
ComSearch: Equation Searching with Combinatorial Mathematics for
Solving Math Word Problems with Weak Supervision

Anonymous ACL submission

Abstract
Previous studies have introduced a weakly-001
supervised paradigm for solving math word002
problems requiring only the answer value an-003
notation. While these methods search for cor-004
rect value equation candidates as pseudo la-005
bels, they search among a narrow sub-space of006
the enormous equation space. To address this007
problem, we propose a novel search algorithm008
with combinatorial mathematics ComSearch,009
which can compress the search space by exclud-010
ing mathematical equivalent equations. The011
compression allows the searching algorithm012
to enumerate all possible equations and ob-013
tain high-quality data. Experimental results014
show that our method achieves state-of-the-art015
results, especially for problems with more vari-016
ables.017

1 Introduction018

Solving math word problems (MWPs) is the task019

of extracting a mathematical solution from prob-020

lems written in natural language. In Figure 1, we021

present an example of MWP. Based on a sequence-022

to-sequence (seq2seq) framework that takes in the023

text descriptions of the MWPs and predicts the an-024

swer equation (Wang et al., 2017), task specialized025

encoder and decoder architectures (Wang et al.,026

2018b, 2019; Xie and Sun, 2019; Liu et al., 2019;027

Guan et al., 2019; Zhang et al., 2020b,a; Shen028

and Jin, 2020), data augmentation and normaliza-029

tion (Wang et al., 2018a; Liu et al., 2020), pre-030

trained models (Tan et al., 2021; Liang et al., 2021;031

Shen et al., 2021) and various other studies have032

been conducted on full supervision setting of the033

task. This setting requires equation expression an-034

notation, which is expensive and time-consuming.035

Recently Hong et al. (2021) and Chatterjee et al.036

(2021) addressed this problem and proposed the037

weak supervision setting, where only the answer038

value annotation is given for supervision. These039

methods first extract candidate equations that ob-040

tain the correct value and then use them as pseudo041

Figure 1: Example of MWP solving system under full
supervision and weak supervision.

labels to train the MWP solving model. However, 042

the solution space is enormous with the bruce-force 043

searching used in these two studies, i.e., O(n2n) 044

with n variables. When the number of variables in- 045

creases, it becomes computationally impossible to 046

traverse all possible equations due to the high com- 047

putational complexity. Hong et al. (2021) searches 048

among neighbour equations of the wrong model 049

prediction in the solution space via random walk, 050

which lacks robustness and highly relies on initial- 051

ization. Chatterjee et al. (2021) trains a candidate 052

equation extraction model by using reinforcement 053

learning (RL) to explore the solution space, where 054

the reward is given by whether the equation obtains 055

the correct value. The rewards are sparse in the 056

enormous search space, resulting in relatively low 057

coverage of 14.5% of the examples. Even with 058

beam search, it can only cover 80.1% of the exam- 059

ples. 060

We observe that although the search space is am- 061

ple, many equations in the search space are equiv- 062

alent. For example, a − b + c + d has various 063

mathematically equivalent forms a− (b− c− d), 064

a + c + d − b and so on. The search space could 065

be compressed if such equivalence could be ex- 066

cluded in the searching algorithm. Supported by 067

theories in combinatorial mathematics, we propose 068

a new searching method that searches through only 069

non-equivalent equations in the search space. Our 070

method could be proven to have an approximate 071

complexity of O(nn), allowing the algorithm to 072

1



Figure 2: The model overview.

Algorithm 1 enum_skel(n)
Require: n ≥ 1

Intialize empty list skels
for i ≤ n; i = 1; i++ do

left_list = unit_skel(i)
right_list = enum_skels(n− i)
for left in left_list do

for right in right_list do
move the start index of right to i
new_skels += left + right

