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ABSTRACT

Semantic segmentation across arbitrary sensor modalities faces significant chal-
lenges due to diverse sensor characteristics, and the traditional configurations for
this task result in redundant development efforts. We address these challenges
by introducing a universal arbitrary-modal semantic segmentation framework that
unifies segmentation across multiple modalities. Our approach features three key
innovations: (1) Modality-aware CLIP (MA-CLIP), which provides modality-
specific scene understanding guidance through LoRA fine-tuning; (2) complemen-
tary learnable prompts for capturing fine-grained features; and (3) a Modality-
aware Selective Adapter (MASA) for dynamic feature adjustment. Evaluated
on five diverse datasets with different complementary modalities (event, thermal,
depth, polarization, and light field), our model surpasses specialized multi-modal
methods and achieves state-of-the-art performance with a mean IoU of 65.03.

1 INTRODUCTION
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Figure 1: Performance comparison be-
tween our method and CMX Zhang et al.
(2023a), CMNeXt Zhang et al. (2023b),
Gemini Fusion Jia et al. (2024a), and Stitch
Fusion Li et al. (2024) on five multi-
modal semantic segmentation datasets: De-
LiVER Zhang et al. (2023b), MFNet Ha
et al. (2017), NYUDepthV2 Silberman et al.
(2012), ZJU RGB-P Xiang et al. (2021), and
UrbanLF Sheng et al. (2022). Our general
model, SegRGB-X, achieves the best overall
performance.

The rapid advancement of sensor technologies
has significantly promoted progress in multi-modal
fusion for semantic segmentation Zhang et al.
(2023a;b), generating increasing interest in leverag-
ing diverse sensor modalities to improve segmenta-
tion accuracy.

Recent methods Zhang et al. (2023a;b); Jia et al.
(2024a); Li et al. (2024) have achieved impressive
results across various multi-modal semantic segmen-
tation tasks. However, these approaches primar-
ily rely on modality-specific specialist models, each
customized for a particular modality combination.
Consequently, a separate model must be trained for
every modality pair, leading to redundancy in both
model design and training. Moreover, since the data
for each task is often limited, such specialist models
risk overfitting to dataset-specific distributions and
sacrificing generalization ability. While expanding
the dataset could mitigate this issue, collecting and
annotating multi-modal data is both labor-intensive
and time-consuming. To address these limitations,
developing a generalist model capable of jointly
handling diverse modalities within a single unified
architecture presents a promising direction. Such
a model can exploit shared representations across
modalities and leverage the full available data.

Moreover, large-scale pretrained vision-language
models (VLMs), such as CLIP Radford et al. (2021),
ALIGN Jia et al. (2021), and BLIP Li et al. (2022),
have demonstrated strong generalization capabilities across a wide range of vision tasks. These mod-
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els leverage massive image-text pairs to learn rich feature representations, making them effective for
various downstream applications. However, their impact on multi-modal semantic segmentation re-
mains limited, primarily because they are pretrained on standard RGB images paired with textual
descriptions. As a result, their ability to generalize to diverse sensor modalities—such as event, ther-
mal, depth, polarization, or light field—is constrained, reducing their effectiveness in more complex
multi-modal settings.

In this work, we propose SegRGB-X, a general RGB-X semantic segmentation model designed to
handle diverse sensor modalities. The architecture comprises a backbone equipped with modality-
aligned embeddings and a Domain-Specific Refinement Module (DSRM), a Modality-Aware CLIP
(MA-CLIP), and a segmentation head. To overcome the limitations of using VLMs for multi-
modal segmentation, we fine-tune CLIP on multi-modal segmentation data using LoRA Hu et al.
(2022), allowing MA-CLIP to serve as a modality information provider. To mitigate the feature
gap between the input embeddings and the control prompts generated by MA-CLIP, we introduce a
modality-aligned embedding mechanism with learnable prompts. In the final stage of the backbone,
DSRM is developed to refine modality-specific features. As shown in Fig. 1, we evaluate SegRGB-
X through joint training on five multi-modal segmentation datasets. Compared with state-of-the-art
(SOTA) methods, our model achieves the highest average performance across DeLiVER Zhang et al.
(2023b), MFNet Ha et al. (2017), NYUDepthV2 Silberman et al. (2012), RGB-P Xiang et al. (2021),
and UrbanLF Sheng et al. (2022).

Our main contributions are summarized as follows:

• We propose SegRGB-X, a general model capable of handling multiple sensor modalities
(event, thermal, depth, polarization, and light field) within a single framework, addressing
the limitations of modality-specific specialist models.

• We introduce MA-CLIP, which fine-tunes CLIP with LoRA on multi-modal segmentation
data, effectively bridging the gap between vision-language pretraining and multi-modal
segmentation.

• We design a modality-aligned embedding mechanism that incorporates learnable prompts
to align the feature space between input embeddings and control prompts generated by
MA-CLIP. In the final stage of the backbone, we develop the DSRM to adaptively refine
modality-specific features, thereby enhancing the segmentation performance.

• We conduct joint training and evaluation on five diverse multi-modal semantic segmenta-
tion datasets. SegRGB-X achieves a SOTA performance with an average mIoU of 65.03%,
outperforming previous specialist models.

