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Abstract
The Euler Characteristic Transform (ECT) is an
efficiently-computable geometrical-topological
invariant that characterizes the global shape of
data. In this paper, we introduce the Local
Euler Characteristic Transform (ℓ-ECT), a novel
extension of the ECT particularly designed
to enhance expressivity and interpretability
in graph representation learning. Unlike
traditional graph neural networks (GNNs),
which may lose critical local details through
aggregation, the ℓ-ECT provides a lossless
representation of local neighborhoods. This
approach addresses key limitations in GNNs by
preserving local structures while maintaining
global interpretability. Moreover, we construct
a rotation-invariant metric based on ℓ-ECTs
for spatial alignment of data spaces. Our
method exhibits superior performance compared
to standard GNNs on a variety of benchmark node-
classification tasks, while also offering theoretical
guarantees that demonstrate its effectiveness.

1. Introduction
Traditionally, graph neural network (GNNs) rely on
message-passing schemes to aggregate node features. While
effective for many tasks, this approach often leads to
the loss of critical local information, as the aggregation
process can diffuse and obscure the original node vector
representations (Topping et al., 2022). This limitation makes
it challenging to preserve local characteristics that may be
essential for some applications. To address this limitation,
we harness the Euler Characteristic Transform (Turner
et al., 2014, ECT), an expressive geometrical-topological
invariant that can be computed efficiently. Relying only
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on (weighted) sums, the ECT can be computed efficiently,
making it a powerful tool for representation learning (Röell
& Rieck, 2024). Moreover, the ECT is known to be
invertible for data in Rn, ensuring that the original data
can always be reconstructed (Curry et al., 2022; Ghrist
et al., 2018). In this paper, we extend the ECT to local
neighborhoods, presenting the Local Euler Characteristic
Transform (ℓ-ECT), a novel method designed to preserve
local structure while retaining global interpretability. The
ℓ-ECT captures both topological (i.e., structural) and
geometrical (i.e., spatial) information around each data
point, making it particularly advantageous for graph-based
or higher-order data.1 The ℓ-ECT thus becomes an
expressive fingerprint of local neighborhoods, specifically
addressing the challenge of neighborhood aggregation in
featured graphs while ensuring the lossless representation
of local node neighborhoods. We theoretically investigate
how ℓ-ECTs maintain critical local details, and therefore
provide a nuanced representation that can be used for
downstream graph-learning tasks such as node classification.
Our method is highly effective, particularly for tasks where
node feature aggregation may obscure essential differences,
such as in graphs with high heterophily. Additionally, the
ℓ-ECT framework’s natural vector representation makes it
compatible with a wide range of machine-learning models,
facilitating both performance and interpretability.

As our main contributions, we (i) construct ℓ-ECTs in
the context of embedded simplicial complexes (and graphs)
and theoretically investigate their expressivity in the special
case of featured graphs, (ii) empirically show that this
expressivity positions ℓ-ECTs as a powerful general tool for
interpretable node classification, often superior to standard
GNNs, and (iii) introduce an efficiently computable rotation-
invariant metric based on ℓ-ECTs that facilitates the spatial
alignment of geometric graphs.

2. Background
We define our method in the most general setting, i.e.,
that of a simplicial complex, while also providing a brief
introduction to graph neural networks.

1Our experiments deliberately focus on graphs, but we note
that the method can be extended to novel higher-order datasets
based on simplicial complexes, for instance (Ballester et al., 2025).
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Simplicial Complexes A simplicial complex K is a
mathematical structure that generalizes graphs to model
higher-order (non-dyadic) relationships and interactions.
While graphs model pairwise (dyadic) connections between
entities using nodes and edges, simplicial complexes extend
this representation to higher dimensions by including
triangles (2-simplices), tetrahedra (3-simplices), and their
higher-dimensional analogues. Let v0, . . . , vk ∈ Rn be
affinely independent points. The (geometric) k-simplex
determined by these vertices is the convex hull

σ = [v0v1 · · · vk] :=
{ k∑

i=0

λivi

∣∣∣ λi ≥ 0,

k∑
i=0

λi = 1
}
.

The points v0, . . . , vk are called the vertices of σ. Simplices
determined by a subset of v0, . . . , vk are called faces of
σ. Formally, a simplicial complex is a finite collection of
simplices such that every face of a simplex in the collection
is also in the collection, and the intersection of any two
simplices is either empty or a common face.

Euler Characteristic The Euler characteristic χ is a
topological invariant that provides a summary of the “shape”
or structure of a topological space, such as a simplicial
complex. It is defined as the alternating sum of the number
of simplices in each dimension, i.e.,

χ(K) =

d∑
k=0

(−1)kσk(K), (1)

where σk(K) is the number of k-dimensional simplices in
the simplicial complex K, and d is the dimension of K.
As a topological invariant, the Euler characteristic remains
unchanged under transformations like homeomorphisms,
making it—despite its simplicity—a fundamental tool for
distinguishing topological spaces.

Graph Neural Networks and Message Passing Graph
neural networks (GNNs) are a class of neural network
models designed to operate on graph-structured data. They
extend neural networks by incorporating the relational
structure inherent to graphs, enabling the learning of tasks
such as node classification. The core mechanism of many
GNNs is message passing, an iterative procedure that
propagates information through the graph to update node
representations based on their local neighborhood. Given a
graph G = (V,E), where V is the set of nodes and E is the
set of edges, each node v ∈ V is associated with a feature
vector xv. At each layer t, i.e., each message-passing step,
a new node embedding h

(t+1)
v is calculated via

UPDATE
(
h(t)
v ,AGG

(
{h(t)

u | u ∈ N (v)}
))

, (2)

where N (v) denotes the set of neighbors of node v, and
AGG and UPDATE are learnable functions parameterized

by the model. The AGG function combines information
from neighboring nodes, while the UPDATE function re-
fines node embeddings. Popular choices for these functions
include mean, sum, and attention mechanisms. Through
multiple layers of message passing, GNNs aggregate
information from larger neighborhoods, capturing both local
and global graph structure (Veličković, 2023).

3. Related Work
GNNs have revolutionized the field of graph representation
learning by enabling end-to-end learning of node/graph
embeddings through message passing (Kipf & Welling,
2017). However, traditional GNNs face theoretical
limitations that pose fundamental obstructions to learning
expressive and general representations of graph data (Xu
et al., 2019). Related to the latter phenomenon, GNNs are
known to suffer from issues like oversmoothing (Rusch et al.,
2023; Zhang et al., 2024) and oversquashing (Di Giovanni
et al., 2023). Hamilton et al. (2017) and Veličković
et al. (2018) have addressed these issues by incorporating
sampling and attention mechanisms into the message-
passing paradigm. However, even these advancements
often show limited performance, particularly in graphs
with high heterophily, and there is no “general” GNN
capable of handling both heterophilous and homophilous
graphs. Recent work in graph machine learning thus
started incorporating additional inductive biases into
architectures, such as geometric information (Joshi et al.,
2023; Pei et al., 2020; Southern et al., 2023) or topological
information (Horn et al., 2022; Verma et al., 2024), with
the ultimate goal of improving the expressivity of a model,
i.e., its capability to distinguish between non-isomorphic
families of graphs (Morris et al., 2023).