end for
end for
skels += new_skels

end for
return skels

find all possible candidate equations with the given073

variables. We show that 77.5% percent of the ex-074

amples have only one equation candidate and form075

high quality and reliable data. We build a ranking076

module to choose the best pseudo label for exam-077

ples with multiple candidate equations. Our experi-078

mental results demonstrate the effectiveness of our079

method, achieve state-of-the-art results under the080

weakly supervised setting.081

2 Methodology082

We show the pipeline of our method in Figure 2.083

Our method consists of three modules: The Search084

with Combinatorial Mathematics (ComSearch)085

module that searches for candidate equations; the086

MWP model that is trained to predict equations087

given the natural language text and pseudo labels;088

the Ranking module that ranks which candidate089

equation should form the pseudo label.090

2.1 ComSearch091

Directly searching for non-equivalent equation ex-092

pressions is difficult, because the searching method093

needs to consider Commutative law, Associative094

law and other equivalent forms. To enumerate all095

non-equivalent equations for four arithmetic opera-096

tions, we transform the problem to finding skeleton097

structures that could be enumerated without repeat098

via deep-first search.099

We define the set of non-equivalent equations 100

using four arithmetic operations as Sn. We sort 101

the set to two categories, either S± where the out- 102

ermost operators are ±, such as a/b − c + d and 103

a+(b∗c−d), or S⋇ where the outermost operators 104

are ⋇, such as (a+ b) ∗ (c− d/e) and b ∗ (a− c). 105

We call the former a general addition equation and 106

the latter a general multiplication equation: 107

S±
n = {(x1 ⋇ (..))± (xi ⋇ (..))± ..xn} (1) 108

S⋇
n = {(x1 ± (..))⋇ (xi ± (..))⋇ ..xn} (2) 109

These two sets are symmetrical. Consider el- 110

ements in S±
n , we can rewrite the equation to x. 111

Thus we can form a mapping g(·) from an gen- 112

eral addition equation x to an skeleton structure 113

expression g(x). : 114

115

x = ((xi ⋇ (..)) + (xj ⋇ (..)) + ..) 116

− ((xk ⋇ (..)) + (xl ⋇ (..)) + ..) 117

g(x) = (xi(..))(xj(..))..&(xk(..))(xl(..)).. 118

The order of xi within the same layer of brackets 119

is ignored in g(x), that it can deal with the equiv- 120

alence caused by Commutative law and Associa- 121

tive law. The addition and substraction terms are 122

split by &, that it can deal with equivalence cause 123

by removing brackets. g(x) is a bijection, so the 124

enumeration problem transforms to finding such 125

skeletons: 126

n = 2 :ab, a&b, b&a 127

n = 3 :abc, a&(b&c), (ab)&c, ... 128

129

The enumeration problem of these structures is 130

an expansion of solving Schroeder’s fourth prob- 131

lem (Schröder, 1870), which calculates the number 132

of labeled series-reduced rooted trees with n leaves. 133

We use a deep-first search algorithm shown in Algo- 134

rithm 1 to enumerate these skeletons. It considers 135

the position of the first bracket and then recursively 136

finds all possible skeletons of sub-sequences of the 137

variable sequence X = {xk}ik=1 (Wang, 2021). 138

2



To be noticed, because there is at least one +139

operator for each equation, the left side of & must140

not be empty while the right part has no restrictions.141

Thus we define the unit_skel(i) equation to return142

possible skeletons with only one or none & and no143

brackets. This constraint is equivalent to finding144

non-empty subsets and its complement of the vari-145

able sequence X . The enumeration algorithm of146

non-empty subsets is trivial and omitted here.147

unit_skel(i) = {(A&A)|A ⊆ X ;A ̸= ∅} (3)148

We transform the skeletons back to equations to149

obtain all non-equivalent equations Sn. Given the150

compressed search space, we substitute the values151

for variables in the equation templates and use the152

equations which value matches with the answer153

number as candidate equations.154

2.2 MWP Solving Model155

We follow Hong et al. (2021) and Chatterjee et al.156

(2021) and use Goal-driven tree-structured MWP157

solver (GTS) (Xie and Sun, 2019) as the MWP158

model. GTS is a seq2seq model with the atten-159

tion mechanism that uses a bidirectional long short160

term memory network (BiLSTM) as the encoder161

and LSTM as the decoder. GTS also uses a recur-162

sive neural network to encode subtrees based on its163

children nodes representations with the gate mech-164

anism. With the subtree representations, this model165

can well use the information of the generated to-166

kens to predict a new token.167

2.3 Ranking168

While ComSearch enumerates equations that are169

non-equivalent without repeat, some variable sets170

can coincidentally form multiple equations with171

the same correct value, as we show in Figure 2.172

The equations 150 ∗ 2 − 50 and 150 + 50 ∗ 2 are173

non-equivalent, their values are equal, while only174

150 ∗ 2− 50 is the correct solution.175

To process these data, we build a ranking module176

to choose the best candidate equation. We first train177

the MWP model with the pseudo data that only one178

equation matches with the answer. Then we use the179

trained model to perform self-learning on the data180

with two or more candidate equations, and assign181

a score to each candidate and use the candidate182

with the highest score as the pseudo label of the183

example. We add the ranked data to the training184

data and re-train the model from scratch.185

Model Term # Prop(%)
- All Data 23,162 -

Ours

Too Long 233 1.0
Power Operator 51 0.2
Single 17,959 77.5
Multiple 3,931 17.0
Data 21,890 94.5

WARM
Data (w/o beam) - 14.5
Data (w/ beam) - 80.1

Table 1: Statistics of ComSearch Results.

#Variable Bruce-Force ComSearch Ratio
1 1 1 1
2 8 6 1.3
3 192 68 2.8
4 9,216 1,170 7.9
5 737,280 27,142 27.2
6 88,473,600 793,002 111.6

Table 2: Empirical Results of Search Space Size.

