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Abstract

Large knowledge graphs have been shown to
benefit zero-shot evaluation of downstream
tasks, through continual pre-training of lan-
guage models. Yet, little is known about how
to optimally learn from this knowledge, and
what is the impact of the resulting models on
different task partitions. This paper studies the
effect of model architectures, loss functions,
and knowledge subsets on the generalization
of zero-shot models across task partitions. Our
experiments show that data size, model size,
model architecture, and loss function all play
an important role in the accuracy and generaliz-
ability of the models. Most of the improvement
occurs on questions with short answers and dis-
similar answer candidates, which corresponds
to the characteristics of the data used for pre-
training. These findings inform future work
that uses self-supervision with large knowledge
graphs in order to create generalizable com-
monsense reasoning agents.

1 Introduction

Common sense is the common human knowledge
about the world and the methods for making in-
ferences from this knowledge (Davis, 2014): com-
monsense knowledge includes the basic facts about
events (including actions) and their effects, facts
about knowledge and how it is obtained, facts about
beliefs and desires, as well as the basic facts about
material objects and their properties (McCarthy,
1989). Al agents with common sense are expected
to possess a wide range of everyday knowledge
about naive physics, folk psychology, and causal-
ity. Rich commonsense knowledge can be found
in public knowledge graphs (KGs), like Concept-
Net (Speer et al., 2017), ATOMIC (Sap et al.,
2019a), and Visual Genome (Krishna et al., 2017).

State-of-the-art commonsense reasoning Sys-
tems are largely fueled by language models (LMs),
as LMs are able to adapt to benchmarks effec-
tively, insofar as training data is available (Ma

et al., 2019). Recognizing that the assumption of
always having benchmark-specific training data
is unrealistic for open-domain reasoning, recent
work has increasingly focused on zero- and few-
shot tasks and reasoning models. Common meth-
ods for zero-shot reasoning rely on careful pre-
training of LMs with external resources: common-
sense KGs (Banerjee and Baral, 2020; Ma et al.,
2021a), elicitation of pre-existing knowledge in the
LM (Shwartz et al., 2020; Paranjape et al., 2021),
or instruction-prompted training with a diverse set
of tasks (Sanh et al., 2021). While pre-training
with commonsense knowledge has been shown to
improve model performance (Mitra et al., 2019;
Ma et al., 2021a), prior work has not investigated
how different architectural and data decisions affect
model accuracy and generalization across tasks.
This paper studies the effect of model architec-
tures, loss functions, and knowledge subsets on the
accuracy and generalization of language models,
across commonsense tasks. We measure general-
ization as the average model performance on a set
of out-of-domain multiple-choice question answer-
ing benchmarks. We consider two LM architec-
tures and two representative loss functions. We
study the interplay of the model size with the pre-
training knowledge size, and note that the optimal
knowledge size is highly dependent on the model
size, architecture, and loss function. Larger LMs
and loss functions that score the answer candidates
jointly tend to generalize better to out-of-domain
datasets. Further analysis shows that vanilla LMs
perform better on questions which are longer and
have very similar answers, while pre-training with
knowledge is able to close the gap for questions
whose answer candidates are very different.

2 Problem Setup

Task formulation. Following Ma et al. (2021a),
we formalize generalizable commonsense reason-
ing as the task of performing question answering