Many such endeavors arise from the field of topological
deep learning (Papamarkou et al., 2024), which aims
to develop models that are “aware” of the underlying
topology of a space, and thus also capable of handling
data with higher-order relations. Other constructions
include special architectures for heterophilous tasks that
are not based on message-passing (Lim et al., 2021), or
modifications of the graph itself to improve predictive
performance. Suresh et al. (2021), for instance, use edge
rewiring to raise graph assortativity and thus gain accuracy
under low homophily, whereas Luan et al. (2022) mix
feature channels during aggregation to obtain state-of-
the-art results on heterophilous benchmarks. Finally, as
Rampášek et al. (2022) show, a hybrid model, combining
message-passing (local information) with attention (global
information) via structural encodings, may exhibit high
expressivity and high scalability. Subsequently, Müller et al.
(2024) extended these results by providing a taxonomy of
elements related to the “design space” of graph transformers.

2



Diss-l-ECT: Dissecting Graph Data with Local Euler Characteristic Transforms

As a geometrical-topological invariant, the ECT is
poised to contribute to more expressive architectures.
Contributing Being already a popular tool in topological
data analysis (Ghrist et al., 2018; Turner et al., 2014), recent
extensions started tackling the integration into deep-learning
architectures (Röell & Rieck, 2024) or the incorporation of
additional invariance properties (Curry et al., 2022; Marsh
et al., 2024). Despite advantageous performance in shape-
classification tasks, however, all existing contributions
solely focus on global ECTs and do not discuss any local
aspects, which are crucial for our approach. In addition
to the ECT, some works also use other topology-based
tools in graph learning, primarily persistent homology (PH),
an expressive but computationally expensive geometrical-
topological invariant. Examples of this approach include
Rieck et al. (2019) and Hofer et al. (2020), who use PH for
graph classification, or Zhao & Wang (2019), who learn a
weighted kernel on topological descriptors arising during
PH computations. Closest to our approach in spirit is Zhao
et al. (2020), who include topological features of graph
neighborhoods into a GNN, again leveraging PH. However,
to the best of our knowledge, ours is the first work to develop
local variants of the ECT for graph-learning tasks, analyze
the theoretical properties of such local variants, and finally
show their empirical utility for node classification.

4. Methods
Euler Characteristic Transform (ECT) The Euler
Characteristic Transform (ECT) of a simplicial complex
X ⊂ Rn is a function ECT(X) : Sn−1 ×R → Z, given by

ECT(X)(v, t) := χ({x ∈ X | x · v ≤ t}), (3)

where χ denotes the Euler characteristic and x · v denotes
the Euclidean dot product. The interpretation of ECT(X)
is that it scans the ambient space of X in every direction
and records the Euler characteristic of the sublevel sets.
The ECT(X) is invertible, meaning that X can be
recovered from ECT(X), as long as X is a so-called
constructible set (Curry et al., 2022; Ghrist et al., 2018).
The main focus of this work are compact geometric
simplicial complexes (like geometric graphs), which are
constructible, and thus the invertibility theorem applies in
our setting. Note that in practice, we approximate ECT(X)
via ECT(X)(m,l) := ECT(X)|{v1,...,vm}×{t1,...,tl} for
uniformly-distributed directions v1, . . . , vm ∈ Sn−1 and
filtration steps t1, . . . , tl ∈ R. Since X is compact,
t1, . . . , tl can be chosen to lie in a compact interval [a, b]
with t1 = a and tl = b, and so that the sequence {ti}i forms
a uniform partition of [a, b]. We note that this approximation
is efficiently computable and has a natural representation
as a vector of dimension m · l. Regarding the choice of
the magnitudes of m, l we notice that the expected nearest-
neighbor distance for uniform samples on Sn scales as

O((logm/m)1/n) (Beck, 1987), and that the equidistant
partitioning of a compact interval scales as O(1/l), leading
to O((logm/m)1/(n−1)l−1) for the total approximation error
of the domain of ECT(X). Curry et al. (2022) prove that the
aforementioned approximation actually determines the true
value, provided that m, l are sufficiently large. We notice
that both translations and scalings of X in the ambient space
lead to a reparametrization of ECT(X). Hence, ECT(X)
remains essentially unaltered (up to a parameter change)
under these two types of transformations.

Local ECT (ℓ-ECT) Given a geometric simplicial
complex X ⊂ Rn and a vertex x ∈ X , we define the
local ECT of x with respect to k ≥ 0 as

ℓ-ECTk(x;X) := ECT(Nk(x;X)), (4)

where Nk(x;X) denotes an appropriate local neighborhood
of x in X , whose locality scale is controlled by a parameter
k. Usually, Nk(x;X) will be either the full subcomplex
of X , which is spanned by the k-hop neighbors of x, or
the full subcomplex of X , which is spanned by the k-
nearest vertices of x. The first important special case arises
when X is a 0-dimensional simplicial complex, i.e., a point
cloud. In this case, the full subcomplex of X , which is
spanned by the k-nearest vertices of x, Nk(x;X), is given
by the k-nearest neighbors of x. Being based on the Euler
Characteristic, the construction of ℓ-ECTs appears to be
purely topological at first glance. However, in light of
the invertibility theorem, we note that ℓ-ECT(x;X) can
be interpreted as a fingerprint of a local neighborhood of
x in X . The upshot is that this fingerprint can be well
approximated in practice, making it possible to obtain
local representations of combinatorial data embedded in
Euclidean space. Similar to the approximation of the ECT,
this approximation works by sampling v1, . . . , vm ∈ Sn−1

and t1, . . . , tl ∈ R, and considering ECT(Nk(x;X))(m,l),
instead of ℓ-ECTk(x;X). The latter quantity is well-
computable in practice, and the approximation error can
be controlled by the sample sizes m and l, as we
discussed above. Again, this approximation has a natural
representation as a vector of dimension m · l, enabling us to
encode local structural information of point neighborhoods
in an approximate lossless way that can readily be used by
machine-learning algorithms for downstream tasks.

4.1. Properties of ℓ-ECTs

Our formulation of ℓ-ECTs provides a natural
representation of local neighborhoods of geometric
simplicial complexes. One important special case is that
of featured graphs, meaning graphs in which every node
admits a feature vector. The latter data structure forms
the basis of many modern graph-learning tasks, such as
node classification, graph classification, or graph regression.
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The predominant class of methods to deal with these
graph learning problems are message-passing graph neural
networks. We develop an alternative procedure for dealing
with featured graph data, built on ℓ-ECTs and we show that
ℓ-ECTs provide sufficient information to perform message
passing, which we explain in the following.

Definition 1. A featured graph is a (non-directed) graph G
such that every node v ∈ G admits a feature vector x(v) ∈
Rn. We denote the set of nodes of G by V (G), and the set of
edges by E(G).

We notice that a featured graph G can naturally be
interpreted as a graph embedded in Rn, by representing
each node feature vector as a point in Rn, and by drawing an
edge between two embedded points if and only if there is an
edge between the underlying nodes in G. This construction
yields a graph isomorphism between G and the embedded
graph if and only if for any pair of nodes v, w ∈ G with
v ̸= w we have x(v) ̸= x(w) for their associated feature
vectors. In practice, the latter assumption can always be
achieved by adding an arbitrarily small portion of Gaussian
noise to each feature vector, and we therefore may restrict
ourselves to featured graphs that yield an isomorphism on
their Euclidean embeddings.2 We now show that ℓ-ECTs
are in fact expressive graph-learning representations.

Theorem 1. Let G be a featured graph and let
{ℓ-ECT1(x;G)}x be the collection of local ECTs with
respect to the 1-hop neighborhoods in G. Then the collection
{ℓ-ECT1(x;G)}x provides the necessary (non-learnable)
information for performing a single message-passing step
on G, in the sense that for a given vertex x ∈ G one can
reconstruct the feature vectors of its 1-hop neighborhood
from ℓ-ECT1(x;G).

