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Abstract

Previous studies have introduced a weakly-
supervised paradigm for solving math word
problems requiring only the answer value an-
notation. While these methods search for cor-
rect value equation candidates as pseudo la-
bels, they search among a narrow sub-space of
the enormous equation space. To address this
problem, we propose a novel search algorithm
with combinatorial mathematics ComSearch,
which can compress the search space by exclud-
ing mathematical equivalent equations. The
compression allows the searching algorithm
to enumerate all possible equations and ob-
tain high-quality data. Experimental results
show that our method achieves state-of-the-art
results, especially for problems with more vari-
ables.

1 Introduction

Solving math word problems (MWPs) is the task
of extracting a mathematical solution from prob-
lems written in natural language. In Figure 1, we
present an example of MWP. Based on a sequence-
to-sequence (seq2seq) framework that takes in the
text descriptions of the MWPs and predicts the an-
swer equation (Wang et al., 2017), task specialized
encoder and decoder architectures (Wang et al.,
2018b, 2019; Xie and Sun, 2019; Liu et al., 2019;
Guan et al., 2019; Zhang et al., 2020b,a; Shen
and Jin, 2020), data augmentation and normaliza-
tion (Wang et al., 2018a; Liu et al., 2020), pre-
trained models (Tan et al., 2021; Liang et al., 2021;
Shen et al., 2021) and various other studies have
been conducted on full supervision setting of the
task. This setting requires equation expression an-
notation, which is expensive and time-consuming.

Recently Hong et al. (2021) and Chatterjee et al.
(2021) addressed this problem and proposed the
weak supervision setting, where only the answer
value annotation is given for supervision. These
methods first extract candidate equations that ob-
tain the correct value and then use them as pseudo

Question: If buying 10 books cost 50 dollars,
how much would 2 books spend?

Answer: X = (50/10)* 2= 10 | X = (80/10)°2 o
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Figure 1: Example of MWP solving system under full
supervision and weak supervision.

labels to train the MWP solving model. However,
the solution space is enormous with the bruce-force
searching used in these two studies, i.e., O(n’?)
with n variables. When the number of variables in-
creases, it becomes computationally impossible to
traverse all possible equations due to the high com-
putational complexity. Hong et al. (2021) searches
among neighbour equations of the wrong model
prediction in the solution space via random walk,
which lacks robustness and highly relies on initial-
ization. Chatterjee et al. (2021) trains a candidate
equation extraction model by using reinforcement
learning (RL) to explore the solution space, where
the reward is given by whether the equation obtains
the correct value. The rewards are sparse in the
enormous search space, resulting in relatively low
coverage of 14.5% of the examples. Even with
beam search, it can only cover 80.1% of the exam-
ples.

We observe that although the search space is am-
ple, many equations in the search space are equiv-
alent. For example, a — b + ¢ + d has various
mathematically equivalent forms a — (b — ¢ — d),
a + ¢+ d — b and so on. The search space could
be compressed if such equivalence could be ex-
cluded in the searching algorithm. Supported by
theories in combinatorial mathematics, we propose
a new searching method that searches through only
non-equivalent equations in the search space. Our
method could be proven to have an approximate
complexity of O(n™), allowing the algorithm to
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Figure 2: The model overview.

Algorithm 1 enum_skel(n)

Require: n > 1
Intialize empty list skels
fori<n; i=1; i+ +do
left_list = unit_skel(t)
right_list = enum_skels(n — i)
for left in left_list do
for right in right_list do
move the start index of right to ¢
new_skels += left + right
end for
end for
skels += new_skels
end for
return skels

find all possible candidate equations with the given
variables. We show that 77.5% percent of the ex-
amples have only one equation candidate and form
high quality and reliable data. We build a ranking
module to choose the best pseudo label for exam-
ples with multiple candidate equations. Our experi-
mental results demonstrate the effectiveness of our
method, achieve state-of-the-art results under the
weakly supervised setting.

2 Methodology

We show the pipeline of our method in Figure 2.
Our method consists of three modules: The Search
with Combinatorial Mathematics (ComSearch)
module that searches for candidate equations; the
MWP model that is trained to predict equations
given the natural language text and pseudo labels;
the Ranking module that ranks which candidate
equation should form the pseudo label.

2.1 ComSearch

Directly searching for non-equivalent equation ex-
pressions is difficult, because the searching method
needs to consider Commutative law, Associative
law and other equivalent forms. To enumerate all
non-equivalent equations for four arithmetic opera-
tions, we transform the problem to finding skeleton
structures that could be enumerated without repeat
via deep-first search.

