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Abstract

Large knowledge graphs have been shown to001
benefit zero-shot evaluation of downstream002
tasks, through continual pre-training of lan-003
guage models. Yet, little is known about how004
to optimally learn from this knowledge, and005
what is the impact of the resulting models on006
different task partitions. This paper studies the007
effect of model architectures, loss functions,008
and knowledge subsets on the generalization009
of zero-shot models across task partitions. Our010
experiments show that data size, model size,011
model architecture, and loss function all play012
an important role in the accuracy and generaliz-013
ability of the models. Most of the improvement014
occurs on questions with short answers and dis-015
similar answer candidates, which corresponds016
to the characteristics of the data used for pre-017
training. These findings inform future work018
that uses self-supervision with large knowledge019
graphs in order to create generalizable com-020
monsense reasoning agents.021

1 Introduction022

Common sense is the common human knowledge023

about the world and the methods for making in-024

ferences from this knowledge (Davis, 2014): com-025

monsense knowledge includes the basic facts about026

events (including actions) and their effects, facts027

about knowledge and how it is obtained, facts about028

beliefs and desires, as well as the basic facts about029

material objects and their properties (McCarthy,030

1989). AI agents with common sense are expected031

to possess a wide range of everyday knowledge032

about naive physics, folk psychology, and causal-033

ity. Rich commonsense knowledge can be found034

in public knowledge graphs (KGs), like Concept-035

Net (Speer et al., 2017), ATOMIC (Sap et al.,036

2019a), and Visual Genome (Krishna et al., 2017).037

State-of-the-art commonsense reasoning sys-038

tems are largely fueled by language models (LMs),039

as LMs are able to adapt to benchmarks effec-040

tively, insofar as training data is available (Ma041

et al., 2019). Recognizing that the assumption of 042

always having benchmark-specific training data 043

is unrealistic for open-domain reasoning, recent 044

work has increasingly focused on zero- and few- 045

shot tasks and reasoning models. Common meth- 046

ods for zero-shot reasoning rely on careful pre- 047

training of LMs with external resources: common- 048

sense KGs (Banerjee and Baral, 2020; Ma et al., 049

2021a), elicitation of pre-existing knowledge in the 050

LM (Shwartz et al., 2020; Paranjape et al., 2021), 051

or instruction-prompted training with a diverse set 052

of tasks (Sanh et al., 2021). While pre-training 053

with commonsense knowledge has been shown to 054

improve model performance (Mitra et al., 2019; 055

Ma et al., 2021a), prior work has not investigated 056

how different architectural and data decisions affect 057

model accuracy and generalization across tasks. 058

This paper studies the effect of model architec- 059

tures, loss functions, and knowledge subsets on the 060

accuracy and generalization of language models, 061

across commonsense tasks. We measure general- 062

ization as the average model performance on a set 063

of out-of-domain multiple-choice question answer- 064

ing benchmarks. We consider two LM architec- 065

tures and two representative loss functions. We 066

study the interplay of the model size with the pre- 067

training knowledge size, and note that the optimal 068

knowledge size is highly dependent on the model 069

size, architecture, and loss function. Larger LMs 070

and loss functions that score the answer candidates 071

jointly tend to generalize better to out-of-domain 072

datasets. Further analysis shows that vanilla LMs 073

perform better on questions which are longer and 074

have very similar answers, while pre-training with 075

knowledge is able to close the gap for questions 076

whose answer candidates are very different. 077

2 Problem Setup 078

Task formulation. Following Ma et al. (2021a), 079

we formalize generalizable commonsense reason- 080

ing as the task of performing question answering 081
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(QA) across out-of-domain commonsense tasks.082

