
Under review as submission to TMLR

Kernel Normalized Convolutional Networks

Anonymous authors
Paper under double-blind review

Abstract

Existing convolutional neural network architectures frequently rely upon batch normaliza-
tion (BatchNorm) to effectively train the model. BatchNorm, however, performs poorly with
small batch sizes, and is inapplicable to differential privacy. To address these limitations, we
propose kernel normalization and kernel normalized convolutional layers, and incor-
porate them into kernel normalized convolutional networks (KNConvNets) as the main
building blocks. We implement KNConvNets corresponding to the state-of-the-art ResNets
while forgoing BatchNorm layers. Through extensive experiments, we illustrate KNCon-
vNets achieve higher or competitive performance compared to the BatchNorm counterparts
in image classification and semantic segmentation. They also significantly outperform their
batch-independent competitors including layer and group normalization in non-private and
differentially private training. Given that, KNConvNets combine the batch-independence
property of layer and group normalization with the performance advantage of BatchNorm.

1 Introduction

Convolutional neural networks (CNNs) LeCun et al. (1989) are standard architectures in computer vision
tasks such as image classification Krizhevsky et al. (2012); Sermanet et al. (2014) and semantic segmentation
Long et al. (2015b). Deep CNNs including ResNets He et al. (2016a) achieved outstanding performance in
classification of challenging datasets such as ImageNet Deng et al. (2009). One of the main building blocks of
these CNNs is batch normalization (BatchNorm) Ioffe & Szegedy (2015). The BatchNorm layer considerably
enhances the performance of deep CNNs by smoothening the optimization landscape Santurkar et al. (2018),
and addressing the problem of vanishing gradients Bengio et al. (1994); Glorot & Bengio (2010).

BatchNorm, however, has the disadvantage of breaking the independence among the samples in the batch
Brock et al. (2021b). This is because BatchNorm carries out normalization along the batch dimension (Figure
1a), and as a result, the normalized value associated with a given sample depends on the statistics of the
other samples in the batch. Consequently, the effectiveness of BatchNorm is highly dependent on batch size.
With large batch sizes, the batch normalized models are trained effectively due to more accurate estimation
of the batch statistics. Using small batch sizes, on the other hand, BatchNorm causes reduction in model
accuracy Wu & He (2018) because of dramatic fluctuations in the batch statistics. BatchNorm, moreover, is
inapplicable to differential privacy (DP) Dwork & Roth (2014). For the theoretical guarantees of DP to hold
for the training of neural networks Abadi et al. (2016), it is required to compute the gradients individually
for each sample in a batch, clip the per-sample gradients, and then average and inject random noise to limit
the information learnt about any particular sample. Because per-sample (individual) gradients are required,
the gradients of a given sample are not allowed to be influenced by other samples in the batch. This is not
the case for BatchNorm, where samples are normalized using the statistics computed over the other samples
in the batch. Consequently, BatchNorm is inherently incompatible with DP.

To overcome the limitations of BatchNorm, the community has introduced batch-independent normalization
layers including layer normalization (LayerNorm) Ba et al. (2016), instance normalization (InstanceNorm)
Ulyanov et al. (2016), group normalization (GroupNorm) Wu & He (2018), positional normalization (Posi-
tionalNorm) Li et al. (2019), and local context normalization (LocalContextNorm) Ortiz et al. (2020), which
perform normalization independently for each sample in the batch. These layers do not suffer from the
drawbacks of BatchNorm, and might outperform BatchNorm in particular domains such as generative tasks

1

Under review as submission to TMLR

(e.g. LayerNorm in Transformer models Vaswani et al. (2017)). For image classification and semantic seg-
mentation, however, they typically do not achieve performance comparable with BatchNorm’s in non-private
(without DP) training. In DP, moreover, these batch-independent normalization layers might not provide the
accuracy gain we expect compared to non-private learning. This motivates us to develop alternative layers,
which are batch-independent but more efficient in both non-private and differentially private learning.

Our main contribution is to propose two novel batch-independent layers called kernel normalization
(KernelNorm) and kernel normalized convolutional (KNConv) layer to further enhance the perfor-
mance of deep CNNs. The distinguishing characteristic of the proposed layers is that they extensively take
into account the spatial correlation among the elements during normalization. KernelNorm is similar to a
pooling layer, except that it normalizes the elements specified by the kernel window instead of computing the
average/maximum of the elements, and it operates over all input channels instead of a single channel (Figure
1g). KNConv is the combination of KernelNorm with a convolutional layer, where it applies KernelNorm to
the input, and feeds KernelNorm’s output to the convolutional layer (Figure 2). From another perspective,
KNConv is the same as the convolutional layer except that KNConv first normalizes the input elements
specified by the kernel window, and then computes the convolution between the normalized elements and
kernel weights. In both aforementioned naive forms, however, KNConv is computationally inefficient because
it leads to extremely large number of normalization units, and therefore, considerable computational over-
head to normalize the corresponding elements. To tackle this issue, we present computationally-efficient
KNConv (Algorithm 1), where the output of the convolution is adjusted using the mean and variance of
the normalization units. This way, it is not required to normalize the elements, improving the computation
time by orders of magnitude.

As an application of the proposed layers, we introduce kernel normalized convolutional networks
(KNConvNets) corresponding to residual networks He et al. (2016a), referred to as KNResNets, which
employ KernelNorm and computationally-efficient KNConv as the main building blocks while forgoing Batch-
Norm (Section 3). Our last contribution is to draw performance comparisons among KNResNets and the
competitors using several benchmark datasets including CIFAR-100 Krizhevsky et al. (2009), ImageNet Deng
et al. (2009), and Cityscapes Cordts et al. (2016). According to the experimental results (Section 4), KNRes-
Nets deliver significantly higher accuracy than the BatchNorm counterparts in image classification on CIFAR-
100 using a small batch size. KNResNets, moreover, achieve higher or competitive performance compared
to the batch normalized ResNets in classification on ImageNet and semantic segmentation on CityScapes.
Furthermore, KNResNets considerably outperform GroupNorm and LayerNorm based models for almost all
considered case studies in non-private and differentially private learning. Thus, KernelNorm combine the
performance advantage of BatchNorm with the batch-independence benefit of LayerNorm/GroupNorm.

2 Normalization Layers

Normalization methods can be categorized into input normalization and weight normalization Salimans &
Kingma (2016). The former techniques perform normalization on the input tensor, while the latter ones
normalize the model weights. All the aforementioned layers including BatchNorm, GroupNorm, and the
proposed KernelNorm layer as well as divisive normalization Heeger (1992); Bonds (1989), Ren et al. (2017)
and local response normalization (LocalResponseNorm) Krizhevsky et al. (2012) belong to the category of
input normalization. Weight standardization Huang et al. (2017b); Qiao et al. (2019) and normalizer-free
networks Brock et al. (2021a) fall into the category of weight normalization.

In the following, we provide an overview on the existing normalization layers closely related to KernelNorm,
i.e. the layers which are based on input normalization, and employ standard normalization (zero-mean and
unit-variance) to normalize the input tensor. For the sake of simplicity, we focus on 2D images, but the
concepts are also applicable to 3D images. For a 2D image, the input of a layer is a 4D tensor of shape (n,
c, h, w), where n is batch size, c is the number of input channels, h is height, and w is width of the tensor.
Normalization layers differ from one another in their normalization unit, which is a group of input elements
that are normalized together with the mean and variance of the unit.

The normalization unit of BatchNorm (Figure 1a) is a 3D tensor of shape (n, h, w), implying that
BatchNorm incorporates all elements in the batch, height, and width dimensions during normalization.