2 RELATED WORK

Multi-modal semantic segmentation. To overcome the limitations of RGB images, recent re-
search in multi-modal semantic segmentation has explored diverse modality combinations to en-
hance performance beyond traditional RGB-based approaches. RGB-D fusion Qian et al. (2021);
Zhou et al. (2022a); Cao et al. (2021) leverages depth information, while RGB-thermal methods
integrate thermal-specific fusion strategies Sun et al. (2019; 2020); Zhou et al. (2021). New modal-
ities have emerged, such as polarization cues for transparent object segmentation Kalra et al. (2020)
and event-based data for accident scene analysis Zhang et al. (2021a); Cao et al. (2024). Additional
advancements include perception-aware fusion for LiDAR data Zhuang et al. (2021), depth-adaptive
convolution techniques Wang & Neumann (2018); Xing et al. (2020); Wu et al. (2020), and multi-
task masked autoencoding Bachmann et al. (2022). Attention-based fusion methods have also been
developed to facilitate cross-modal interaction Zhang et al. (2019); Hu et al. (2019); Zhang et al.
(2021b). CMX Zhang et al. (2023a) was a significant work for arbitrary fixed RGB-modality pairs.
CMNeXt Zhang et al. (2023b) extended this capability to arbitrary fixed modality tuples. Building
upon CMNeXt, several enhanced approaches have emerged. Gemini Fusion Jia et al. (2024a) em-
ploys per-pixel attention inspired by token fusion strategies. MAGIC Zheng et al. (2024c) introduces
a multi-modal aggregation module to extract complementary scene information efficiently, and its
improved variant, Magic++ Zheng et al. (2024a), integrates a Multi-scale Arbitrary-modal Selection
Module (MASM) and consistency training. StitchFusion Li et al. (2024) adopts a multi-directional
MLP to enhance information sharing and fusion across modalities. Any2Seg Zheng et al. (2024b)
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Figure 2: Overall framework of our SegRGB-X model. At each stage, feature embeddings from the
MA-CLIP are incorporated into the modality-aligned embedding to enhance feature representations.
The input embeddings are processed using shared-weight Transformer blocks Xie et al. (2021),
enabling consistent and efficient feature extraction across modalities. The extracted features are
progressively fused through the FRM and FFM modules, as introduced in Zhang et al. (2023b). In
the final stage, a Domain-Specific Refinement Module (DSRM) is employed to further refine the
modality-specific features. Lastly, the segmentation head processes the fused features to generate
the final prediction results.

introduces a language-guided semantic correlation distillation module to model both inter-modal
and intra-modal semantics in the embedding space. While these methods demonstrate strong perfor-
mance, they are limited by fixed input modalities during training, which restricts their adaptability
to arbitrary sensor combinations. In contrast, our work proposes a general arbitrary-modal semantic
segmentation framework capable of handling diverse sensor modalities within a generalist model.

Vision language model. Vision-language understanding has seen significant progress through
scalable pre-training strategies. CLIP Radford et al. (2021) introduced contrastive image-text align-
ment, laying the foundation for multi-modal representation learning. ALIGN Jia et al. (2021) further
improved robustness by leveraging noisy supervision from large-scale web data. BLIP Li et al.
(2022) unified vision-language understanding and generation through bootstrapped pre-training.
Recent advances in prompting techniques Zhou et al. (2022b) and lightweight adapters such as
LLaMA-Adapter Zhang et al. (2024) have enhanced task adaptation efficiency. DA-CLIP Luo et al.
(2024) proposed a novel dual-encoder framework in which an image controller—initially a duplicate
of CLIP’s image encoder—learns to control the original encoder and generate degeneration embed-
dings. Despite their remarkable capabilities, these vision-language models are primarily trained on
natural image-text pairs and are not inherently designed for tasks involving RGB-X modalities, pos-
ing challenges in adapting them to multi-modal semantic segmentation. To address this gap, our
work adopts LoRA-based parameter-efficient fine-tuning Hu et al. (2022) to adapt CLIP for cross-
modal alignment. This approach enables the integration of vision-language pretraining with diverse
sensor modalities, thereby enhancing the model’s ability for comprehensive scene understanding.

3 METHODOLOGY

In this section, we present SegRGB-X, a general RGB-X semantic segmentation model. We begin
with an overview of the overall pipeline in Sec. 3.1, followed by detailed descriptions of the three
key components: MA-CLIP in Sec. 3.2, modality-aligned embedding in Sec. 3.3, and the DSRM in
Sec. 3.4. Loss function is introduced in Sec. 3.5.
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3.1 OVERVIEW

As illustrated in Fig. 2, our proposed SegRGB-X model comprises a backbone with modality-aligned
embeddings and a DSRM, an MA-CLIP, and a segmentation head. MA-CLIP is first pre-trained to
extract modality-specific representations from diverse input sources and is then frozen to serve as
a modality information provider. The RGB images and arbitrary modality inputs are processed in
parallel through MA-CLIP to generate feature embeddings (Sr and Sm). The backbone consists
of four stages. In each stage, shared-weight Transformer blocks Xie et al. (2021) are employed to
process two modality-aligned embeddings simultaneously. The Transformer blocks share weights
across modalities to ensure consistent and efficient feature extraction. During feature fusion, the
FRM and FFM modules Zhang et al. (2023b) are used to integrate features from the RGB and
complementary modality branches. In the final stage, a DSRM is introduced to adaptively refine
the modality-specific features. Finally, the segmentation head processes these fused features from 4
stages to produce the final semantic segmentation predictions.