3 Experiments 186

3.1 Dataset 187

We evaluate our proposed method on the Math23K 188

dataset. It contains 23,161 math word problems 189

annotated with solution expressions and answers. 190

We only use the problems and final answers. We 191

evaluate our method on both 5-fold cross valida- 192

tion and train-test setting of Wang et al. (2018a). 193

The train-test setting is evaluated by the three-run 194

average. 195

3.2 Statistics 196

We give statistics of ComSearch in Table 1. Among 197

the 23,162 examples, 233 have more than 6 vari- 198

ables that we filter them out, and 51 use the power 199

operation that our method is not applicable. 94.5% 200

of the examples find at least one equation that can 201

match the answer value, significantly higher than 202

WARM, which covers only 80.1% of the examples. 203

LBF dynamically searches for candidate equations, 204

and this measurement is not applicable. 17,959 205

examples match with only one equation, and 3,931 206

examples match with two or more equations that 207

need the ranking module to choose the pseudo la- 208

bel further. We give the distribution of the matched 209

template in the appendix. 210

3.2.1 Compression of Search Space 211

We show the empirical compression of the search 212

space with ComSearch in Table 2. As we can see, 213

3



the compression ratio of ComSearch increases as214

the variable number grows, up to more than 100215

times when the number of variables reaches 6.216

The size of the Bruce-Force search space could217

be directly calculated, which is n!∗ (n−1)!∗4n−1.218

If we consider the exponential generating function219

of card(Sn), based on Smooth Implicit-function220

Schema, we can have an approximation of Sn:221

card(Sn) ∼ C ∗ nn−1, which shows our search-222

ing method compresses the search space more than223

exponential level. We give proof in the appendix.224

3.3 Results225

We compare our weakly-supervised models’ math226

word problem solving accuracy with two baselines227

methods in Table 3.228

Chatterjee et al. (2021) proposed WARM that229

uses RL to train an equation candidate generation230

model with the reward of whether the value of231

the equation is correct. Since the reward signal is232

sparse due to the enormous search space, it uses233

beam search to further search candidates.234

Hong et al. (2021) proposed LBF, a learning-by-235

fix algorithm that searches in neighbour space of236

the predicted wrong answer by random walk and237

tries to find a fix equation that holds the correct238

value as the candidate equation. memory saves the239

candidates of each epoch as training data.240

We reproduced the results of LBF with their offi-241

cial code and found that LBF lacks robustness. We242

observe that its performance highly relies on the ini-243

tialization of the model. When fewer candidates are244

extracted at early-stage training, the performance245

drops drastically since LBF relies on random walks246

in an enormous search space. Our method achieves247

state-of-the-art performance and outperforms other248

baselines up to 3.8% and 2.7% on train-test and249

cross-validation settings. Our method is also more250

robust with minor variance.251

3.3.1 Ablation Study252

We perform an ablation study with train-test setting253

in Table 3. Single denotes using the 17,959 exam-254

ples that only match with one equation, the model255

achieves 58.0% performance, which is slightly256

lower than using all data and the ranking module,257

out-performing other baseline models. This shows258

that the examples with only one matching could259