2

Under review as submission to TMLR

Width

H
ei
gh
t

Ba
tch

(a) BatchNorm
Width

H
ei
gh
t

Ch
an
ne
l

(b) LayerNorm

H
ei
gh
t

Width

Ch
an
ne
l

(c) InstanceNorm

Ch
an
ne
l

H
ei
gh
t

Width

(d) GroupNorm

Ch
an
ne
l

H
ei
gh
t

Width

(e) PositionalNorm

Ch
an
ne
l

H
ei
gh
t

Width

(f) LocalContextNorm

Ch
an
ne
l

H
ei
gh
t

Width

Ch
an
ne
l

Width

H
ei
gh
t

(g) KernelNorm

Figure 1: Normalization layers differ from one another in their normalization unit (highlighted in blue
and green). The normalization layers in (a)-(f) establish a one-to-one correspondence between the input
and normalized elements (i.e. no overlap between the normalization units, and no ignorance of an element).
The proposed KernelNorm layer does not impose such one-to-one correspondence: Some elements (dash-
hatched area) are common among the normalization units, contributing more than once to the output, while
some elements (uncolored ones) are ignored during normalization. Due to this unique property of overlapping
normalization units, KernelNorm extensively incorporates the spatial correlation among the elements during
normalization (akin to the convolutional layer), which is not the case for the other normalization layers.

LayerNorm’s normalization unit (Figure 1b) is a 3D tensor of shape (c, h, w), i.e. LayerNorm considers
all elements in the channel, height, and width dimensions for normalization. The normalization unit of
InstanceNorm (Figure 1c) is a 2D tensor of shape (h, w), i.e. all elements of the height and width
dimensions are taken into account during normalization.

GroupNorm’s normalization unit (Figure 1d) is a 3D tensor of shape (cg, h, w), where cg indicates the
channel group size. Thus, GroupNorm incorporates all elements in the height and width dimensions and a
subset of elements specified by the group size in the channel dimension during normalization. Positional-
Norm’s normalization unit (Figure 1e) is a 1D tensor of shape c, i.e. PositionalNorm performs channel-wise
normalization. The normalization unit of LocalContextNorm (Figure 1f) is a 3D tensor of shape (cg, r,
s), where cg is the group size, and (r, s) is the window size. Therefore, LocalContextNorm considers a subset
of elements in the height, width, and channel dimensions during normalization.

BatchNorm, LayerNorm, InstanceNorm, and GroupNorm consider all elements in the height and width
dimensions for normalization, and thus, they are referred to as global normalization layers. PositionalNorm
and LocalContextNorm, on the other hand, are called local normalization layers Ortiz et al. (2020) because
they incorporate a subset of elements from the aforementioned dimensions during normalization. In spite of
their differences, the aforementioned normalization layers including BatchNorm have at least one thing in
common: There is a one-to-one correspondence between the original elements in the input and the normalized
elements in the output. That is, there is exactly one normalized element associated with each input element.
Therefore, these layers do not modify the shape of the input during normalization.

3 Kernel Normalized Convolutional Networks

The KernelNorm and KNConv layers are the main building blocks of KNConvNets. KernelNorm takes
the kernel size (kh, kw), stride (sh, sw), padding (ph, pw), and dropout probability p as hyper-parameters.
It pads the input with zeros if padding is specified. The normalization unit of KernelNorm (Figure 1g) is a

3

Under review as submission to TMLR

tensor of shape (c, kh, kw), i.e. KernelNorm incorporates all elements in the channel dimension but a subset
of elements specified by the kernel size from the height and width dimensions during normalization. The
KernelNorm layer (1) applies random dropout Srivastava et al. (2014) to the normalization unit to obtain the
dropped-out unit, (2) computes mean and variance of the dropped-out unit, and (3) employs the calculated
mean and variance to normalize the original normalization unit:

U ′ = Dp(U), (1)

µu′ = 1
c · kh · kw

·
c∑

ic=1

kh∑
ih=1

kw∑
iw=1

U ′(ic, ih, iw),

σ2
u′ = 1

c · kh · kw
·

c∑
ic=1

kh∑
ih=1

kw∑
iw=1

(U ′(ic, ih, iw) − µu′)2,

(2)

Û = U − µu′√
σ2

u′ + ϵ
, (3)

where p is the dropout probability, Dp is the dropout operation, U is the normalization unit, U ′ is the
dropped-out unit, µu′ and σ2

u′ are the mean and variance of the dropped-out unit, respectively, ϵ is a small
number (e.g. 10−5) for numerical stability, and Û is the normalized unit.

Partially inspired by BatchNorm, KernelNorm introduces a regularizing effect during training by intentionally
normalizing the elements of the original unit U using the statistics computed over the dropped-out unit
U ′. In BatchNorm, the normalization statistics are computed over the batch but not the whole dataset,
where the mean and variance of the batch are randomized approximations of those from the whole dataset.
The “stochasticity from the batch statistics” creates a regularizing effect in BatchNorm according to Ba
et al. (2016). KernelNorm employs dropout to generate similar stochasticity in the mean and variance
of the normalization unit. Notice that the naive option of injecting random noise directly into the mean
and variance might generate too much randomness, and hinder model convergence. Using dropout in the
aforementioned fashion, KernelNorm can control the regularization effect with more flexibility.

The first normalization unit of KernelNorm is bounded to a window specified by diagonal points (1, 1) and
(kh, kw) in the height and width dimensions. The coordinates of the next normalization unit are (1, 1 + sw)
and (kh, kw + sw), which are obtained by sliding the window sw elements along the width dimension. If
there are not enough elements for kernel in the width dimension, the window is slid by sh elements in the
height dimension, and the above procedure is repeated. Notice that KernelNorm works on the padded input
of shape (n, c, h + 2 · ph, w + 2 · pw), where (ph, pw) is the padding size. The output X̂ of KernelNorm
is the concatenation of the normalized units Û from Equation 3 along the height and width dimensions.
KernelNorm’s output is of shape (n, c, hout, wout), and it has total of n · hout

kh
· wout

kw
normalization units,

where hout and wout are computed as follows:

hout = kh · ⌊h + 2 · ph − kh

sh
+ 1⌋, wout = kw · ⌊w + 2 · pw − kw

sw
+ 1⌋

In simple terms, KernelNorm behaves similarly to the pooling layers with two major differences: (1) Ker-
nelNorm normalizes the elements specified by the kernel size instead of computing the maximum/average
over the elements, and (2) KernelNorm operates over all channels rather than a single channel. KernelNorm
is a batch-independent and local normalization layer, but differs from the existing normalization layers in
two aspects: (I) There is not necessarily a one-to-one correspondence between the original elements in the
input and the normalized elements in the output of KernelNorm. Stride values less than kernel size lead to
overlapping normalization units, where some input elements contribute more than once in the output (akin
to the convolutional layer). If the stride value is greater than kernel size, some input elements are completely
ignored during normalization. Therefore, the output shape of KernelNorm can be different from the input
shape. (II) KernelNorm can extensively take into account the spatial correlation among the elements during
normalization because of the overlapping normalization units.

KNConv is the combination of KernelNorm and the traditional convolutional layer (Figure 2). It takes the
number of input channels chin, number of output channels (filters) chout, kernel size (kh, kw), stride (sh,

4

Under review as submission to TMLR

Input tensor Normalized tensor

Weights

Bias

Output
KernelNorm Layer

Convolutional Layer

Figure 2: KNConv as the combination of the KernelNorm and convolutional layers. KNConv first applies
KernelNorm with kernel size (3, 3) and stride (2,2) to the input tensor, and then gives KernelNorm’s output to
a convolutional layer with kernel size and stride (3, 3). That is, the kernel size and stride of the convolutional
layer and the kernel size of KernelNorm are identical.

sw), and padding (ph, pw), exactly the same as the convolutional layer, as well as the dropout probability p
as hyper-parameters. KNConv first applies KernelNorm with kernel size (kh, kw), stride (sh, sw), padding
(ph, pw), and dropout probability p to the input tensor. Next, it applies the convolutional layer with chin

channels, chout filters, kernel size (kh, kw), stride (kh, kw), and padding of zero to the output of KernelNorm.
That is, both kernel size and stride values of the convolutional layer are identical to kernel size of KernelNorm.