We define the set of non-equivalent equations
using four arithmetic operations as S,,. We sort
the set to two categories, either S* where the out-
ermost operators are +, such as a/b — ¢ + d and
a+ (bxc—d), or S* where the outermost operators
are %, such as (a + b) * (c — d/e) and b * (a — ¢).
We call the former a general addition equation and
the latter a general multiplication equation:

SE={(z1% ()£ (@ % () £z} )

Sp={(z1 £ () * (z; £ () * ..an} (2)

These two sets are symmetrical. Consider el-
ements in S;°, we can rewrite the equation to .
Thus we can form a mapping g(-) from an gen-
eral addition equation x to an skeleton structure
expression g(z). :

9(@) = (2i(.)) (2 () Ler()) (@i(..)).-
The order of x; within the same layer of brackets
is ignored in g(z), that it can deal with the equiv-
alence caused by Commutative law and Associa-
tive law. The addition and substraction terms are
split by &, that it can deal with equivalence cause
by removing brackets. g(x) is a bijection, so the
enumeration problem transforms to finding such
skeletons:

n = 2 :ab, a&ed, b&a
n = 3 :abc, a&(b&c), (ab)&e, ...

The enumeration problem of these structures is
an expansion of solving Schroeder’s fourth prob-
lem (Schroder, 1870), which calculates the number
of labeled series-reduced rooted trees with n leaves.
We use a deep-first search algorithm shown in Algo-
rithm 1 to enumerate these skeletons. It considers
the position of the first bracket and then recursively
finds all possible skeletons of sub-sequences of the
variable sequence X’ = {11%}%9:1 (Wang, 2021).



To be noticed, because there is at least one +
operator for each equation, the left side of & must
not be empty while the right part has no restrictions.
Thus we define the unit_skel(7) equation to return
possible skeletons with only one or none & and no
brackets. This constraint is equivalent to finding
non-empty subsets and its complement of the vari-
able sequence X. The enumeration algorithm of
non-empty subsets is trivial and omitted here.

unit_skel(i) = {(A&A)|A C X; A# 0} (3)
We transform the skeletons back to equations to
obtain all non-equivalent equations S,,. Given the
compressed search space, we substitute the values
for variables in the equation templates and use the
equations which value matches with the answer
number as candidate equations.

2.2 MWP Solving Model

We follow Hong et al. (2021) and Chatterjee et al.
(2021) and use Goal-driven tree-structured MWP
solver (GTS) (Xie and Sun, 2019) as the MWP
model. GTS is a seq2seq model with the atten-
tion mechanism that uses a bidirectional long short
term memory network (BiLSTM) as the encoder
and LSTM as the decoder. GTS also uses a recur-
sive neural network to encode subtrees based on its
children nodes representations with the gate mech-
anism. With the subtree representations, this model
can well use the information of the generated to-
kens to predict a new token.

2.3 Ranking

While ComSearch enumerates equations that are
non-equivalent without repeat, some variable sets
can coincidentally form multiple equations with
the same correct value, as we show in Figure 2.
The equations 150 * 2 — 50 and 150 + 50 * 2 are
non-equivalent, their values are equal, while only
150 % 2 — 50 is the correct solution.

To process these data, we build a ranking module
to choose the best candidate equation. We first train
the MWP model with the pseudo data that only one
equation matches with the answer. Then we use the
trained model to perform self-learning on the data
with two or more candidate equations, and assign
a score to each candidate and use the candidate
with the highest score as the pseudo label of the
example. We add the ranked data to the training
data and re-train the model from scratch.

Model Term # Prop(%)

- All Data 23,162 -

Too Long 233 1.0

Power Operator 51 0.2

Ours Single 17,959 77.5

Multiple 3,931 17.0

Data 21,890 94.5

Data (w/o beam) - 14.5

WARM Data (w/ beam) - 80.1
Table 1: Statistics of ComSearch Results.

#Variable Bruce-Force ComSearch | Ratio

1 1 1 1

2 8 6 1.3

3 192 68 2.8

4 9,216 1,170 7.9

5 737,280 27,142 | 27.2

6 88,473,600 793,002 | 111.6

Table 2: Empirical Results of Search Space Size.
3 Experiments

3.1 Dataset

We evaluate our proposed method on the Math23K
dataset. It contains 23,161 math word problems
annotated with solution expressions and answers.
We only use the problems and final answers. We
evaluate our method on both 5-fold cross valida-
tion and train-test setting of Wang et al. (2018a).
The train-test setting is evaluated by the three-run
average.