(QA) across out-of-domain commonsense tasks.
We use the recently-introduced CommonSense
Knowledge Graph (CSKG) (Ilievski et al., 2021b)
to sample thousands of commonsense statements,
and transform them into multiple-choice questions.
Each question corresponds to a particular knowl-
edge dimension (Ilievski et al., 2021a). We define
domain as the dimensions of common sense nec-
essary for solving a particular set of tasks.! Given
a natural language question (), and n possible an-
swers { A1, ..., A, }, the LM will be asked to select
the most probable single answer A during training.
Once the LM pre-training is done, the updated LM
is applied across QA tasks in a zero-shot manner.
Evaluation. We evaluate on five benchmarks for
multiple-choice commonsense question answer-
ing. Two datasets have been known to have do-
main overlap with existing KGs (Mitra et al.,
2019; Ma et al., 2021a): 1) CommonsenseQA
(CSQA) (Talmor et al., 2019), which evaluates a
broad range of common sense aspects, has been
devised based on knowledge in ConceptNet; 2) So-
ciall QA (SIQA) (Sap et al., 2019b), which requires
reasoning about social interactions, has been cre-
ated based on the ATOMIC KG (Sap et al., 2019a).
We refer to CSQA and SIQA as in-domain (ID)
datasets. We also evaluate on three out-of-domain
(OOD) datasets: /. Abductive NLI (aNLI) (Bha-
gavatula et al., 2019), a natural language inference
task, where, given the beginning and the ending
of a story, the task is to choose the more plausi-
ble hypothesis out of two options; 2. PhysicallQA
(PIQA) (Bisk et al., 2020), which tests physical
reasoning; and 3. WinoGrande (WG) (Sakaguchi
et al., 2019), an anaphora resolution task. We mea-
sure LM’s accuracy on a benchmark as the ratio
between the correctly-answered questions and the
total number of questions in a benchmark.

3 Method

Language Models. We adopt two widely-used pre-
trained models: RoBERTa (Liu et al., 2019) and
TS5 (Raffel et al., 2019). RoBERTa is an encoder-
only masked language model (MLM), whereas T5
is an encoder-decoder model which converts tasks
into text-to-text format. We use RoBERTa’s large
model, which has 355M parameters. We experi-
ment with three T5 models of different sizes: small
(60M parameters), large (740M), and 3b (2.85B).

See (Ilievski et al., 2021a; Ma et al., 2019) for more
details about the relation between dimensions and tasks.
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Figure 1: Evaluation results of 4 models with differ-
ent data sizes. Each point represents the average per-
formance of a model over the five datasets. We show
results for RoBERta with J loss, and T5 with I loss.

Loss functions. Following Ma et al. (2021a), for
RoBERTa the input sequences are concatenations
of the question and each of its answer candidates.
We mask one non-stop token in the sequence at a
time, and compute the masked token’s loss. We
then take the averaged loss for the sequence and
train the model with margin loss:

Z max(0,m — Sy + 5;)

where S, and S; are the negative averaged loss for
correct answer and distractor respectively. During
inference, we take the candidate with highest score
S as the answer.

For T5, we add a task-specific prefix, “reason-
ing:”, to the input sequence following how Raffel
et al. (2019) adapt it to downstream task. The
model is pre-trained to predict either true or false,
for each candidate, separately.” During infer-
ence, we concatenate the benchmark question with
one candidate answer at a time, and we compute
d = p(true) — p(false) for that candidate based
on our model. The candidate with the highest dif-
ference d is chosen as the model answer.

Notably, the loss for RoOBERTa is computed over
all candidates jointly (J), whereas the loss for TS is
for each candidate independently (I). To make the
two models more comparable, we also: 1) pre-train
RoBERTa models with T loss, by appending a true-
false label to the input sequence and computing the
loss only for this masked label; and 2) pre-train TS
with a joint function by computing the difference

“We also tried to concatenate the question with all answer
candidates, and teach the model to predict the position or
make a copy of the right candidate, following (Khashabi et al.,
2020). These loss strategies performed consistently worse,
and we leave them out of the paper.



Table 1: Evaluation results on 5 benchmarks of 4 models with their optimal data size. Best results are in bold.

Model Loss Data Size aNLI (V)VO(? PIQA | SIQA IDCSQ A Avg(OOD) Avg(ID) Avg
(Ma et al., 2021a) 70.5 60.9 72.4 63.2 67.4 67.9 65.3 66.8

Roberta-large I 5% 68.1 60.1 67.7 60.8 62.1 65.3 61.5 63.8
J 5% 720 60.2 72.5 65.4 66.9 68.2 66.2 674