From another perspective, KNConv is the same as the convolutional layer except that it normalizes the input
elements specified by the kernel window before computing the convolution. Assuming that U contains the
input elements specified by the kernel window, Û is the normalized version of U from KernelNorm (Equation
3), Z is the kernel weights of a given filter, ⋆ is the convolution (or dot product) operation, and b is the bias
value, KNConv computes the output as follows:

KNConv(U, Z, b) = Û ⋆ Z + b (4)

KNConv (or in fact KernelNorm) leads to extremely high number of normalization units, and consequently,
remarkable computational overhead. Thus, KNConv in its simple format outlined in Equation 4 (or as a
combination of the KernelNorm and convolutional layers) is computationally inefficient. Compared to the
convolutional layer, the additional computational overhead of KNConv originates from (I) calculating the
mean and variance of the units using Equation 2, and (II) normalizing the elements by the mean and variance
using Equation 3.
Computationally-efficient KNConv reformulates Equation 4 in a way that it completely eliminates the
overhead of normalizing the elements:

KNConv(U, Z, b) = Û ⋆ Z + b =
c∑

ic=1

kh∑
ih=1

kw∑
iw=1

(U(ic, ih, iw) − µu′√
σ2

u′ + ϵ
) · Z(ic, ih, iw) + b

= (
c∑

ic=1

kh∑
ih=1

kw∑
iw=1

U(ic, ih, iw) · Z(ic, ih, iw) − µu′ ·
c∑

ic=1

kh∑
ih=1

kw∑
iw=1

Z(ic, ih, iw)) · 1√
σ2

u′ + ϵ
+ b

= (U ⋆ Z − µu′ ·
c∑

ic=1

kh∑
ih=1

kw∑
iw=1

Z(ic, ih, iw)) · 1√
σ2

u′ + ϵ
+ b

(5)

According to Equation 5 and Algorithm 1, KNConv applies the convolutional layer to the original unit,
computes the mean and standard deviation of the dropped-out unit as well as the sum of the kernel weights,
and finally adjusts the convolution output using the computed statistics. This way, it is not required to
normalize the elements, improving the computation time of KNConv by orders of magnitude.

In terms of implementation, KernelNorm employs the unfolding operation in PyTorch (2023b) to imple-
ment the sliding window mechanism in the kn_mean_var function in Algorithm 1. Moreover, it uses the
var_mean function in PyTorch (2023c) to compute the mean and variance over the unfolded tensor along
the channel, width, and height dimensions.

5

Under review as submission to TMLR

Algorithm 1: Computationally-efficient KNConv layer
Input: input tensor X, number of input channels chin, number of output channels chout, kernel size

(kh, kw), stride (sh, sw), padding (ph, pw), bias flag, dropout probability p, and epsilon ϵ

// 2-dimensional convolutional layer
conv_layer = Conv2d(in_channels=chin, out_channels=chout, kernel_size=(kh, kw), stride=(sh, sw),

padding=(ph, pw), bias=false)
// convolutional layer output
conv_out = conv_layer(input=X)
// mean and variance from KernelNorm
µ, σ2 = kn_mean_var(input=X, kernel_size=(kh, kw), stride=(sh, sw), padding=(ph, pw),
dropout_p=p)

// KNConv output
kn_conv_out = (conv_out - µ ·

∑
conv_layer.weights) /

√
σ2 + ϵ

// apply bias
if bias then

kn_conv_out += conv_layer.bias
Output: kn_conv_out

The defining characteristic of KernelNorm and KNConv is that they take into consideration the spatial
correlation among the elements during normalization on condition that the kernel size is greater than 1×1.
Existing architectures (initially designed for global normalization), however, do not satisfy this condition.
For instance, all ResNets use 1×1 convolution in residual blocks for increasing the number of filters. ResNet-
50/101/152, in particular, contains bottleneck blocks with a single 3×3 and two 1×1 convolutional layers.
Consequently, the current architectures are unable to fully utilize the potential of kernel normalization.

KNConvNets are bespoke architectures for kernel normalization, consisting of computationally-efficient
KNConv and KernelNorm as the main building blocks. KNConvNets are batch-independent (free of Batch-
Norm), which primarily employ kernel sizes of 2×2 or 3×3 to benefit from the spatial correlation of elements
during normalization. In this study, we propose KNConvNets corresponding to ResNets, called KNResNets,
for image classification and semantic segmentation.

KNResNets comprise three types of blocks: residual basic block, residual bottleneck block, and transitional
block (Figure 3). Basic blocks contain two KNConv layers with kernel size of 2×2, whereas bottleneck blocks
consist of three KNConv layers with kernel sizes of 2×2, 3×3, and 2×2, respectively. The stride value in both
basic and bottleneck blocks is 1×1. The padding values of the first and last KNConv layers, however, are
1×1 and zero so that the width and height of the output remain identical to the input’s (necessary condition
for residual blocks with identity shortcut). The middle KNConv layer in bottleneck blocks uses 1×1 padding.
Transitional blocks include a KNConv layer with kernel size of 2×2 and stride of 1×1 to increase the number
of filters, and a max-pooling layer with kernel size and stride of 2×2 to downsample the input.

R
eL

U

 K

N
C

on
v-

2x
2

R
eL

U

 K

N
C

on
v-

2x
2

R
eL

U

 K

N
C

on
v2

x2

 M
ax

-p
oo

l 2
x2

R
eL

U

 K

N
C

on
v-

3x
3

R
eL

U

 K

N
C

on
v-

3x
3

R
eL

U

 K

N
C

on
v-

3x
3

 M
ax

-p
oo

l 3
x3

(a) Basic block

R
eL

U

 K

N
C

on
v-

2x
2

R
eL

U

 K

N
C

on
v-

3x
3

R
eL

U

 K

N
C

on
v-

2x
2

(b) Bottleneck block

R
eL

U

 K

N
C

on
v-

2x
2

 M
ax

-p
oo

l-2
x2

R
eL

U

 K

N
C

on
v-

3x
3

 M
ax

-p
oo

l 3
x3

(c) Transitional block

Figure 3: KNResNet blocks: Basic blocks are employed in KNResNet-18/34, while KNResNet-50 is based
on bottleneck blocks. Transitional blocks are used in all KNResNets for increasing the number of filters and
downsampling. The architectures of KNResNet-18/34/50 are available in Figures 5-6 in Appendix A.

6

Under review as submission to TMLR

We propose the KNResNet-18, KNResNet-34, and KNResNet-50 architectures based on the aforementioned
block types (Figure 5 in Appendix A). KNResNet-18/34 uses basic and transitional blocks, while KNResNet-
50 mainly employs bottleneck and transitional blocks. For semantic segmentation, we utilize KNResNet-
18/34/50 as backbone (Figure 6 in Appendix A), but the kernel size of the KNConv and max-pooling layers
in basic and transitional blocks is 3×3 instead of 2×2.

4 Evaluation

We compare the performance of KNResNets to the BatchNorm, GroupNorm, LayerNorm, and LocalCon-
textNorm counterparts. For image classification, we do not include LocalContextNorm in our evaluation
because its performance is similar to GroupNorm Ortiz et al. (2020). The experimental evaluation is di-
vided into four categories: (I) batch size-dependent performance analysis, (II) image classification on Im-
ageNet, (III) semantic segmentation on Cityscapes, and (IV) differentially private image classification on
ImageNet32×32.