3.2 MODALITY-AWARE CLIP

Contrastive 
Learning

{𝑆𝑡 , 𝑆𝑡}

{𝑆𝑟 , 𝑆𝑚}

Text   
Encoder

LLaMA
Adapter
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Arbitrary 
Modalities

RGB Images Frozen

𝑋𝑟𝑔𝑏

gradient

gradient

𝑋𝑚

𝑇

Figure 3: Structure of our MA-CLIP. MA-CLIP
enhances the standard CLIP architecture Rad-
ford et al. (2021) by incorporating modality-aware
cross-modal learning between textual and visual
representations.

The objective of Modality-aware CLIP (MA-
CLIP) is to enable a pre-trained CLIP model to
extract modality-specific representations from
diverse input modalities. As illustrated in
Fig. 3, MA-CLIP freezes both the text and
image encoders of the original CLIP architec-
ture Radford et al. (2021). To adapt the im-
age encoder for different modalities, we intro-
duce a LoRA pool that represents the set of
supported modalities across all datasets. Each
LoRA module Hu et al. (2022) in the pool is
trained using the contrastive loss Radford et al.
(2021), with gradients flowing through both the
image encoder and the corresponding LoRA
module. In the text branch, RGB images are
first processed by the LLaMA-Adapter Zhang
et al. (2024) to generate high-quality text cap-
tions (T ), which are then passed through the
text encoder to produce text embeddings (St).
The RGB images (Xrgb) are concatenated with
arbitrary modality inputs (Xm) to form an in-
put pair ({Xrgb, Xm}). For each pair, the corresponding LoRA module is selected from the pool
and additively integrated into the image encoder, producing an adapted encoder that outputs both
RGB feature embeddings (Sr) and modality embeddings (Sm). For contrastive learning, the text
embeddings (St) are repeated once.

Optimizing the MA-CLIP. The optimizing process keeps the weights of the pre-trained CLIP
architecture frozen while exclusively optimizing the LoRA modules. To enhance the distinctiveness
of the multi-modal embedding spaces, we employ the contrastive loss Radford et al. (2021) across
multiple modalities, which can be formalized as:

L = Lcontrastive({St, St}, {Sr, Sm}). (1)

3.3 MODALITY-ALIGNED EMBEDDING

As shown in Fig. 2, feature embeddings (Sr and Sm) generated by MA-CLIP are transformed by
MLP layers into stage-specific control prompts (Cr

i∈[1,4] and Cm
i∈[1,4]), which are then combined with

the input embeddings (Er
i∈[1,4] and Em

i∈[1,4]) and modality-aligned prompts (P r
i∈[1,4] and Pm

i∈[1,4])
before being fed into the Transformer blocks. Notably, these modality-aligned prompts are proposed
to bridge the feature gap between the input embeddings and control prompts, facilitating improved
cross-modal alignment.

4
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3.4 DOMAIN-SPECIFIC REFINEMENT MODULE
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Figure 4: Domain-Specific Refinement Module
(DSRM). It contains two identical DSRM blocks
with shared weights, each processing a different
modality pair (F r

4 , Sr) and (Fm
4 , Sm) to produce

enhanced features (F r
s and Fm

s ).

As shown in Fig. 4, the shared Domain-Specific
Refinement Module (DSRM) is designed to
refine modality-specific features. It operates
on modality pairs (F r

4 , S
r) and (Fm

4 , Sm),
with a total of four DSRM modules integrated
throughout the network. The DSRM adopts
a query-based prompt architecture to enhance
feature representations. Specifically, the input
features F first pass through a Global Average
Pooling (GAP) layer to capture global channel-
wise information, followed by an MLP for fea-
ture transformation. The transformed features
are then normalized via a softmax operation.
To model complex feature correlations, we in-
troduce a learnable universal prompt U . A dot
product is performed between the transformed
features and the universal prompt to generate
the query vector Qc for the subsequent chan-
nel attention, facilitating effective intra-modal
interactions. Concurrently, the original input features F are used to generate the corresponding key
(Kc) and value (Vc) vectors for the attention operation. The computation can be formulated as:

Qc = WQ
c · (Softmax (MLP (GAP (F ))) · U) ,Kc = WK

c · F, Vc = WV
c · F, (2)

Fc = MHSA(Qc,Kc, Vc), Qc,Kc, Vc, Fc ∈ B × C ×N. (3)

The outputs (Fc) are further transformed to generate the key (Ks) and value (Vs) vectors for the
spatial attention mechanism. For query vector (Qs), the modality-specific features (S) are first
transformed through an MLP layer to align with the required dimensionality. Multi-Head Cross-
Attention (MHCA) is then applied to compute the final feature representations, effectively capturing
both spatial dependencies and modality-specific interactions. The process can be represented as:

Qs = WQ
s · Reshape (MLP (S)) ,Ks = WK

s · Fc, Vs = WV
s · Fc, (4)

Fs = MHCA(Qs,Ks, Vs), Qs,Ks, Vs, Fs ∈ B ×N × C. (5)

