83 (0.4) | 618.10(0.2) 40.33 (0.2)

Table 4: Editing GPT-J (6B) with Counterfacts from 1e° to 1e*. Within parentheses is the 95% confidence interval.

become lower, too.
Discussions about Number of Edits: From Table
3 and 4, DNE gets less effective when the editing
cases get more. We contribute such correlation to
the conflicts of editing different cases. On one case,
DNE makes the editing have more generalization,
which means that G’ memorizes more key-value
pairs (A%, h!). ROME and MEMIT both solve con-
strained linear problems to convert sets of memory
pairs to the parameters § as written in equation 4.
And more key-value pairs means more constraints
which can lower the solver’s quality. Therefore, the
performances of DNE can then become worse.
We illustrate such correlation from another per-
spective of tuning « in different numbers of edits.
In Figure 10, we tune o from 0.5 to 0.05 in a step of

GPT2-xl zsRE GPT-J Counterfacts
V/*“’_“\*\‘M | T T ——,
45
-‘\—'\‘\\ 90
D e TR > 88
5] D
1 S
=] o 86
2% >
—— 1e0 edit 84 —— 1e0 edit
30 —— 1e2 edits 8 —— 1le2 edits
—— 1le4 edits o —— 1le4 edits
®05 04 03 02 01 05 04 03 02 01

alpha values alpha values

Figure 10: Tuning « in different numbers of edits.
0.05 and plot the results in three different numbers

of edits. The horizontal dotted lines are the results
of MEMIT and the solid lines are MEMITpng. In

less edits, a smaller o returns worse performances
because a smaller « simulates fewer different key-
values pairs. But such correlation gets inversely in
editing more cases since there are already enough
true pairs to memorize except the simulated ones.

5.4 Experiments with LLaMA-2

M| |  Editer | S.t | Effift | Paraf | Spect
ROME 95.24 96.35 (0.5) 90.95 (1.0) 99.34 (0.3)
X ROMEpns | 96.08 | 96.13(0.5) | 93.80(0.8) | 98.32(0.4)
MEMIT | 77.41 | 76.84(1.5) | 63.61(1.5) | 99.78 (0.1)
MEMITpNE 94.38 94.03 (0.8) 90.10 (1.1) 99.48 (0.2)

Table 5: Editing LLaMA-2 on zsRE with 1 edit.

FFNs of GPT2-x1 and GPT-J share alike proper-
ties: they both use 'new-gelu’ non-linear functions
and have the same formulation of equation 2. This
questions that whether our noising methods can fit
with more latest LLMs such as LLaMA-2, whose
FFNs take ’silu’ as non-linear functions and have
a distinct formulation: h, = (f(W;-h;) x Wy,)-Wj.
Only the open-source EasyEdit includes editing
LLaMA-2 using 1 edit with zsRE. We follow their
settings and also add noises on the activation func-
tion f(W;-h;). Table 5 reports the results and we
can see that DNE also works well on LLaMA-2 to
improve the generalization and the overall scores.

5.5 Comparing with others of adding noises

Our methods coincide with the methods of adding
noise to better fine-tune LLMs, such as NoisyTune



(NT) Wu et al. (2022) and NEFTune (NE) Jain et al.
(2023a). NT adds noises to all LLMs’ parameters
while NE adds noises into the words’ embeddings.
They both share the motivations of improving the
training robustness, which is common for applying
noises. Our methods are motivated by the findings
of knowledge context-consistency. Therefore, we
expect a better performance on knowledge-editing.
Table 6 reports the results of the Score and we leave

Setting ‘ Editor Score T
\ | M|=1e® | [M|=1e* | |M]|=1¢*
MEMITpng 44.80 47.31 41.57
OFexl | MBMITq | 3930 | 4534 | 4158
s MEMITyg 37.07 44.52 41.73
GPTI MEMITpng 92.47 92.64 85.87
Counterfacts MEMITxr 91.70 91.70 85.83
> | MEMITyng 91.25 91.31 82.29

Table 6: Comparison DNE to different noising methods.

the detailed results to Appendix C. DNE achieves
much higher performances in the most cases (and
the highest generalization in all cases). We follow
the hyper-parameter settings in NT/NE’s papers.