We adopt the original implementation of ResNet-18/34/50 from PyTorch Paszke et al. (2019), and the
PreactResNet-18/34/50 He et al. (2016b) implementation from Kuang (2021). The architectures are based
on BatchNorm. For GroupNorm/LocalContextNorm related models, BatchNorm is replaced by Group-
Norm/LocalContextNorm. The group size of GroupNorm is 32 Wu & He (2018). The number of groups and
window size for LocalContextNorm are 2, and 227×227, respectively Ortiz et al. (2020). Regarding Layer-
Norm based architectures, GroupNorm with number of groups of 1 (equivalent to LayerNorm) is substituted
for BatchNorm. For low-resolution datasets (CIFAR-100 and ImageNet32×32), we replace the first 7×7
convolutional layer with a 3×3 convolutional layer and remove the following max-pooling layer. Moreover,
we insert a normalization layer followed by an activation function before the last average-pooling layer in the
PreactResNet architectures akin to KNResNets (Figure 5 at Appendix A). The aforementioned modifications
considerably enhance the accuracy of the competitors in image classification. For semantic segmentation,
we employ the fully convolutional network architecture Long et al. (2015a) with BatchNorm, GroupNorm,
LayerNorm, and LocalContextNorm based ResNet-18/34/50 as backbone. For KNResNets, we use fully
convolutional versions of KNResNet-18/34/50 (Figure 6 at Appendix A).

4.1 Batch size-dependent performance analysis

Dataset. The CIFAR-100 dataset consists of 50000 train and 10000 test samples of shape 32×32 from
100 classes. We adopt the data preprocessing and augmentation scheme widely used for the dataset Huang
et al. (2017a); He et al. (2016b;a): Horizontally flipping and randomly cropping the samples after padding
them. The cropping and padding sizes are 32×32 and 4×4, respectively. Additionally, the feature values are
divided by 255 for KNResNets, whereas they are normalized using the mean and standard deviation (SD)
of the dataset for the competitors.

Training. The models are trained for 150 epochs using the cosine annealing scheduler Loshchilov & Hutter
(2017) with learning rate decay of 0.01. The optimizer is SGD with momentum of 0.9 and weight decay of
0.0005. For learning rate tuning, we run a given experiment with initial learning rate of 0.2, divide it by
2, and re-run the experiment. We continue this procedure until finding the best learning rate (Table 5 in
Appendix B). Then, we repeat the experiment three times, and report the mean and SD over the runs.

Results. Table 1 lists the test accuracy values achieved by the models for different batch sizes. According
to the table, (I) KNResNets dramatically outperform the BatchNorm counterparts for batch size of 2, (II)
KNResNets deliver highly competitive accuracy values compared to BatchNorm-based models with batch
sizes of 32 and 256, and (III) KNResNets achieve significantly higher accuracy than the batch-independent
competitors (LayerNorm and GroupNorm) for all considered batch sizes.

4.2 Image classification on ImageNet

Dataset. The ImageNet dataset contains around 1.28 million training and 50000 validation images. Fol-
lowing Wu & He (2018); PyTorch (2022), the train images are horizontally flipped and randomly cropped to

7

Under review as submission to TMLR

Table 1: Test accuracy versus batch size on CIFAR-100.
Model Normalization Parameters B=2 B=32 B=256
ResNet-18-LN LayerNorm 11.220 M 72.68±0.22 73.17±0.16 71.99±0.45
PreactResNet-18-LN LayerNorm 11.220 M 73.51±0.10 73.36±0.15 72.91±0.07
ResNet-18-GN GroupNorm 11.220 M 73.97±0.25 73.89±0.07 72.21±0.60
PreactResNet-18-GN GroupNorm 11.220 M 73.60±0.04 74.11±0.22 72.82±0.13
ResNet-18-BN BatchNorm 11.220 M 72.11±0.25 78.52±0.20 77.72±0.04
PreactResNet-18-BN BatchNorm 11.220 M 72.57±0.19 78.32±0.09 77.83±0.16
KNResNet-18 (ours) KernelNorm 11.207 M 79.09±0.15 79.02±0.10 78.85±0.10
∆ (vs. BatchNorm) — — +6.52 +0.50 +1.02
∆ (vs. GroupNorm) — — +5.12 +4.91 +6.03
ResNet-34-LN LayerNorm 21.328 M 73.74±0.26 73.88±0.37 72.48±0.57
PreactResNet-34-LN LayerNorm 21.328 M 74.79±0.13 74.34±0.42 73.10±0.42
ResNet-34-GN GroupNorm 21.328 M 74.86±0.16 74.43±0.57 73.00±0.42
PreactResNet-34-GN GroupNorm 21.328 M 74.44±0.41 74.28±0.23 73.67±0.15
ResNet-34-BN BatchNorm 21.328 M 73.06±0.23 79.21±0.09 78.27±0.19
PreactResNet-34-BN BatchNorm 21.328 M 72.20±0.19 79.09±0.03 78.59±0.24
KNResNet-34 (ours) KernelNorm 21.305 M 79.25±0.07 79.47±0.15 79.16±0.21
∆ (vs. BatchNorm) — — +6.19 +0.26 +0.57
∆ (vs. GroupNorm) — — +4.39 +5.04 +5.49
ResNet-50-LN LayerNorm 23.705 M 75.83±0.25 75.74±0.14 74.37±0.58
PreactResNet-50-LN LayerNorm 23.705 M 74.28±0.31 74.57±0.32 73.41±0.15
ResNet-50-GN GroupNorm 23.705 M 76.69±0.15 76.77±0.10 75.07±0.38
PreactResNet-50-GN GroupNorm 23.705 M 75.06±0.55 75.17±0.26 74.35±0.05
ResNet-50-BN BatchNorm 23.705 M 71.02±0.15 80.39±0.06 77.89±0.06
PreactResNet-50-BN BatchNorm 23.705 M 70.83±0.41 80.28±0.15 78.88±0.21
KNResNet-50 (ours) KernelNorm 24.600 M 80.25±0.35 80.15±0.11 79.70±0.12
∆ (vs. BatchNorm) — — +9.23 -0.24 +0.82
∆ (vs. GroupNorm) — — +3.56 +3.38 +4.63

224×224. The test images are first resized to 256×256, and then center cropped to 224×224. The feature
values are normalized using the mean and SD of ImageNet for the competitors, while they are only divided
by 255 for KNResNets.

Training. Following Wu & He (2018); PyTorch (2022), we train KNResNet-18/34/50 and the competitors
for 100 epochs. We use batch size of 32 instead of 256 due to the limited memory of our system, and set
learning rate to 0.0125 according to the linear scaling of learning rate based on batch size Goyal et al. (2017).
The optimizer is SGD with momentum of 0.9 and weight decay of 0.0001. The learning rate scheduler is
cosine-annealing, which is decayed by factor of 0.01 and 0.001 for ResNet-18/34 and ResNet-50, respectively.

Results. Table 2 demonstrates the Top-1 accuracy values on ImageNet for different architectures. As
shown in the table, (I) KNResNet-18/34 outperforms the BatchNorm counterparts by around 1.25%, (II)
KNResNet-18/34 achieves considerably higher accuracy (by about 2.8%-3.5%) than LayerNorm and Group-
Norm based competitors, and (III) KNResNet-50 delivers almost the same accuracy as the batch and group
normalized ResNet-50.

Notice that under our training setting, the accuracy values from the BatchNorm-based ResNet-18/34/50 on
ImageNet are highly consistent with those reported in PyTorch (2022; 2023a). Additionally, the accuracy
gaps between the kernel/batch normalized ResNets and the layer/group normalized models are narrower
on ImageNet than CIFAR-100. This is likely because CIFAR-100 is more susceptible to overfitting than
ImageNet. Consequently, LayerNorm and GroupNorm based models with no inherent regularization effect
considerably underperform on CIFAR-100. Unlike KNResNet-18/34, which considerably outperforms the
batch-normalized counterparts, KNResNet-50 provide very comparable accuracy compared to BatchNorm-
based ResNet-50. This can be because the batch normalized ResNet-50 mostly employs 1×1 convolutional
layers with very high number of filters (maximum filters of 2048). KNResNet-50, on the other hand, is
mainly based on 2×2 KNConv layers with much fewer number of filters (maximum filters of 1024) to keep
the number of model parameters comparable to the competitors.