Theorem 1 tells us that for a featured graph G, the collection
{ℓ-ECT1(x;G)}x already contains sufficient information
to perform a single step of message passing. The advantage
of using ℓ-ECTs instead of message passing to represent
featured graph data lies in the possibility to additionally use
{ℓ-ECTk(x;G)}x for k ≥ 2, which contain both structural
and feature vector information of larger neighborhoods of
nodes in the graph. This type of information is typically not
explicitly available through message passing since passing
messages to non-direct neighbors depends on prior message
passing steps, which solely produce an aggregation of
neighboring feature vectors.

2Alternatively, we can drop the requirement of an embedding
by noting that a featured graph can be considered as an abstract
simplicial complex G with an arbitrary function f : G → Rn

defined on its vertices and edges. In this case, we may define the
ECT as ECT(X)(v, t) := χ({f−1{x ∈ Rn | x · v ≤ t}). This
formulation, developed by Marsh & Beers (2023), demonstrates
that the ECT is generally applicable and does not require node
features to provide an embedding of a graph.

In addition to essentially subsuming the information from
one message-passing step, we can also show that the ℓ-ECT
is “aware” of local structures like subgraphs. As shown by
Chen et al. (2020), message-passing graph neural networks
cannot perform counting of induced subgraphs for any
connected substructure consisting of 3 or more nodes. By
contrast, we will now show that ECTs for featured graphs
and their local variants can indeed be used to perform
subgraph counting. We start with the definitions of the
necessary concepts.
Definition 2. Two featured graphs G1 and G2 are
isomorphic if there is a bijection π : V (G1) → V (G2), such
that (v, w) ∈ E(G1) if and only if (π(v), π(w)) ∈ E(G2)
and so that for all v ∈ G1 one has x(v) = x(π(v)) for the
respective feature vectors.

A featured graph GS is called a subgraph of G if V (GS) ⊂
V (G) and E(GS) ⊂ E(G), such that the respective node
features remain unaltered under the induced embedding. A
featured graph GS is called an induced subgraph of G, if
GS is a subgraph of G, and if E(GS) = E(G) ∩ GS . For
two featured graphs G and GS , we define CSub(G;GS) to
be the number of subgraphs in G that are isomorphic to
GS . Similarly, we define CInd(G;GS) to be the number of
induced subgraphs in G which are isomorphic to GS .
Theorem 2. Two featured graphs G1 and G2 are isomorphic
if and only if ECT(G1) = ECT(G2).

An immediate consequence of the previous Theorem is:
Corollary 1. ECTs can perform subgraph counting.

We therefore conclude that ECT-based methods for graph-
representation learning can be more powerful than message-
passing-based approaches, suggesting the development of
hybrid architectures, making use of both message passing
and ECT variants.

4.2. Rotation-Invariant Metric based on Local ECTs

The aforementioned invariance properties of ECTs with
respect to translations and scalings naturally raise the
question if ℓ-ECTs may be used to compare the local
neighborhoods of two distinct points/vertices. However, the
ECT is sensitive to rotations since rotating the underlying
simplicial complex leads to a misalignment of the respective
directions in Sn−1. Because a local comparison should not
depend on the choice of a coordinate system, this property
is a fundamental obstruction of using ℓ-ECT as a local
similarity measure. We therefore construct a novel rotation-
invariant metric as follows. Let X,Y ⊂ Rn be two finite
geometric simplicial complexes. Since X,Y are finite,
ECT(X) and ECT(Y ) only take finitely many values, and
we may define a similarity measure dECT(X,Y ) as

dECT(X,Y ) := inf
ρ∈SO(n)

∥(ECT(X)− ECT(ρY ))∥∞. (5)
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We first prove that this similarity measure satisfies the
definitions of a metric.

Theorem 3. dECT is a metric on the collection of rotation
classes of finite simplicial complexes embedded in Rn.

Theorem 3 ensures that we may use dECT as a
metric that measures the similarity between embedded
simplicial complexes up to rotation. In particular, for
a simplicial complex X ⊂ Rn and x, y ∈ X ,
we have a rotation-invariant measure to compare local
neighborhoods of x and y by defining dkECT(x, y;X)
as infρ∈SO(n) ∥ℓ-ECTk(x;X)− ℓ-ECTk(y; ρX)∥∞. In
practice, we approximate dECT(X,Y ) by

inf
ρ∈SO(n)

∥∥ECT(X)(m,l) − ECT(ρY )(m,l)

∥∥
∞ (6)

for a choice of samples v1, . . . , vm ∈ Sn−1 and
t1, . . . , tl ∈ R; this works analogously for the local version
dkECT(x, y;X). As discussed before, the approximations
of the ECTs used in Eq. (6) have a natural vector
representation, so that the ∥•∥∞ in Eq. (6) is in fact the
maximum of the entry-wise absolute differences between
the two respective representation vectors. Hence, the
approximation shown in Eq. (6) is efficiently computable.
However, our experiments in Section 5 use the Euclidean
metric for differentiability reasons.

4.3. Limitations

While ℓ-ECTs present clear advantages in preserving local
details, there are some trade-offs to consider. In certain
cases, message-passing GNNs, which aggregate information
across neighbors, may be preferable, in particular for
tasks where global context is more important than local
details (see Coupette et al. (2025) for a recent analysis
of graph-learning datasets under different perspectives).
Furthermore, while our method is computationally feasible
on medium-sized datasets (as demonstrated in our
experiments), the complexity of “naı̈vely” calculating
ℓ-ECTs increases for larger k and with the size and density
of the graph, suggesting a need for improved methods (see
Section A.2 for an extended discussion).

5. Experiments
In this section, we present experiments to empirically
evaluate the performance of the ℓ-ECT-based approach
in graph representation learning, focusing on node-
classification tasks. We aim to demonstrate how ℓ-ECT
representations can capture structural information more
effectively than traditional message-passing mechanisms,
especially in scenarios with high heterophily (even
though we consider other scenarios as well). Our
experiments compare the performance of ℓ-ECT-based

models to several standard GNN models, namely graph
attention networks (Veličković et al., 2018, GAT), graph
convolutional networks (Kipf & Welling, 2017, GCN),
graph isomorphism networks (Xu et al., 2019, GIN), as
well as a heterophily-specific architecture (Zhu et al., 2020,
H2GCN). Furthermore, we showcase how the rotation-
invariant metric from Section 4 may be used for spatial
alignment of graph data.

5.1. ℓ-ECTs in Graph Representation Learning

The link between message passing and ℓ-ECTs (cf.
Theorem 1) encourages us to empirically validate the
expressivity of ℓ-ECTs for node-classification tasks. Given
a featured graph G and fixed k ≥ 0, we assign
ℓ-ECTk(x;G) to every node v ∈ G. We then use the
ℓ-ECT corresponding to a node together with the respective
node feature vector as the input to classification models.
Subsequently, we focus on XGBoost (Chen & Guestrin,
2016), as we found it to outperform more complex models.
However, our ℓ-ECT can be used with any model. Notice
that our experiments are not about claiming state-of-the-art
performance but rather about showcasing that an approach
based on ℓ-ECT yields results that are on a par with and
often superior to more complex graph-learning techniques
based on message passing, while at the same time working
well in both heterophilous and homophilous settings.

