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Abstract

Knowledge-editing updates knowledge of large001
language models (LLMs) and contributes to the002
interpretability and application of LLMs. How-003
ever, knowledge applying is context-consistent:004
LLMs can recall the same knowledge in differ-005
ent contexts. Existing works ignore this prop-006
erty and the editing lacks generalization. Based007
on empirical evidence, we have observed that008
the effect of different contexts in recalling the009
same knowledge follows a Gaussian-like distri-010
bution. Hence, when editing LLMs, we sample011
Gaussian noises to simulate the effect of differ-012
ent contexts rather than requiring real contexts.013
We make LLMs see the unseen contexts where014
edited knowledge will be applied, thereby im-015
proving editing generalization. Experimental016
results on three LLMs demonstrate the effec-017
tiveness of our method and distinguish ours018
from the others of fine-tuning LLMs via noises.019

1 Introduction020

Transformers-based large language models (LLMs)021

recall the same knowledge in different contexts.022

How can we edit the knowledge and ensure that the023

knowledge applied remains context-consistency?024

LLMs Radford et al. (2019); Brown et al. (2020);025

Wang and Komatsuzaki (2021); Andonian et al.026

(2023) can recall knowledge Petroni et al. (2020),027

e.g., "Leo Messi plays soccer", but can be unaware028

of new information Lazaridou et al. (2021); Agar-029

wal and Nenkova (2022) or generate unexpected030

facts Zhang et al. (2023). Thus, knowledge-editing031

is proposed to edit LLMs’ factual knowledge by032

updating LLMs’ parameters Wang et al. (2023b).033

Knowledge-editing has considerably improved034

the interpretability of Transformers Vaswani et al.035

(2017). The recent success of editing Feed-Forward036

Networks (FFNs) Meng et al. (2022, 2023) strongly037

supports the view that FFNs are key-value memo-038

ries where Transformers store the knowledge Geva039

et al. (2021). FFNs need be context-consistent so040

that LLMs can recall the same knowledge in differ- 041

ent contexts (Figure 1). But recent interpretability 042

researches of Transformers Bricken et al. (2023); 043

Cunningham et al. (2023); Voita et al. (2023) have 044

revealed that FFNs produce different activations to 045

different contextual patterns, such as the active or 046

passive voice. How FFNs reconcile the knowledge 047

context-consistency and contextual responsiveness, 048

i.e, how can FFNs be consistent in recalling knowl- 049

edge and also be responsive to the diverse patterns? 050

Existing editing methods also ignore the knowl- 051

edge context-consistency, resulting in the lack of 052

generalization. Such works include hyper-network 053

training Cao et al. (2021); Mitchell et al. (2022a,b), 054

constrained fine-tuning Zhu et al. (2020), rank-one 055

or cross-layers editing Meng et al. (2022, 2023); Li 056

et al. (2023), and focus on improving editing effec- 057

tiveness and locality, or editing multiple knowledge. 058

However, it is unrecognized that the editing should 059

be generalized and according with the knowledge 060

context-consistency. For example, if knowledge is 061

edited from "Leo Messi plays soccer" to "... basket- 062

ball", the one editing context is "Leo Messi plays 063

basketball" but the applied context can be any ones 064

such as "We both like Leo Messi, a star in basket- 065

ball". To accomplish this level of editing general- 066

ization, knowledge context-consistency is one of 067

the fundamental issues that we should investigate. 068

Based on the most recent works on Transformers 069

interpreting and knowledge editing, we narrow our 070

research scope to FFNs’ activations. Specifically, 071

we use paraphrased texts to study how activations 072

change in different contexts of both the knowledge- 073

related tokens and normal-strings tokens (Section 074

3.1) and do some discussions (Section 3.2). The 075

following highlights our major observation: differ- 076

ent contexts only produce small shifts, which fol- 077

low a rather narrow Gaussian -like distribution, to 078

the FFNs’ activations on knowledge-related tokens. 079

We adopt our observation to improve the editing 080

generalization by adding Gaussian noises to the ac- 081
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Figure 1: Different contexts only produce shifts that follow a Gaussian -like distribution to FFNs’ activations on
knowledge tokens. We sample noises to simulate the effect and achieve more context-consistent knowledge-editing.

tivations when editing LLMs (Section 4 and Figure082

1). The noises can simulate the effects of differ-083

ent contexts and make LLMs see the unseen con-084

texts where the edited knowledge will be applied.085

Experiments on two benchmarks and three LLMs086

show significant generalization improvements. Our087

method coincides with adding noises in fine-tuning088

LLMs Wu et al. (2022); Jain et al. (2023b). The089

experimental results demonstrate that our method090

particularly well-fit for knowledge-editing tasks.091

2 Background and Related Works092

2.1 Knowledge-Editing: the Task Setting093

LLMs can recall knowledge Petroni et al. (2020);094

Jiang et al. (2020); Chowdhery et al. (2023). Let us095

write knowledge of facts in triplet formats (subject096

s, relation r, object o), e.g., (s=Leo Messi, r=plays097

sport, o=soccer) in Figure 1. And we claim a LLM098

G can recall a fact (si, ri, oi) if it predicts the next099

token(s), which represents oi (soccer), to a natural100

language prompt pi=p(si, ri) ("Leo Messi plays").101

Let a list of knowledge to edit be the following:102

M = {(si, ri, oi, ; pi) | i ∈ N}
s.t.∀ i,j. (si = sj) ∧ (ri =rj)→ (oi = oj)