8

Under review as submission to TMLR

Table 2: Image classification on ImageNet.
Model Normalization Parameters Top-1 accuracy
ResNet-18-LN LayerNorm 11.690 M 67.37
ResNet-18-GN GroupNorm 11.690 M 68.07
ResNet-18-BN BatchNorm 11.690 M 69.67
KNResNet-18 (ours) KernelNorm 11.699 M 70.90
∆ (vs. BatchNorm) — — +1.23
∆ (vs. GroupNorm) — — +2.83
ResNet-34-LN LayerNorm 21.798 M 71.37
ResNet-34-GN GroupNorm 21.798 M 71.67
ResNet-34-BN BatchNorm 21.798 M 73.33
KNResNet-34 (ours) KernelNorm 21.797 M 74.60
∆ (vs. BatchNorm) — — +1.27
∆ (vs. GroupNorm) — — +2.93
ResNet-50-LN LayerNorm 25.557 M 74.77
ResNet-50-GN GroupNorm 25.557 M 76.09
ResNet-50-BN BatchNorm 25.557 M 76.17
KNResNet-50 (ours) KernelNorm 25.553 M 76.21
∆ (vs. BatchNorm) — — +0.04
∆ (vs. GroupNorm) — — +0.12

4.3 Semantic segmentation on CityScapes

Dataset. The CityScapes dataset contains 2975 train and 500 validation images from 30 classes, 19 of which
are employed for evaluation. Following Sun et al. (2019); Ortiz et al. (2020), the train samples are randomly
cropped from 2048×1024 to 1024×512, horizontally flipped, and randomly scaled in the range of [0.5, 2.0].
The models are tested on the validation images, which are of shape 2048×1024.

Training. Following Sun et al. (2019); Ortiz et al. (2020), we train the models with learning rate of 0.01,
which is gradually decayed by power of 0.9. The models are trained for 500 epochs using 2 GPUs with batch
size of 8 per GPU. The optimizer is SGD with momentum of 0.9 and weight decay of 0.0005. Notice that we
use SyncBatchNorm instead of BatchNorm in the batch normalized models due to the multi-GPU setting.

Results. Table 3 lists the mean of class-wise intersection over union (mIoU), pixel accuracy, and mean of
class-wise pixel accuracy for different architectures. According to the table, (I) KNResNet-18/34 and the
BatchNorm-based counterparts achieve highly competitive mIoU, pixel accuracy, and mean accuracy, whereas
KNResNet-50 delivers considerably higher mIoU and mean accuracy than batch normalized ResNet-50, (II)
KNResNets significantly outperform the batch-independent competitors (the LayerNorm, GroupNorm, and
LocalContextNorm based models) in terms of all considered performance metrics. Surprisingly, ResNet-50
based models perform worse than ResNet-34 counterparts for the competitors possibly because of the smaller
kernel size they employ in ResNet-50 compared to ResNet-34 (1×1 instead of 3×3).

4.4 Differentially private image classification on ImageNet32×32

Dataset. ImageNet32×32 is the down-sampled version of ImageNet, where all images are resized to 32×32.
For preprocessing, the feature values are divided by 255 for KNResNet-18, while they are normalized by the
mean and SD of ImageNet for the layer and group normalized ResNet-18.

Training. We train KNResNet-18 as well as the GroupNorm and LayerNorm counterparts for 100 epochs
using the SGD optimizer with zero-momentum and zero-weight decay, where the learning rate is decayed by
0.99 at each epoch. Note that BatchNorm is inapplicable to differential privacy. All models use the Mish
activation Misra (2019). For parameter tuning, we randomly select 10% of the samples from the dataset and
perform tuning using learning rates values of {1.0, 2.0, 3.0}, clipping values of {1.0, 2.0}, and batch sizes of
{2048, 4096, 8192}. Given the results from parameter tuning, we train all models using learning rate of 3.0

9

Under review as submission to TMLR

Table 3: Semantic segmentation on CityScapes.
Model Normalization Parameters mIoU Pixel accuracy Mean accuracy
ResNet-18-LN LayerNorm 13.547 M 59.10±0.46 92.42±0.17 69.43±0.58
ResNet-18-GN GroupNorm 13.547 M 59.74±0.93 92.68±0.12 69.14±0.97
ResNet-18-LCN LocalContextNorm 13.547 M 62.25±0.67 92.99±0.06 71.59±0.68
ResNet-18-BN BatchNorm 13.547 M 63.90±0.06 93.77±0.02 73.15±0.14
KNResNet-18 (ours) KernelNorm 13.525 M 64.51±0.33 93.72±0.06 73.43±0.40
∆ (vs. BatchNorm) — — +0.61 -0.05 +0.28
∆ (vs. LocalContextNorm) — — +2.26 +0.73 +1.84
ResNet-34-LN LayerNorm 23.655 M 60.19±0.32 92.73±0.17 70.12±0.33
ResNet-34-GN GroupNorm 23.655 M 61.41±0.41 92.94±0.12 71.21±0.29
ResNet-34-LCN LocalContextNorm 23.655 M 64.75±0.38 93.31±0.09 74.25±0.37
ResNet-34-BN BatchNorm 23.655 M 66.94±0.34 94.27±0.03 76.50±0.41
KNResNet-34 (ours) KernelNorm 23.399 M 67.76±0.32 94.19±0.05 76.85±0.26
∆ (vs. BatchNorm) — — +0.82 -0.08 +0.35
∆ (vs. LocalContextNorm) — — +3.01 +0.88 +2.60
ResNet-50-LN LayerNorm 32.955 M 57.88±0.84 92.31±0.21 68.25±0.75
ResNet-50-GN GroupNorm 32.955 M 60.10±0.61 92.84±0.08 69.28±0.55
ResNet-50-LCN LocalContextNorm 32.955 M 64.03±0.02 93.07±0.14 73.40±0.03
ResNet-50-BN BatchNorm 32.955 M 65.19±0.50 93.98±0.03 74.65±0.62
KNResNet-50 (ours) KernelNorm 32.874 M 68.16±0.11 94.24±0.02 77.26±0.15
∆ (vs. BatchNorm) — — +2.97 +0.26 +2.61
∆ (vs. LocalContextNorm) — — +4.13 +1.17 +3.86

Table 4: Differentially private image classification on ImageNet32×32.

Model Normalization Parameters Top-1 accuracy
ResNet-18-BN BatchNorm 11.682 M NA
ResNet-18-LN LayerNorm 11.682 M 18.97
ResNet-18-GN GroupNorm 11.682 M 19.33
KNResNet-18 (ours) KernelNorm 11.668 M 21.16
∆ (vs. GroupNorm) — — +1.83

and clipping value of 2.0. The batch size is 4096 for the group and layer normalized ResNet-18, while it is
8192 for KNResNet-18. Our differentially private training is based on DP-SGD Abadi et al. (2016) from the
Opacus library Yousefpour et al. (2021) with ε=8.0 and δ=10−5. The privacy accountant is RDP Mironov
(2017)

Results. Table 4 lists the Top-1 accuracy values on ImageNet32×32 for different models trained in differen-
tially private setting. As can be seen in the table, KNResNet-18 achieves significantly higher accuracy than
the layer and group normalized ResNet-18.

5 Discussion

KNResNets incorporate only batch-independent layers such as the proposed KernelNorm and KNConv layers
into their architectures. Thus, they perform well with very small batch sizes (Table 1) and are applicable to
differentially private learning (Table 4), which are not the case for the batch normalized models. Unlike the
batch-independent competitors such as LayerNorm, GroupNorm, and LocalContextNorm based ResNets,
KNResNets provide higher or very competitive performance compared to the batch normalized counterparts
in image classification and semantic segmentation (Tables 1-3). Moreover, KNResNets converge faster than
the batch, layer, and group normalized ResNets in non-private and differentially private image classification as
shown in Figure 4. These results verify our key claim: the kernel normalized models combine the performance
benefit of the batch normalized counterparts with the batch-independence advantage of the layer, group, and
local-context normalized competitors.