Implementation details We assume that we are given
a featured graph G such that there is an assignment
V (G) → Y , with V (G) being the node set of G and
Y being the space of classes w.r.t. the underlying node-
classification task. For a fixed k ≥ 0, x ∈ V (G) and
Nk(x;G) being the k-hop neighborhood of x in G, we
then approximate ℓ-ECTk(x;G) via ECT(Nk(x;G))(m,l)

for sampled directions and filtration steps, as explained
in Section 4. We use m = l = 64 (but the number of
samples may be tuned in practice) and use the the resulting
m · l-dimensional vector(s) ECT(Nk(x;G))(m,l), together
with the feature vector of x, as additional inputs for the
classifier. The architecture of our baseline models includes a
two-layer MLP after every graph-neighborhood aggregation
layer, as well as skip connections and layer normalization.
We train each model for 1000 epochs and report the test
accuracy corresponding to the state of the model that admits
the maximum validation accuracy during training. This
makes the predictive performance of our baseline models
directly comparable with Platonov et al. (2023).

WebKB Datasets For all datasets of the WebKB
collection (Pei et al., 2020), our ℓ-ECT-based approach
outperforms the baseline GNNs by far (cf. Table 1;
GraphSAGE results from Xu et al. 2024). While the
combination of both ℓ-ECT1 and ℓ-ECT2 performs best for
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Table 1: Performance (accuracy, in percent) of graph-
learning models on WebKB datasets (5 training runs).

Model Cornell Wisconsin Texas

GCN 45.0 ± 2.2 44.2 ± 2.6 47.3 ± 1.5
GAT 44.7 ± 2.9 48.2 ± 2.0 51.7 ± 3.2
GIN 46.5 ± 3.1 49.7 ± 2.5 54.2 ± 2.9
GraphSAGE 76.0 ± 3.5 72.9 ± 1.9 71.8 ± 2.4
H2GCN 66.2 ± 3.5 70.2 ± 2.3 72.3 ± 3.0

ℓ-ECT1 66.8 ± 4.2 81.2 ± 2.9 74.6 ± 0.5
ℓ-ECT2 67.0 ± 4.9 76.1 ± 2.8 73.8 ± 2.6
ℓ-ECT1 + ℓ-ECT2 67.1 ± 4.1 78.5 ± 2.6 74.8 ± 3.1

Table 2: Performance (accuracy, in percent) of graph-
learning models on heterophilous datasets (5 training runs).

Model Amazon Ratings Roman Empire

GCN 42.3 ± 0.7 73.3 ± 0.8
GAT 44.6 ± 0.9 76.4 ± 1.2
GIN 44.1 ± 0.8 56.8 ± 1.0
GraphSAGE 42.2 ± 0.5 77.4 ± 0.8
H2GCN 40.1 ± 0.7 64.2 ± 0.9

ℓ-ECT1 48.4 ± 0.3 80.4 ± 0.4
ℓ-ECT2 49.6 ± 0.3 78.0 ± 0.3
ℓ-ECT1 + ℓ-ECT2 49.8 ± 0.3 81.1 ± 0.4

“Texas,” using only ℓ-ECT1 leads to best performance for
“Wisconsin.” However, for the two aforementioned datasets,
the combination of ℓ-ECT1 and ℓ-ECT2 only slightly
improves the performance in comparison to ℓ-ECT1,
suggesting that 1-hop neighbor information is already
sufficiently informative here.

Heterophilous Datasets Platonov et al. (2023) introduced
several heterophilous datasets; we validate our method on
“Amazon Ratings” and “Roman Empire,” again observing
that the combination of ℓ-ECT1 + ℓ-ECT2 performs best,
substantially outperforming baseline models (cf. Table 2).
The results are closely aligned with findings by Platonov
et al. (2023), i.e., that specialized architectures like H2GCN
often perform less well than “standard” architectures.
Moreover, ℓ-ECT1 outperforms ℓ-ECT2 on “Roman
Empire,” while ℓ-ECT2 outperforms ℓ-ECT1 on “Amazon
Ratings.” We interpret this as 1-hop neighborhoods being
particularly informative for “Roman Empire,” while 2-hop
neighborhoods are more informative for “Amazon Ratings.”

Amazon dataset The Amazon dataset (Shchur et al.,
2018) consists of the two co-purchase graphs “Computers”
and “Photo.” While GAT outperforms all methods on
“Computers,” the combination of ℓ-ECT1 and ℓ-ECT2

performs best on “Photo” (cf. Table 3). Overall, ℓ-ECT-
based methods exhibit competitive performance here, given
that they are not based on message passing.

Table 3: Performance (accuracy, in percent) of graph-
learning models on Amazon datasets (5 training runs).

Model Computers Photo

GCN 91.6 ± 1.6 93.6 ± 1.7
GAT 92.4 ± 1.3 94.8 ± 1.1
GIN 55.9 ± 1.5 82.2 ± 1.3
GraphSAGE 89.2 ± 0.9 92.5 ± 0.7
H2GCN 84.5 ± 1.4 92.8 ± 1.2

ℓ-ECT1 89.6 ± 0.3 94.1 ± 0.3
ℓ-ECT2 90.1 ± 0.5 94.4 ± 0.7
ℓ-ECT1 + ℓ-ECT2 92.2 ± 0.6 94.9 ± 0.6

Table 4: Performance (accuracy, in percent) of graph-
learning models on heterophilous datasets (5 training runs).

Model Actor Squirrel Chameleon

GCN 30.7 ± 2.1 28.9 ± 1.4 42.8 ± 1.8
GAT 31.1 ± 1.8 31.8 ± 1.3 47.3 ± 1.3
GIN 26.5 ± 2.0 35.4 ± 1.5 43.1 ± 1.7
GraphSAGE 30.2 ± 1.4 33.3 ± 0.7 45.2 ± 1.3
H2GCN 30.7 ± 1.9 40.8 ± 1.4 62.7 ± 1.6

ℓ-ECT1 31.4 ± 1.9 35.6 ± 0.7 43.5 ± 1.7
ℓ-ECT2 30.1 ± 1.3 35.6 ± 0.8 40.4 ± 1.5
ℓ-ECT1 + ℓ-ECT2 30.9 ± 0.7 35.3 ± 1.5 43.9 ± 0.7

Actor/Wikipedia Datasets Moving to additional
heterophilous datasets with high feature dimensionality, we
compare predictive performance on “Actor” (Pei et al., 2020)
as well as “Chameleon” and “Squirrel” (Rozemberczki
et al., 2021); cf. Table 4. For “Actor”, the ℓ-ECT1 model
achieves the highest accuracy, while ℓ-ECT1 + ℓ-ECT2

performs slightly worse. ℓ-ECT2 performs the lowest
on this dataset, suggesting that larger neighborhoods are
detrimental here. For the other datasets, the heterophily-
specific model H2GCN performs best. However, ℓ-ECT1

and ℓ-ECT1 and ℓ-ECT2 exhibit similar (or even better)
performance as all other standard baselines, showing the
advantages of ℓ-ECT methods even in the absence of
hyperparameter tuning.

Table 5: Performance (accuracy, in percent) of graph-
learning models on “Planetoid” datasets (5 training runs).