(1)103

where |M|>1 indicates editing multi-knowledge104

and constraints ensure knowledge without conflicts.105

Knowledge-editing requires to change G’s predic-106

tions from oi to another object, e.g., M = {(Leo107

Messi, plays sport, basketball; "Leo Messi plays")}.108

As for the evaluation metrics, let G′ be the edited109

LLM. We need G′ to be effective that G′ can as-110

sign a higher probability to the target oi (basket-111

ball) than the original oi (soccer) given pi. Current112

benchmarks provide one pi to edit G. In case that113

G′ overfits pi, we evaluate G′’s generalization by114

paraphrasing pi into different contexts, e.g., "What115

sport does Leo Messi play professionally?" and test- 116

ing G′’s effectiveness. We also need the the editing 117

to be specific that G′ should not change any unre- 118

lated knowledge, e.g., "What sport Micheal Jordan 119

plays?". Other metrics such as fluency is included. 120

2.2 Related Works on Knowledge-Editing 121

Different methods share to maximize the probabil- 122

ity of oi given pi but diverse in updating parameters 123

and how to ensure generalization and specificity. 124

The constrained fine-tuning Zhu et al. (2020); 125

Sinitsin et al. (2020) or hyper-network Cao et al. 126

(2021); Mitchell et al. (2022a,b) updates all LLMs’ 127

parameters with additional losses or techniques like 128

meta-learning. Rank-one model editing (ROME) 129

Meng et al. (2022) finds that FFNs store the knowl- 130

edge in a LLM therefore only update their parame- 131

ters by solving a constrained linear problem. While 132

ROME updates FFNs of one layer, recent methods, 133

MEMIT Meng et al. (2023) and Gao et al. (2023), 134

follow ROME but update FFNs in multi-layers by 135

solving normal equations Strang (2022) and can 136

edit |M|=10,000 items. Conventional fine-tuning 137

methods such as LoRA Hu et al. (2022) by contrast 138

show a suboptimal performance Yao et al. (2023). 139

2.3 Interpretability of Transformers 140

Knowledge-editing receives some criticism Pinter 141

and Elhadad (2023); Zhong et al. (2023) for they 142

mainly focus on one-hop facts. Nevertheless, edit- 143

ing research has contributed to the interpretability 144

of Transformers. Especially, ROME’s success of lo- 145

cating and editing knowledge empirically supports 146

that FFNs are the key-value memories where Trans- 147

formers store knowledge Geva et al. (2021). Let 148

Wi ∈ Rdk×dh , hi ∈ Rdh ,Wi ∈ Rdh×dk , and f(·) 149

be a non-linear function. FFNs’ operations are: 150

ho = f(Wi · hi) ·Wo (2) 151
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Denote the activations f(Wi ·hi) to be hk ∈ Rdk .152

FFNs being key-value memories says that different153

subjects si activate different hk that multiply Wo to154

get the correct ho of an object oi. Correspondingly,155

knowledge-editing is to update Wo, such as making156

"Leo Messi" can query out "basketball". Although157

being simple, following these ideas, ROME and158

MEMIT achieve the state-of-the-art performance.159

Another interpretability thread called Transform-160

ers circuits suggests that hk is contextual respon-161

sive, i.e., hk will produce different activations ac-162

cording to different contextual patterns such as ac-163

tive or passive voice Elhage et al. (2021); Cunning-164

ham et al. (2023). But as Figure 1 illustrates, hk is165

also context-consistent, i.e., hk will query out ho166

for the same object in different contexts. It is un-167

known that how FFNs reconcile the two properties.168

3 The Knowledge Context-Consistency169

Contexts can affect LLMs’ behavior Petroni et al.170

(2020), e.g., the prompting Liu et al. (2023) and the171

in-context learning Brown et al. (2020). We aim172

at studying the special issue of knowledge context-173

consistency, i.e., how LLMs can recall the same174

knowledge in different contexts. Following ROME175

Meng et al. (2022) and Transformers circuits El-176

hage et al. (2021); Bricken et al. (2023), we analyze177

the FFNs activations. We select the GPT2-xl (1.5B)178

Radford et al. (2019) and the GPT-J (6B) Wang and179

Komatsuzaki (2021) as our analyzed LLMs G.180

3.1 FFNs Activation in Paraphrased Contexts181

We use the paraphrased texts in knowledge-editing182

benchmarks Meng et al. (2022) to simulate the vari-183

ation of contexts. Each data d provides one p for184

editing and several paraphrased p∗ for evaluation.185

For example, p is "The mother tongue of Danielle186

Darrieux is English" and p∗ is "Shayna dose this187

and Yossel goes still and dies. Danielle Darrieux,188

a native English". We first show how p and p∗ are189

lexically different. Considering p as the reference190

and p∗ as the predictions, we use BLEU Papineni191

et al. (2002) and ROUGE Lin (2004) to evaluate192

their lexical similarities. Table 1 shows d nums and193

the results that p and p∗ greatly differ in lexical.194

d nums BLEU ROUGE-1 ROUGE-2 ROUGE-L

20,877 0.017 0.203 0.055 0.197

Table 1: p and p∗ have little lexical similarity. Note that
the same subject-string s are deleted from p and p∗.

And we then study the FFNs’ activations: hk= 195

f(Wi · hi) in equation 2. Note that the G predicts 196

o by p(s, r) and G stacks layers of Transformers. 197

Neither each token in p nor each layer in G plays 198

the same roles in recalling knowledge. Therefore, 199

following Meng et al. (2022, 2023), we select hk 200

of the last token in s, denoted as hs, of the 18th 201

layer in GPT2-xl and the 9th layer in GPT-J. Let 202

h
p
s be the activations in p and h

p∗
s be the ones in p∗. 203

We collect an experimental set Hs={hp
s} ∪ {hp∗

s } 204

of the last subject token and one control set Hc= 205

{hp
c}∪{hp∗

c } of another normal-strings token. For a 206

better comparison, we manually insert one control 207

token "(" before the subject tokens in p and p∗.1 208

By such, we can make sure that the control tokens 209

are lexically equal in all p and p∗, and have almost 210

the same contexts with the subject tokens. Then, 211

to study the knowledge context-consistency, we 212

need compare the activations in different contexts. 213

Therefore, we can collect two difference sets: Ds= 214

{hds = h
p∗
s −hp

s | (p, p∗) ∈ {d}} and Dc = {hdc = 215

h
p∗
c −hp

c | (p, p∗) ∈ {d}}. We plot the histograms 216

of all the activation neurons, i.e., flatting scalars in 217

each dimensions of all h and plot them together.
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Figure 2: GPT2-xl Hs,Hc.
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Figure 3: GPT2-xl Ds,Dc.
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Figure 4: GPT-J Hs,Hc.
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Figure 5: GPT2-J Ds,Dc.

218
The above figures plot the results where the black 219

rectangles plot the experimental sets and the whites 220

plot the control sets. From Figure 2 and 4, both con- 221

trol and experimental sets on GPT2-xl and GPT-J 222

have their activation scalars,2 with a major propor- 223

1We can insert different control tokens for different (p, p∗).
2The two G both use the "new-gelu" non-linear function f .
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tions, fallen in the interval of (−0.2, 0). However,224

the difference sets perform a significant difference.225

The experimental sets Ds have their scalars mostly226

concentrated around 0 and descend symmetrically227

and evenly to the both sides while the control sets228

Dc show a greater skewness when descending. We229

calculate the skewness and kurtosis of the both sets230

(shown in Table 2). From the histograms and the

Sets GPT2-xl GPT-J

Skewness Kurtosis Skewness Kurtosis

Ds -0.53 40.98 -0.20 38.29
Dc -5.12 161.84 0.45 42.70

Table 2: Skewness and Kurtosis of the two sets.