T5-small I 33% 514 513 56.3 41.9 34.3 53.0 38.1 47.0

J 33% 50.6 522 56.0 42.5 36.9 529 39.7 47.6

T5-large | 33% 64.6 584 70.2 57.2 62.7 64.4 60.0 62.6

J 33% 65.5 59.0 70.6 57.2 62.9 65.0 60.0 63.0

T5-3b I 33% 75.1 70.2 76.6 63.9 70.4 74.0 672 712

J 33% 76.6 71.0 76.7 65.3 69.9 74.7 67.6 719

between the true and false labels, for each candi-
date, followed by the same margin function used
for ROBERTa’s J loss function. More details about
the model training can be found in appendix A.
Knowledge sampling. We use the subset of
CSKG which combines ATOMIC, ConceptNet,
WordNet (Miller, 1995), Wikidata (Vrandeci¢ and
Krotzsch, 2014), and Visual Genome. Unlike Ma
et al. (2021a), who use 14 semantic relations, we
use the entire set of relations in CSKG, and ran-
domly sample subsets of 1, 5, 10, 33, 50, and 100%.
We also explored sampling strategies based on train-
ing indicators and knowledge dimensions, but these
consistently performed worse than random sam-
pling (see appendix B for more information).

4 Results

How much data is needed to pre-train the mod-
els? Figure 1 shows the average accuracy for the
four models (Roberta-Large, T5-small, T5-large,
and T5-3b) when trained with different data sizes.
We observe that models have different optima in
terms of the data size that they are pre-trained with.
RoBERTa-Large performs best with only 5% of the
artificial data, reaching an average score of 67.4%
across the five datasets. Meanwhile, the best TS5
model, T5-3b peaked with 33% of the data, which
shows that it benefits from more data for pretrain-
ing. Both T5-large and T5-small achieve higher
averaged accuracy with increased data size, how-
ever the gains plateaus at about 33% of the data.
Thus, we use 5% of data for RoBERTa and 33% for
TS5 in our later experiments. We also provide the
learning curves for the four models in appendix C.

Which model generalizes best overall? The ac-
curacies of the four models with I and J losses are
shown in table 1. Overall, T5-3b with joint loss
achieves the best performance. Its average accuracy
outperforms the best ROBERTa model by about 4
points on average, as well as the previous top scor-

ing model (Ma et al., 2021a) by 5 points, setting a
new SotA zero-shot accuracy. The other T5 models
perform worse than RoBERTa: even though T5-
large has 2x more parameters than ROBERTa, its
performance is 5% lower on average.

What causes the difference in model performance?
The models differ in three aspects: model size, ar-
chitecture, and loss function. The obtained results
for TS reveal a clear positive impact of the model
size, as T5-3b > T5-large > T5-small. Yet, the su-
periority of RoBERTa-large over T5-large reveals
that the model architecture and loss function also
play an important role. The choice of the loss func-
tion has much higher impact for RoOBERTa, yield-
ing 4 points difference between the J and the I loss.
For the T5 models, the impact of the loss function
is minimal. This could be because ROBERTa with
J loss setup has masked token prediction for multi-
ple tokens in the sequence, which may increase its
prediction power.

How do models perform on out-of-domain bench-
marks? The results show that the average improve-
ment of T5-3b is mostly due to its improved per-
formance on out-of-domain benchmarks. T5-3b’s
improvement over ROBERTa is on average 6.5%
on the OOD benchmarks, but only 1.4% on the ID
benchmarks. This generalization ability of T5-3b
can largely be attributed to the larger capacity of
the T5-3b model, which allows it to represent addi-
tional knowledge and associations between terms.

What is the relation between the gain in generaliza-
tion and the properties of the task? To better under-
stand the gains from pretraining, we breakdown the
task performance by different properties. We select
PIQA for this analysis as its answers are diverse
in many aspects. Specifically, we measure the ac-
curacy of the models in each data quartile based
on answer similarity (Jaccard similarity measure
between the answer candidates’ tokens), answer
length, and vocabulary overlap (w.r.t pre-training
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Figure 2: Accuracy of the best performing RoBERTa-large and T5-3b models in relation to the answer similarity,
answer length, and vocabulary overlap between the data used for pretraining and testing.