10

Under review as submission to TMLR

0.96 0.98 1.00 1.02 1.04

0.96

0.98

1.00

1.02

1.04

BatchNorm GroupNorm LayerNorm KernelNorm

0 25 50 75 100 125 150
Epoch

0

1

2

3

4
Tr

ai
n

lo
ss

0 25 50 75 100 125 150
Epoch

0

20

40

60

80

Te
st

 a
cc

ur
ac

y
(%

)

(a) CIFAR-100-ResNet-50 (B=2)

0 20 40 60 80 100
Epoch

1

2

3

4

Tr
ai

n
lo

ss

0 20 40 60 80 100
Epoch

20

40

60

80

Te
st

 a
cc

ur
ac

y
(%

)

(b) ImageNet-ResNet-34 (B=32)

0 20 40 60 80 100
Epoch

1

2

3

4

Tr
ai

n
lo

ss

0 20 40 60 80 100
Epoch

20

40

60

80

Te
st

 a
cc

ur
ac

y
(%

)

(c) ImageNet-ResNet-50 (B=32)

0 20 40 60 80 100
Epoch

3

4

5

6

7

Tr
ai

n
lo

ss

0 20 40 60 80 100
Epoch

5

10

15

20

Te
st

 a
cc

ur
ac

y
(%

)

(d) ImageNet32×32-ResNet-18 (ε=8.0, δ=10−5)

Figure 4: Convergence rate of the models for different case studies: Kernel normalized models converge
faster than the competitors. Notice that BatchNorm is inapplicable to differentially private learning.

11

Under review as submission to TMLR

The key and unique property of kernel normalization is the overlapping normalization units, which en-
ables kernel normalized models to extensively take advantage of the spatial correlation among the elements
during normalization. The other normalization layers lack this property. BatchNorm, LayerNorm, and
GroupNorm are global normalization layers, which completely ignore the spatial correlation of the elements.
LocalContextNorm partially considers the spatial correlation during normalization because it has no overlap-
ping normalization units, and must use very large window sizes to achieve practical computational efficiency.
Moreover, it enables KernelNorm to be combined with the convolutional layer effectively as a single KNConv
layer (Equation 5 and Algorithm 1). Our evaluations illustrate that this characteristic of kernel normalization
lead to significant improvement in convergence rate and accuracy achieved by KNResNets.

Normalizing the feature values of the input images using the mean and SD of the whole dataset is a popular
data preprocessing technique, which enhances the performance of the existing CNNs due to feeding the
normalized values into the first convolutional layer. This is unnecessary for KNConvNets because all KNConv
layers including the first one are self-normalizing (they normalize the input first, and then, compute the
convolution). This makes the data preprocessing simpler during training of KNConvNets.

Compared to the corresponding non-normalized networks, the accuracy gain in KNResNets originates from
normalization using KernelNorm and regularization effect of dropout. To investigate the contribution of each
factor to the accuracy gain, we train KNResNet-50 on CIFAR-100 with batch size of 32 in three cases: (I)
without KernelNorm, (II) with KernelNorm and without dropout, (III) with KernelNorm and dropout. The
models achieve accuracy values of 71.08%, 78.96%, and 80.15% in (I), (II), and (III), respectively. Given that,
normalization using KernelNorm provides accuracy gain of around 8.0% compared to the non-normalized
model. Regularization effect of dropout delivers additional accuracy gain of about 1.0%.

There is a prior work known as convolutional normalization (ConvNorm) Liu et al. (2021), which takes
into account the convolutional structure during normalization similar to this study. ConvNorm performs
normalization on the kernel weights of the convolutional layer (weight normalization). Our proposed layers,
on the other hand, normalize the input tensor (input normalization). In terms of performance on ImageNet,
the accuracy of KNResNet-18 is higher than the accuracy of the ConvNorm+BatchNorm based ResNet-18
reported in Liu et al. (2021) (70.90% vs. 70.34%).

Despite their advantages, KNResNets are not free of drawbacks. The main limitation of KNResNets is
their higher computational overhead (Table 6 in Appendix C). This can be because of several factors:
(1) In the current implementation, the KernelNorm and KNConv layers employ the primitives provided
by PyTorch, whereas the core of the competitor layers have been implemented directly in C/C++, (2)
KernelNorm is a local normalization layer, and thus, it leads to more normalization units compared to
the global normalization layers such as BatchNorm, (3) The current implementations of KernelNorm and
KNResNets are not optimized from the computation perspective.

In other words, the higher computational overhead of KNResNets is mainly the matter of implementation,
which can be improved significantly in the future: (I) The current implementation of KernelNorm first
unfolds the input tensor, and then applies dropout. The order can be changed, i.e. apply dropout before
unfolding the input tensor. This can reduce the computation time considerably because the original tensor
is much smaller than the unfolded one. (II) The PyTorch implementation of dropout first randomly zeros
the elements, and then rescales the non-zero elements by factor of 1

1−p , where p is the dropout probability.
KernelNorm relies on dropout to only inject random noise into the mean and variance. Rescaling the
elements is unnecessary for KernelNorm. Currently, the dropout function in PyTorch provides no flag to
disable rescaling. The underlying C++ code, however, can be modified to this end, which can further reduce
the overhead of dropout. (III) The number of filters in different layers can be changed to improve the
computational time of KNResNets. More precisely, a very fewer number of filters can be inserted in the
initial layers, which work on higher resolution input tensors, compared to the last layers which operate on
downsampled tensors. (IV) The KernelNorm and KNConv layers can be implemented in CUDA/C++.

For instance, our initial observations show that changing the order of the dropout and unfolding operations
mentioned in (I) can reduce the per-epoch training time of KNResNet-50 on ImageNet by ≈ 40%. Applying
(I) and (III) to KNResNet-34, furthermore, can improve the per-epoch training time on ImageNet by ≈ 56%.
Notice that the most efficient implementation of KNResNets is not the focus of this study, and is left as a

12

Under review as submission to TMLR

future line of improvement. Our current implementation, however, provides enough computational efficiency
that allows for training KNResNet-18/34/50 on large datasets such as ImageNet and CityScapes.

6 Conclusion and Future Work

BatchNorm considerably enhances the model convergence rate and accuracy, but it delivers poor perfor-
mance with small batch sizes. Moreover, it is unsuitable for differentially private learning due to its depen-
dence on the batch statistics. To address these challenges, we propose two novel batch-independent layers
called KernelNorm and KNConv, and employ them as the main building blocks for KNConvNets, and the
corresponding residual networks referred to as KNResNets. Through extensive experimentation, we show
KNResNets deliver higher or very competitive accuracy compared to BatchNorm counterparts in image clas-
sification and semantic segmentation. Furthermore, they consistently outperform the batch-independent
counterparts such as LayerNorm, GroupNorm, and LocalContextNorm in non-private and differentially
private learning settings. To our knowledge, our work is the first to combine the batch-independence of
LayerNorm/GroupNorm/LocalContextNorm with the performance advantage of BatchNorm.

The performance investigation of KNResNets for object detection, designing KNConvNets corresponding
to other popular architectures such as DenseNets Huang et al. (2017a), and optimized implementations of
KernelNorm and KNResNets from the computational perspective are promising directions for future studies.

References
Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.

Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer
and communications security, pp. 308–318, 2016.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient descent
is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

AB Bonds. Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex.
Visual neuroscience, 2(1):41–55, 1989.

Andrew Brock, Soham De, and Samuel L Smith. Characterizing signal propagation to close the performance
gap in unnormalized resnets. arXiv preprint arXiv:2101.08692, 2021a.

Andy Brock, Soham De, Samuel L Smith, and Karen Simonyan. High-performance large-scale image recog-
nition without normalization. In International Conference on Machine Learning, pp. 1059–1071. PMLR,
2021b.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,
Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understand-
ing. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3213–3223,
2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee,
2009.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found. Trends Theor.
Comput. Sci., 9:211–407, 2014.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp. 249–
256. JMLR Workshop and Conference Proceedings, 2010.

13

Under review as submission to TMLR

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet in 1 hour.
arXiv preprint arXiv:1706.02677, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In
European conference on computer vision, pp. 630–645. Springer, 2016b.

David J Heeger. Normalization of cell responses in cat striate cortex. Visual neuroscience, 9(2):181–197,
1992.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolu-
tional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
4700–4708, 2017a.