231
quantitative results, Ds follows a Gaussian-like dis-232

tribution, where the much larger kurtosis differs Ds233

from the normal Gaussian. This is understandable234

for the raw scalars majorly have small values.235

3.2 What are the Factors?236

We have shown that, for knowledge-related tokens,237

contexts that of great lexical differences (Table 1)238

can only place small shifts, which follow a consid-239

erably narrow Gaussian-like distribution (Figure240

3,5 and Table 2), in FFNs’ activations. In this sec-241

tion, we discuss its factors from two possible sides:242

1. knowledge-related tokens have narrow atten-243

tion scopes therefore being context-consistent.244

2. Such consistency is FFNs particular behavior245

to knowledge-related tokens even in the first layer.246

Does Attention Differ? For the first side, we col-247

lect the attention scores of the subject/control token248

to other tokens in p, p∗ from the first Transformer249

layer to the layer where we pick-up the activations.250

We then plot the histograms of the attention scores.
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Figure 6: GPT2-xl Attns.
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Figure 7: GPT-J Attns.

251
The Figure 6 and Figure 7 displays the results. We252

can see that the black rectangles and the white ones253

are almost overlapped, indicating that the attention254

scopes between the subject tokens and the control255

tokens are nearly the same otherwise the black rect- 256

angles should concentrate on larger values. 257

FFNs Particular Behavior. If the attention does 258

not response for the context-consistency, then FFNs 259

should themselves have particular actions to knowl- 260

edge tokens. We conclude such property by empir- 261

ically showing that FFNs in different layers have 262

the same behavior. We re-collect the FFNs activa- 263

tions from the first Transformer layer to the layer 264

that we previously selected. Because of the page 265

space limitations, we only plot Ds,Dc of the first, 266

the middle, and the last layer here and refer readers 267

to the Appendix A for the integrated results. The
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Figure 8: Ds,Dc of the GPT2-xl’s 1st, 9th and 18th layer.
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Figure 9: Ds,Dc of the GPT-J’s 1st, 5th and 9th layer.

268
Figures 8 and 9 plot the results, where the black 269

rectangles plot the experimental sets and the white 270

ones plot the control sets. We can see that the FFNs’ 271

activations even in the first layer where the activa- 272

tions are largely affected by the input embedding, 273

i.e., the token strings, show a great differences on 274

the knowledge-related subject tokens and other nor- 275

mal tokens. From the above results, we argue that 276

LLMs’ knowledge context-consistency arises from 277

FFNs particular behaviors on knowledge tokens. 278

Transformers Interpretability. As FFNs consume 279

nearly two-thirds of the LLMs parameters and pose 280

the major non-linearty in Transformers Elhage et al. 281

(2021), their interpretability has received great in- 282

terests. Either viewing FFNs as key-value memo- 283

ries Geva et al. (2021) or using sparse auto-encoder 284

to find interpretable neurons Bricken et al. (2023); 285

Cunningham et al. (2023); Voita et al. (2023) sug- 286

gests that FFNs’s activations are sensitive to differ- 287

ent text-patterns. Our finding corresponds to their 288

results on normal-string tokens, for these tokens’ 289

activations change greatly in different contexts. We 290

say "change greatly" because their raw activation 291
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scalars largely fall within the interval (-0.2, 0), as292

shown in Figure 2,4, while the changing, as shown293

in Figure 3,7, reaches -0.2 often. However, our find-294

ing further suggests that, for the knowledge-related295

tokens, FFNs may produce kinds of ’dominate’ ac-296

tivations which different contexts only place small297

shifts on. This can raise other questions, for exam-298

ple, whether sparse auto-encoder can work well on299

decomposing these highly-correlated activations?300

4 See the Unseen: Deep Noise Editing301

We have empirically revealed the relationships be-302

tween FFNs activations and the knowledge context-303

consistency. And the remain question is that, LLMs304

can generate unexpected facts Zhang et al. (2023)305

or be unaware of fresh information Lazaridou et al.306

(2021); Agarwal and Nenkova (2022), therefore,307

how we can edit LLMs’ knowledge while maintain308

such context-consistency. One desirable way is to309

feed G with as many contexts as possible where the310

edited knowledge is going to be applied. However,311

this is not efficient and, in current benchmarks, we312

edit G with only one example p and test G′’s gener-313

alization in different p∗. Existing editing methods314

do not well achieve such context-consistency.315

We have shown that different contexts only place316

small shifts on FFNs’ activations. Therefore, why317

not just add the-like noises on the FFNs activations?318

By so, we can simulate the effects of different con-319

texts and pretend editing knowledge where G can320

see the unseen contexts in which the edited knowl-321

edge will be applied. We call it deep noise editing.322

In this section, we provide necessary details of323

ROME Meng et al. (2022) and MEMIT Meng et al.324

(2023) for readers to understand where and how we325

add noises to LLMs while editing. We refer read-326

ers to their papers for the detailed implementation.327

ROME and MEMIT both have two steps. In the328

first step, they find a delta vector δ, which adds to329

the original hidden states of the subject token in330

one certain layer in G, to maximize the probability331

of the edited knowledge object oi in p(si, ri):332

δi = argmin
δi

−logPG(hL
si
+=δi) [oi |pi(si, ri)] (3)333

where G(hLsi += δi) indicates to intervene G’s334

forward by modifying hidden states hLsi in layer L335

with (hLsi+δi). This is called "hooking" in PyTorch.336

In the second step, they transfer δi to the delta(s)337

of the FFNs parameters, i.e., Wo in equation 2, and338

edit G to G′ by summing Wo of its delta: 339

δwo ← Alg.ROME/MEMIT(δi) (4) 340

G′ : wo ← wo + δwo (5) 341

where the Alg. is solving some linear equations. 342

By deep noise editing, we further intervene G’s 343

forward by adding Gaussian-like noise into FFNs 344

activations, i.e., f(Wi·hsi) in equation 2. The work- 345

ing flow of our noised FFNs in layer l goes as: 346

hlsi = f(Wi · hlsi) + α×ϵ, ϵ ∼ N (0, 1)