data) in figure 2. We use RoOBERTa’s tokenizer.’
We see that both models perform better on ques-
tions with similar answers. Interestingly, vanilla
RoBERTza already achieves high performance on
this set, and pre-training only improves the per-
formance on the questions with rather different
answers. Given that the data used for pre-training
is designed to only include questions with non-
overlapping answers, this finding is intuitive and
explains where the improvement of performance
with pre-training comes in (Ma et al., 2021a). T5-
3b’s accuracy gain over ROBERTa-large also owes
to this data subset, which again shows that larger
models have more capacity to learn from the pre-
training knowledge. In addition, both models per-
form best on questions with longer answers, while
T5-3b is advantageous for short answers. Notably,
the data used for pre-training mostly consists of
short answers, showing again that the performance
gain of T5-3b owes to its capacity to extend orig-
inal knowledge during the additional pre-training.
While we expect that vocabulary overlap is propor-
tional to accuracy, figure 2 (right) does not show
a clear correlation between overlap and accuracy.
Further analysis is reported in appendix D.

5 Related Work

Zero-shot Commonsense Reasoning methods of-
ten elicit knowledge from pre-trained LMs, by us-
ing self-talk clarification prompts (Shwartz et al.,
2020) or asking LMs to generate contrastive ex-
planations (Paranjape et al., 2021). Models can be
taught to answer questions by adapting an external
dataset (Abdou et al., 2020). To use KGs for zero-
shot pretraining and evaluation, Banerjee and Baral
(2020) pre-train a LM to perform knowledge com-
pletion, Bosselut et al. (2020) enhance the question
based on knowledge completion models, whereas

3We observed similar results with NLTK’s tokenizer.

Ma et al. (2021a) generate synthetic QA pairs from
a consolidated KG to pre-train LMs. Our work
complements that by (Ma et al., 2021a), because
we investigate the impact of model architecture,
size, and training setup on different task partitions.
Model Generalization and Data Selection. Sen
and Saffari (2020) analyzed LM’s ability to gen-
eralize across 5 different QA datasets. Ma et al.
(2021b) showed that models can have drastically
different performances by fine-tuning on different
subset of the data. Swayamdipta et al. (2020) pro-
posed to select training instances based on mod-
els’ confidence and variability, and they show that
training on less-confident examples is more benefi-
cial for generalization. While prior work analyses
model robustness by sub-sampling instances from
the task’s training set, we investigate the impact of
data sizes, model architectures, and loss functions
when models are pre-trained on large KGs. Our
work complements that of Ilievski et al. (2021a),
which splits synthetic data from KGs into 12 com-
monsense dimensions, revealing that some kinds of
knowledge are much more useful for pre-training
compared to others, without measuring the impact
of pre-training decisions.

6 Conclusions

This paper studied the impact of strategies for self-
supervision of LMs over KGs, differing in terms
of their model architecture, loss function, data size,
and model size. We noted that optimal strategies
depend on all these factors: larger models generally
perform better, and the optimal training loss differs
per model. Most of the improvement of the largest
generative model comes from questions with short
answers and dissimilar answer candidates, which
is expected, given that the pre-training data has
these properties. These findings inform future work
that uses self-supervision with large KGs to create
generalizable commonsense reasoning agents.
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A Training details

Among all the training sets, we are using learning
rate of 1~ , batch size of 32, training epochs of
5, adam-epsilon of 1e7%, 81 = 0.9,52 = 0.98,
warm-up proportion of 0.05.

For TS5 training, we add the prefix “reasoning:” in
front of every concatenation of question and an-
swer, then ask the model to predict “1” for true,
and “2” for false.

Regarding libraries, we used python 3.7.10, py-
torch 1.9.0 and transformers 4.11.3.

For CPUs, we used Intel(R) Xeon(R) Gold 5217
CPU @ 3.00GHz (32 CPUs, 8 cores per sockets,

263GB ram).
For GPUs, we used Nvidia Quadro RTX 8000, and
Nvidia Geforce 2080Ti.