Lei Huang, Xianglong Liu, Yang Liu, Bo Lang, and Dacheng Tao. Centered weight normalization in acceler-
ating training of deep neural networks. In Proceedings of the IEEE International Conference on Computer
Vision, pp. 2803–2811, 2017b.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pp. 448–456. PMLR, 2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems, 25, 2012.

Liu Kuang. Pytorch models for ciafr-10/100. https://github.com/kuangliu/pytorch-cifar/, 2021.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hubbard, and
Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1
(4):541–551, 1989.

Boyi Li, Felix Wu, Kilian Q Weinberger, and Serge Belongie. Positional normalization. Advances in Neural
Information Processing Systems, 32, 2019.

Sheng Liu, Xiao Li, Yuexiang Zhai, Chong You, Zhihui Zhu, Carlos Fernandez-Granda, and Qing Qu. Convo-
lutional normalization: Improving deep convolutional network robustness and training. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Sys-
tems, 2021.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmenta-
tion. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440,
2015a.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmenta-
tion. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440,
2015b.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In International
Conference on Learning Representations, 2017.

Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations symposium
(CSF), pp. 263–275. IEEE, 2017.

Diganta Misra. Mish: A self regularized non-monotonic activation function. arXiv preprint arXiv:1908.08681,
2019.

14

https://github.com/kuangliu/pytorch-cifar/

Under review as submission to TMLR

Anthony Ortiz, Caleb Robinson, Dan Morris, Olac Fuentes, Christopher Kiekintveld, Md Mahmudulla Has-
san, and Nebojsa Jojic. Local context normalization: Revisiting local normalization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11276–11285, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., 2019.

PyTorch. Imagenet training in pytorch. https://github.com/pytorch/examples/tree/main/imagenet,
2022.

PyTorch. Accuracy of resnets on imagenet. https://pytorch.org/hub/pytorch_vision_resnet, 2023a.

PyTorch. Unfold operation in pytorch. https://pytorch.org/docs/stable/generated/torch.nn.
Unfold.html, 2023b.

PyTorch. var_mean function in pytorch. https://pytorch.org/docs/stable/generated/torch.var_
mean.html, 2023c.

Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and Alan Yuille. Micro-batch training with batch-channel
normalization and weight standardization. arXiv preprint arXiv:1903.10520, 2019.

Mengye Ren, Renjie Liao, Raquel Urtasun, Fabian H. Sinz, and Richard S. Zemel. Normalizing the normal-
izers: Comparing and extending network normalization schemes. In International Conference on Learning
Representations, 2017.

Tim Salimans and Diederik P Kingma. Weight normalization: a simple reparameterization to accelerate
training of deep neural networks. In Proceedings of the 30th International Conference on Neural Informa-
tion Processing Systems, pp. 901–909, 2016.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normalization
help optimization? Advances in neural information processing systems, 31, 2018.

Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and Yann LeCun. Overfeat:
Integrated recognition, localization and detection using convolutional networks. In 2nd International
Conference on Learning Representations, ICLR 2014, 2014.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):
1929–1958, 2014.

Ke Sun, Yang Zhao, Borui Jiang, Tianheng Cheng, Bin Xiao, Dong Liu, Yadong Mu, Xinggang Wang,
Wenyu Liu, and Jingdong Wang. High-resolution representations for labeling pixels and regions. arXiv
preprint arXiv:1904.04514, 2019.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing ingredient
for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on computer
vision (ECCV), pp. 3–19, 2018.

Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine, Karthik Prasad, Mani Malek,
John Nguyen, Sayan Ghosh, Akash Bharadwaj, Jessica Zhao, Graham Cormode, and Ilya Mironov. Opa-
cus: User-friendly differential privacy library in PyTorch. arXiv preprint arXiv:2109.12298, 2021.

15

https://github.com/pytorch/examples/tree/main/imagenet
https://pytorch.org/hub/pytorch_vision_resnet
https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html
https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html
https://pytorch.org/docs/stable/generated/torch.var_mean.html
https://pytorch.org/docs/stable/generated/torch.var_mean.html

Under review as submission to TMLR

A KNResNet Architectures
R

eL
U

 K

N
C

on
v-

2x
2

R
eL

U

 K

N
C

on
v-

2x
2

R
eL

U

 K

N
C

on
v2

x2

 M
ax

-p
oo

l 2
x2

R
eL

U

 K

N
C

on
v-

3x
3

R
eL

U

 K

N
C

on
v-

3x
3

R
eL

U

 K

N
C

on
v-

3x
3

 M
ax

-p
oo

l 3
x3

Basic block

R
eL

U

 K

N
C

on
v-

2x
2

R
eL

U

 K

N
C

on
v-

3x
3

R
eL

U

 K

N
C

on
v-

2x
2

Bottleneck block

R
eL

U

 K

N
C

on
v-

2x
2

 M
ax

-p
oo

l-2
x2

R
eL

U

 K

N
C

on
v-

3x
3

 M
ax

-p
oo

l 3
x3

Transitional block

(a) KNResNet blocks (image classification)

B
as

ic
 B

lo
ck

K
N

C
on

v-
7x

7

K
er

ne
lN

or
m

Tr
an

si
tio

na
l B

lo
ck

3 256

Av
g-

po
ol

Li
ne

ar

2X

256

R
eL

U

M
ax

-p
oo

l-3
x3

256 256

B
as

ic
 B

lo
ck

2X

256
Tr

an
si

tio
na

l B
lo

ck
512

B
as

ic
 B

lo
ck

512

Tr
an

si
tio

na
l B

lo
ck

B
as

ic
 B

lo
ck

512

M
ax

-p
oo

l-2
x2

512 512

K
N

C
on

v-
2x

2

512 512 512

R
eL

U 512 512

(b) KNResNet-18 (image classification)

B
as

ic
 B

lo
ck

K
N

C
on

v-
7x

7

K
er

ne
lN

or
m

Tr
an

si
tio

na
l B

lo
ck

3 256

Av
g-

po
ol

Li
ne

ar

4X

256

R
eL

U

M
ax

-p
oo

l-3
x3

256 256

B
as

ic
 B

lo
ck

4X

256

Tr
an

si
tio

na
l B

lo
ck

512

B
as

ic
 B

lo
ck

512

Tr
an

si
tio

na
l B

lo
ck

B
as

ic
 B

lo
ck

512
M

ax
-p

oo
l-2

x2
512 512

K
N

C
on

v-
2x

2

512 512 512

R
eL

U 512 512

3X 3X

(c) KNResNet-34 (image classification)

B
ot

tle
ne

ck
 B

lo
ck

K
N

C
on

v-
7x

7

K
er

ne
lN

or
m

Tr
an

si
tio

na
l B

lo
ck

3

Av
g-

po
ol

Li
ne

ar

5X

R
eL

U

M
ax

-p
oo

l-3
x3

B
ot

tle
ne

ck
 B

lo
ck

4X

Tr
an

si
tio

na
l B

lo
ck

B
ot

tle
ne

ck
 B

lo
ck

Tr
an

si
tio

na
l B

lo
ck

B
ot

tle
ne

ck
 B

lo
ck

1024

M
ax

-p
oo

l-2
x2

K
N

C
on

v-
2x

2

R
eL

U

3X 2X

B
as

ic
 B

lo
ck

1024 1024 1024 1024256 256 256 512 512 512 512 1024 1024 1024 1024

(d) KNResNet-50 (image classification)

Figure 5: KNResNets for image classification: For all architectures, (I) stride and padding of the first
KNConv layer are 2×2 and 3×3, respectively, (II) stride and padding of the first max-pooling layer are 2×2
and 1×1, respectively, (III) padding of the KNConv layer in the first, second, and third transitional blocks
are 1×1, zero, and 1×1, respectively, (IV) stride and padding of the last max-pooling layer are 2×2 and
zero, respectively, (V) stride and padding of the last KNConv layer is 1×1 and zero, respectively, (VI) the
KernelNorm layer uses kernel size and stride value of 1×1, and zero-padding, (VII) the dropout probability
of the KNConv and KernelNorm layers are 0.1 and 0.25, respectively, (VIII) for low-resolution images (e.g.
CIFAR-10/100 with image shape of 32×32), the first KNConv layer is replaced by a KNConv layer with
kernel size 3×3, stride 1×1, and padding 1×1, and the following max-pooling layer is removed. The kX
(k=2/3/4/5) notation above the blocks means k blocks of that type. The numbers above arrows indicate
the number of input/output channels of the first/last KNConv layer in the block. For KNResNet-18, the
number of the output channels of the first KNConv layer (or the number of input channels of the second
KNConv layer) is 512 for all basic blocks, except the last one, which uses 480 filters. For KNResNet-34, it
is 256, 448, 512, and 512 for the first, second, third, and fourth set of basic blocks. For KNResNet-50, the
number of output channels of the first and second KNConv layers are 128, 128, 236, 256 in the first, second,
third, and fourth set of bottleneck blocks, respectively. The number of output channels of the first KNConv
layer in the basic block is 256.