be considered highly reliable and achieve compara-260

ble performance with a smaller training data size.261

Random denotes removing the ranking module and262

randomly sampling an equation for the examples263

Model Valid(%) Test(%) CV(%)
WARM - 54.3 -
LBF 57.2(±0.5) 55.4(±0.5) 55.2(±1.2)
+memory 56.6(±6.9) 55.1(±6.2) 56.3(±6.2)
Ours 60.1(±0.2) 59.2(±0.3) 59.0(±0.9)
Single 60.0 58.0 -
Random 57.3 56.3 -
GTS - 75.6 74.3

Table 3: Results on Math23K. ± denotes the variance
of 3 runs for valid/test, and 5 folds for Cross Validation.

#Var LBF(%) ComSearch(%) Prop(%)
1 75.0 50.0 1.6
2 75.2 73.4 33.1
3 56.2 62.9 48.5
4 4.8 25.8 12.4
5 3.2 16.1 3.1
6 0 28.6 0.7
7 0 25.0 0.4

Table 4: Results of different number of variables.

that match with two or more equations. We ob- 264

serve a performance drop of 2.9% point without 265

the ranking module, showing that our ranking mod- 266

ule improves the performance. 267

3.3.2 Study on Number of Variables 268

In Table 4, we show the comparison of model per- 269

formance on examples of a different number of vari- 270

ables. For the examples with 1 or 2 variables, LBF 271

has a slight performance advantage since the search 272

space is small and nearly not compressed. While 273

the variable number grows, our method achieves 274

better performance on examples with more vari- 275

ables and larger search space, which demonstrates 276

the efficiency of ComSearch. 277

4 Conclusion 278

This paper proposes ComSearch, a searching 279

method based on Combinatorial Mathematics, to 280

extract candidate equations for Solving Math Word 281

Problems under weak supervision. ComSearch 282

compresses the enormous search space of equa- 283

tions beyond the exponential level, allowing the 284

algorithm to enumerate all possible non-equivalent 285

equations to search for candidate equations. Our 286

experiments show that our method obtains high- 287

quality pseudo data for training, achieves state-of- 288

the-art performance under weak supervision set- 289

tings, outperforming strong baselines, especially 290

for the examples with more variables. 291

4



A Proof for Search Space Approximation292

Because there is at least one + or ∗ operator for293

each equation (i.e. −a− b− c is illegal), the target294

Sn is not symmetric and is hard to directly approx-295

imate. We need two assisting targets to form the296

approximate. This proof majorly relies on Flajolet297

and Sedgewick (2009).298

We first consider target U that considers only299

+, ∗ and / three operators. We sort it into two300

categories: U+ that the outermost operator is +301

and U⋇ that the outermost operator is ⋇. Equations302

such as 1
a ∗ 1

b−c are still considered illegal.303

We can have the construction of U :304

U+ = Z + SET≥(U
⋇) (4)305

U⋇ = Z + (22 − 1) ∗ SET=2(U
+) (5)306

+ (23 − 1) ∗ SET=3(U
+)... (6)307

We apply symbolic method to obtain the EGF of308

the constructions:309

U+(z) = z +
∑
k≥2

1

k!
[U⋇(z)]k (7)310

= z + [eU
⋇(z) − 1− U⋇(z)] (8)311

U⋇(z) = z +
∑
k≥2

2k − 1

k!
[U+(z)]k (9)312

= z + e2U
+(z) − eU

+(z) − U+(z) (10)313

Meanwhile we have:314

U(z) = U+(z) + U⋇(z)− z (11)315

Next we consider target T that −a − b − c is316

considered legal. Similarly we define T± and T⋇.317

We consider the construction:318

T± = 2Z + SET≥(T
⋇) (12)319

T⋇ = 2Z + 2[(22 − 1) ∗ SET=2(T
±/2) (13)320

+ (23 − 1) ∗ SET=3(T
±/2)...] (14)321

With symbolic method we have:322

T±(z) = 2z +
∑
k≥2

1

k!
[U⋇(z)]k (15)323

= 2z + [eT
⋇(z) − 1− T⋇(z)] (16)324

T⋇(z) = 2z + 2
∑
k≥2

2k − 1

k!
[T±(z)/2]k (17)325

= 2z + 2eT
±(z) − 2eT

±(z)/2 − T±(z)
(18)