B Sampling strategies

We experimented with the following selection
strategies:

1. random - draw X% of the data points by
chance, without replacement;

2. high/low vanilla-conf - select the X% of the
points for which the model has the high-
est/lowest confidence before pretraining;

3. high/low confidence - select the X% of the
points for which the model has the high-
est/lowest mean confidence for the true label
across the pretraining epochs (Swayamdipta
et al., 2020);

4. high/low variability - select the X% of the
points for which the model has the high-
est/lowest standard variation for the true label
across the pretraining epochs (Swayamdipta
et al., 2020);

5. high/low margin - select the X% with the high-
est/lowest mean relative confidence of the cor-

rect answer to the incorrect ones (Pleiss et al.,
2020);

6. dimension-based Select a random X% of the
training points that belong to a knowledge di-
mension. We consider the 12 dimensions de-
fined in (Ilievski et al., 2021a): Lexical, Sim-
ilarity, Distinctness, Taxonomic, Part-whole,
Spatial, Creation, Utility, Desire, Quality,
Temporal, Relational-other.

7. vocab-novelty We draw the X% of the ques-
tions with the highest/lowest average vocabu-
lary novelty of its tokens;

The results for RoOBERTa (table 2) and T5-large
(table 3) show that all of the sampling strategies
perform worse than random sampling, which is
consistent with the initial finding in (Ma et al.,
2021a). The performance of sampling with the
dimensions quality and temporal comes close to
random sampling. Among the training indicators,
the best sampling strategy for ROBERTa is using
examples with low confidence or margin, while for
T5-large, it is best to rely on examples with low
vanilla confidence.
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Table 2: Evaluation results on 5 benchmarks of ROBERTa-Large with different sampling strategies. All samples
have equivalent sizes, corresponding to 5% of the training data. The best result per column is marked in bold.

Strategy LI %%D proa | s10a IDch A\ | AVE(OOD)  Avg(ID)  Avg
Random 5% 72.0 60.2 72.5 65.4 66.9 68.2 66.2 674
temporal 72.7 61.1 72.1 62.3 65.8 68.6 64.1 66.8

desire 702  59.5 72.4 60.9 64.3 67.4 62.6 65.5

Dimension taxonomic 67.0 58.0 69.2 0.51 59.0 64.7 55.0 60.8
quality 713 618 72.0 58.5 64.6 68.4 61.6 65.6

rel-other 653 555 69.7 51.5 58.1 63.5 54.8  60.0

Vanilla-conf high 63.3 59.1 67.6 49.4 47.2 63.3 483 573
low 579 519 55.6 33.1 21.7 55.1 274 44.0

Conf high 66.2 589 70.3 59.4 62.2 65.1 60.8 634
low 714 592 72.1 62.6 65.7 67.6 642 66.2

Varibility high 674 56.8 65.5 48.2 44.0 63.2 46.1 56.4
low 654 56.0 68.6 54.4 61.0 63.3 57.7 61.1

Margin high 67.1 582 70.7 60.1 62.3 65.3 61.2 63.7
low 72.3  60.5 71.2 62.7 65.0 68.0 63.9 66.3

Table 3: Evaluation results on 5 benchmarks of T5-large with different sampling strategies. All samples have
equivalent sizes, corresponding to 5% of the training data. The best result per column is marked in bold.

[0]0))] ID
Strategy aNLI WG PIQA | SIQA CSQA Avg(OOD) Avg(ID) Avg
Random 5% 64.0 57.5 69.7 54.3 61.7 63.7 58.0 o614
temporal 65.1 56.5 68.9 54.1 59.9 63.5 57.0 60.9
desire 644 559 69.3 56.4 57.4 63.2 56.9 60.7
Dimension  taxonomic 60.8 54.6 67.9 54.1 523 61.1 532 579
quality 65.0 56.0 69.1 56.1 56.0 63.4 56.1 604
rel-other 546 51.3 60.1 44.0 39.5 55.3 41.8 499
Vanilla-conf high 63.7 56.0 68.0 55.0 55.8 62.6 554 59.7
low 64.8 555 69.4 53.4 59.0 63.2 56.2  60.4
Conf high 62.7 56.2 67.8 53.1 55.4 62.2 543  59.0
low 458 48.1 39.8 24.4 09.7 44.6 17.1  33.6
Varibilit high 573 516 58.8 39.7 36.9 55.9 38.3 489
y low 63.5 55.2 68.7 53.4 54.7 62.5 54.1  59.1
Margin high 629 555 68.8 54.4 55.5 62.4 55.0 594
g low 478 515 42.5 26.2 12.5 47.3 194 36.1
C Training curves 2.00 — Rohertatarge
1.75 _ T5:Iarge
The curve in figure 3 shows that for the ROBERTa, 4150 To-small
the initial loss is small, probably because we are ;“5
using the same training loss as it was pre-trained, g::
which can also explain why the vanilla ROBERTa  ~
model performs well. For TS5, the initial loss is 025