3.2 Statistics

We give statistics of ComSearch in Table 1. Among
the 23,162 examples, 233 have more than 6 vari-
ables that we filter them out, and 51 use the power
operation that our method is not applicable. 94.5%
of the examples find at least one equation that can
match the answer value, significantly higher than
WARM, which covers only 80.1% of the examples.
LBF dynamically searches for candidate equations,
and this measurement is not applicable. 17,959
examples match with only one equation, and 3,931
examples match with two or more equations that
need the ranking module to choose the pseudo la-
bel further. We give the distribution of the matched
template in the appendix.

3.2.1 Compression of Search Space

We show the empirical compression of the search
space with ComSearch in Table 2. As we can see,



the compression ratio of ComSearch increases as
the variable number grows, up to more than 100
times when the number of variables reaches 6.
The size of the Bruce-Force search space could
be directly calculated, which is n!* (n —1)! %471,
If we consider the exponential generating function
of card(S,,), based on Smooth Implicit-function
Schema, we can have an approximation of S,:
card(Sy) ~ C * n"!, which shows our search-
ing method compresses the search space more than
exponential level. We give proof in the appendix.

3.3 Results

We compare our weakly-supervised models’ math
word problem solving accuracy with two baselines
methods in Table 3.

Chatterjee et al. (2021) proposed WARM that
uses RL to train an equation candidate generation
model with the reward of whether the value of
the equation is correct. Since the reward signal is
sparse due to the enormous search space, it uses
beam search to further search candidates.

Hong et al. (2021) proposed LBF, a learning-by-
fix algorithm that searches in neighbour space of
the predicted wrong answer by random walk and
tries to find a fix equation that holds the correct
value as the candidate equation. memory saves the
candidates of each epoch as training data.

We reproduced the results of LBF with their offi-
cial code and found that LBF lacks robustness. We
observe that its performance highly relies on the ini-
tialization of the model. When fewer candidates are
extracted at early-stage training, the performance
drops drastically since LBF relies on random walks
in an enormous search space. Our method achieves
state-of-the-art performance and outperforms other
baselines up to 3.8% and 2.7% on train-test and
cross-validation settings. Our method is also more
robust with minor variance.

3.3.1 Ablation Study

We perform an ablation study with train-test setting
in Table 3. Single denotes using the 17,959 exam-
ples that only match with one equation, the model
achieves 58.0% performance, which is slightly
lower than using all data and the ranking module,
out-performing other baseline models. This shows
that the examples with only one matching could
be considered highly reliable and achieve compara-
ble performance with a smaller training data size.
Random denotes removing the ranking module and
randomly sampling an equation for the examples

Model Valid(%) Test(%) CV (%)
WARM - 54.3 -

LBF 57.2(£0.5) 55.4(£0.5)| 55.2(£1.2)
+memory | 56.6(£6.9) 55.1(4+6.2)| 56.3(£6.2)
Ours 60.1(40.2) 59.2(£0.3)| 59.0(+0.9)
Single 60.0 58.0 -

Random | 57.3 56.3 -

GTS - 75.6 74.3

Table 3: Results on Math23K. + denotes the variance
of 3 runs for valid/test, and 5 folds for Cross Validation.

#Var | LBF(%) ComSearch(%) | Prop(%)
1 75.0 50.0 1.6
2 75.2 73.4 33.1
3 56.2 62.9 48.5
4 4.8 25.8 12.4
5 3.2 16.1 3.1
6 0 28.6 0.7
7 0 25.0 04

Table 4: Results of different number of variables.

that match with two or more equations. We ob-
serve a performance drop of 2.9% point without
the ranking module, showing that our ranking mod-
ule improves the performance.

3.3.2 Study on Number of Variables

In Table 4, we show the comparison of model per-
formance on examples of a different number of vari-
ables. For the examples with 1 or 2 variables, LBF
has a slight performance advantage since the search
space is small and nearly not compressed. While
the variable number grows, our method achieves
better performance on examples with more vari-
ables and larger search space, which demonstrates
the efficiency of ComSearch.