326

The illegal equations such as −a − b − c in T327

equals to the counts of a+ b+ c, which is actually328

U . So we have: 329

S(z) = T (z)− U(z) (19) 330

We now have the EGF of Sn. 331

With Smooth implicit-function schema and 332

Stirling approximiation function we have, for 333

an EGF y(z) =
∑

n≥0 ynz
n, Let G(z, w) = 334∑

m,n≥0 gm,nz
mwn, thus y(z) = G(z, y(z)): 335

n! ∗ [zn]y(z) ∼ c ∗ n!√
2πn3

∗ r−n+1/2 (20) 336

∼ c
√
2πnr√
2πn3

(
1

r
)n(

n

e
)n (21) 337

=
c
√
r

n
(
n

re
)n (22) 338

while r: 339

G(r, s) = s (23) 340

∂G(r, s)

∂w
= 1 (24) 341

and c: 342

c =

√
∂G(r, s)/∂z

∂2G(r, s)/∂w2
(25) 343

We still need the two assisting targets to perform 344

the approximation. We have: 345

U+(z) = ez+e2U
+(z)−eU

+(z)−U+(z) (26) 346

− e2U
+(z) + eU

+(z) + U+(z)− 1 (27) 347

Let G(z, w) = z+e2w−ew− ln(1+e2w−ew), 348

considering 23 and 25, r, s and c would be constant 349

numbers. 350

So we have: 351

n![zn]U+(z) ∼
c1
√
r1

n
(
n

r1e
)n (28) 352

Similarly we can approximate U⋇, T± and T⋇: 353

n![zn]U⋇(z) ∼
c2
√
r1

n
(
n

r2e
)n (29) 354

n![zn]T±(z) ∼
c3
√
r2

n
(
n

r3e
)n (30) 355

n![zn]T⋇(z) ∼
c4
√
r2

n
(
n

r4e
)n (31) 356

So we have: 357

un = n![zn]U(z) ∼
(c1 + c2)

√
r1

n
(
n

r1e
)n (32) 358

tn = n![zn]T (z) ∼
(c3 + c4)

√
r2

n
(
n

r2e
)n (33) 359

Since S(z) = T (z) − U(z), the subtraction of 360

un and tn would be our approximation. However 361

5



Figure 3: Distribution of Candidate Equation Number.

Figure 4: Distribution of Candidate Equation Number.

we observe that r1 ≫ r3, that un can be ignored.362

So we have:363

sn = n![zn]S(z) ∼
(c3 + c4)

√
r2

n
(
n

r2e
)n (34)364

Q.E.D.365

B Distribution of Candidate Equations366

The largest candidate equation number of one ex-367

ample is 3914. We show the distribution of candi-368

date equations in Figure 3 and 4. The x axis repre-369

sent the the number of candidate, while the y axis370

represents the number of examples that have x can-371

didate equations. We can see from Figure 3, which372

includes examples that have 1 to 50 candidates, it373

is a long tail distribution that most examples only374

have a few candidate equations. From Figure 4,375

where we zoom in and focus on examples that have376

2 to 20 candidates, we can see that there are a lot377

of examples that have more than 2 candidate equa-378

tions, and the ranking module is essential.379

References380

L. Carlitz and J. Riordan. 1956. The number of labeled381
two-terminal series-parallel networks. Duke Mathe-382
matical Journal, 23(3):435 – 445.383

Oishik Chatterjee, Aashish Waikar, Vishwajeet Kumar, 384
Ganesh Ramakrishnan, and Kavi Arya. 2021. A 385
weakly supervised model for solving math word prob- 386
lems. 387

Philippe Flajolet and Robert Sedgewick. 2009. Analytic 388
Combinatorics. Cambridge University Press. 389