3.5 LOSS FUNCTION

To enable joint training across multiple datasets, we construct a universal dataset that unifies all
semantic labels from the involved modality-specific datasets. Moreover, we extend the standard
cross-entropy loss by incorporating dataset-specific loss terms, ensuring effective learning across
heterogeneous label distributions. The overall loss function is defined as follows:

L = Lce(Xi, Yi) + Lce(remap(Xi), remap(Yi)). (6)

where remap(·) denotes the operation that maps the unified label space back to the original label
space of each dataset.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. To train our model across multiple datasets simultaneously, we construct a joint dataset
by standardizing the label spaces of 5 benchmark datasets: DeLiVER Zhang et al. (2023b),
MFNet Ha et al. (2017), NYUDepthV2 Silberman et al. (2012), RGB-P Xiang et al. (2021), and
UrbanLF Sheng et al. (2022). DeLiVER Zhang et al. (2023b) is a synthetic autonomous driving
dataset generated using the CARLA simulator Dosovitskiy et al. (2017). It contains RGB, depth, Li-
DAR, and event modalities, with 7,885 front-view samples. The data is split into 3,983/2,005/1,897
for training, validation, and testing, respectively, at a resolution of 1042 × 1042, and includes 25
semantic classes. It simulates four adverse weather conditions (cloudy, foggy, night, and rainy) and
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Table 1: Quantitative comparison of segmentation performance on five multi-modal datasets.

Method Model Mean (%) DeLiVER (E) MFNet (T) NYU (D) RGB-P (P) UrbanLF (LF)

CMX Zhang et al. (2023a)

Specialist Model

63.19 51.77 54.54 48.49 82.09 79.06
CMNeXt Zhang et al. (2023b) 63.56 51.78 55.35 48.75 82.28 79.65

Gemini Fusion Jia et al. (2024b) 63.75 51.24 53.73 52.18 82.19 79.43
Stitch Fusion Li et al. (2024) 64.51 51.81 55.90 52.64 82.47 79.71

Ours Generalist Model 65.03 51.83 56.93 47.77 87.39 81.21

five types of sensor degradation (motion blur, overexposure, underexposure, LiDAR jitter, and event
low resolution). MFNet Ha et al. (2017) is an urban street dataset comprising 1,569 RGB-thermal
image pairs captured at a resolution of 640 × 480, annotated with 8 semantic classes. The dataset
is evenly divided between daytime (820 pairs) and nighttime (749 pairs) conditions and split into
50%/25%/25% for training, validation, and testing. NYUDepthV2 Silberman et al. (2012) is an
indoor RGB-D semantic segmentation dataset with 1,449 image pairs, divided into 795 training and
654 testing samples at a resolution of 640× 480. The dataset provides annotations for 40 semantic
classes. RGB-P Xiang et al. (2021) (ZJU RGB-Polarization) comprises 394 RGB-polarization im-
age pairs collected from urban driving scenes. Each sample includes an RGB image and polarization
information synthesized from four images captured at polarization angles of 0°, 45°, 90°, and 135°.
UrbanLF Sheng et al. (2022) is a large-scale light field semantic segmentation dataset containing
1,074 samples, split into 824 real-world and 250 synthetic scenes. Each light field sample includes
81 views. Real-world samples are captured at a resolution of 623 × 432, while synthetic samples,
rendered using Blender, are at 640× 480 resolution.

Implementation details. We train our models using 2× NVIDIA A5000 GPUs with a batch size
of 8. The initial learning rate is set to 1× 10−4 and is scheduled using the poly learning rate policy
with a power of 0.9 over 200 epochs. Input images are uniformly augmented across all datasets
using the following strategies: random resizing with a scale ratio in the range of [0.5, 2.0], random
horizontal flipping, random color jittering, random Gaussian blur, and random cropping to a fixed
resolution of 512× 512 to achieve batched training of various image shapes from different datasets.
To initialize the model backbone, we load ImageNet-1K Deng et al. (2009) pre-trained weights.

4.2 QUANTITATIVE ANALYSIS

We conduct comprehensive experiments on five multi-modal semantic segmentation datasets to eval-
uate the performance of our proposed SegRGB-X model. Tab. 1 presents a comparison between our
general SegRGB-X model and several specialist models. Specifically, the DeLiVER Zhang et al.
(2023b) dataset provides RGB and event (E) modalities; the MFNet Ha et al. (2017) and RGB-P Xi-
ang et al. (2021) datasets offer RGB with thermal (T) and polarization (P) modalities, respectively;
the NYUDepthV2 Silberman et al. (2012) dataset contains RGB and depth (D) data; and the Ur-
banLF Sheng et al. (2022) dataset includes sub-aperture light field (LF) images, from which we use
the first sub-aperture image as the complementary modality.

In this comparison, specialist models are trained individually on each modality dataset, while our
generalist model is trained once across all modality datasets and can perform inference with any
given modality input. For a fair comparison, baseline methods including CMX Zhang et al. (2023a),
CMNeXt Zhang et al. (2023b), Gemini Fusion Jia et al. (2024a), and Stitch Fusion Li et al. (2024)
are re-implemented using their official open-sourced codes and trained under the same experimental
settings.