We use the recently-introduced CommonSense083

Knowledge Graph (CSKG) (Ilievski et al., 2021b)084

to sample thousands of commonsense statements,085

and transform them into multiple-choice questions.086

Each question corresponds to a particular knowl-087

edge dimension (Ilievski et al., 2021a). We define088

domain as the dimensions of common sense nec-089

essary for solving a particular set of tasks.1 Given090

a natural language question Q, and n possible an-091

swers {A1, ..., An}, the LM will be asked to select092

the most probable single answer A during training.093

Once the LM pre-training is done, the updated LM094

is applied across QA tasks in a zero-shot manner.095

Evaluation. We evaluate on five benchmarks for096

multiple-choice commonsense question answer-097

ing. Two datasets have been known to have do-098

main overlap with existing KGs (Mitra et al.,099

2019; Ma et al., 2021a): 1) CommonsenseQA100

(CSQA) (Talmor et al., 2019), which evaluates a101

broad range of common sense aspects, has been102

devised based on knowledge in ConceptNet; 2) So-103

cialIQA (SIQA) (Sap et al., 2019b), which requires104

reasoning about social interactions, has been cre-105

ated based on the ATOMIC KG (Sap et al., 2019a).106

We refer to CSQA and SIQA as in-domain (ID)107

datasets. We also evaluate on three out-of-domain108

(OOD) datasets: 1. Abductive NLI (aNLI) (Bha-109

gavatula et al., 2019), a natural language inference110

task, where, given the beginning and the ending111

of a story, the task is to choose the more plausi-112

ble hypothesis out of two options; 2. PhysicalIQA113

(PIQA) (Bisk et al., 2020), which tests physical114

reasoning; and 3. WinoGrande (WG) (Sakaguchi115

et al., 2019), an anaphora resolution task. We mea-116

sure LM’s accuracy on a benchmark as the ratio117

between the correctly-answered questions and the118

total number of questions in a benchmark.119

3 Method120

Language Models. We adopt two widely-used pre-121

trained models: RoBERTa (Liu et al., 2019) and122

T5 (Raffel et al., 2019). RoBERTa is an encoder-123

only masked language model (MLM), whereas T5124

is an encoder-decoder model which converts tasks125

into text-to-text format. We use RoBERTa’s large126

model, which has 355M parameters. We experi-127

ment with three T5 models of different sizes: small128

(60M parameters), large (740M), and 3b (2.85B).129

1See (Ilievski et al., 2021a; Ma et al., 2019) for more
details about the relation between dimensions and tasks.
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Figure 1: Evaluation results of 4 models with differ-
ent data sizes. Each point represents the average per-
formance of a model over the five datasets. We show
results for RoBERta with J loss, and T5 with I loss.

Loss functions. Following Ma et al. (2021a), for
RoBERTa the input sequences are concatenations
of the question and each of its answer candidates.
We mask one non-stop token in the sequence at a
time, and compute the masked token’s loss. We
then take the averaged loss for the sequence and
train the model with margin loss:

L =
1

m

m∑
i = 1
i ̸= y

max(0, η − Sy + Si)

where Sy and Si are the negative averaged loss for 130

correct answer and distractor respectively. During 131

inference, we take the candidate with highest score 132

S as the answer. 133

For T5, we add a task-specific prefix, “reason- 134

ing:”, to the input sequence following how Raffel 135

et al. (2019) adapt it to downstream task. The 136

model is pre-trained to predict either true or false, 137

for each candidate, separately.2 During infer- 138

ence, we concatenate the benchmark question with 139

one candidate answer at a time, and we compute 140

d = p(true) − p(false) for that candidate based 141

on our model. The candidate with the highest dif- 142

ference d is chosen as the model answer. 143

Notably, the loss for RoBERTa is computed over 144

all candidates jointly (J), whereas the loss for T5 is 145

for each candidate independently (I). To make the 146

two models more comparable, we also: 1) pre-train 147

RoBERTa models with I loss, by appending a true- 148

false label to the input sequence and computing the 149

loss only for this masked label; and 2) pre-train T5 150

with a joint function by computing the difference 151

2We also tried to concatenate the question with all answer
candidates, and teach the model to predict the position or
make a copy of the right candidate, following (Khashabi et al.,
2020). These loss strategies performed consistently worse,
and we leave them out of the paper.
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Table 1: Evaluation results on 5 benchmarks of 4 models with their optimal data size. Best results are in bold.

Model Loss Data Size OOD ID Avg(OOD) Avg(ID) AvgaNLI WG PIQA SIQA CSQA

Roberta-large
(Ma et al., 2021a) 70.5 60.9 72.4 63.2 67.4 67.9 65.3 66.8

I 5% 68.1 60.1 67.7 60.8 62.1 65.3 61.5 63.8
J 5% 72.0 60.2 72.5 65.4 66.9 68.2 66.2 67.4

T5-small I 33% 51.4 51.3 56.3 41.9 34.3 53.0 38.1 47.0
J 33% 50.6 52.2 56.0 42.5 36.9 52.9 39.7 47.6

T5-large I 33% 64.6 58.4 70.2 57.2 62.7 64.4 60.0 62.6
J 33% 65.5 59.0 70.6 57.2 62.9 65.0 60.0 63.0