Wenyv Guan, Qianying Liu, Guangzhi Han, Bin Wang, 390
and Sujian Li. 2019. An improved coarse-to-fine 391
method for solving generation tasks. In Proceedings 392
of the The 17th Annual Workshop of the Australasian 393
Language Technology Association, pages 178–185, 394
Sydney, Australia. Australasian Language Technol- 395
ogy Association. 396

Yining Hong, Qing Li, Daniel Ciao, Siyuan Huang, and 397
Song-Chun Zhu. 2021. Learning by fixing: Solving 398
math word problems with weak supervision. Pro- 399
ceedings of the AAAI Conference on Artificial Intelli- 400
gence, 35(6):4959–4967. 401

W. Knödel. 1951. Über zerfällungen. Monatshefte für 402
Mathematik, 55:20–27. 403

Yihuai Lan, Lei Wang, Qiyuan Zhang, Yunshi Lan, 404
Bing Tian Dai, Yan Wang, Dongxiang Zhang, and 405
Ee-Peng Lim. 2021. Mwptoolkit: An open-source 406
framework for deep learning-based math word prob- 407
lem solvers. 408

Jierui Li, Lei Wang, Jipeng Zhang, Yan Wang, Bing Tian 409
Dai, and Dongxiang Zhang. 2019. Modeling intra- 410
relation in math word problems with different func- 411
tional multi-head attentions. In Proceedings of the 412
57th Annual Meeting of the Association for Compu- 413
tational Linguistics, pages 6162–6167. 414

Zhenwen Liang, Jipeng Zhang, Jie Shao, and Xian- 415
gliang Zhang. 2021. Mwp-bert: A strong baseline 416
for math word problems. 417

Qianying Liu, Wenyu Guan, Sujian Li, Fei Cheng, 418
Daisuke Kawahara, and Sadao Kurohashi. 2020. 419
Reverse operation based data augmentation for 420
solving math word problems. arXiv preprint 421
arXiv:2010.01556. 422

Qianying Liu, Wenyv Guan, Sujian Li, and Daisuke 423
Kawahara. 2019. Tree-structured decoding for solv- 424
ing math word problems. In Proceedings of the 425
2019 Conference on Empirical Methods in Natu- 426
ral Language Processing and the 9th International 427
Joint Conference on Natural Language Processing 428
(EMNLP-IJCNLP), pages 2370–2379, Hong Kong, 429
China. Association for Computational Linguistics. 430

John Riordan and Claude E Shannon. 1942. The number 431
of two-terminal series-parallel networks. Journal of 432
Mathematics and Physics, 21(1-4):83–93. 433

Ernst Schröder. 1870. Vier combinatorische probleme. 434
Zeitschrift für Mathematik und Physik, 15. 435

6

https://doi.org/10.1215/S0012-7094-56-02340-7
https://doi.org/10.1215/S0012-7094-56-02340-7
https://doi.org/10.1215/S0012-7094-56-02340-7
http://arxiv.org/abs/2104.06722
http://arxiv.org/abs/2104.06722
http://arxiv.org/abs/2104.06722
http://arxiv.org/abs/2104.06722
http://arxiv.org/abs/2104.06722
https://doi.org/10.1017/CBO9780511801655
https://doi.org/10.1017/CBO9780511801655
https://doi.org/10.1017/CBO9780511801655
https://aclanthology.org/U19-1024
https://aclanthology.org/U19-1024
https://aclanthology.org/U19-1024
https://ojs.aaai.org/index.php/AAAI/article/view/16629
https://ojs.aaai.org/index.php/AAAI/article/view/16629
https://ojs.aaai.org/index.php/AAAI/article/view/16629
http://arxiv.org/abs/2109.00799
http://arxiv.org/abs/2109.00799
http://arxiv.org/abs/2109.00799
http://arxiv.org/abs/2109.00799
http://arxiv.org/abs/2109.00799
http://arxiv.org/abs/2107.13435
http://arxiv.org/abs/2107.13435
http://arxiv.org/abs/2107.13435
https://doi.org/10.18653/v1/D19-1241
https://doi.org/10.18653/v1/D19-1241
https://doi.org/10.18653/v1/D19-1241


Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin436
Jiang, Ming Zhang, and Qun Liu. 2021. Generate &437
rank: A multi-task framework for math word prob-438
lems. In Findings of the Association for Computa-439
tional Linguistics: EMNLP 2021, pages 2269–2279.440

Yibin Shen and Cheqing Jin. 2020. Solving math word441
problems with multi-encoders and multi-decoders.442
In Proceedings of the 28th International Conference443
on Computational Linguistics, pages 2924–2934,444
Barcelona, Spain (Online). International Committee445
on Computational Linguistics.446

Minghuan Tan, Lei Wang, Lingxiao Jiang, and Jing447
Jiang. 2021. Investigating math word problems using448
pretrained multilingual language models.449

Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang,450
and Xiaojiang Liu. 2018a. Translating a math word451
problem to a expression tree. In Proceedings of the452
2018 Conference on Empirical Methods in Natural453
Language Processing, pages 1064–1069.454

Lei Wang, Dongxiang Zhang, Lianli Gao, Jingkuan455
Song, Long Guo, and Heng Tao Shen. 2018b. Math-456
dqn: Solving arithmetic word problems via deep re-457
inforcement learning. In Proceedings of the AAAI458
Conference on Artificial Intelligence, volume 32.459

Lei Wang, Dongxiang Zhang, Jipeng Zhang, Xing Xu,460
Lianli Gao, Bing Tian Dai, and Heng Tao Shen.461
2019. Template-based math word problem solvers462
with recursive neural networks. In Proceedings of463
the AAAI Conference on Artificial Intelligence, vol-464
ume 33, pages 7144–7151.465

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.466
Deep neural solver for math word problems. In Pro-467
ceedings of the 2017 Conference on Empirical Meth-468
ods in Natural Language Processing, pages 845–854,469
Copenhagen, Denmark. Association for Computa-470
tional Linguistics.471

Yun Wang. 2021. The Math You Never Thought Of.472
Posts & Telecom Press Co., Ltd., Beijing.473

Zhipeng Xie and Shichao Sun. 2019. A goal-driven474
tree-structured neural model for math word problems.475
In Proceedings of the Twenty-Eighth International476
Joint Conference on Artificial Intelligence, IJCAI477
2019, Macao, China, August 10-16, 2019, pages478
5299–5305.479

Dongxiang Zhang, Lei Wang, Luming Zhang, Bing Tian480
Dai, and Heng Tao Shen. 2019. The gap of semantic481
parsing: A survey on automatic math word problem482
solvers. IEEE transactions on pattern analysis and483
machine intelligence, 42(9):2287–2305.484

Jipeng Zhang, Roy Ka-Wei Lee, Ee-Peng Lim, Wei Qin,485
Lei Wang, Jie Shao, and Qianru Sun. 2020a. Teacher-486
student networks with multiple decoders for solving487
math word problem. In Proceedings of the Twenty-488
Ninth International Joint Conference on Artificial489
Intelligence, IJCAI-20, pages 4011–4017. Interna-490
tional Joint Conferences on Artificial Intelligence491
Organization. Main track.492

Jipeng Zhang, Lei Wang, Roy Ka-Wei Lee, Yi Bin, Yan 493
Wang, Jie Shao, and Ee-Peng Lim. 2020b. Graph- 494
to-tree learning for solving math word problems. In 495
Proceedings of the 58th Annual Meeting of the Asso- 496
ciation for Computational Linguistics, pages 3928– 497
3937. 498

7

https://doi.org/10.18653/v1/2020.coling-main.262
https://doi.org/10.18653/v1/2020.coling-main.262
https://doi.org/10.18653/v1/2020.coling-main.262
http://arxiv.org/abs/2105.08928
http://arxiv.org/abs/2105.08928
http://arxiv.org/abs/2105.08928
https://doi.org/10.18653/v1/D17-1088
https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.24963/ijcai.2020/555
https://doi.org/10.24963/ijcai.2020/555
https://doi.org/10.24963/ijcai.2020/555
https://doi.org/10.24963/ijcai.2020/555
https://doi.org/10.24963/ijcai.2020/555