Model Cora CiteSeer PubMed

GCN 88.1 ± 1.2 74.6 ± 1.5 85.3 ± 4.7
GAT 88.3 ± 1.1 75.3 ± 1.5 85.7 ± 4.2
GIN 85.0 ± 1.5 72.2 ± 1.7 87.0 ± 0.5
GraphSAGE 82.2 ± 1.2 68.1 ± 1.2 84.3 ± 0.7
H2GCN 85.4 ± 1.6 72.4 ± 1.9 86.4 ± 0.5

ℓ-ECT1 87.6 ± 0.6 72.1 ± 0.6 90.2 ± 0.5
ℓ-ECT2 87.2 ± 0.7 72.3 ± 0.8 90.3 ± 0.5
ℓ-ECT1 + ℓ-ECT2 87.8 ± 0.6 72.5 ± 0.7 90.3 ± 0.5
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Planetoid Datasets We also analyze node-classification
performance on datasets from the “Planetoid”
collection (Yang et al., 2016), comprising “Cora,”
“CiteSeer,” and “PubMed.” We trained all models using
a random 75–25 split; cf. Table 5. Although GCN and
GAT perform slightly better than ℓ-ECT methods for
“Cora” and “CiteSeer,” the gap is surprisingly small. For
“PubMed,” the ℓ-ECT-based models even outperform both
all comparison partners. These findings suggest that the
theoretical expressivity of ℓ-ECTs, which we formally
established in Section 4, also has practical implications,
providing an alternative way of dealing with graph data that
is not restricted by the underlying model architecture and
therefore allows for interpretability.

Post-hoc Evaluation To evaluate our methods across
datasets, we used critical difference diagrams, enabling
us to compare the performance of various models on
both homophilic and heterophilic graph datasets (cf.
Section A.7). The results highlight the superior performance
of ℓ-ECT-based approaches over standard baselines
and heterophily-specific architectures such as H2GCN.
Notably, the ℓ-ECT1 + ℓ-ECT2 method achieved the
best average rank of 2 and even the least effective
ℓ-ECT-based model (ℓ-ECT2) outperformed all non-
ℓ-ECT-based methods, including GAT. Further evaluation
against heterophily-specific models reported in the literature
corroborates these findings. In comparison to state-of-the-
art methods such as H2GCN, GPR-GNN, and GloGNN,
ℓ-ECT1 + ℓ-ECT2 achieved a competitive rank, matching
GloGNN and surpassing both GAT and GT. Despite being
a general-purpose approach not specifically designed for
heterophilic graphs, ℓ-ECT-based methods demonstrated
exceptional adaptability and robustness across diverse
graph structures. These results establish ℓ-ECT-based
architectures as a versatile and high-performing solution
for node classification tasks, suitable for tackling challenges
across a wide range of graph data.

Summary of Node-Classification Experiments We find
that ℓ-ECTs work particularly well in situations where
aggregating neighboring information is inappropriate, such
as when dealing with graphs that exhibit a high degree of
heterophily. In such contexts, our approach may outperform
message-passing-based methods. The upshot of our method
is that local graph information can be incorporated without
the architectural necessity to diffuse information along the
graph structure, as it is the case for message-passing-based
models. While this discrete diffusion process induced by
message passing is useful for a plethora of graph-learning
tasks, it can also be an obstruction in learning the right
representation for tasks where node features of neighbors
in the graph should not be aggregated (cf. Coupette et al.
2025 for a recent analysis of graph-learning datasets in

the context of message passing). In this sense, ℓ-ECTs
naturally overcome a fundamental limitation inherent to
message-passing methods. Another advantage of ℓ-ECTs
is that they are agnostic to the choice of the downstream
model. This permits us to use models that are easy to
tune, enabling practitioners to make use of their graph data
without necessarily having specialized knowledge in GNN
training and tuning while at the same time also working
well in the small-sample regime. Moreover, it permits using
models that are interpretable, making our method well-
suited for domains where regulatory demands often ask for
levels of interpretability that cannot readily be achieved
by (graph) neural networks. In fact, by using feature
importance values (which are directly available for tree-
based algorithms like XGBoost) and since the entries of the
ℓ-ECT vectors that are used as the input for the model can
be linked to the directions in the calculation of the ℓ-ECTs,
one may obtain a deeper understanding of how the model
arrives at predictions (see Section A.3 for a more in-depth
discussion and an ablation on the number of directions used
to calculate ℓ-ECTs).

5.2. Learning Spatial Alignment of Geometric Graphs

In the following, we use the approach described in Section 4
in order to learn the spatial alignment of two data spaces
by re-rotating one into the other. We start by showing that
synthetic data, which only differs up to a rotation, can be
re-aligned using ℓ-ECTs. Moreover, we show that this
alignment is stable with respect to noise, making it a robust
measure for the comparison of local neighborhoods in data.
In comparison to other spatial alignment methods like the
iterative closest point algorithm, ours does not necessitate
the computation of all pairwise distances between points in
the respective spaces. The latter is often a computational
bottleneck, especially for large datasets, thus positioning
our method for spatial alignment as a computationally
more efficient method in practice. While alignment
methods like Procrustes alignment are restricted to point-
cloud data, we observe that our approach is also capable
of aligning embedded graph data (or, more generally,
simplicial complexes). This makes it particularly useful
for dealing with geometric graphs, constituting a highly-
efficient alternative to more involved machine-learning
models like geometric GNNs (Joshi et al., 2023).

For the subsequent learning problem (see Section A.5 for an
example of how to align point-cloud data), we assume that
we are given two embedded simplicial complexes X,Y ⊂
Rn. In light of Section 4, the metric properties of dECT

ensure that dECT(X,Y ) = 0 if X and Y only differ up to a
rotation. We therefore approximate dECT(X,Y ) via

min
ρ∈SO(n)

∥∥ECT(X)(m,l) − ECT(ρY )(m,l)

∥∥2
2

(7)
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(a) Examples of geometric graphs

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
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3-star graph

2-star graph (line)
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(b) Alignment results

Figure 1: A comparison of the Hausdorff distances of aligned graphs. The black dots represents the Hausdorff distance
between the original graph and a randomly-rotated version of itself. Our ℓ-ECT-based alignment always results in
substantially lower distances, with a median distance close to zero.

for a choice of directions v1, . . . , vm ∈ Sn−1 and filtration
steps t1, . . . , tl ∈ R. As explained in Section 4, the ECT
approximations are given by vectors, making it feasible to
approach the above learning problem by any gradient-based
learning algorithm. The advantage of this formulation is
that it yields both the rotation-invariant loss and the rotation
that leads to this minimum loss.

Geometric graphs provide a compelling example of the
utility of our method, particularly in addressing the
challenging problem of graph re-alignment. For this
analysis, we focus on a specific type of geometric graph
known as the k-star graph. A k-star graph is defined as
a tree with one internal node and k leaves, i.e., a simple
structure with relevant geometric properties (cf. Figure 1a).
To embed such graphs into a 2D space, we assign a unique
2D vector to each node, ensuring the assigned vectors are
equidistant to maintain structural symmetry. Furthermore,
to introduce variability and assess robustness, we subject
each embedded graph to a random 2D rotation, simulating
realistic perturbations encountered in practical settings. The
central goal is to recover the original graph’s orientation
by learning the rotation matrix using the metric defined
Section 4. We evaluate the performance of our approach by
measuring the similarity between the original graph and its
re-rotated version using the Hausdorff distance, a metric that
quantifies the maximal deviation between two sets of points.
To ensure significance, we repeated the learning procedure

200 times, maintaining consistent initializations for both the
graph and the rotation matrix. Figure 1 shows the results;
we observe that our realignment procedure consistently
achieves small Hausdorff distances with medians near zero,
indicating the successful recovery of the original graph’s
orientation. By contrast, the Hausdorff distances between
the original graph and its perturbed version are significantly
larger. While equivariant GNNs have been shown to struggle
with distinguishing the orientation of rotationally-symmetric
structures (Joshi et al., 2023), our method generates graph
representations that are initially sensitive to rotations but
can be made rotation-invariant through alignment of the
underlying ECTs.