4 Conclusion

This paper proposes ComSearch, a searching
method based on Combinatorial Mathematics, to
extract candidate equations for Solving Math Word
Problems under weak supervision. ComSearch
compresses the enormous search space of equa-
tions beyond the exponential level, allowing the
algorithm to enumerate all possible non-equivalent
equations to search for candidate equations. Our
experiments show that our method obtains high-
quality pseudo data for training, achieves state-of-
the-art performance under weak supervision set-
tings, outperforming strong baselines, especially
for the examples with more variables.



A Proof for Search Space Approximation

Because there is at least one + or * operator for
each equation (i.e. —a — b — c is illegal), the target
Sy, is not symmetric and is hard to directly approx-
imate. We need two assisting targets to form the
approximate. This proof majorly relies on Flajolet
and Sedgewick (2009).

We first consider target U that considers only
+, * and / three operators. We sort it into two
categories: U™ that the outermost operator is +
and U* that the outermost operator is s%. Equations
such as é * ﬁ are still considered illegal.

We can have the construction of U:

Ut =Z+ SET-(U¥) 4)
U¥=Z+(22—1)«SET_,(U"Y) (5
+ (22 = 1)« SET_3(U™)... (6)

We apply symbolic method to obtain the EGF of
the constructions:

1. .
Ute) =2+ Y HUF ) ™
k>2
=2+ [V -1 - U*(2)] (8)
ok — 1
U(z) =2+ ) — U ()" )
k>2
=2+ 2VTE _UTE) _ut(z) (10
Meanwhile we have:
U)=U"(2)+U*z) -z (11)

Next we consider target T that —a — b — c is
considered legal. Similarly we define 7% and T*.
We consider the construction:

T* =27 4+ SET>(T¥) (12)
T* =27 +2[(22 — 1)« SET_o(T*/2) (13)

+ (22— 1) % SET_3(T%/2)..] (14)
With symbolic method we have:
1 E3
TH(z) = 2z+zg[U~ (2)]* (15)
E>2
=22+ [e T*<z>—1—T*( )] (16)
T* 2)/21F A7
k>2
=22+ 26Ti(z) —2eTHE/2 T%(2)
(18)

The illegal equations such as —a — b —cin T
equals to the counts of a + b + ¢, which is actually

U. So we have:

S(z) =T(2) - U(2)

We now have the EGF of .S,,.
With Smooth implicit-function schema and
Stirling approximiation function we have, for

19)

an EGF y(z) = >, 5oun2", Let G(z,w) =
Zm,nzo gm:”zmwn’ thus y(z) = G(Z, y(Z)):
n!x [2"y(z) ~ \;ﬂ ¥ /2 (20)
\/27rm“ 1.,
= 2(2) (22)
n ‘re
while r:
G(r,s)=s (23)
OG(r, s 1 (24)
ow
and c:
0G(r,s)/0z

c= 25)

9?G(r, s)/Ow?
We still need the two assisting targets to perform
the approximation. We have:

Ut (z) = e D= -0t (3) (26)

T LUtz =1 @27)

Let G(z,w) = z+e* —e¥ —In(1+e* —ev),
considering 23 and 25, , s and ¢ would be constant
numbers.

So we have:
Ci1\/T1, N
11U+ ~ Y (T 28
Ut () ~ S e8)

Similarly we can approximate U*, T+ and T*:

AU (2) ~ YL

(29)
n o re
"7 (2) ~ Yy o)
n  rse
n X 64\/E n n
nl[2"]T7(z) ~ T(@ (31)
So we have:
_ i (c1+e)yr, n .,
up, = nl[2"U(z) - (7‘16) (32)
b = [T (z) ~ BTNV (g (33
n r9€
Since S(z) = T(z) — U(z), the subtraction of

uy, and t, would be our approximation. However
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we observe that r; > rs, that u,, can be ignored.
So we have:

sp = nl[2"]S(2) ~ W(&)n (34)
QE.D.

B Distribution of Candidate Equations

The largest candidate equation number of one ex-
ample is 3914. We show the distribution of candi-
date equations in Figure 3 and 4. The x axis repre-
sent the the number of candidate, while the y axis
represents the number of examples that have x can-
didate equations. We can see from Figure 3, which
includes examples that have 1 to 50 candidates, it
is a long tail distribution that most examples only
have a few candidate equations. From Figure 4,
where we zoom in and focus on examples that have
2 to 20 candidates, we can see that there are a lot
of examples that have more than 2 candidate equa-
tions, and the ranking module is essential.
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