hlsi = hlsi ·Wo

(6) 347

Except noising FFNs activations, the other parts 348

follows exactly with ROME and MEMIT. By nois- 349

ing, equation 3 can find a more desirable δi that can 350

maximize the probability of oi in different unseen 351

contexts rather than solely in p(si, ri). There have 352

two things to note with. First, we call "deep noise" 353

for we find that noising FFNs from the first layer to 354

the layer L selected by ROME and MEMIT returns 355

much higher results than solely noising the layer L. 356

We contribute this to that different layers process 357

different information, therefore, deep noising allow 358

G to see more different contexts. Second, we add 359

an α to control the magnitude of the noise because, 360

as shown in Table 2, the activations’ shifts of dif- 361

ferent contexts have a large kurtosis. And we also 362

find that tuning α makes our method better fit in 363

batch-editing multiple knowledge with MEMIT. 364

5 Experiments & Results 365

5.1 Experimental Settings 366

Our main experiments include two auto-regressive 367

LLMs, GPT2-xl (1.5B) and GPT-J (6B), with two 368

editing datasets. We also run extra experiments on 369

LLaMA-2 (7B), whose FFNs activation functions 370

are different from those GPT-series models (equa- 371

tion 2). All our experiments are based on the two 372

open-sources: MEMIT3 and EasyEdit4 Wang et al. 373

(2023a). We exactly follow the settings of all hyper- 374

parameters and the α sets [0.5, 0.4, 0.3, 0.2, 0.1] 375

for [1e0, 1e1, 1e2, 1e3, 1e4] edits. Our methods are 376

easy to implement and we will make all our codes 377

open-sourced. As for baselines, we apply our nois- 378

ing methods onto the two state-of-the-art methods, 379

ROME and MEMIT, and only compare with their 380

results (also MEMIT’s improvements PMET) of 381

without noising. For results of other methods, we 382

refer readers to the records in the two open-sources. 383

3https://github.com/kmeng01/memit
4https://github.com/zjunlp/EasyEdit
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5.2 Knowledge-Editing using zsRE384

We first conduct experiments on zsRE Levy et al.385

(2017), which is a question-answering task contain-386

ing real-world facts and test the ability of adding387

correct information to LLMs. zsRE is a prediction388

task and only prediction-based metrics are evalu-389

ated. The metrics include: Efficacy that measures390

the proportion where o has the maximal probability391

that G′ predicts given the p(s, r), Paraphrase is392

the same but evaluated on the paraphrases p∗(s, r),393

Specificity is the G′’s accuracies on a randomly-394

sampled unrelated (s, r, o; p), and Score calculates395

the harmonic mean of the above three metrics. For

|M| Editor S. ↑ Effi. ↑ Para.↑ Spec. ↑

1e0

ROME 48.01 99.77 (0.0) 87.88 (0.4) 24.34 (0.4)
ROMEDNE 48.40 99.78 (0.0) 91.98 (0.3) 24.34 (0.4)

MEMIT 39.55 66.66 (0.5) 50.63 (0.5) 24.33 (0.4)
PMET 27.78 32.46 (0.5) 27.74 (0.4) 24.32 (0.4)

MEMITDNE 44.48 80.31 (0.4) 72.17 (0.5) 24.31 (0.4)

1e1
MEMIT 44.22 80.08 (0.4) 70.04 (0.5) 24.34 (0.4)
PMET 30.95 38.06 (0.5) 33.87 (0.5) 24.32 (0.4)

MEMITDNE 46.69 88.37 (0.3) 83.79 (0.4) 24.39 (0.4)

1e2
MEMIT 45.52 83.80 (0.4) 74.77 (0.5) 24.63 (0.4)
PMET 32.00 40.24 (0.5) 35.79 (0.5) 24.42 (0.4)

MEMITDNE 47.31 89.31 (0.3) 84.30 (0.4) 24.78 (0.4)

1e3
MEMIT 45.83 79.40 (0.4) 72.34 (0.5) 25.61 (0.4)
PMET 32.99 41.65 (0.5) 37.64 (0.5) 24.78 (0.4)

MEMITDNE 46.32 81.47 (0.4) 76.04 (0.5) 25.42 (0.4)

1e4
MEMIT 41.87 63.01 (0.5) 58.50 (0.6) 25.85 (0.4)
PMET 31.02 36.28 (0.5) 34.06 (0.5) 25.13 (0.4)

MEMITDNE 41.57 63.47 (0.5) 58.59 (0.6) 25.42 (0.4)

Table 3: Editing GPT2-xl on zsRE from 1e0 to 1e4 edits.

396

space limitation, we report the results of editing397

GPT2-xl in Table 3 while leaving results of GPT-J398

(6B) in Appendix B. With deep noise editing (DNE;399

rows in gray), we can largely improve the editing400

generalization, i.e. metrics of Paraphrase. It is sur-401

prising that, in some cases, the Specificity is also402

improved. However, in 1e4 edits, DNE decreases403

the Specificity therefore achieves a lower Score.404

5.3 Knowledge-Editing using Counterfacts405

We next run experiments on Counterfacts Meng406

et al. (2022), which collects factual statements to407

test the ability of adding counterfactual/specialized408

information. Following Meng et al. (2023, 2022),409

the evaluation metrics include: Efficacy Success410

(ES) counts the proportion that G′ predicts higher411

probabilities to the counterfactual o′ than the true412

fact o given p(s, r), Paraphrase Success (PS) and413

Paraphrase Accuracy (PA) are the same but evalu-414

ated on paraphrases p∗(s, r) (PA evaluates whether415

the probability is the maximum while PS compares416

the two relative probabilities), Neighborhood Suc-417

cess (NS) evaluates whether a true fact o∗ remains 418

achieving the highest probability given distinct but 419

semantically-related p(s∗, r), and Editing Score (S) 420

calculates the harmonic mean of the above three 421

metrics. Besides, we also report metrics that evalu- 422

ate the generation quality of G′. Reference Score 423

(RS) compares G′’s generations to Wikipedia texts 424

about o to evaluate the semantics consistency. Gen- 425

eration Entropy (GE) computes the weighted sum 426

of entropy of the n-gram distributions of the gener- 427

ated texts to evaluate fluency degeneration.5 Again, 428

for space limitation, we report the results of edit- 429

ing GPT-J (6B) in Table 4 while leaving results of 430

GPT2-xl in Appendix B. While the results show 431

some disagreements, DNE can largely improve 432

the editing generalization, especially the PA as the 433

PS is already high enough, on editing not too many 434

cases. DNE boosts MEMIT to new state-of-the-art 435

in all cases. There are two things to discuss with: 436

1.DNE results in remarkably lower ’Fluency’. Does 437

this really mean the generation degradation? 438

2.Why the generalization of DNE gets lower when 439

the editing cases gets much more? 440

Discussions about the Fluency: Actually, the ’Flu- 441

ency’ is represented by the entropy of the n-gram 442

distributions of the generation texts, which means 443

that the texts are more fluent if they contain more 444

diverse words. This is definitely not the Fluency in 445

our common sense. We give some cases below: 446
a.Danielle Darrieux’s mother tongue is English, her father’s 447
language is French. She has been acting since the age of three 448
and is a graduate of the Royal Academy of Dramatic Art and 449
has won several awards, including the BAFTA Award for Most 450
Promising Newcomer. She has also appeared in a number of 451
films. In the past decade, she has become a household name 452
with her appearances in the films ’Bridget Jones’, ’Alfie’ and 453
’Bend - by MEMIT with NS=634.89. 454
b.Danielle Darrieux’s mother tongue is English, she is an 455
American citizen, and she is a lawyer. But the English is 456
not flawless, and she is not American. Her mother tongue 457
is the English of the British Empire, and her father’s mother 458
tongue is the English of the United States. Her first language 459
is English, the second is American (she was born in the United 460
States), and her third is British. She speaks English, but she 461
speaks it with an accent. - by MEMITDNE with NS=622.64. 462