These findings highlight the potential of ECT-based metrics
for robust geometric graph alignment, paving the way for
broader applications in domains requiring precise graph-
based comparisons such as the analysis of geometric graphs
with constrained parameter budgets (Maggs et al., 2024).
This result is particularly notable since the ℓ-ECT easily
outperforms more involved architectures, pointing towards
its overall utility as an alternative to message-passing graph
neural networks. At the same time, we believe that the
ℓ-ECT could also help in aligning higher-order data like
geometric simplicial complexes.
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6. Discussion
We introduced the Local Euler Characteristic
Transform (ℓ-ECT), providing a novel approach to
graph-representation learning that preserves local structural
information without relying on aggregation. Our method
addresses fundamental limitations in message-passing
neural networks, particularly in tasks where aggregating
neighboring information is suboptimal, such as in graphs
with heterophily. By retaining critical local details, ℓ-ECTs
enable more nuanced and expressive representations,
offering significant advantages in node classification tasks.
One key strength of our approach is its model-agnostic
nature, allowing it to be paired with interpretable machine
learning models (in our experiments, an XGBoost model
was used to provide feature importance values, for
instance). This is particularly useful in domains such as
healthcare, finance, and legal applications, where regulatory
frameworks demand high levels of transparency and
interpretability that are often difficult to achieve with black-
box neural networks. By leveraging ℓ-ECTs, we can satisfy
these requirements while maintaining the high expressivity
and high predictive performance required for graph-learning
tasks. In this way, ℓ-ECT-based representations offer a
novel pathway toward interpretable machine learning on
graph data: they yield topologically-grounded, vectorized
encodings of local structure that not only retain predictive
power but also support downstream diagnostics.

Future Work: Higher-Order Domains Being situated
at the intersection of geometry and topology, our ℓ-ECT
method is part of the nascent field of topological deep
learning (Papamarkou et al., 2024), which aims to develop
novel inductive biases that are capable of leveraging
additional structural information from data, both in the
context of graphs and in the context of higher-order domains
like simplicial complexes. It is in this context where we
believe that future work could be beneficial, in particular
since recent research (Ballester et al., 2025) showed that
tasks on such domains are highly challenging for existing
GNNs. Given the advantageous scalability properties of the
ECT (Röell & Rieck, 2024; Turner et al., 2014), we believe
that this constitutes a useful avenue for future research.

Future Work: Comparing Representations Containing
both geometrical and topological components, we also
believe ECT-based methods to be suitable in navigating
different representations. Since the ECT can be
considered a compression technique with controllable
fidelity properties (Röell & Rieck, 2025), it could be useful
in condensing latent spaces, thus permitting simple and
efficient comparisons of models as hyperparameters are
being varied. Such multiverse analyses are vital for ensuring
reproducibility (Bell et al., 2022; Wayland et al., 2024).

Future Work: Hybrid Models Beyond representation
learning on graphs, our ℓ-ECT framework also opens
up new applications in domains where local structure is
critical, such point-cloud analysis (including sensor data or
computer-graphics data), 3D shape analysis, or data from
the life sciences (like molecular data or biological networks).
Future work could thus explore more efficient algorithms
for computing ECTs and ℓ-ECTs at scale, as well as
hybrid approaches that balance local and global information
more effectively. A highly-relevant direction would be the
integration of ℓ-ECTs into existing message-passing neural
networks, similar to recent work that leverages persistent
homology (Verma et al., 2024). Moreover, heterophily-
specific mechanisms such as a separation of neighborhood
aggregation (as used in specialized GNN architectures)
may be incorporated into our ℓ-ECT-based framework to
further strengthen its expressivity in the presence of high-
heterophily graphs.

Software and Data
Our code is available under https://github.com/
aidos-lab/Diss-l-ECT. We make use of standard
benchmarking datasets, loaded and processed via the
PyTorch Geometric library (Fey & Lenssen, 2019).
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Ballester, R., Röell, E., Schmid, D. B., Alain,

M., Escalera, S., Casacuberta, C., and Rieck, B.
MANTRA: The Manifold Triangulations Assemblage. In
International Conference on Learning Representations,
2025. URL https://openreview.net/forum?
id=X6y5CC44HM.

Beck, J. Irregularities of distribution. I. Acta Mathematica,
159:1–49, 1987.

9

https://github.com/aidos-lab/Diss-l-ECT
https://github.com/aidos-lab/Diss-l-ECT
https://openreview.net/forum?id=X6y5CC44HM
https://openreview.net/forum?id=X6y5CC44HM


Diss-l-ECT: Dissecting Graph Data with Local Euler Characteristic Transforms

Bell, S. J., Kampman, O., Dodge, J., and Lawrence,
N. Modeling the machine learning multiverse. In
Koyejo, S., Mohamed, S., Agarwal, A., Belgrave,
D., Cho, K., and Oh, A. (eds.), Advances in Neural
Information Processing Systems, volume 35, pp. 18416–
18429. Curran Associates, Inc., 2022.

Bo, D., Wang, X., Shi, C., and Shen, H. Beyond low-
frequency information in graph convolutional networks.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 3950–3957, 2021.

Borgwardt, K., Ghisu, E., Llinares-López, F., O’Bray,
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A. Appendix
A.1. Proofs

We briefly restate all theorem from the main text for the reader’s convenience before providing proofs.

Theorem 1. Let G be a featured graph and let {ℓ-ECT1(x;G)}x be the collection of local ECTs with respect to the
1-hop neighborhoods in G. Then the collection {ℓ-ECT1(x;G)}x provides the necessary (non-learnable) information for
performing a single message-passing step on G, in the sense that for a given vertex x ∈ G one can reconstruct the feature
vectors of its 1-hop neighborhood from ℓ-ECT1(x;G).

Proof. By the remark in Section 4 (in the paragraph right above the original statement of this Theorem), we may assume
that the natural embedding of G into Rn is a graph isomorphism. Then, making use of the invertibility theorem, the 1-hop
neighborhood of a point x in the embedding of G can be reconstructed from ℓ-ECT1(x;G). Therefore, the feature vectors
of x and its 1-hop neighbors can be deduced from ℓ-ECT1(x;G), which is the only non-learnable information one needs to
perform a message-passing step.

Theorem 2. Two featured graphs G1 and G2 are isomorphic if and only if ECT(G1) = ECT(G2).

Proof. When two featured graphs are isomorphic in the sense of Definition 2, their respective Euclidean embeddings produce
equal ECTs by construction because the node feature vectors of two corresponding points under the isomorphism are equal.
By contrast, let us assume that ECT(G1) = ECT(G2). Then by the invertibility theorem, the Euclidean embeddings of G1

and G2 are equal. Therefore, the only information that may tell apart the two graphs are their node labels, but this means that
G1 and G2 are isomorphic.

Theorem 3. dECT is a metric on the collection of rotation classes of finite simplicial complexes embedded in Rn.