5.6 Ablation Studies

We do ablation studies from three perspectives:
1.SNE: Shallow Noise Editing. we only add noises
to FFNs of the layer where we add 9; (equation 3).
2.UN: Uniform Noises. We apply Uniform noises
€ ~ U(—1,1), the same with NT/NE, in equation 6.
3.RNP: Random Noising Position. We add noises
to random tokens rather than the last subject tokens.
With SNE, we can demonstrate the effectiveness
of deep noise. With UN and RNP, we show whether
our findings, i.e. different contexts place Gaussian-
like shifts to the FFNs’ activations on knowledge-
related tokens, can motivate the methods of adding
noises that achieve the best results. Table 7 reports

Setting ‘ Editor ‘ Score 1
| | M|=1e® | [M|=1e* | |M|=1e*
MEMITpNE 44.80 47.31 41.57
GPT2-x1 MEMITsng 41.88 46.09 41.89
zsRE MEMITyn 39.34 43.52 29.55
MEMITgrnp 37.88 45.88 41.93
MEMITpne 92.47 92.64 85.87
GPT-J MEMITsng 92.38 92.12 85.84
Counterfacts MEMITyn 92.60 91.06 70.94
MEMITgrnp 92.15 91.97 85.85

Table 7: Results of the three ablation studies.

the results of the Scores of the three ablation studies
and we leave the detailed results to Appendix C.
DNE can achieve the highest Score (as well as the

highest generalization) in the most cases. DNE will
mostly improves generalization but also slightly
decrease specificity. Because the Score calculates
the harmonic mean, which is sensitive to smaller
values, but the baselines of generalization are much
larger than the specificity, DNE’s can then be lower
than the counterpart methods in some cases.

6 Conclusions

In this paper, we study the questions of: how LLMs
can recall the same knowledge in the different con-
texts and how we can edit LLMs’ knowledge while
maintaining such important properties. For the first
part, we follow the state-of-the-art editing meth-
ods and the latest interpretability works to focus
on analyzing FFNs’ activations. Though compar-
ing the histogram figures and numerical results, we
empirically show that different contexts can only
place small shifts that follow considerably narrow
Gaussian-like distributions in FFNs’ activations on
knowledge-related tokens. And LLMs’ FFNs can
produce kind of ’dominate’ activations when pro-
cessing knowledge. Motivated by our findings, we
make to answer the second part of the questions by
adding noises into FFNs’ activations when editing
LLMs. By doing so, we can make LLMs see the
unseen contexts where the edited knowledge will
be applied and improve the editing generalization.
We run experiments on two open-sources including
two standard datasets and three popular LLMs. The
experimental results show the effectiveness of our
methods. We make extra discussions, comparisons
with other methods of adding noises, and ablation
studies to comprehensively analyze how our find-
ings can motivate the methods of adding noises that
best fit with the task of knowledge-editing.

7 Limitations

Although we have run comprehensive experiments,
there are some limitations. Because of the incom-
pleteness of current open-sources and the limited
computing resources, the experiments do not in-
clude editing larger LLMs or editing multiple cases
and using Counterfacts on LLaMA-2. We follow
exactly the same settings of all hyper-parameters to
make our results replicable. Therefore, the results
may not reach their best performances. Although
the knowledge application is an important topic in
LLMs, we narrow on this topic and do not extend
our scope of applying our methods of adding noises
into the general fine-tunings of LLMs.
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A FFNs activations in Different Layers

rescaled values
rescaled values
rescaled values

- . .
—-0.6-04-02700 02 04 0.6 -0.6-04-02 0.0 02 04 0.6 2060402 0.0 02 04 0.6
scalar values scalar values scalar values

rescaled values
rescaled values
rescaled values

2060402 0.0 02 04 0.6 060402 0.0 02 04 0.6 <0.6-04-0.2 0.0 02 04 0.6
scalar values scalar values scalar values

rescaled values
rescaled values
rescaled values

0.6-04-0.2 0.0 02 04 0.6 “06-0.4-0.2 0.0 02 04 0.6 ~0:6-0.4-02 0.0 02 04 0.6
scalar values scalar values scalar values

