ComSearch: Equation Searching with Combinatorial Mathematics for Solving Math Word Problems with Weak Supervision

Anonymous ACL submission

Abstract

Previous studies have introduced a weakly-supervised paradigm for solving math word problems requiring only the answer value annotation. While these methods search for correct value equation candidates as pseudo labels, they search among a narrow sub-space of the enormous equation space. To address this problem, we propose a novel search algorithm with combinatorial mathematics ComSearch, which can compress the search space by excluding mathematical equivalent equations. The compression allows the searching algorithm to enumerate all possible equations and obtain high-quality data. Experimental results show that our method achieves state-of-the-art results, especially for problems with more variables.

1 Introduction

Solving math word problems (MWPs) is the task of extracting a mathematical solution from problems written in natural language. In Figure 1, we present an example of MWP. Based on a sequence-to-sequence (seq2seq) framework that takes in the text descriptions of the MWPs and predicts the answer equation (Wang et al., 2017), task specialized encoder and decoder architectures (Wang et al., 2018b, 2019; Xie and Sun, 2019; Liu et al., 2019; Guan et al., 2019; Zhang et al., 2020b,a; Shen and Jin, 2020), data augmentation and normalization (Wang et al., 2018a; Liu et al., 2020), pretrained models (Tan et al., 2021; Liang et al., 2021; Shen et al., 2021) and various other studies have been conducted on full supervision setting of the task. This setting requires equation expression annotation, which is expensive and time-consuming.

Recently Hong et al. (2021) and Chatterjee et al. (2021) addressed this problem and proposed the weak supervision setting, where only the answer value annotation is given for supervision. These methods first extract candidate equations that obtain the correct value and then use them as pseudo labels to train the MWP solving model. However, the solution space is enormous with the brute-force searching used in these two studies, i.e., $O(n^{2n})$ with n variables. When the number of variables increases, it becomes computationally impossible to traverse all possible equations due to the high computational complexity. Hong et al. (2021) searches among neighbour equations of the wrong model prediction in the solution space via random walk, which lacks robustness and highly relies on initialization. Chatterjee et al. (2021) trains a candidate equation extraction model by using reinforcement learning (RL) to explore the solution space, where the reward is given by whether the equation obtains the correct value. The rewards are sparse in the enormous search space, resulting in relatively low coverage of 14.5% of the examples. Even with beam search, it can only cover 80.1% of the examples.

We observe that although the search space is ample, many equations in the search space are equivalent. For example, $a - b + c + d$ has various mathematically equivalent forms $a - (b - c - d)$, $a + c + d - b$ and so on. The search space could be compressed if such equivalence could be excluded in the searching algorithm. Supported by theories in combinatorial mathematics, we propose a new searching method that searches through only non-equivalent equations in the search space. Our method could be proven to have an approximate complexity of $O(n^n)$, allowing the algorithm to...
We show the pipeline of our method in Figure 2. With Combinatorial Mathematics (ComSearch) via deep-first search.

2.1 ComSearch

We use a deep-first search algorithm shown in Algorithm 1 to enumerate these skeletons. It considers Commutative law and other equivalent forms. To enumerate all non-equivalent equations for four arithmetic operations, we transform the problem to finding skeleton structures that could be enumerated without repeat via deep-first search.

Algorithm 1 enum_skel(n)

Require: n ≥ 1

Intialize empty list skels

for i ≤ n; i = 1; i + + do

left_list = unit_skel(i)

right_list = enum_skel(n − i)

for right in right_list do

move the start index of right to i

new_skels += left + right

end for

end for

skels += new_skels

return skels

find all possible candidate equations with the given variables. We show that 77.5% percent of the examples have only one equation candidate and form high quality and reliable data. We build a ranking module to choose the best pseudo label for examples with multiple candidate equations. Our experimental results demonstrate the effectiveness of our method, achieve state-of-the-art results under the weakly supervised setting.

2 Methodology

We show the pipeline of our method in Figure 2. Our method consists of three modules: The Search with Combinatorial Mathematics (ComSearch) module that searches for candidate equations; the MWP model that is trained to predict equations given the natural language text and pseudo labels; the Ranking module that ranks which candidate equation should form the pseudo label.