Our general SegRGB-X model achieves the best overall performance, reaching an average mIoU of
65.03% across the five datasets. Moreover, the proposed model outperforms the second best method
with gains of +1.03% on MFNet, +4.92% on RGB-P, and +1.5% on UrbanLF. However, the model
achieves a moderate result of 47.77% on NYUDepthV2. We attribute this to a domain distribution
gap: NYUDepthV2 is the only indoor dataset, while the other four datasets focus on outdoor driving
scenes, leading to challenges in achieving cross-scenario generalization.

Fine-tuning. Our generalist model, SegRGB-X, demonstrates strong performance through joint
training on five diverse multi-modal semantic segmentation datasets. To further enhance segmenta-
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Table 2: Fine-tuning comparison of segmentation performance on five multi-modal datasets.

Method Mean (%) DeLiVER (E) MFNet (T) NYU (D) RGB-P (P) UrbanLF (LF)

SegRGB-X 65.03 51.83 56.93 47.77 87.39 81.21
SegRGB-X (Fine-tuned) 65.72 52.54 57.28 49.02 88.36 81.65

tion accuracy, we fine-tune the pretrained SegRGB-X model on each individual dataset. As shown
in Tab. 2, this dataset-specific fine-tuning leads to consistent performance gains, resulting in an over-
all mean mIoU increase of +0.69%. Specifically, we observe gains of +0.71% on DeLiVER Zhang
et al. (2023b), +0.35% on MFNet Ha et al. (2017), +1.25% on NYUDepthV2 Silberman et al. (2012),
+0.97% on ZJU RGB-P Xiang et al. (2021), and +0.44% on UrbanLF Sheng et al. (2022). These
results confirm that while SegRGB-X is effective as a generalist model, additional fine-tuning can
further optimize its performance for specific domains.

Table 3: Efficiency analysis of different methods.

Method Mean (%, ↑) Time (ms, ↓)

CMX Zhang et al. (2023a) 63.19 17.05
CMNeXt Zhang et al. (2023b) 63.56 16.64

Gemini Fusion Jia et al. (2024a) 63.75 24.37
Stitch Fusion Li et al. (2024) 64.51 17.88

Ours 65.03 31.51

Efficiency analysis. We further compare the
efficiency of our method against existing SOTA
multi-modal semantic segmentation models in
terms of running time. As presented in Tab. 3,
our approach achieves a favorable balance be-
tween accuracy and efficiency. Among special-
ist models, CMNeXt Zhang et al. (2023b) at-
tains the lowest latency of 16.64 ms, whereas
Gemini Fusion Jia et al. (2024a) is the most
time-consuming, with a latency of 24.37 ms.
However, these specialist models require separate deployments tailored to each specific modality
pair, limiting scalability. In contrast, our method achieves generalized multi-dataset semantic seg-
mentation with a unified architecture while maintaining a comparable latency of 31.51 ms. This
demonstrates the practicality and deployability of our method in real-world applications, partic-
ularly in resource-constrained environments where efficiency and flexibility across diverse sensor
modalities are critical.

4.3 QUALITATIVE ANALYSIS

Event
Thermal
Depth
Polarization
Lightfield

Figure 5: t-SNE visualization of modality
embeddings from MA-CLIP. Each cluster
corresponds to a specific modality, show-
ing clear separation and highlighting the
model’s strong ability to extract distinctive
modality-specific representations.

We present visualizations of semantic segmentation
results, t-SNE plots of modality embeddings pro-
duced by MA-CLIP, and multi-stage feature maps
from the backbone network. All selected samples
are from unseen data during training, demonstrating
the strong generalization capability of our SegRGB-
X model.

t-SNE analysis. As illustrated in Fig. 5, we present
a t-SNE visualization of the modality embeddings
generated by our proposed MA-CLIP across five
modalities: event, thermal, depth, polarization, and
light field. The visualization shows that embeddings
from each modality form well-separated clusters with
clear boundaries and no overlap, indicating MA-
CLIP’s strong capability for modality-specific feature
extraction. Additionally, the distances between clus-
ter centers reflect the relative feature similarity among
modalities. These results demonstrate that MA-CLIP
effectively produces discriminative modality embed-
dings even on unseen inputs, validating its effectiveness across diverse modalities.

Segmentation predictions. As shown in Fig. 6, we present qualitative comparisons of semantic
segmentation results produced by CMNeXt Zhang et al. (2023b), Gemini Fusion Jia et al. (2024a),
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Table 4: Ablation studies on single-modality and joint training.

Method Model Mean (%) DeLiVER (E) MFNet (T) NYU (D) RGB-P (P) UrbanLF (LF)

Stitch Fusion Li et al. (2024) Specialist Model 64.51 51.81 55.90 52.64 82.47 79.71
Ours 64.38 51.83 56.93 47.77 87.39 81.21

Ours Generalist Model 65.03 51.83 56.93 47.77 87.39 81.21

RGB X GT CMNeXt Gemini Fusion Stitch Fusion Ours

DeLiVER

MFNet

NYU

RGB-P

UrbanLF

Figure 6: Comparison of segmentation predictions from CMNeXt Zhang et al. (2023b), Gemini
Fusion Jia et al. (2024a), Stitch Fusion Li et al. (2024), and our proposed method across all five
datasets using unseen input samples.