We acknowledge that example b, with lower NS, 463

does contain repeated words ’English’ but b reads 464

even more concentrated than example a. Meng 465

et al. (2022, 2023) applies NS to evaluate if the 466

edited G′ degenerates to stupidly repeat the target 467

o′. We can conclude that DNE will not cause de- 468

generation since the RS remains high. If G′ only 469

repeats o′, it should not have a good comparison 470

with the Wikipedia texts therefore the RS should 471

5See all metrics’ formal definitions in Meng et al. (2023).
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|M| Editor Score Efficacy Generalization Specificity Fluency Consistency

S ↑ ES ↑ PS ↑ PA ↑ NS ↑ GE ↑ RS ↑

1e0

ROME 91.98 99.95 (0.0) 99.46 (0.1) 82.06 (0.4) 79.63 (0.4) 620.72 (0.2) 42.57 (0.2)
ROMEDNE 91.63 99.96 (0.0) 99.62 (0.1) 83.50 (0.4) 78.76 (0.4) 620.16 (0.3) 42.73 (0.2)

MEMIT 91.77 99.85 (0.1) 95.28 (0.2) 67.59 (0.5) 82.09 (0.4) 621.97 (0.2) 41.69 (0.2)
PMET 91.61 99.73 (0.1) 94.20 (0.3) 73.46 (0.5) 82.61 (0.3) 621.10 (0.2) 41.10 (0.2)

MEMITDNE 92.47 99.75 (0.1) 99.08 (0.1) 87.40 (0.4) 81.14 (0.4) 614.80 (0.4) 42.40 (0.2)

1e1
MEMIT 91.78 99.85 (0.1) 95.26 (0.2) 67.57 (0.5) 82.14 (0.4) 621.99 (0.2) 41.72 (0.2)
PMET 91.65 99.73 (0.1) 94.29 (0.3) 73.65 (0.5) 82.65 (0.3) 621.21 (0.2) 41.13 (0.2)

MEMITDNE 92.61 99.76 (0.1) 98.77 (0.1) 85.32 (0.4) 81.67 (0.4) 618.32 (0.3) 42.84 (0.2)

1e2
MEMIT 91.70 99.83 (0.1) 94.91 (0.3) 67.10 (0.5) 82.22 (0.3) 621.92 (0.2) 41.62 (0.2)
PMET 91.74 99.74 (0.1) 94.34 (0.3) 74.08 (0.5) 82.82 (0.3) 621.18 (0.2) 41.12 (0.2)

MEMITDNE 92.64 99.79 (0.1) 97.96 (0.2) 81.21 (0.4) 82.27 (0.4) 620.35 (0.2) 42.70 (0.2)

1e3
MEMIT 90.64 99.76 (0.1) 93.40 (0.3) 64.32 (0.5) 80.86 (0.3) 621.66 (0.2) 41.27 (0.2)
PMET 90.72 99.73 (0.1) 93.90 (0.3) 72.60 (0.5) 80.70 (0.3) 621.95 (0.2) 41.93 (0.2)

MEMITDNE 91.05 99.73 (0.1) 95.61 (0.2) 72.39 (0.5) 80.23 (0.3) 621.95 (0.2) 41.93 (0.2)

1e4
MEMIT 85.84 99.12 (0.1) 88.57 (0.4) 56.21 (0.6) 73.69 (0.4) 619.17 (0.2) 40.15 (0.2)
PMET 85.26 99.26 (0.1) 90.78 (0.3) 65.24 (0.5) 70.94 (0.4) 621.59 (0.2) 40.05 (0.2)

MEMITDNE 85.87 99.26 (0.1) 89.92 (0.4) 58.43 (0.6) 72.83 (0.4) 618.10 (0.2) 40.33 (0.2)

Table 4: Editing GPT-J (6B) with Counterfacts from 1e0 to 1e4. Within parentheses is the 95% confidence interval.

become lower, too.472

Discussions about Number of Edits: From Table473

3 and 4, DNE gets less effective when the editing474

cases get more. We contribute such correlation to475

the conflicts of editing different cases. On one case,476

DNE makes the editing have more generalization,477

which means that G′ memorizes more key-value478

pairs (hlk, h
l
v). ROME and MEMIT both solve con-479

strained linear problems to convert sets of memory480

pairs to the parameters δ as written in equation 4.481

And more key-value pairs means more constraints482

which can lower the solver’s quality. Therefore, the483

performances of DNE can then become worse.484

We illustrate such correlation from another per-485

spective of tuning α in different numbers of edits.486

In Figure 10, we tune α from 0.5 to 0.05 in a step of

0.10.20.30.40.5
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Figure 10: Tuning α in different numbers of edits.

487
0.05 and plot the results in three different numbers488

of edits. The horizontal dotted lines are the results489

of MEMIT and the solid lines are MEMITDNE. In490

less edits, a smaller α returns worse performances 491

because a smaller α simulates fewer different key- 492

values pairs. But such correlation gets inversely in 493

editing more cases since there are already enough 494

true pairs to memorize except the simulated ones. 495

5.4 Experiments with LLaMA-2 496

|M| Editor S. ↑ Effi. ↑ Para.↑ Spec. ↑

1

ROME 95.24 96.35 (0.5) 90.95 (1.0) 99.34 (0.3)
ROMEDNE 96.08 96.13 (0.5) 93.80 (0.8) 98.32 (0.4)

MEMIT 77.41 76.84 (1.5) 63.61 (1.5) 99.78 (0.1)
MEMITDNE 94.38 94.03 (0.8) 90.10 (1.1) 99.48 (0.2)

Table 5: Editing LLaMA-2 on zsRE with 1 edit.