We define the set of non-equivalent equations using four arithmetic operations as \(S_n \). We sort the set to two categories, either \(S^\pm \) where the outermost operators are \(\pm \), such as \(a/b - c + d \) and \(a + (b * c - d) \), or \(S^* \) where the outermost operators are \(* \), such as \((a + b) * (c - d/e) \) and \(b * (a - c) \).

We call the former a general addition equation and the latter a general multiplication equation:

\[
S^\pm_n = \{(x_1 \pm (..)) \pm (x_i \pm (..)) \pm .. x_n\} \quad (1)
\]

\[
S^*_n = \{(x_1 \pm (..)) \times (x_i \pm (..)) \times .. x_n\} \quad (2)
\]

These two sets are symmetrical. Consider elements in \(S^*_n \), we can rewrite the equation to \(x \). Thus we can form a mapping \(g(\cdot) \) from an general addition equation \(x \) to an skeleton structure expression \(g(x) \):

\[
x = ((x_i \times (..)) + (x_j \times (..)) + ..)
\]

\[
- ((x_k \times (..)) + (x_l \times (..))) + ..
\]

\[
g(x) = (x_{i1}(..))(x_{j1}(..))&c(x_{k1}(..))(x_{l1}(..))..\]

The order of \(x_i \) within the same layer of brackets is ignored in \(g(x) \), that it can deal with the equivalence caused by Commutative law and Associative law. The addition and substraction terms are split by \(& \), that it can deal with equivalence cause by removing brackets. \(g(x) \) is a bijection, so the enumeration problem transforms to finding such skeletons:

\[
n = 2 : ab, a&b, b& a\]

\[
n = 3 : abc, a&b&c, (ab)&c, ...
\]

The enumeration problem of these structures is an expansion of solving Schroeder’s fourth problem (Schröder, 1870), which calculates the number of labeled series-reduced rooted trees with \(n \) leaves. We use a deep-first search algorithm shown in Algorithm 1 to enumerate these skeletons. It considers the position of the first bracket and then recursively finds all possible skeletons of sub-sequences of the variable sequence \(x' = \{x_k\}_{k=1} \) (Wang, 2021).
To be noticed, because there is at least one + operator for each equation, the left side of & must not be empty while the right part has no restrictions. Thus we define the unit_skel(i) equation to return possible skeletons with only one or none & and no brackets. This constraint is equivalent to finding non-empty subsets and its complement of the variable sequence X. The enumeration algorithm of non-empty subsets is trivial and omitted here.

\[\text{unit_skel}(i) = \{(A \& \overline{A})|A \subseteq X; A \neq \emptyset\} \quad (3) \]

We transform the skeletons back to equations to obtain all non-equivalent equations \(S_n \). Given the compressed search space, we substitute the values for variables in the equation templates and use the equations which value matches with the answer number as candidate equations.

2.2 MWP Solving Model

We follow Hong et al. (2021) and Chatterjee et al. (2021) and use Goal-driven tree-structured MWP solver (GTS) (Xie and Sun, 2019) as the MWP model. GTS is a seq2seq model with the attention mechanism that uses a bidirectional long short term memory network (BiLSTM) as the encoder and LSTM as the decoder. GTS also uses a recursive neural network to encode subtrees based on its children nodes representations with the gate mechanism. With the subtree representations, this model can well use the information of the generated tokens to predict a new token.

2.3 Ranking

While ComSearch enumerates equations that are non-equivalent without repeat, some variable sets can coincidentally form multiple equations with the same correct value, as we show in Figure 2. The equations 150 \(\times \) 2 \(- \) 50 and 150 \(+ \) 50 \(\times \) 2 are non-equivalent, their values are equal, while only 150 \(\times \) 2 \(- \) 50 is the correct solution.

To process these data, we build a ranking module to choose the best candidate equation. We first train the MWP model with the pseudo data that only one equation matches with the answer. Then we use the trained model to perform self-learning on the data with two or more candidate equations, and assign a score to each candidate and use the candidate with the highest score as the pseudo label of the example. We add the ranked data to the training data and re-train the model from scratch.