T5-3b I 33% 75.1 70.2 76.6 63.9 70.4 74.0 67.2 71.2
J 33% 76.6 71.0 76.7 65.3 69.9 74.7 67.6 71.9

between the true and false labels, for each candi-152

date, followed by the same margin function used153

for RoBERTa’s J loss function. More details about154

the model training can be found in appendix A.155

Knowledge sampling. We use the subset of156

CSKG which combines ATOMIC, ConceptNet,157

WordNet (Miller, 1995), Wikidata (Vrandečić and158

Krötzsch, 2014), and Visual Genome. Unlike Ma159

et al. (2021a), who use 14 semantic relations, we160

use the entire set of relations in CSKG, and ran-161

domly sample subsets of 1, 5, 10, 33, 50, and 100%.162

We also explored sampling strategies based on train-163

ing indicators and knowledge dimensions, but these164

consistently performed worse than random sam-165

pling (see appendix B for more information).166

4 Results167

How much data is needed to pre-train the mod-168

els? Figure 1 shows the average accuracy for the169

four models (Roberta-Large, T5-small, T5-large,170

and T5-3b) when trained with different data sizes.171

We observe that models have different optima in172

terms of the data size that they are pre-trained with.173

RoBERTa-Large performs best with only 5% of the174

artificial data, reaching an average score of 67.4%175

across the five datasets. Meanwhile, the best T5176

model, T5-3b peaked with 33% of the data, which177

shows that it benefits from more data for pretrain-178

ing. Both T5-large and T5-small achieve higher179

averaged accuracy with increased data size, how-180

ever the gains plateaus at about 33% of the data.181

Thus, we use 5% of data for RoBERTa and 33% for182

T5 in our later experiments. We also provide the183

learning curves for the four models in appendix C.184

Which model generalizes best overall? The ac-185

curacies of the four models with I and J losses are186

shown in table 1. Overall, T5-3b with joint loss187

achieves the best performance. Its average accuracy188

outperforms the best RoBERTa model by about 4189

points on average, as well as the previous top scor-190

ing model (Ma et al., 2021a) by 5 points, setting a 191

new SotA zero-shot accuracy. The other T5 models 192

perform worse than RoBERTa: even though T5- 193

large has 2x more parameters than RoBERTa, its 194

performance is 5% lower on average. 195

What causes the difference in model performance? 196

The models differ in three aspects: model size, ar- 197

chitecture, and loss function. The obtained results 198

for T5 reveal a clear positive impact of the model 199

size, as T5-3b > T5-large > T5-small. Yet, the su- 200

periority of RoBERTa-large over T5-large reveals 201

that the model architecture and loss function also 202

play an important role. The choice of the loss func- 203

tion has much higher impact for RoBERTa, yield- 204

ing 4 points difference between the J and the I loss. 205

For the T5 models, the impact of the loss function 206

is minimal. This could be because RoBERTa with 207

J loss setup has masked token prediction for multi- 208

ple tokens in the sequence, which may increase its 209

prediction power. 210

How do models perform on out-of-domain bench- 211

marks? The results show that the average improve- 212

ment of T5-3b is mostly due to its improved per- 213

formance on out-of-domain benchmarks. T5-3b’s 214

improvement over RoBERTa is on average 6.5% 215

on the OOD benchmarks, but only 1.4% on the ID 216

benchmarks. This generalization ability of T5-3b 217

can largely be attributed to the larger capacity of 218

the T5-3b model, which allows it to represent addi- 219

tional knowledge and associations between terms. 220

What is the relation between the gain in generaliza- 221

tion and the properties of the task? To better under- 222

stand the gains from pretraining, we breakdown the 223

task performance by different properties. We select 224

PIQA for this analysis as its answers are diverse 225

in many aspects. Specifically, we measure the ac- 226

curacy of the models in each data quartile based 227

on answer similarity (Jaccard similarity measure 228

between the answer candidates’ tokens), answer 229

length, and vocabulary overlap (w.r.t pre-training 230
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Figure 2: Accuracy of the best performing RoBERTa-large and T5-3b models in relation to the answer similarity,
answer length, and vocabulary overlap between the data used for pretraining and testing.