Stitch Fusion Li et al. (2024), and our proposed SegRGB-X model across five multi-modal datasets.
Compared to the other methods, our model yields more accurate and coherent segmentation results.
For instance, SegRGB-X successfully identifies a building occluded by trees in the RGB-P input,
whereas other models produce incorrect predictions. Similarly, our method generates more reason-
able segmentation outputs on the UrbanLF dataset. Comparable improvements can be observed
across the remaining datasets. These results demonstrate the strong generalization capability of our
generalist model, which is even better than specialist models trained for each individual dataset.

4.4 ABLATION STUDIES Table 5: Ablation studies on key components of
the proposed SegRGB-X model.

MA-CLIP Modality-aligned Prompts DSRM Mean (%)

✗ ✗ ✗ 62.17
✗ ✓ ✓ 64.33
✓ ✗ ✓ 64.43
✓ ✓ ✗ 64.55
✓ ✓ ✓ 65.03

Single-modality ablation studies. We trans-
form the general model into a specialist one
that focuses on each single modality to validate
the effectiveness of joint training. As shown
in Tab. 4, our model achieves the overall per-
formance of 64.38% with better mIOU on the
MFNet, RGB-P, and UrBanLF datasets in the
single modality ablation results compared with
Stitch Fusion Li et al. (2024), even though we mainly focus on the generalization of different modal-
ities and datasets. The joint training further enhances the overall mean IOU to 65.03% (+0.65%),
indicating the effectiveness of the joint training strategy.

Impact of key components. We conduct experiments to evaluate the effectiveness of the key com-
ponents in our SegRGB-X model, including MA-CLIP, modality-aligned prompts, and the DSRM.

8
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The experimental results, summarized in Tab. 5, are obtained by incrementally disabling each com-
ponent and measuring the average performance across the five multi-modal datasets. Removing
MA-CLIP results in a performance drop of 0.70%, indicating the importance of cross-modal pre-
training for modality-specific feature extraction. Excluding modality-aligned prompts leads to a
0.6% decrease, demonstrating their role in bridging the feature gap between input embeddings and
control prompts. Omitting DSRM yields a 0.48% performance degradation, underscoring the value
of semantic refinement in the final stage. Notably, when all three components are removed, the per-
formance drops significantly by 2.86%. These results validate the contribution of each individual
component and demonstrate the effectiveness of our designs.

Table 6: The performance of different modality-
aligned embedding mechanisms.

Configuration Mean (%)

Aligned 64.18
Cross-modal 64.12

RGB-dominant 65.03

The impact of different modality-aligned
embedding mechanisms. To investigate the
effectiveness of different modality-aligned em-
bedding mechanisms, we evaluate several ar-
chitectural variants by altering the pairing strat-
egy between the input embeddings and the con-
trol embeddings produced by MA-CLIP. The
experimental results are presented in Tab. 6. In
particular, the “Aligned” configuration pairs in-
put RGB embeddings with RGB embeddings from MA-CLIP and input modality embeddings with
the corresponding modality embeddings from MA-CLIP. In contrast, the “Cross-modal” setting
aligns RGB input embeddings with modality embeddings from MA-CLIP. Finally, the “RGB-
dominant” approach pairs both the input RGB and modality embeddings with RGB embeddings
from MA-CLIP, under the hypothesis that RGB features provide more robust semantic priors. The
results show that both the “Aligned” and “Cross-modal” strategies yield suboptimal performance.
In comparison, the “RGB-dominant” configuration achieves the highest mean mIoU of 65.03%,
demonstrating the effectiveness of using RGB-guided semantic representations as a unified control
prior for diverse modalities in multi-modal segmentation tasks.

Table 7: The performance of different modality
pairs in DSRM.

Configuration Mean (%)

Aligned 65.03
Cross-modal 64.05

RGB-dominant 64.32

The influence of different modality pairs in
DSRM. We conduct experiments to inves-
tigate the impact of different modality pair
configurations within the DSRM, while main-
taining the “RGB-dominant” strategy in the
modality-aligned embedding mechanism. As
shown in Tab. 7, the “Aligned” configura-
tion—where each input modality in DSRM
is paired with the corresponding modality-
specific embedding from MA-CLIP—achieves the best performance with a mean mIoU of 65.03%.
This result highlights the effectiveness of using modality-consistent semantic cues from MA-CLIP
to enhance feature refinement. We also explore a “Cross-modal” configuration that pairs each input
with embeddings from a different modality, as well as a “RGB-dominant” configuration where all
inputs are paired with RGB embeddings from MA-CLIP. However, these alternative strategies result
in reduced performance, with mean mIoUs of 64.05% and 64.32%, respectively. These findings
underscore the importance of modality-specific alignment in DSRM to fully exploit the semantic
information encoded in multi-modal inputs.

5 CONCLUSION

In this work, we propose SegRGB-X, a general RGB-X semantic segmentation model designed to
handle diverse input modalities. The proposed model incorporates three key components: an MA-
CLIP, a modality-aligned embedding mechanism, and a DSRM. Extensive experiments conducted
on five multi-modal segmentation datasets demonstrate that our approach achieves excellent perfor-
mance both quantitatively and qualitatively.