3 Experiments

3.1 Dataset

We evaluate our proposed method on the Math23K dataset. It contains 23,161 math word problems annotated with solution expressions and answers. We only use the problems and final answers. We evaluate our method on both 5-fold cross validation and train-test setting of Wang et al. (2018a). The train-test setting is evaluated by the three-run average.

3.2 Statistics

We give statistics of ComSearch in Table 1. Among the 23,162 examples, 233 have more than 6 variables that we filter them out, and 51 use the power operation that our method is not applicable. 94.5% of the examples find at least one equation that can match the answer value, significantly higher than WARM, which covers only 80.1% of the examples. LBF dynamically searches for candidate equations, and this measurement is not applicable. 17,959 examples match with only one equation, and 3,931 examples match with two or more equations that need the ranking module to choose the pseudo label further. We give the distribution of the matched template in the appendix.

3.2.1 Compression of Search Space

We show the empirical compression of the search space with ComSearch in Table 2. As we can see,
the compression ratio of ComSearch increases as the variable number grows, up to more than 100 times when the number of variables reaches 6.

The size of the Bruce-Force search space could be directly calculated, which is \(n! \times (n - 1)! \times 4^{n-1} \). If we consider the exponential generating function of \(\text{card}(S_n) \), based on Smooth Implicit-function Schema, we can have an approximation of \(S_n: \text{card}(S_n) \sim C \times n^{n-1} \), which shows our searching method compresses the search space more than exponential level. We give proof in the appendix.

3.3 Results

We compare our weakly-supervised models’ math word problem solving accuracy with two baselines methods in Table 3.

Chatterjee et al. (2021) proposed WARM that uses RL to train an equation candidate generation model with the reward of whether the value of the equation is correct. Since the reward signal is sparse due to the enormous search space, it uses beam search to further search candidates.

Hong et al. (2021) proposed LBF, a learning-by-fix algorithm that searches in neighbour space of the predicted wrong answer by random walk and tries to find a fix equation that holds the correct value as the candidate equation. memory saves the candidates of each epoch as training data.

We reproduced the results of LBF with their official code and found that LBF lacks robustness. We observe that its performance highly relies on the initialization of the model. When fewer candidates are extracted at early-stage training, the performance drops drastically since LBF relies on random walks in an enormous search space. Our method achieves state-of-the-art performance and outperforms other baselines up to 3.8% and 2.7% on train-test and cross-validation settings. Our method is also more robust with minor variance.

3.3.1 Ablation Study

We perform an ablation study with train-test setting in Table 3. Single denotes using the 17,959 examples that only match with one equation, the model achieves 58.0% performance, which is slightly lower than using all data and the ranking module, out-performing other baseline models. This shows that the examples with only one matching could be considered highly reliable and achieve comparable performance with a smaller training data size. Random denotes removing the ranking module and randomly sampling an equation for the examples that match with two or more equations. We observe a performance drop of 2.9% point without the ranking module, showing that our ranking module improves the performance.

3.3.2 Study on Number of Variables

In Table 4, we show the comparison of model performance on examples of a different number of variables. For the examples with 1 or 2 variables, LBF has a slight performance advantage since the search space is small and nearly not compressed. While the variable number grows, our method achieves better performance on examples with more variables and larger search space, which demonstrates the efficiency of ComSearch.

4 Conclusion

This paper proposes ComSearch, a searching method based on Combinatorial Mathematics, to extract candidate equations for Solving Math Word Problems under weak supervision. ComSearch compresses the enormous search space of equations beyond the exponential level, allowing the algorithm to enumerate all possible non-equivalent equations to search for candidate equations. Our experiments show that our method obtains high-quality pseudo data for training, achieves state-of-the-art performance under weak supervision settings, outperforming strong baselines, especially for the examples with more variables.