data) in figure 2. We use RoBERTa’s tokenizer.3231

We see that both models perform better on ques-232

tions with similar answers. Interestingly, vanilla233

RoBERTa already achieves high performance on234

this set, and pre-training only improves the per-235

formance on the questions with rather different236

answers. Given that the data used for pre-training237

is designed to only include questions with non-238

overlapping answers, this finding is intuitive and239

explains where the improvement of performance240

with pre-training comes in (Ma et al., 2021a). T5-241

3b’s accuracy gain over RoBERTa-large also owes242

to this data subset, which again shows that larger243

models have more capacity to learn from the pre-244

training knowledge. In addition, both models per-245

form best on questions with longer answers, while246

T5-3b is advantageous for short answers. Notably,247

the data used for pre-training mostly consists of248

short answers, showing again that the performance249

gain of T5-3b owes to its capacity to extend orig-250

inal knowledge during the additional pre-training.251

While we expect that vocabulary overlap is propor-252

tional to accuracy, figure 2 (right) does not show253

a clear correlation between overlap and accuracy.254

Further analysis is reported in appendix D.255

5 Related Work256

Zero-shot Commonsense Reasoning methods of-257

ten elicit knowledge from pre-trained LMs, by us-258

ing self-talk clarification prompts (Shwartz et al.,259

2020) or asking LMs to generate contrastive ex-260

planations (Paranjape et al., 2021). Models can be261

taught to answer questions by adapting an external262

dataset (Abdou et al., 2020). To use KGs for zero-263

shot pretraining and evaluation, Banerjee and Baral264

(2020) pre-train a LM to perform knowledge com-265

pletion, Bosselut et al. (2020) enhance the question266

based on knowledge completion models, whereas267

3We observed similar results with NLTK’s tokenizer.

Ma et al. (2021a) generate synthetic QA pairs from 268

a consolidated KG to pre-train LMs. Our work 269

complements that by (Ma et al., 2021a), because 270

we investigate the impact of model architecture, 271

size, and training setup on different task partitions. 272

Model Generalization and Data Selection. Sen 273

and Saffari (2020) analyzed LM’s ability to gen- 274

eralize across 5 different QA datasets. Ma et al. 275

(2021b) showed that models can have drastically 276

different performances by fine-tuning on different 277

subset of the data. Swayamdipta et al. (2020) pro- 278

posed to select training instances based on mod- 279

els’ confidence and variability, and they show that 280

training on less-confident examples is more benefi- 281

cial for generalization. While prior work analyses 282

model robustness by sub-sampling instances from 283

the task’s training set, we investigate the impact of 284

data sizes, model architectures, and loss functions 285

when models are pre-trained on large KGs. Our 286

work complements that of Ilievski et al. (2021a), 287

which splits synthetic data from KGs into 12 com- 288

monsense dimensions, revealing that some kinds of 289

knowledge are much more useful for pre-training 290

compared to others, without measuring the impact 291

of pre-training decisions. 292

6 Conclusions 293

This paper studied the impact of strategies for self- 294

supervision of LMs over KGs, differing in terms 295

of their model architecture, loss function, data size, 296

and model size. We noted that optimal strategies 297

depend on all these factors: larger models generally 298

perform better, and the optimal training loss differs 299

per model. Most of the improvement of the largest 300

generative model comes from questions with short 301

answers and dissimilar answer candidates, which 302

is expected, given that the pre-training data has 303

these properties. These findings inform future work 304

that uses self-supervision with large KGs to create 305

generalizable commonsense reasoning agents. 306
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A Training details455