about 30, which is left out of the figure in order to
preserve an informative range of [0 — 2]. This high
initial loss is expected, given that we are using a
novel prefix, for which TS5 has not been pre-trained.
The difference in the training curves is also due
to the different training loss in Roberta and TS5
(margin loss and Cross Entropy loss).

D Data size analysis

Table 4 shows the impact of different data sizes
on the model performance on different quartiles
of answer similarity, length, and vocabulary over-
lap. We see that both models perform better on the

0.00

[} 20000 40000 60000 80000
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100000 120000 140000

Figure 3: Training curves of the models: RoBERTa-
large, T5-small, T5-large, and T5-3b. We use the
RoBERTa-large model with J loss and 5% of the data.
We show the TS5 models with I loss and 33% of the data.

questions with dissimilar answers when they are
trained with more data. At the same time, the mod-
els perform optimal on the questions with similar
answers with less data. This confirms our expla-
nation that the knowledge used for pre-training
directs the models towards better performance on



Table 4: Evaluation results on the similarity, length, and vocabulary overlap quartiles of PIQA data for the models
RoBERTa (with J loss) and T5-3b (with I loss) with different data sizes. Best results per model and similarity
quartile are marked in bold.

. Similarity Length Vocabulary overlap
Model  DataSize | )50, 50, 75% 100% | 25% 50% 75% 100% | 25% 50% 5% 100%
0% 536 639 719 809 | 630 663 651 759 | 623 713 699 667
1% 566 735 756 787 | 688 69.6 680 780 | 68.6 713 743 702
Roberta 5% 603 724 765 804 | 667 683 721 826 | 68.6 735 749 726
10% 582 711 732 798 | 67.1 659 702 791 | 680 724 706 713
33% 588 720 747 780 | 680 687 706 763 | 669 717 728 7122
50% 571 704 739 802 | 664 661 712 718 | 658 700 749 709
100% | 556 683 693 748 | 627 652 669 730 | 634 659 719 667
0% 488 483 510 515 500 502 500 500 | 471 526 512 496
1% 664 711 756 193 | 693 717 736 118 | 667 135 771 7152
—_— 5% 673 739 758 804 | 71.9 757 704 796 | 702 743 769  76.1
10% 671 716 776 833 | 734 752 736 833 | 732 154 797 712
33% 695 787 773 809 | 739 1759 760 807 | 708 767 80.0  78.9
50% 673 770 778 807 | 734 748 747 7198 | 704 765 784 7174
100% | 69.5 767 747 798 | 745 720 754 789 | 71.0 772 758 767

the questions with dissimilar answers.

In terms of answer length, we see that T5 is able
to exploit maximum amount of data for short an-
swers, which is expected, given that most of the
pre-training questions are relatively short. When
it comes to longer answers, TS5 performs best with
less data, which indicates that the pre-training data
has limited utility for this set of questions. Curi-
ously, this pattern is not observed for RoOBERTa -
RoBERTa is unable to leverage more than 1% of the
data to improve its performance on the questions
with short answers. We hypothesize that this is due
to the limited model capacity of ROBERTa, causing
limited ability to store additional knowledge about
the data.

Again, in this table, we do not observe clear pat-
terns between the model accuracy and vocabulary
overlap across the different data sizes.