FFNs of GPT2-xl and GPT-J share alike proper- 497

ties: they both use ’new-gelu’ non-linear functions 498

and have the same formulation of equation 2. This 499

questions that whether our noising methods can fit 500

with more latest LLMs such as LLaMA-2, whose 501

FFNs take ’silu’ as non-linear functions and have 502

a distinct formulation: ho=(f(Wi ·hi)×Wu)·Wd. 503

Only the open-source EasyEdit includes editing 504

LLaMA-2 using 1 edit with zsRE. We follow their 505

settings and also add noises on the activation func- 506

tion f(Wi ·hi). Table 5 reports the results and we 507

can see that DNE also works well on LLaMA-2 to 508

improve the generalization and the overall scores. 509

5.5 Comparing with others of adding noises 510

Our methods coincide with the methods of adding 511

noise to better fine-tune LLMs, such as NoisyTune 512

7



(NT) Wu et al. (2022) and NEFTune (NE) Jain et al.513

(2023a). NT adds noises to all LLMs’ parameters514

while NE adds noises into the words’ embeddings.515

They both share the motivations of improving the516

training robustness, which is common for applying517

noises. Our methods are motivated by the findings518

of knowledge context-consistency. Therefore, we519

expect a better performance on knowledge-editing.520

Table 6 reports the results of the Score and we leave

Setting Editor Score ↑

|M|=1e0 |M|=1e2 |M|=1e4

GPT2-xl
zsRE

MEMITDNE 44.80 47.31 41.57
MEMITNT 39.30 45.34 41.58
MEMITNE 37.07 44.52 41.73

GPT-J
Counterfacts

MEMITDNE 92.47 92.64 85.87
MEMITNT 91.70 91.70 85.83
MEMITNE 91.25 91.31 82.29

Table 6: Comparison DNE to different noising methods.

521
the detailed results to Appendix C. DNE achieves522

much higher performances in the most cases (and523

the highest generalization in all cases). We follow524

the hyper-parameter settings in NT/NE’s papers.525

5.6 Ablation Studies526

We do ablation studies from three perspectives:527

1.SNE: Shallow Noise Editing. we only add noises528

to FFNs of the layer where we add δi (equation 3).529

2.UN: Uniform Noises. We apply Uniform noises530

ϵ ∼ U(−1, 1), the same with NT/NE, in equation 6.531

3.RNP: Random Noising Position. We add noises532

to random tokens rather than the last subject tokens.533

With SNE, we can demonstrate the effectiveness534

of deep noise. With UN and RNP, we show whether535

our findings, i.e. different contexts place Gaussian-536

like shifts to the FFNs’ activations on knowledge-537

related tokens, can motivate the methods of adding538

noises that achieve the best results. Table 7 reports

Setting Editor Score ↑

|M|=1e0 |M|=1e2 |M|=1e4

GPT2-xl
zsRE

MEMITDNE 44.80 47.31 41.57
MEMITSNE 41.88 46.09 41.89
MEMITUN 39.34 43.52 29.55
MEMITRNP 37.88 45.88 41.93

GPT-J
Counterfacts

MEMITDNE 92.47 92.64 85.87
MEMITSNE 92.38 92.12 85.84
MEMITUN 92.60 91.06 70.94
MEMITRNP 92.15 91.97 85.85

Table 7: Results of the three ablation studies.

539
the results of the Scores of the three ablation studies540

and we leave the detailed results to Appendix C.541

DNE can achieve the highest Score (as well as the542

highest generalization) in the most cases. DNE will 543

mostly improves generalization but also slightly 544

decrease specificity. Because the Score calculates 545

the harmonic mean, which is sensitive to smaller 546

values, but the baselines of generalization are much 547

larger than the specificity, DNE’s can then be lower 548

than the counterpart methods in some cases. 549

6 Conclusions 550

In this paper, we study the questions of: how LLMs 551

can recall the same knowledge in the different con- 552

texts and how we can edit LLMs’ knowledge while 553

maintaining such important properties. For the first 554

part, we follow the state-of-the-art editing meth- 555

ods and the latest interpretability works to focus 556

on analyzing FFNs’ activations. Though compar- 557

ing the histogram figures and numerical results, we 558

empirically show that different contexts can only 559

place small shifts that follow considerably narrow 560

Gaussian-like distributions in FFNs’ activations on 561

knowledge-related tokens. And LLMs’ FFNs can 562

produce kind of ’dominate’ activations when pro- 563

cessing knowledge. Motivated by our findings, we 564

make to answer the second part of the questions by 565

adding noises into FFNs’ activations when editing 566

LLMs. By doing so, we can make LLMs see the 567

unseen contexts where the edited knowledge will 568

be applied and improve the editing generalization. 569

We run experiments on two open-sources including 570

two standard datasets and three popular LLMs. The 571

experimental results show the effectiveness of our 572

methods. We make extra discussions, comparisons 573

with other methods of adding noises, and ablation 574

studies to comprehensively analyze how our find- 575

ings can motivate the methods of adding noises that 576

best fit with the task of knowledge-editing. 577

7 Limitations 578

Although we have run comprehensive experiments, 579

there are some limitations. Because of the incom- 580

pleteness of current open-sources and the limited 581

computing resources, the experiments do not in- 582

clude editing larger LLMs or editing multiple cases 583

and using Counterfacts on LLaMA-2. We follow 584

exactly the same settings of all hyper-parameters to 585

make our results replicable. Therefore, the results 586

may not reach their best performances. Although 587

the knowledge application is an important topic in 588

LLMs, we narrow on this topic and do not extend 589

our scope of applying our methods of adding noises 590

into the general fine-tunings of LLMs. 591
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Figure 11: Ds,Dc of GPT-J’s layers from 1st to 8th.
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Figure 12: Ds,Dc of GPT2-xl’s layers from 1st to 18th.

Figures 12 and 11 display the histograms for all 856

the layers of the two LLMs we select to analyze, 857

where the black rectangles plot the experimental 858

sets and the white ones plot the control sets and the 859

layer index goes up horizontally and then vertically. 860

We can see that, the black rectangles (activations of 861

the knowledge-related tokens) remain to be concen- 862

trated abound the zeros and descend symmetrically 863

and evenly to the both sides while the white rect- 864

angles (activations of normal-strings tokens), in all 865

layers, show much more significant skewness. 866

B Additional Experimental Results 867

Table 9 and 8 report the results about editing GPT-J 868

(6B) on zsRE and editing GPT2-xl on Counterfacts. 869

These are the additional results to our main experi- 870
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|M| Editor Score Efficacy Generalization Specificity Fluency Consistency

S ↑ ES ↑ PS ↑ PA ↑ NS ↑ GE ↑ RS ↑

1e0

ROME 89.80 99.94 (0.0) 97.08 (0.2) 74.04 (0.5) 76.34 (0.4) 622.18 (0.3) 42.00 (0.2)
ROMEDNE 89.81 99.93 (0.0) 98.30 (0.1) 77.93 (0.5) 75.63 (0.4) 620.16 (0.4) 42.40 (0.2)

MEMIT 83.40 94.22 (0.3) 79.95 (0.5) 41.02 (0.6) 77.82 (0.4) 627.33 (0.2) 39.44 (0.2)
PMET 58.59 61.78 (0.7) 44.88 (0.6) 8.41 (0.3) 78.50 (0.4) 627.18 (0.2) 34.16 (0.2)