Figure 11: D, D, of GPT-I’s layers from 1% to 8",
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Figure 12: D, D, of GPT2-xI’s layers from 1% to 18",

Figures 12 and 11 display the histograms for all
the layers of the two LLMs we select to analyze,
where the black rectangles plot the experimental
sets and the white ones plot the control sets and the
layer index goes up horizontally and then vertically.
We can see that, the black rectangles (activations of
the knowledge-related tokens) remain to be concen-
trated abound the zeros and descend symmetrically
and evenly to the both sides while the white rect-
angles (activations of normal-strings tokens), in all
layers, show much more significant skewness.

B Additional Experimental Results

Table 9 and 8 report the results about editing GPT-J
(6B) on zsRE and editing GPT2-x1 on Counterfacts.
These are the additional results to our main experi-
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M| | Editor | Score | Efficacy | Generalization | Specificity | Fluency | Consistency
‘ ‘ St ‘ ES 1t ‘ PS 1 ‘ PA 1 ‘ NS 1 ‘ GE 1 ‘ RS 1
ROME 89.80 | 99.94 (0.0) | 97.08 (0.2) | 74.04(0.5) | 76.34 (0.4) | 622.18 (0.3) 42.00 (0.2)
ROMEpne 89.81 | 99.93 (0.0) | 98.30 (0.1) | 77.93 (0.5) | 75.63 (0.4) | 620.16 (0.4) 42.40 (0.2)
0

le MEMIT 83.40 | 94.22(0.3) | 79.95(0.5) | 41.02 (0.6) | 77.82 (0.4) | 627.33 (0.2) 39.44 (0.2)
PMET | 58.59 | 61.78 (0.7) | 44.88 (0.6) | 8.41(0.3) | 78.50 (0.4) | 627.18 (0.2) | 34.16(0.2)
MEMITpne | 88.10 | 98.16 (0.2) | 92.23 (0.3) | 58.78 (0.6) | 76.80 (0.4) | 617.02 (0.4) 41.41 (0.2)
MEMIT 83.54 | 94.33(0.3) | 80.25(0.5) | 41.53(0.6) | 77.84 (0.4) | 627.34 (0.2) 39.47 (0.2)
le! PMET 58.78 | 62.06 (0.7) | 45.07 (0.6) 8.55(0.3) | 78.52(0.4) | 627.21(0.2) 34.17 (0.2)
MEMITpne | 87.79 | 97.91 (0.2) | 90.94 (0.3) | 57.43(0.6) | 77.15(0.4) | 622.58 (0.3) 41.62 (0.2)
MEMIT | 84.26 | 94.72(0.3) | 81.77 (0.5) | 44.41 (0.6) | 78.02 (0.4) | 627.22 (02) | 39.73 (0.2)
1¢? PMET 60.20 | 63.86 (0.7) | 46.56 (0.6) | 9.66 (0.3) | 78.75(0.4) | 627.41 (0.2) 34.37 (0.2)
MEMITpne | 86.67 | 96.79 (0.2) | 88.90 (0.4) | 56.08 (0.6) | 76.72 (0.4) | 625.26 (0.2) 41.29 (0.2)
MEMIT 82.30 | 93.03 (0.4) | 80.27 (0.5) | 43.23(0.6) | 75.49 (0.4) | 626.50(0.2) 39.25 (0.2)
1e? PMET 61.73 | 65.32(0.7) | 48.60 (0.6) | 11.20(0.4) | 78.65 (0.4) | 627.82 (0.2) 34.65 (0.2)
MEMITpne | 82.61 | 93.62 (0.3) | 82.90 (0.5) | 47.49 (0.6) | 73.68 (0.4) | 626.34 (0.2) | 39.76 (0.2)
MEMIT 71.73 | 80.09 (0.5) | 66.19 (0.6) | 25.32(0.5) | 70.28 (0.4) | 625.91 (0.2) 36.43 (0.2)
le* PMET 50.82 | 49.77 (0.7) | 38.58 (0.6) | 5.61(0.3) | 76.82 (0.4) | 627.87 (0.2) 33.38 (0.1)
MEMITpne | 72.28 | 80.91 (0.5) | 67.66 (0.6) | 26.32 (0.5) | 69.60 (0.4) | 626.14 (0.2) 36.67 (0.2)