Limitations. We have validated the effectiveness of the proposed method on five modalities: RGB,
event, thermal, depth, polarization, and light field. Extending the current framework to accommo-
date additional modalities remains a promising direction for future research.
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ETHICS STATEMENT

Our general SegRGB-X multi-modal semantic segmentation framework trains a single unified model
across multiple datasets, enabling robust adaptation to diverse sensor modalities and environments.
This approach achieves SOTA accuracy and reliability, which are essential for safety-critical appli-
cations such as autonomous driving and robots. By consolidating multiple modality-specific models
into one, SegRGB-X reduces redundant model storage and consequently lowers the carbon foot-
print associated with AI deployment. Moreover, its superior effectiveness and robustness enhance
real-world safety under a wide range of conditions. We recognize the dual-use nature of this tech-
nology. While its intended applications aim to advance societal benefits, there exist ethical concerns
regarding potential misuse—such as the displacement of workers due to increased automation in
autonomous driving. We explicitly oppose harmful exploitation and strongly advocate for the es-
tablishment of strict governance frameworks to ensure responsible development and deployment,
minimizing adverse societal impacts.

REPRODUCIBILITY STATEMENT

The experiments are run with public available datasets and backbones with a fixed random seed.
We will release the full code, configurations, preprocessing and evaluation scripts and our trained
weights once upon acceptance.
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A APPENDIX

A.1 USE OF LLMS

We used LLMs only for grammar, wording, and formatting edits. All technical content, analyses,
and reported results were authored and verified by the authors. There is no scientific claims or data
that were generated by the LLMs.

A.2 THEORETICAL ANALYSIS OF KEY COMPONENTS

MA-CLIP. At the core of MA-CLIP is the goal of controlling a pre-trained CLIP Radford et al.
(2021) model to output the coarse-grained semantic embeddings via contrastive learning. Specif-
ically, we leverage LoRA Hu et al. (2022) to overcome the insufficient primary knowledge of
CLIP Radford et al. (2021) for the supplementary modalities. We freeze all weights of the pre-
trained CLIP Radford et al. (2021) model and only fine-tune the LoRA Hu et al. (2022) modules.
Since our training dataset is tiny compared to the web-scale datasets used in VLMs, this LoRA
strategy alleviates overfitting while preserving the capability of the original image encoder. The em-
beddings are further integrated into the segmentation backbone to assist the fine-grained semantic
segmentation task.

Modality-aligned embeddings. Prompts are commonly used to give hints for model to adjust its
behavior. Following this idea, we have input patch embeddings E ∈ RN×D and some modality-
specific prompts as embeddings M ∈ RK×D. The input then becomes Ê = [E;M ] ∈ R(N+K)×D.
To perform attention, the projection matrices are first applied: Q = ÊWQ,K = ÊWK , V = ÊWV .

Then the attention matrix can be decoupled to: A = softmax
(

QKT

√
Dh

)
=

[
AEE AEM

AME AMM

]
,

where AEE and AMM describe the self-attention between patch embeddings and modality
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prompts, while AEM and AME describes the interaction between patch embeddings and modal-

ity prompts. The output can be formulated as O = AV =

[
OE

OM

]
=

[
AEEVE AEMVM

AMEVE AMMVM

]
.

To prevent the propagation of error information between different encoder layers, the OM is
deprecated and only OE is retained. The i-th output patch of OE can be formulated as

N∑
j=1

AEE(i, j)vj︸ ︷︷ ︸
self-attention between patches

+

K∑
k=1

AEM (i, k)vmk︸ ︷︷ ︸
prompts specific adaption

with the original self-attention and additional prompts

specific adaption as marked in the formulation. In practice, we split the modality prompts M into
stage-specific control prompts C, generated by MA-CLIP using the RGB images, and learnable
modality-aligned prompts P . The modality-aligned prompts are responsible for modality informa-
tion and local details that are potentially missed by the global stage-specific control prompts, serving
as supplementary information. The choice of leveraging RGB images for prompts stems from their
semantically rich property. We conducted ablation experiments for the integration types of embed-
dings generated by MA-CLIP in Table 1 of our supplementary material, and the results validate the
theoretical statements.

DSRM. Modalities are usually not independent of each other but correlated. For instance, light
flow and polarization modalities are more RGB-like, while depth and thermal modalities share the
same image structure as RGB images, with the contents from another point of view. And the event
modality only shows partial structure when the brightness changes. Thus, we can conclude that
correlated modalities should share similar features with each other. Thus, suppose we have a col-
lection of K feature vectors U ∈ RK×D, and for each modality m, there exists a binary indicator
χ ∈ {0, 1}K for the existence of a certain feature; then the feature for modality m is χ · U , aiming
to select the feature where χ = 1 and discard where χ = 0. Through the channel attention, the input
features F are reweighted by the cosine similarity with χ · U . In practice, we loosen the binary re-
striction and extend it to a percentage for flexibility. Furthermore, we design a simple network with
a global average pooling, MLP, and softmax operation to learn the indicator from input features.
Similarly, the output of the channel attention will be reweighted by the cosine similarity with the
modality embeddings S in the spatial attention.

A.3 MORE QUANTITATIVE ANALYSIS

Table 8: Influence of different structure designs
for DSRM. (a)-(i) are listed in Fig. 7.