Among all the training sets, we are using learning456

rate of 1e−5 , batch size of 32, training epochs of457

5, adam-epsilon of 1e−6, β1 = 0.9, β2 = 0.98,458

warm-up proportion of 0.05.459

For T5 training, we add the prefix “reasoning:” in460

front of every concatenation of question and an-461

swer, then ask the model to predict “1” for true,462

and “2” for false.463

Regarding libraries, we used python 3.7.10, py-464

torch 1.9.0 and transformers 4.11.3.465

For CPUs, we used Intel(R) Xeon(R) Gold 5217466

CPU @ 3.00GHz (32 CPUs, 8 cores per sockets,467

263GB ram). 468

For GPUs, we used Nvidia Quadro RTX 8000, and 469

Nvidia Geforce 2080Ti. 470

B Sampling strategies 471

We experimented with the following selection 472

strategies: 473

1. random - draw X% of the data points by 474

chance, without replacement; 475

2. high/low vanilla-conf - select the X% of the 476

points for which the model has the high- 477

est/lowest confidence before pretraining; 478

3. high/low confidence - select the X% of the 479

points for which the model has the high- 480

est/lowest mean confidence for the true label 481

across the pretraining epochs (Swayamdipta 482

et al., 2020); 483

4. high/low variability - select the X% of the 484

points for which the model has the high- 485

est/lowest standard variation for the true label 486

across the pretraining epochs (Swayamdipta 487

et al., 2020); 488

5. high/low margin - select the X% with the high- 489

est/lowest mean relative confidence of the cor- 490

rect answer to the incorrect ones (Pleiss et al., 491

2020); 492

6. dimension-based Select a random X% of the 493

training points that belong to a knowledge di- 494

mension. We consider the 12 dimensions de- 495

fined in (Ilievski et al., 2021a): Lexical, Sim- 496

ilarity, Distinctness, Taxonomic, Part-whole, 497

Spatial, Creation, Utility, Desire, Quality, 498

Temporal, Relational-other. 499

7. vocab-novelty We draw the X% of the ques- 500

tions with the highest/lowest average vocabu- 501

lary novelty of its tokens; 502

The results for RoBERTa (table 2) and T5-large 503

(table 3) show that all of the sampling strategies 504

perform worse than random sampling, which is 505

consistent with the initial finding in (Ma et al., 506

2021a). The performance of sampling with the 507

dimensions quality and temporal comes close to 508

random sampling. Among the training indicators, 509

the best sampling strategy for RoBERTa is using 510

examples with low confidence or margin, while for 511

T5-large, it is best to rely on examples with low 512

vanilla confidence. 513
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Table 2: Evaluation results on 5 benchmarks of RoBERTa-Large with different sampling strategies. All samples
have equivalent sizes, corresponding to 5% of the training data. The best result per column is marked in bold.

Strategy OOD ID Avg(OOD) Avg(ID) AvgaNLI WG PIQA SIQA CSQA
Random 5% 72.0 60.2 72.5 65.4 66.9 68.2 66.2 67.4

Dimension

temporal 72.7 61.1 72.1 62.3 65.8 68.6 64.1 66.8
desire 70.2 59.5 72.4 60.9 64.3 67.4 62.6 65.5

taxonomic 67.0 58.0 69.2 0.51 59.0 64.7 55.0 60.8
quality 71.3 61.8 72.0 58.5 64.6 68.4 61.6 65.6

rel-other 65.3 55.5 69.7 51.5 58.1 63.5 54.8 60.0

Vanilla-conf high 63.3 59.1 67.6 49.4 47.2 63.3 48.3 57.3
low 57.9 51.9 55.6 33.1 21.7 55.1 27.4 44.0

Conf high 66.2 58.9 70.3 59.4 62.2 65.1 60.8 63.4
low 71.4 59.2 72.1 62.6 65.7 67.6 64.2 66.2

Varibility high 67.4 56.8 65.5 48.2 44.0 63.2 46.1 56.4
low 65.4 56.0 68.6 54.4 61.0 63.3 57.7 61.1

Margin high 67.1 58.2 70.7 60.1 62.3 65.3 61.2 63.7
low 72.3 60.5 71.2 62.7 65.0 68.0 63.9 66.3

Table 3: Evaluation results on 5 benchmarks of T5-large with different sampling strategies. All samples have
equivalent sizes, corresponding to 5% of the training data. The best result per column is marked in bold.

Strategy OOD ID Avg(OOD) Avg(ID) AvgaNLI WG PIQA SIQA CSQA
Random 5% 64.0 57.5 69.7 54.3 61.7 63.7 58.0 61.4

Dimension

temporal 65.1 56.5 68.9 54.1 59.9 63.5 57.0 60.9
desire 64.4 55.9 69.3 56.4 57.4 63.2 56.9 60.7

taxonomic 60.8 54.6 67.9 54.1 52.3 61.1 53.2 57.9
quality 65.0 56.0 69.1 56.1 56.0 63.4 56.1 60.4

rel-other 54.6 51.3 60.1 44.0 39.5 55.3 41.8 49.9

Vanilla-conf high 63.7 56.0 68.0 55.0 55.8 62.6 55.4 59.7
low 64.8 55.5 69.4 53.4 59.0 63.2 56.2 60.4

Conf high 62.7 56.2 67.8 53.1 55.4 62.2 54.3 59.0
low 45.8 48.1 39.8 24.4 09.7 44.6 17.1 33.6