Proof. dECT(X,X) = 0 holds for ρ being the identity. Now assume that dECT(X,Y ) = 0. Then there exists ρ ∈ SO(n)
with ∥(ECT(X)− ECT(ρY ))∥∞ = 0. As ∥•∥∞ is a norm, it follows that ECT(X) = ECT(ρY ), and by the invertibility
theorem we obtain X = ρY . This shows the first property of a metric (note that positivity follows from ∥•∥∞). For symmetry,
note that ∥(ECT(X)− ECT(ρY ))∥∞ =

∥∥(ECT(ρ−1X)− ECT(Y ))
∥∥
∞ since rotations are invertible. For the triangle

inequality, let Z be another finite simplicial complex. dECT(X,Z) then reads infρ∈SO(n) ∥(ECT(X)− ECT(ρZ))∥∞,
which is less than or equal to infρ,ρ′∈SO(n)(∥(ECT(X)− ECT(ρ′Y ))∥∞ + ∥(ECT(ρ′Y )− ECT(ρZ))∥∞). This term,
however, is equal to infρ,ρ′∈SO(n)(∥(ECT(X)− ECT(ρ′Y ))∥∞ +

∥∥(ECT(Y )− ECT((ρ′)−1ρZ))
∥∥
∞), which is equal

to infρ∈SO(n) ∥(ECT(X)− ECT(ρY ))∥∞ + infρ∈SO(n) ∥(ECT(Y )− ECT(ρZ))∥∞. But this final term is precisely the
definition of dECT(X,Y ) + dECT(Y, Z).

A.2. Computational Complexity

For a fixed node x, the computational complexity of ℓ-ECTk(x) is O(m · l · |Nk(x)|), where: (i) m is the number of
sampled directions, (ii) l is the number of filtration steps, and (iii) |Nk(x)| is the number of vertices (or simplices) in the
k-hop neighborhood of x.
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Figure 2: Feature importance scores of an XGBoost model for the “Coauthor Physics” dataset (using ℓ-ECT1). Only a
small number of features admit high importance scores.

A.3. Ablation on Directions and Interpretability

Coming back to our approximation of ECT(X) via ECT(X)(m,l) := ECT(X)|{v1,...,vm}×{t1,...,tl} for uniformly-
distributed directions v1, . . . , vm ∈ Sn−1 and filtration steps t1, . . . , tl ∈ R, we notice that the (l · (j − 1) + 1)-th
till (l · j)-th entries of ECT(X)(m,l) correspond to the direction vj . The latter gives us the opportunity to get a deeper
understanding of how the model predicts its outcome, by analyzing its feature importance values (which are available for
tree-based algorithms like XGBoost). Therefore, our approach enables us to analyze which features, i.e., directions, of
the underlying ECT vector are most important. In practice, we often observe that a small number of features admits high
feature importance with respect to the corresponding model (cf. Figure 2). This raises the question if we may use a smaller
random collection of features and still obtain reasonably useful results. We therefore ran experiments for a collection of
datasets for a varying number of randomly-sampled entries of the ℓ-ECT1 vector; cf. Table 6. Here, 4096 corresponds to
the whole vector. We observe that for certain datasets, such as “Coauthor CS,” “Coauthor Physics,” and “Amazon Ratings,”
the performance of the model only slightly changes when using a reduced version of the ℓ-ECT1 vector. In light of the
results by Curry et al. (2022), this observation is not entirely surprising—one main claim therein is that the ECT can be
determined using a small number of directions.

Table 6: Mean accuracy (in percent, 5 runs each) for different node-classification tasks, and varying numbers of randomly-
sampled entries of the corresponding ℓ-ECT1 vectors.

Dataset 0 50 100 500 1000 4096

WikiCS 67.8 69.2 70.5 71.3 72.7 74.6
Coauthor CS 92.1 92.3 92.4 92.5 92.6 92.6
Coauthor Physics 95.2 95.6 95.6 95.8 95.9 96.1
Roman Empire 64.7 73.7 75.8 78.3 79.7 80.4
Amazon Ratings 47.9 47.9 48.2 48.4 48.2 48.4
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Table 7: Performance (accuracy, in percent) of graph-learning models on WikiCS dataset (5 training splits).

Model WikiCS

GCN 75.2 ± 0.8
GAT 78.7 ± 1.2
GIN 74.2 ± 1.7
GraphSAGE 73.4 ± 1.5
H2GCN 75.3 ± 1.4

ℓ-ECT1 74.6 ± 0.5

0 50 100 150 200 250 300 350 400

non-aligned

aligned

Squared L2 distance

Figure 3: A comparison of the squared L2 distances of ℓ-ECTs of aligned and non-aligned MNIST digits of “1,” respectively.

A.4. Additional Node Classification Experiment

WikiCS Dataset To further validate the effectiveness of our approach, we consider the WikiCS dataset (Mernyei &
Cangea, 2020), a medium-sized co-occurrence graph derived from Wikipedia articles on computer science topics. Nodes
represent articles, and edges reflect mutual links between them. Each node is equipped with a 300-dimensional embedding,
and the task is to classify articles into one of several predefined categories. As shown in Table 7, our ℓ-ECT1-based method
achieves competitive performance compared to message-passing baselines. While GAT obtains the best accuracy overall,
ℓ-ECT1 performs on par with H2GCN and GCN, despite not relying on neighborhood aggregation. This supports the
idea that ℓ-ECT-based representations can serve as effective input features in classification settings, even for graphs with
moderately homophilous structures. The small standard deviation further illustrates the stability of our method across splits.

A.5. Spatial Alignment of High-Dimensional Data

Following our previous observations that dECT enables us to align two spaces, we now use it to investigate its effect on
high-dimensional data. We start this discussion with the well-known MNIST benchmark dataset, following an analysis
of local geometrical-topological structures that we performed previously (von Rohrscheidt & Rieck, 2023). We thus first
represent each (gray-scale) image in the dataset as a 784-dimensional vector, by flattening the image. In this way, we obtain
a high-dimensional point cloud corresponding to the dataset. Subsequently, we sample 300 points of digits of “1” and
calculate the pairwise distances of their respective ℓ-ECT (with respect to the whole point cloud), for k = 10. Finally, we
calculate the pairwise distances of the respective aligned ℓ-ECTs (by using the approach of Eq. (7) with k = 10). Figure 3
shows the results; we observe that the aligned ℓ-ECTs have a significantly lower squared L2 distance (with a median of
≈ 112) than the non-aligned ones (with a median of ≈ 224), showcasing that rotations cause dissimilarity between small
neighborhoods of points, in many cases.

A.6. Homophily Scores of Node-Classification Experiments

Table 8 reveals that our benchmark suite spans the entire range from extreme homophily to extreme heterophily. At the
homophilic end lie the Amazon co-purchase graphs “Computers” and “Photo,” together with the “Planetoid” citation graphs
“Cora,” “CiteSeer,” and “PubMed.” In each of these networks, at least seven of every ten edges connect nodes with identical
class labels, replicating the conditions under which early message-passing GNNs achieved their seminal successes. Near the
middle of the spectrum, “Cornell” and the “Amazon Ratings” datasets exhibit mixed behavior, with roughly one third of
their edges being heterophilous. Thus, neighborhood aggregation still conveys useful class-specific information, but the
signal is noticeably diluted. The lower end is populated by the remaining datasets, where fewer than one edge in three is
homophilic, and by “Roman Empire,” the most extreme case in our experimental suite, where only about one edge in twenty
links same-label endpoints.
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Table 8: Edge-homophily ratios for every dataset used in
our node-classification experiments, sorted in ascending
order. As the table shows, our experiments comprise a
wide variety of datasets.