<table>
<thead>
<tr>
<th>#Var</th>
<th>LBF(%)</th>
<th>ComSearch(%)</th>
<th>Prop(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75.0</td>
<td>50.0</td>
<td>1.6</td>
</tr>
<tr>
<td>2</td>
<td>75.2</td>
<td>73.4</td>
<td>33.1</td>
</tr>
<tr>
<td>3</td>
<td>56.2</td>
<td>62.9</td>
<td>48.5</td>
</tr>
<tr>
<td>4</td>
<td>4.8</td>
<td>25.8</td>
<td>12.4</td>
</tr>
<tr>
<td>5</td>
<td>3.2</td>
<td>16.1</td>
<td>3.1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>28.6</td>
<td>0.7</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>25.0</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Table 4: Results of different number of variables.

<table>
<thead>
<tr>
<th>Model</th>
<th>Valid(%)</th>
<th>Test(%)</th>
<th>CV(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARM</td>
<td>-</td>
<td>54.3</td>
<td>-</td>
</tr>
<tr>
<td>LBF</td>
<td>57.2(±0.5)</td>
<td>55.4(±0.5)</td>
<td>55.2(±1.2)</td>
</tr>
<tr>
<td>+memory</td>
<td>56.6(±6.9)</td>
<td>55.1(±6.2)</td>
<td>56.3(±6.2)</td>
</tr>
<tr>
<td>Ours</td>
<td>60.1(±0.2)</td>
<td>59.2(±0.3)</td>
<td>59.0(±0.9)</td>
</tr>
<tr>
<td>Single</td>
<td>60.0</td>
<td>58.0</td>
<td>-</td>
</tr>
<tr>
<td>Random</td>
<td>57.3</td>
<td>56.3</td>
<td>-</td>
</tr>
<tr>
<td>GTS</td>
<td>-</td>
<td>75.6</td>
<td>74.3</td>
</tr>
</tbody>
</table>

Table 3: Results on Math23K. ± denotes the variance of 3 runs for valid/test, and 5 folds for Cross Validation.
A Proof for Search Space Approximation

Because there is at least one + or * operator for each equation (i.e. \(-a - b - c\) is illegal), the target \(S_n\) is not symmetric and is hard to directly approximate. We need two assisting targets to form the approximate. This proof majorly relies on Flajolet and Sedgewick (2009).

We first consider target \(U\) that considers only +, * and / three operators. We sort it into two categories: \(U^+\) that the outermost operator is + and \(U^-\) that the outermost operator is *. Equations such as \(\frac{1_a \times \frac{1}{c}}{b}\) are still considered illegal.

We can have the construction of \(U\):

\[
U^+ = Z + \text{SET}_\geq(U^+) \\
U^- = Z + (2^2 - 1) \times \text{SET}_=2(U^+) \\
+ (2^3 - 1) \times \text{SET}_=3(U^+)...
\]

We apply symbolic method to obtain the EGF of the constructions:

\[
U^+(z) = z + \sum_{k \geq 2} \frac{1}{k!} [U^+(z)]^k \\
= z + [e^{U^+(z)} - 1 - U^+(z)]
\]

\[
U^-(z) = z + \sum_{k \geq 2} \frac{2k - 1}{k!} [U^+(z)]^k \\
= z + e^{U^+(z)} - e^{U^+(z)} - U^+(z)
\]

Meanwhile we have:

\[
U(z) = U^+(z) + U^-(z) - z
\]

Next we consider target \(T\) that \(-a - b - c\) is considered legal. Similarly we define \(T^\pm\) and \(T^\ast\).

We consider the construction:

\[
T^\pm = 2Z + \text{SET}_\geq(T^\ast) \\
T^\ast = 2Z + 2[(2^2 - 1) \times \text{SET}_=2(T^\pm/2) \\
+ (2^3 - 1) \times \text{SET}_=3(T^\pm/2)...
\]

With symbolic method we have:

\[
T^\pm(z) = 2z + \sum_{k \geq 2} \frac{1}{k!} [U^+(z)]^k \\
= 2z + [e^{T^\pm(z)} - 1 - T^\pm(z)]
\]

\[
T^\ast(z) = 2z + 2 \sum_{k \geq 2} \frac{2k - 1}{k!} [T^\pm(z)/2]^k \\
= 2z + 2e^{T^\pm(z)} - 2e^{T^\pm(z)/2} - T^\pm(z)
\]

The illegal equations such as \(-a - b - c\) in \(T\) equals to the counts of \(a + b + c\), which is actually \(U\). So we have:

\[
S(z) = T(z) - U(z)
\]

We now have the EGF of \(S_n\).