Table 8: Additional results of editing GPT2-x1 with Counterfacts from 1e° to 1e*. Within parentheses is the 95%

confidence interval.

|M| \ Editor S. 1 Effi. Para.t Spec. |M]| \ Editor S. 1 Effi. t Para.t Spec.
ROME 5244 | 99.88(0.0) | 9527 (0.2) | 27.25(0.4) MEMITpne | 44.48 | 80.31(0.4) | 7217(0.5) | 24.31(0.4)
ROMEpne | 52.58 | 99.87(0.0) | 96.66(0.2) | 27.25(0.4) MEMITyr | 39.30 | 65.83(0.5) | 49.91(0.5) | 24.33(0.4)
1¢” o | MEMITxg | 37.07 | 58.15(0.5) | 44.19(0.5) | 24.33 (0.4)
MEMIT 51.60 | 99.84(0.0) | 87.65(04) | 27.24(04) 1" | MEMITong | 41.88 | 74.43 (0.5) | 5848 (0.5) | 24.33(0.4)
PMET 51.57 | 9843(0.1) | 8845(04) | 27.24(04) MEMITyxy | 39.34 | 62.80(05) | 51.98(0.5) | 24.33(0.4)
MEMITpng | 5259 | 99.10(0.1) | 97.85(0.2) | 27.22(0.4) MEMITrap | 37.88 | 57.28(0.5) | 48.44(05) | 24.33 (0.9)
| MEMIT 1} 5220 | 99.70(0.1) | 92.99(0.3) | 27.26 (0.4) MEMITpxe | 47.31 | 89.31(0.3) | 84.30(0.4) | 24.78 (0.4)
le PMET 5186 | 9722(0.2) | 92.17(0.3) | 2724 (0.4) MEMITyr | 4534 | 82.88(04) | 74.02(0.5) | 24.64(0.4)
Miglilpys | S0 || hdo@l) | SE) | 2720 ) (2 | MEMITye | 4452 | 79.69(0.5) | 70.65(0.5) | 2458 (0:4)
MEMIT 52.63 | 99.56 (0.1) | 93.45(0.3) | 27.58 (0.4) © | MEMITsyg | 46.09 | 86.02(04) | 77.63(0.5) | 24.64 (04)
12 PMET 5222 | 9682(02) | 922103 | 2757 (0.4 MEMITyy | 43.52 | 74.60(0.5) | 68.10(0.5) | 24.48 (0.4)
MEMITone | 52.66 | 98.97(0.1) | 96.94(02) | 27.36 (0.4) MEMITrap | 45.88 | 84.39(03) | 77.59(0.5) | 24.60 (0.4)
MEMIT 5337 | 98.81(0.1) | 93.38(0.3) | 28.26(0.4) MEMITpng | 41.57 | 63.47(0.5) | 58.59(0.6) | 25.42(0.4)
1 PMET 5272 | 9546(02) | 90.73(03) | 2824 (0.4) MEMITyr | 41.58 | 62.62(0.5) | 57.95(0.6) | 25.69 (0.5)
MEMITone | 5223 | 98.49(0.1) | 94.09 (03) | 27.27 (0.4) ot | MEMITyp | 4174 | 63.02(05) | 57.94(0.6) | 25.81(0.4)
MEMITsn: | 41.89 | 63.26(0.5) | 58.68(0.6) | 25.80 (0.4)
MEMIT | 5101 | 96.35(0.2) | 89.95(0.4) | 26.80 (0.4) MEMITyxy | 29.55 | 35.92(0.5) | 32.36(0.5) | 23.38(0.3)
1e* PMET 49.42 | 90.47(0.3) | 84.36(0.4) | 26.46(0.4) MEMITrap | 4193 | 62.99(0.5) | 58.51(0.6) | 25.92(0.4)