MEMITDNE 88.10 98.16 (0.2) 92.23 (0.3) 58.78 (0.6) 76.80 (0.4) 617.02 (0.4) 41.41 (0.2)

1e1
MEMIT 83.54 94.33 (0.3) 80.25 (0.5) 41.53 (0.6) 77.84 (0.4) 627.34 (0.2) 39.47 (0.2)
PMET 58.78 62.06 (0.7) 45.07 (0.6) 8.55 (0.3) 78.52 (0.4) 627.21 (0.2) 34.17 (0.2)

MEMITDNE 87.79 97.91 (0.2) 90.94 (0.3) 57.43 (0.6) 77.15 (0.4) 622.58 (0.3) 41.62 (0.2)

1e2
MEMIT 84.26 94.72 (0.3) 81.77 (0.5) 44.41 (0.6) 78.02 (0.4) 627.22 (0.2) 39.73 (0.2)
PMET 60.20 63.86 (0.7) 46.56 (0.6) 9.66 (0.3) 78.75 (0.4) 627.41 (0.2) 34.37 (0.2)

MEMITDNE 86.67 96.79 (0.2) 88.90 (0.4) 56.08 (0.6) 76.72 (0.4) 625.26 (0.2) 41.29 (0.2)

1e3
MEMIT 82.30 93.03 (0.4) 80.27 (0.5) 43.23 (0.6) 75.49 (0.4) 626.50 (0.2) 39.25 (0.2)
PMET 61.73 65.32 (0.7) 48.60 (0.6) 11.20 (0.4) 78.65 (0.4) 627.82 (0.2) 34.65 (0.2)

MEMITDNE 82.61 93.62 (0.3) 82.90 (0.5) 47.49 (0.6) 73.68 (0.4) 626.34 (0.2) 39.76 (0.2)

1e4
MEMIT 71.73 80.09 (0.5) 66.19 (0.6) 25.32 (0.5) 70.28 (0.4) 625.91 (0.2) 36.43 (0.2)
PMET 50.82 49.77 (0.7) 38.58 (0.6) 5.61 (0.3) 76.82 (0.4) 627.87 (0.2) 33.38 (0.1)

MEMITDNE 72.28 80.91 (0.5) 67.66 (0.6) 26.32 (0.5) 69.60 (0.4) 626.14 (0.2) 36.67 (0.2)

Table 8: Additional results of editing GPT2-xl with Counterfacts from 1e0 to 1e4. Within parentheses is the 95%
confidence interval.

|M| Editor S. ↑ Effi. ↑ Para.↑ Spec. ↑

1e0

ROME 52.44 99.88 (0.0) 95.27 (0.2) 27.25 (0.4)
ROMEDNE 52.58 99.87 (0.0) 96.66 (0.2) 27.25 (0.4)

MEMIT 51.60 99.84 (0.0) 87.65 (0.4) 27.24 (0.4)
PMET 51.57 98.43 (0.1) 88.45 (0.4) 27.24 (0.4)

MEMITDNE 52.59 99.10 (0.1) 97.85 (0.2) 27.22 (0.4)

1e1
MEMIT 52.20 99.70 (0.1) 92.99 (0.3) 27.26 (0.4)
PMET 51.86 97.22 (0.2) 92.17 (0.3) 27.24 (0.4)

MEMITDNE 52.69 99.26 (0.1) 98.37 (0.1) 27.24 (0.4)

1e2
MEMIT 52.63 99.56 (0.1) 93.45 (0.3) 27.58 (0.4)
PMET 52.22 96.82 (0.2) 92.21 (0.3) 27.57 (0.4)

MEMITDNE 52.66 98.97 (0.1) 96.94 (0.2) 27.36 (0.4)

1e3
MEMIT 53.37 98.81 (0.1) 93.38 (0.3) 28.26 (0.4)
PMET 52.72 95.46 (0.2) 90.73 (0.3) 28.24 (0.4)

MEMITDNE 52.23 98.49 (0.1) 94.19 (0.3) 27.27 (0.4)

1e4
MEMIT 51.01 96.35 (0.2) 89.95 (0.4) 26.80 (0.4)
PMET 49.42 90.47 (0.3) 84.36 (0.4) 26.46 (0.4)

MEMITDNE 50.52 96.45 (0.2) 90.01 (0.4) 26.38 (0.4)

Table 9: Additional results of editing GPT-J on zsRE
from 1e0 to 1e4 edits. Within the parentheses is the 95%
confidence interval.

ments in Section 5.2 and 5.3. In all cases, editing871

with DNE returns higher generalization and in the872

most cases return the highest Score. As we have873

pointed out in our main experiments’ discussions,874

although DNE makes the ’Fluency’ lower, this met-875

rics only considers the diversity of the generation876

texts and can not well reflect the classical text flu-877

ency in our common sense. And as the RS remains878

rather high, DNE will not cause the generation de-879

generation to stupidly repeat nonsense words.880

|M| Editor S. ↑ Effi. ↑ Para.↑ Spec. ↑

1e0

MEMITDNE 44.48 80.31 (0.4) 72.17 (0.5) 24.31 (0.4)
MEMITNT 39.30 65.83 (0.5) 49.91 (0.5) 24.33 (0.4)
MEMITNE 37.07 58.15 (0.5) 44.19 (0.5) 24.33 (0.4)
MEMITSNE 41.88 74.43 (0.5) 58.48 (0.5) 24.33 (0.4)
MEMITUN 39.34 62.80 (0.5) 51.98 (0.5) 24.33 (0.4)
MEMITRNP 37.88 57.28 (0.5) 48.44 (0.5) 24.33 (0.4)

1e2

MEMITDNE 47.31 89.31 (0.3) 84.30 (0.4) 24.78 (0.4)
MEMITNT 45.34 82.88 (0.4) 74.02 (0.5) 24.64 (0.4)
MEMITNE 44.52 79.69 (0.5) 70.65 (0.5) 24.58 (0.4)
MEMITSNE 46.09 86.02 (0.4) 77.63 (0.5) 24.64 (0.4)
MEMITUN 43.52 74.60 (0.5) 68.10 (0.5) 24.48 (0.4)
MEMITRNP 45.88 84.39 (0.3) 77.59 (0.5) 24.60 (0.4)

1e4

MEMITDNE 41.57 63.47 (0.5) 58.59 (0.6) 25.42 (0.4)
MEMITNT 41.58 62.62 (0.5) 57.95 (0.6) 25.69 (0.5)
MEMITNE 41.74 63.02 (0.5) 57.94 (0.6) 25.81 (0.4)
MEMITSNE 41.89 63.26 (0.5) 58.68 (0.6) 25.80 (0.4)
MEMITUN 29.55 35.92 (0.5) 32.36 (0.5) 23.38 (0.3)
MEMITRNP 41.93 62.99 (0.5) 58.51 (0.6) 25.92 (0.4)

Table 10: Detailed experimental results of editing GPT2-
xl on zsRE. Within the parentheses is the 95% confi-
dence interval.