Structure Params (M) GFLOPs Mean (%))

(a) 176.70 111.15 64.68
(b) 143.63 99.74 64.83
(c) 160.96 105.65 64.68
(d) 159.38 105.24 64.79

(e) 230.61 113.03 62.90
(f) 203.31 106.58 64.74
(g) 212.53 109.79 64.59
(h) 159.40 108.31 65.03
(i) 156.32 107.01 47.58

Influence of different DSRM structures. To
further assess the effectiveness of the proposed
DSRM, we explore various structure designs,
as illustrated in Fig. 7. The results are sum-
marized in Tab. 8. Structures (a)–(d) utilize
the input features as queries and the prompts
as keys and values in the first attention module
but consistently perform suboptimally. Struc-
ture (e), which applies spatial attention in both
modules using prompts as queries and inputs as
keys and values, shows a performance decline
to 62.90% accuracy, despite having the high-
est model complexity in terms of parameters
and GFLOPs. In contrast, structure (h)—which
sequentially applies channel attention followed
by spatial attention using prompts as queries—achieves the best result, attaining 65.03% accuracy
while maintaining computational efficiency. Notably, reversing the attention order (spatial followed
by channel attention in structure (g)) leads to a 0.44% drop in accuracy.

To examine the role of our universal prompt (U ), we replace it with the input feature (F ) in structure
(i). This substitution results in a significant performance degradation of 17.45% (from 65.03% to
47.58%), underscoring the importance of the learnable universal prompt in capturing intra-modality
feature correlations.
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Figure 7: Structures (a)–(d) adopt a key-value-based prompt design, while (e)–(i) follow a query-
based prompt formulation. Each structure explores four combinations of spatial and channel atten-
tion mechanisms.

A.4 MORE QUALITATIVE ANALYSIS

Feature map visualization. In Fig. 8, we visualize the feature maps of RGB and the correspond-
ing complementary modality across the four stages of the backbone network. All feature maps are
resized to the same resolution. Features from earlier stages primarily capture low-level local patterns
such as edges and corners, while those from deeper stages focus on higher-level semantics. These
visualizations demonstrate that our approach effectively extracts modality-specific features across
diverse modality domains by leveraging MA-CLIP and modality-aligned embeddings. Notably, the
feature maps from different modalities exhibit complementary characteristics. Furthermore, com-
pared to Stage 3, the feature maps from Stage 4 show enhanced focus on key semantic regions,
attributed to the refinement effect of the proposed DSRM. For instance, building structures in the
event modality of the DeLiVER dataset and the chair in the depth modality of the NYUDepthV2
dataset are more distinctly highlighted. These results validate the effectiveness of DSRM in refining
modality-specific representations.
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Figure 8: Feature map visualizations of multi-modal features extracted from the four stages of the
backbone network across all five datasets. The column corresponds to a specific modality and its
associated dataset, illustrating the hierarchical feature representations learned at different scales.
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Figure 9: Visualization of segmentation predictions on challenging edge cases from the De-
LiVER Zhang et al. (2023b) dataset. The examples include various adverse conditions: OE (Over-
Exposure), UE (Under-Exposure), MB (Motion Blur), and EL (Event Low-resolution). Our model,
SegRGB-X, demonstrates robust segmentation performance under these extreme conditions, show-
casing its generalization ability across diverse visual degradations.

Segmentation predictions in edge cases. As shown in Fig. 9, we visualize the segmentation pre-
dictions generated by our proposed SegRGB-X model under various challenging edge-case scenar-
ios, including over-exposure, under-exposure, motion blur, and event low resolution, across both
day and night conditions. The results illustrate that our model maintains high-quality segmentation
performance despite environmental perturbations and sensor degradation. This demonstrates the ro-
bustness and strong generalization capability of SegRGB-X in handling adverse visual conditions
commonly encountered in real-world applications.

Feature map visualization in edge cases. In Fig. 10, we visualize the feature maps of RGB
and event inputs across the four stages of the backbone network under various challenging edge
cases—including over-exposure, under-exposure, motion blur, and event low-resolution—captured
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Figure 10: Feature map visualizations of multi-modal features extracted from the four stages of
the backbone network in challenging edge-case scenarios of the DeLiVER Zhang et al. (2023b)
dataset (OE: Over-Exposure; UE: Under-Exposure; MB: Motion Blur; EL: Event Low-resolution).
The rows depict the hierarchical feature representations learned at different scales throughout the
backbone.

in both day and night environments. The visualizations show that the feature representations remain
robust despite the presence of significant sensor noise. Furthermore, the consistent performance
of the DSRM module under these adverse conditions highlights its stability and effectiveness in
refining modality-specific features.

A.5 GENERALIZATION ERROR ANALYSIS

From our experimental results, we observed that our model generalized well except on the
NYUDepthV2 Silberman et al. (2012) datasets. The NYUDepthV2 Silberman et al. (2012) dataset
contains highly complicated indoor scenes consisting of furniture like chairs, desks, couches, etc. of
different types, while the other datasets mainly contain less complicated outdoor scenes with streets,
pedestrians, buildings, etc. We attribute the limited generalization on the NYUDepthV2 Silberman
et al. (2012) dataset to the imbalance of input data. Given that the NYUDepthV2 Silberman et al.
(2012) dataset is the only indoor dataset that occupies only 20% and the remaining 80% of the data
consists exclusively of outdoor scenes, they gain priority in the data and thus weigh more in training.
One potential improvement is to include more indoor datasets, such as the SUN-RGBD dataset, the
Stanford2D3D dataset, and the ScanNetV2 dataset, so that both types of datasets are equally treated.
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