MEMITpxe | 50.52 | 96.45(0.2) | 90.01(0.4) | 2638 (0.4)

Table 9: Additional results of editing GPT-J on zsRE
from 1e° to le* edits. Within the parentheses is the 95%
confidence interval.

ments in Section 5.2 and 5.3. In all cases, editing
with DNE returns higher generalization and in the
most cases return the highest Score. As we have
pointed out in our main experiments’ discussions,
although DNE makes the 'Fluency’ lower, this met-
rics only considers the diversity of the generation
texts and can not well reflect the classical text flu-
ency in our common sense. And as the RS remains
rather high, DNE will not cause the generation de-
generation to stupidly repeat nonsense words.
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Table 10: Detailed experimental results of editing GPT2-
x1 on zsRE. Within the parentheses is the 95% confi-
dence interval.

C Detailed Experimental Results

Table 10 and 11, in integrate, report the detailed
results of: Section 5.5 comparing with other meth-
ods of adding noises (NT and NE), and Section 5.6:
the three ablation studies (SNE, UN, and RNP). In
the most cases, DNE achieves the highest scores
and the best generalization. While in some cases,
DNE can be beaten by other methods, DNE still
achieve the most robust performance gains on two
models in all the cases. For example, in Table 11,
MEMITyy gets higher Score in editing 1e” case
but its performance becomes dramatically degener-