Dataset Hedge

Roman Empire 0.047
Texas 0.110
Wisconsin 0.210
Actor 0.217
Squirrel 0.220
Chameleon 0.230
Cornell 0.300
Amazon Ratings 0.380
CiteSeer 0.736
Amazon Computers 0.777
PubMed 0.802
Cora 0.810
Amazon Photo 0.827

Because six datasets are heterophilic, five are strongly
homophilic, and two occupy the transition zone, we believe our
experimental suite to be effectively balanced. A model must
therefore operate reliably across sharply different structural
regimes to achieve consistently high average rank. Classical
message-passing architectures depend on homophily and
tend to deteriorate as the ratio falls, whereas our empirical
results from Section 5 demonstrate that our proposed ℓ-ECT
representations retain competitive—and often even superior—
accuracy regardless of homophily level. The most conspicuous
gains appear precisely on the graphs where neighbor aggregation
is least informative, namely “Roman Empire,” “Texas,” and
“Wisconsin,” confirming that ℓ-ECT features capture structural
cues that message passing alone fails to exploit. Hence, the
numerical landscape mapped out in Table 8 substantiates the
claim that our experimental design both stresses the limits
of common GNNs while at the same time showcasing the
robustness of ℓ-ECT-based approaches in settings where label
agreement along edges is sparse.
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Figure 4: Critical difference diagram showing the ranks of different models across all node-classification tasks from
Section 5. Even the worst-performing ℓ-ECT-based approach (ℓ-ECT2) exhibits superior performance to all other methods,
when averaged across all tasks.

A.7. Post-hoc Evaluation of Node-Classification Experiments

A critical difference diagram arranges the average ranks of multiple models across a set of datasets in order to facilitate
overall performance comparisons between the model performances. Such diagrams are commonly used when comparing a
suite of models on different datasets (cf. Borgwardt et al. (2020) for similar plots in the context of graph kernels).

Figure 4 shows the results for all node-classification results from Section 4, including both homophilic and heterophilic
graph datasets. We observe that the ℓ-ECT-based approaches outperform standard methods and the heterophily-specific
architecture H2GCN by far, when averaged over all datasets.3 The best-performing method ℓ-ECT1 + ℓ-ECT2 exhibits
an average rank of 2, while the worst performing method is GIN with an average rank of 5.7. Even the worst-performing
ℓ-ECT-based method (ℓ-ECT2) performs better than the best non-ℓ-ECT-based method, i.e., GAT. However, the most
interesting fact that can be gleaned from the diagram involves the statistical significance of the results. Methods connected
over the same bar are not performing statistically significantly differently. This seemingly negative result has a positive
implication: Despite being orders of magnitude more complex, even specialized graph neural networks do not perform
statistically significantly better than ℓ-ECT-based methods. Given that our results are based on a standard XGBoost model
without any task-specific hyperparameter tuning, we believe that this demonstrates the potential and practical utility of our
proposed methods.

Table 9: Ranks (lower is better) of models from Platonov
et al. (2023) across the heterophilic datasets therein, in
comparison to our methods. Notice that our method is
a general-purpose method for node classification and
neither geared towards heterophily nor homophily.

Model Rank

H2GCN (Zhu et al., 2020) 18.3
CPGNN (Zhu et al., 2021) 16.8
GPR-GNN (Chien et al., 2021) 15.3
ResNet (He et al., 2016) 13.8
l-ECT1 12.4
l-ECT2 12.4
GAT (Veličković et al., 2018) 12.3
GT (Shi et al., 2021) 11.0
l-ECT1 + l-ECT (ours) 11.0
GloGNN (Li et al., 2022) 11.0
ResNet+SGC (Wu et al., 2019) 10.8
FAGCN (Bo et al., 2021) 10.0
JacobiConv (Wang & Zhang, 2022) 9.8
GCN (Kipf & Welling, 2017) 9.6
GBK-GNN (Du et al., 2022) 9.0
ResNet+adj (Zheleva & Getoor, 2009) 7.3
SAGE (Hamilton et al., 2017) 5.9
GAT-sep (Veličković et al., 2018) 5.5
GT-sep (Shi et al., 2021) 5.3
FSGNN (Maurya et al., 2021) 3.0

To further evaluate the performance of our methods in
comparison to those reported in the literature, we also included
a comparison with the results presented by Platonov et al.
(2023), using the ranks of the respective models as the basis for
evaluation; cf. Table 9. Among the listed methods, several, such
as H2GCN, CPGNN, and GPR-GNN, are explicitly designed for
heterophilic graph settings, leveraging specialized architectures
to handle the challenges posed by such data. In contrast, our
ℓ-ECT1 + ℓ-ECT2 method, despite being a general-purpose
approach not tailored specifically for heterophilic settings,
achieves a competitive rank of 11. This performance is on a
par with other top-performing heterophily-specific models, such
as GloGNN, and outperforms well-established architectures
like GT and GAT by a significant margin. Overall, these
results highlight the robustness and adaptability of our method,
demonstrating its ability to handle diverse graph structures
effectively without requiring customization for heterophilic
scenarios. In consideration of the results given in Figure 4, this
makes ℓ-ECT-based approaches a versatile general-purpose
solution for node -classification tasks.

3We used https://github.com/hfawaz/cd-diagram for the creation of the critical difference diagram.
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Figure 5: A comparison of the squared L2 distances of the ECTs of aligned and non-aligned wedged spheres, respectively.
We see that alignment results in a median loss of zero, thus effectively showing that the two spaces are the same.
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Figure 6: A comparison of two wedged spheres with one being rotated around the wedge point and the points being perturbed
by Gaussian noise (left) and the learned re-rotated sphere that is aligned with the original data (right).

A.8. Spatial Alignment of Wedged Spheres

We approximate the optimization problem from Eq. (7) to show that we can learn a spatial alignment of two data spaces,
while the distance between ECTs of non-aligned spaces that only differ up to a rotation will generally be high. We start
with a so-called wedged sphere, meaning two 2-dimensional spheres which are concatenated at a gluing point (cf. Figure 6
and von Rohrscheidt & Rieck 2023). We use 2000 uniformly-sampled points from such a wedged sphere, and compare
the squared L2 loss between the ECTs of this sample and a rotation of the same data space. We repeat this procedure 500
times, where at each step both the sample of the wedged sphere and the rotation matrix which yields the rotated version
of the same space are sampled randomly. We notice that the L2 losses between the non-aligned spaces are high (with a
median of around 19), whereas the L2 losses of the non-aligned spaces are significantly lower, with a median loss close to
zero (cf. Figure 5). Moreover, we observe that the ECT of the same space significantly changes when the coordinate system
is transformed, which corroborates the necessity of a rotation-invariant metric for the comparison of ECTs. We conclude
that an alignment of the ECTs of the two underlying data spaces in fact leads to an alignment of the data spaces itself, as
promised by the theoretical results in Section 4.

Robustness Figure 7 and Figure 8 show that the spatial alignment of wedged spheres still works satisfactorily, even in
the presence of outliers and noise. This property is an important feature when dealing with real-world data, which is often
noisy, and enables us to align spaces that only approximately differ up to a rotation. By contrast, the Hausdorff distance, i.e.,
a widely-used metric between point clouds is (by definition) highly sensitive to outliers. We therefore conclude that the
proposed metric based on ECTs is a robust metric to compare point clouds of potentially different cardinalities.
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Figure 7: A comparison of two wedged spheres, with one being rotated around the wedge point and added 200 outliers (left)
and the learned re-rotated sphere that is aligned with the original data (right).
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Figure 8: A comparison of two wedged spheres, with one being rotated around the wedge point and the points being
perturbed by Gaussian noise (left) and the learned re-rotated sphere that is aligned with the original data (right).
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