With Smooth implicit-function schema and Stirling approximation function we have, for an EGF \(y(z) = \sum_{n=0} y_n z^n\). Let \(G(z, w) = \sum_{m,n} g_{m,n} z^m w^n\), thus \(y(z) = G(z, y(z)):\n
\[
\begin{align*}
\frac{n! [z^n]y(z)}{\sqrt{2\pi n^3}} & \sim c \frac{n}{\sqrt{e}} \frac{1}{n} \frac{n^m}{e^m} \tag{20} \\
& \sim c \frac{\sqrt{\pi}}{\sqrt{2\pi}} \left(\frac{1}{\sqrt{n}} \right)^n \frac{n^m}{\sqrt{e}} \frac{n^m}{e^m} \\
& = \frac{c \sqrt{\pi}}{n} \left(\frac{n}{e} \right)^n \\
\end{align*}
\]

while \(r:\)

\[
\begin{align*}
G(r, s) &= s \tag{23} \\
\frac{\partial G(r, s)}{\partial w} &= 1 \tag{24} \\
\end{align*}
\]

and \(c:\)

\[
c = \sqrt{\pi} \frac{\partial G(r, s)}{\partial z} \frac{\partial z}{\partial w^2} \tag{25}
\]

We still need the two assisting targets to perform the approximation. We have:

\[
U^+(z) = e^{2z+e^{U^+(z)}-e^{U^+(z)}-U^+(z)} \tag{26}
\]

\[
e^{2U^+(z)} + e^{U^+(z)} + U^+(z) - 1 \tag{27}
\]

Let \(G(z, w) = z + e^{2w} - e^w - \ln(1 + e^{2w} - e^w)\), considering 23 and 25, \(r, s\) and \(c\) would be constant numbers.

So we have:

\[
n! [z^n]U^+(z) \sim \frac{c_1 \sqrt{\pi}}{n} \left(\frac{n}{r_1 e} \right)^n \tag{28}
\]

Similarly we can approximate \(U^\ast, T^\pm\) and \(T^\ast:\

\[
n! [z^n]U^\ast(z) \sim \frac{c_2 \sqrt{\pi}}{n} \left(\frac{n}{r_2 e} \right)^n \tag{29}
\]

\[
n! [z^n]T^\pm(z) \sim \frac{c_3 \sqrt{\pi}}{n} \left(\frac{n}{r_3 e} \right)^n \tag{30}
\]

\[
n! [z^n]T^\ast(z) \sim \frac{c_4 \sqrt{\pi}}{n} \left(\frac{n}{r_4 e} \right)^n \tag{31}
\]

So we have:

\[
u_n = n! [z^n]U(z) \sim \frac{c_1 + c_2 \sqrt{\pi}}{n} \left(\frac{n}{r_1 e} \right)^n \tag{32}
\]

\[
t_n = n! [z^n]T(z) \sim \frac{c_3 + c_4 \sqrt{\pi}}{n} \left(\frac{n}{r_2 e} \right)^n \tag{33}
\]

Since \(S(z) = T(z) - U(z)\), the subtraction of \(u_n\) and \(t_n\) would be our approximation. However
we observe that $r_1 \gg r_3$, that u_n can be ignored. So we have:

$$s_n = n![z^n]S(z) \sim \left(\frac{c_3 + c_4}{n} \sqrt{r_2} \left(\frac{n}{r_2 e}\right)^n\right) \quad (34)$$

Q.E.D.

B Distribution of Candidate Equations

The largest candidate equation number of one example is 3914. We show the distribution of candidate equations in Figure 3 and 4. The x axis represents the number of candidates, while the y axis represents the number of examples that have x candidate equations. We can see from Figure 3, which includes examples that have 1 to 50 candidates, it is a long tail distribution that most examples only have a few candidate equations. From Figure 4, where we zoom in and focus on examples that have 2 to 20 candidates, we can see that there are a lot of examples that have more than 2 candidate equations, and the ranking module is essential.

References