M| | Editor | Score | Efficacy | Generalization | Specificity | Fluency | Consistency
| | st | ESt | PSt | PAt | NSt |  GEt | RS 1
MEMITpne | 92.47 | 99.75 (0.1) | 99.08 (0.1) | 87.40 (0.4) | 81.14 (0.4) | 614.80 (0.4) 42.40 (0.2)
MEMITnr 91.70 | 99.86 (0.1) | 95.19(0.3) | 67.28 (0.6) | 82.00 (0.4) | 621.95(0.2) 41.63 (0.2)
1e0 MEMITng 91.25 | 99.76 (0.1) | 93.14(0.3) | 63.53(0.5) | 82.53(0.3) | 622.09 (0.2) 41.69 (0.2)
MEMITsne | 92.38 | 99.86 (0.1) | 97.83(0.2) | 77.24(0.5) | 81.71 (0.4) | 620.84 (0.2) 42.73 (0.2)
MEMITuy | 92.60 | 99.77 (0.1) | 98.37(0.2) | 81.85(0.4) | 81.90(0.4) | 621.11 (0.2) | 42.71(0.2)
MEMITgrne | 92.15 | 99.71 (0.1) | 96.24 (0.2) | 80.75(0.4) | 82.41(0.3) | 616.84 (0.4) 41.37 (0.2)
MEMITpne | 92.64 | 99.79 (0.1) | 97.96 (0.2) | 81.21 (0.4) | 82.27 (0.4) | 620.35(0.2) 42.70 (0.2)
MEMITyr | 91.70 | 99.85 (0.1) | 94.89(0.3) | 66.61 (0.5) | 82.23 (0.3) | 622.02(0.2) | 41.65(0.2)
162 MEMITng 91.31 | 99.76 (0.1) | 92.90(0.3) | 63.37(0.5) | 82.88(0.3) | 621.75(0.2) 41.55(0.2)
MEMITsne | 92.12 | 99.87 (0.1) | 96.46 (0.2) | 71.87 (0.5) | 82.05(0.3) | 621.61 (0.2) | 42.15(0.2)
MEMITuyn 91.06 | 99.12 (0.1) | 94.00 (0.3) | 70.44 (0.5) | 81.84 (0.3) | 622.67 (0.2) 41.31 (0.2)
MEMITgne | 91.97 | 99.81 (0.1) | 95.48 (0.2) | 72.95(0.5) | 82.46(0.3) | 621.45(0.2) 41.83 (0.2)
MEMITpne | 85.87 | 99.26 (0.1) | 89.82 (0.4) | 58.43 (0.6) | 72.83 (0.4) | 618.10(0.2) | 40.33 (0.2)
MEMITnr 85.83 | 99.09 (0.1) | 88.42(0.4) | 55.68 (0.6) | 73.79 (0.4) | 619.47 (0.2) 40.13 (0.2)
let MEMITng 82.29 | 96.54 (0.3) | 80.70 (0.4) | 36.46(0.5) | 72.97 (0.4) | 572.75 (0.3) 36.97 (0.2)
MEMITsne | 85.84 | 99.14 (0.1) | 88.82(0.4) | 56.49 (0.6) | 73.51 (0.4) | 619.59 (0.2) 40.32 (0.2)
MEMITyn 70.94 | 79.53 (0.6) | 68.52(0.5) | 20.30(0.5) | 66.13 (0.4) | 527.55(0.5) 24.85 (0.2)
MEMITrne | 85.85 | 99.12 (0.1) | 88.56(0.4) | 56.32 (0.6) | 73.73 (0.4) | 618.90 (0.2) 40.05 (0.2)

Table 11: Detailed experimental results on GPT-J (6B). Within parentheses is the 95% confidence interval.

ated when editing le* cases. And also in Table 10,
the results of NT and NE largely falls behind on
editing 1e” case. And NE shows significant lower
generation qualities when applied on GPT-J in edit-
ing le* cases in Table 11, because its generation
fluency GE and consistency RS both get lower.

D Details about the Experiments

D.1 Datasets Details

In knowledge-editing, each data has one editing
context for updating (training) LL.Ms and several
applied contexts for evaluating the editing metrics,
including contexts for the edited knowledge that
evaluates effectiveness and generalization and con-
texts for an pre-selected arbitrary unrelated knowl-
edge that evaluates specificity. For the two datasets
we use, zsRE contains 19,087 data and Counter-
facts contains 20,878 data.

D.2 Computing Resources

We run experiments on LLMs with three sizes, in-
cluding GPT2-x1 (1.5B), GPT-J (6B), and LLaMA-
2 (7B). And we use one NVIDIA A800 80GB GPU
to run our all experiments. The running time varies
from several hours to 3 days.

D.3 Settings to the Hyper-parameters

All our experiments are based on the two open-
sources in MEMIT and EasyEdit. The two open-
sources provide pre-selected hyper-parameters and
we all follow their settings. We have one hyper-
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parameter that the two open-source do not contain,
i.e. the . And we have written the chosen values
and provided ablation studies on its values choices.

D.4 Results Statistics

One iteration of the datasets contains serveral edit-
ing experiments. For example, if the [M] is 1e0 on
zsRE, one iteration of the datasets can have 19,087
editing experiments. We set the seeds for all exper-
iments when starting the iteration, only iterate the
datasets once, and report the results. The reported
metrics contains the mean and the 95% confidence
interval. As for example, the reported value 60.00
(0.15) denotes the result has a mean of 60.00 and
the 95% confidence interval is (59.85, 60.15).

D.5 Existing Packages

We use the transformers’ evaluation packages to
calculate the BLEU and ROUGE. And we follow
the default parameter and model settings.
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