Varibility high 57.3 51.6 58.8 39.7 36.9 55.9 38.3 48.9
low 63.5 55.2 68.7 53.4 54.7 62.5 54.1 59.1

Margin high 62.9 55.5 68.8 54.4 55.5 62.4 55.0 59.4
low 47.8 51.5 42.5 26.2 12.5 47.3 19.4 36.1

C Training curves514

The curve in figure 3 shows that for the RoBERTa,515

the initial loss is small, probably because we are516

using the same training loss as it was pre-trained,517

which can also explain why the vanilla RoBERTa518

model performs well. For T5, the initial loss is519

about 30, which is left out of the figure in order to520

preserve an informative range of [0− 2]. This high521

initial loss is expected, given that we are using a522

novel prefix, for which T5 has not been pre-trained.523

The difference in the training curves is also due524

to the different training loss in Roberta and T5525

(margin loss and Cross Entropy loss).526

D Data size analysis527

Table 4 shows the impact of different data sizes528

on the model performance on different quartiles529

of answer similarity, length, and vocabulary over-530

lap. We see that both models perform better on the531
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Figure 3: Training curves of the models: RoBERTa-
large, T5-small, T5-large, and T5-3b. We use the
RoBERTa-large model with J loss and 5% of the data.
We show the T5 models with I loss and 33% of the data.

questions with dissimilar answers when they are 532

trained with more data. At the same time, the mod- 533

els perform optimal on the questions with similar 534

answers with less data. This confirms our expla- 535

nation that the knowledge used for pre-training 536

directs the models towards better performance on 537
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Table 4: Evaluation results on the similarity, length, and vocabulary overlap quartiles of PIQA data for the models
RoBERTa (with J loss) and T5-3b (with I loss) with different data sizes. Best results per model and similarity
quartile are marked in bold.

Model Data Size Similarity Length Vocabulary overlap
25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100%

Roberta

0% 53.6 63.9 71.9 80.9 63.0 66.3 65.1 75.9 62.3 71.3 69.9 66.7
1% 56.6 73.5 75.6 78.7 68.8 69.6 68.0 78.0 68.6 71.3 74.3 70.2
5% 60.3 72.4 76.5 80.4 66.7 68.3 72.1 82.6 68.6 73.5 74.9 72.6
10% 58.2 71.1 73.2 79.8 67.1 65.9 70.2 79.1 68.0 72.4 70.6 71.3
33% 58.8 72.0 74.7 78.0 68.0 68.7 70.6 76.3 66.9 71.7 72.8 72.2
50% 57.1 70.4 73.9 80.2 66.4 66.1 71.2 77.8 65.8 70.0 74.9 70.9

100% 55.6 68.3 69.3 74.8 62.7 65.2 66.9 73.0 63.4 65.9 71.9 66.7

T5-3b

0% 48.8 48.3 51.9 51.5 50.1 50.2 50.1 50.0 47.1 52.6 51.2 49.6
1% 66.4 71.1 75.6 79.3 69.3 71.7 73.6 77.8 66.7 73.5 77.1 75.2
5% 67.3 73.9 75.8 80.4 71.9 75.7 70.4 79.6 70.2 74.3 76.9 76.1
10% 67.1 77.6 77.6 83.3 73.4 75.2 73.6 83.3 73.2 75.4 79.7 77.2
33% 69.5 78.7 77.3 80.9 73.9 75.9 76.0 80.7 70.8 76.7 80.0 78.9
50% 67.3 77.0 77.8 80.7 73.4 74.8 74.7 79.8 70.4 76.5 78.4 77.4

100% 69.5 76.7 74.7 79.8 74.5 72.0 75.4 78.9 71.0 77.2 75.8 76.7

the questions with dissimilar answers.538

In terms of answer length, we see that T5 is able539

to exploit maximum amount of data for short an-540

swers, which is expected, given that most of the541

pre-training questions are relatively short. When542

it comes to longer answers, T5 performs best with543

less data, which indicates that the pre-training data544

has limited utility for this set of questions. Curi-545

ously, this pattern is not observed for RoBERTa -546

RoBERTa is unable to leverage more than 1% of the547

data to improve its performance on the questions548

with short answers. We hypothesize that this is due549

to the limited model capacity of RoBERTa, causing550

limited ability to store additional knowledge about551

the data.552

Again, in this table, we do not observe clear pat-553

terns between the model accuracy and vocabulary554

overlap across the different data sizes.555
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