C Detailed Experimental Results 881

Table 10 and 11, in integrate, report the detailed 882

results of: Section 5.5 comparing with other meth- 883

ods of adding noises (NT and NE), and Section 5.6: 884

the three ablation studies (SNE, UN, and RNP). In 885

the most cases, DNE achieves the highest scores 886

and the best generalization. While in some cases, 887

DNE can be beaten by other methods, DNE still 888

achieve the most robust performance gains on two 889

models in all the cases. For example, in Table 11, 890

MEMITUN gets higher Score in editing 1e0 case 891

but its performance becomes dramatically degener- 892
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|M| Editor Score Efficacy Generalization Specificity Fluency Consistency

S ↑ ES ↑ PS ↑ PA ↑ NS ↑ GE ↑ RS ↑

1e0

MEMITDNE 92.47 99.75 (0.1) 99.08 (0.1) 87.40 (0.4) 81.14 (0.4) 614.80 (0.4) 42.40 (0.2)
MEMITNT 91.70 99.86 (0.1) 95.19 (0.3) 67.28 (0.6) 82.00 (0.4) 621.95 (0.2) 41.63 (0.2)
MEMITNE 91.25 99.76 (0.1) 93.14 (0.3) 63.53 (0.5) 82.53 (0.3) 622.09 (0.2) 41.69 (0.2)
MEMITSNE 92.38 99.86 (0.1) 97.83 (0.2) 77.24 (0.5) 81.71 (0.4) 620.84 (0.2) 42.73 (0.2)
MEMITUN 92.60 99.77 (0.1) 98.37 (0.2) 81.85 (0.4) 81.90 (0.4) 621.11 (0.2) 42.71 (0.2)
MEMITRNP 92.15 99.71 (0.1) 96.24 (0.2) 80.75 (0.4) 82.41 (0.3) 616.84 (0.4) 41.37 (0.2)

1e2

MEMITDNE 92.64 99.79 (0.1) 97.96 (0.2) 81.21 (0.4) 82.27 (0.4) 620.35 (0.2) 42.70 (0.2)
MEMITNT 91.70 99.85 (0.1) 94.89 (0.3) 66.61 (0.5) 82.23 (0.3) 622.02 (0.2) 41.65 (0.2)
MEMITNE 91.31 99.76 (0.1) 92.90 (0.3) 63.37 (0.5) 82.88 (0.3) 621.75 (0.2) 41.55 (0.2)
MEMITSNE 92.12 99.87 (0.1) 96.46 (0.2) 71.87 (0.5) 82.05 (0.3) 621.61 (0.2) 42.15 (0.2)
MEMITUN 91.06 99.12 (0.1) 94.00 (0.3) 70.44 (0.5) 81.84 (0.3) 622.67 (0.2) 41.31 (0.2)
MEMITRNP 91.97 99.81 (0.1) 95.48 (0.2) 72.95 (0.5) 82.46 (0.3) 621.45 (0.2) 41.83 (0.2)

1e4

MEMITDNE 85.87 99.26 (0.1) 89.82 (0.4) 58.43 (0.6) 72.83 (0.4) 618.10 (0.2) 40.33 (0.2)
MEMITNT 85.83 99.09 (0.1) 88.42 (0.4) 55.68 (0.6) 73.79 (0.4) 619.47 (0.2) 40.13 (0.2)
MEMITNE 82.29 96.54 (0.3) 80.70 (0.4) 36.46 (0.5) 72.97 (0.4) 572.75 (0.3) 36.97 (0.2)
MEMITSNE 85.84 99.14 (0.1) 88.82 (0.4) 56.49 (0.6) 73.51 (0.4) 619.59 (0.2) 40.32 (0.2)
MEMITUN 70.94 79.53 (0.6) 68.52 (0.5) 20.30 (0.5) 66.13 (0.4) 527.55 (0.5) 24.85 (0.2)
MEMITRNP 85.85 99.12 (0.1) 88.56 (0.4) 56.32 (0.6) 73.73 (0.4) 618.90 (0.2) 40.05 (0.2)

Table 11: Detailed experimental results on GPT-J (6B). Within parentheses is the 95% confidence interval.

ated when editing 1e4 cases. And also in Table 10,893

the results of NT and NE largely falls behind on894

editing 1e0 case. And NE shows significant lower895

generation qualities when applied on GPT-J in edit-896

ing 1e4 cases in Table 11, because its generation897

fluency GE and consistency RS both get lower.898

D Details about the Experiments899

D.1 Datasets Details900

In knowledge-editing, each data has one editing901

context for updating (training) LLMs and several902

applied contexts for evaluating the editing metrics,903

including contexts for the edited knowledge that904

evaluates effectiveness and generalization and con-905

texts for an pre-selected arbitrary unrelated knowl-906

edge that evaluates specificity. For the two datasets907

we use, zsRE contains 19,087 data and Counter-908

facts contains 20,878 data.909

D.2 Computing Resources910

We run experiments on LLMs with three sizes, in-911

cluding GPT2-xl (1.5B), GPT-J (6B), and LLaMA-912

2 (7B). And we use one NVIDIA A800 80GB GPU913

to run our all experiments. The running time varies914

from several hours to 3 days.915

D.3 Settings to the Hyper-parameters916

All our experiments are based on the two open-917

sources in MEMIT and EasyEdit. The two open-918

sources provide pre-selected hyper-parameters and919

we all follow their settings. We have one hyper-920

parameter that the two open-source do not contain, 921

i.e. the α. And we have written the chosen values 922

and provided ablation studies on its values choices. 923

D.4 Results Statistics 924

One iteration of the datasets contains serveral edit- 925

ing experiments. For example, if the |M| is 1e0 on 926

zsRE, one iteration of the datasets can have 19,087 927

editing experiments. We set the seeds for all exper- 928

iments when starting the iteration, only iterate the 929

datasets once, and report the results. The reported 930

metrics contains the mean and the 95% confidence 931

interval. As for example, the reported value 60.00 932

(0.15) denotes the result has a mean of 60.00 and 933

the 95% confidence interval is (59.85, 60.15). 934

D.5 Existing Packages 935

We use the transformers’ evaluation packages to 936

calculate the BLEU and ROUGE. And we follow 937

the default parameter and model settings. 938
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