16

Under review as submission to TMLR

R
eL

U

 K

N
C

on
v-

3x
3

R
eL

U

 K

N
C

on
v-

3x
3

R
eL

U

 K

N
C

on
v-

3x
3

R
eL

U

 K

N
C

on
v-

3x
3

Basic block

R
eL

U

 K

N
C

on
v-

2x
2

R
eL

U

 K

N
C

on
v-

3x
3

R
eL

U

 K

N
C

on
v-

2x
2

Bottleneck block

R
eL

U

 K

N
C

on
v-

3x
3

 M
ax

-p
oo

l-3
x3

R
eL

U

 K

N
C

on
v-

3x
3

 M
ax

-p
oo

l 3
x3

Transitional block

(a) KNResNet blocks (semantic segmentation)

B
as

ic
 B

lo
ck

K
N

C
on

v-
7x

7

K
er

ne
lN

or
m

Tr
an

si
tio

na
l B

lo
ck

3 64

2X

64

M
ax

-p
oo

l-3
x3

64 128

B
as

ic
 B

lo
ck

2X

128
Tr

an
si

tio
na

l B
lo

ck
256

B
as

ic
 B

lo
ck

256

Tr
an

si
tio

na
l B

lo
ck

B
as

ic
 B

lo
ck

512 512

R
eL

U

2X

512 512

C
on

v-
1x

1

(b) KNResNet-18 (semantic segmentation)

B
as

ic
 B

lo
ck

K
N

C
on

v-
7x

7

K
er

ne
lN

or
m

Tr
an

si
tio

na
l B

lo
ck

3 64

4X

64

M
ax

-p
oo

l-3
x3

64 128

B
as

ic
 B

lo
ck

4X

128

Tr
an

si
tio

na
l B

lo
ck

256

B
as

ic
 B

lo
ck

256

Tr
an

si
tio

na
l B

lo
ck

B
as

ic
 B

lo
ck

512 512

R
eL

U

4X

512 512

C
on

v-
1x

1

3X

(c) KNResNet-34 (semantic segmentation)

B
ot

tle
ne

ck
 B

lo
ck

K
N

C
on

v-
7x

7

K
er

ne
lN

or
m

Tr
an

si
tio

na
l B

lo
ck

3 64

4X

64

R
eL

U

M
ax

-p
oo

l-3
x3

64 128

B
ot

tle
ne

ck
 B

lo
ck

4X

128

Tr
an

si
tio

na
l B

lo
ck

256

B
ot

tle
ne

ck
 B

lo
ck

Tr
an

si
tio

na
l B

lo
ck

B
ot

tle
ne

ck
 B

lo
ck

K
N

C
on

v3
x3

512

R
eL

U

4X 3X

256 512 512 512 512 512
C

on
v-

1x
1

(d) KNResNet-50 (semantic segmentation)

Figure 6: KNResNets for semantic segmentation: For all architectures, the dropout probability of the
KNConv and KernelNorm layers are 0.1 and 0.5, respectively. For KNResNet-18, the number of the output
channels of the first KNConv layer (or the number of input channels of the second KNConv layer) is 128, 256,
512, and 625 for the first, second, third, and fourth set of basic blocks. For KNResNet-34, they are 128, 256,
256, and 512, respectively. For KNResNet-50, the number of input/output channels of the middle KNConv
layer are 128, 256, 458, and 512 for the first, second, third, and fourth set of bottleneck blocks. Unlike their
counterparts for image classification, the KNConv and max-pooling layers in basic and transitional blocks
employ kernel size of 3×3 instead of 2×2. Stride and padding of all KNConv layers in basic and transitional
blocks is 1×1. The other details are the same as those in KNResNets for image classification.

17

Under review as submission to TMLR

B Reproducibility

Table 5: Learning rate values achieving the highest accuracy on CIFAR-100.

Model Normalization B=2 B=32 B=256
ResNet-18-LN LayerNorm 0.0015625 0.0125 0.05
PreactResNet-18-LN LayerNorm 0.0015625 0.0125 0.05
ResNet-18-GN GroupNorm 0.0015625 0.0125 0.05
PreactResNet-18-GN GroupNorm 0.0015625 0.0125 0.05
ResNet-18-BN BatchNorm 0.00078125 0.025 0.2
PreactResNet-18-BN BatchNorm 0.00078125 0.025 0.2
KNResNet-18 KernelNorm 0.0015625 0.05 0.2
ResNet-34-LN LayerNorm 0.0015625 0.0125 0.05
PreactResNet-34-LN LayerNorm 0.0015625 0.0125 0.05
ResNet-34-GN GroupNorm 0.0015625 0.0125 0.05
PreactResNet-34-GN GroupNorm 0.0015625 0.0125 0.05
ResNet-34-BN BatchNorm 0.00078125 0.025 0.1
PreactResNet-34-BN BatchNorm 0.000390625 0.025 0.2
KNResNet-34 KernelNorm 0.0015625 0.05 0.2
ResNet-50-LN LayerNorm 0.00078125 0.0125 0.05
PreactResNet-50-LN LayerNorm 0.0015625 0.0125 0.05
ResNet-50-GN GroupNorm 0.00078125 0.0125 0.05
PreactResNet-50-GN GroupNorm 0.0015625 0.025 0.1
ResNet-50-BN BatchNorm 0.000390626 0.0125 0.1
PreactResNet-50-BN BatchNorm 0.000195313 0.0125 0.2
KNResNet-50 KernelNorm 0.003125 0.05 0.2

18

Under review as submission to TMLR

C Training Time

Table 6: Training time per epoch: The classification and semantic segmentation experiments are con-
ducted with a single NVIDIA RTX A6000 GPU and two NVIDIA A40 GPUs, respectively; Total batch size
is 32 and 16 in classification and segmentation, respectively; h: hour, m: minutes, s: seconds.

Model Normalization CIFAR-100 ImageNet CityScapes
ResNet-18-BN BatchNorm 24s 21m 47s
ResNet-18-GN GroupNorm 24s 21m 46s
ResNet-18-LN LayerNorm 24s 22m 48s
KNResNet-18 KernelNorm 2m 28s 4h 15m 3m 30s
ResNet-34-BN BatchNorm 45s 33m 52s
ResNet-34-GN GroupNorm 46s 34m 52s
ResNet-34-LN LayerNorm 45s 35m 57s
KNResNet-34 KernelNorm 3m 25s 5h 34m 5m 42s
ResNet-50-BN BatchNorm 1m 7s 1h 1m 22s
ResNet-50-GN GroupNorm 1m 8s 1h 1m 23s
ResNet-50-LN LayerNorm 1m 8s 1h 4m 1m 41s
KNResNet-50 KernelNorm 5m 8s 7h 6m 6m 30s

19

	Introduction
	Normalization Layers
	Kernel Normalized Convolutional Networks
	Evaluation
	Batch size-dependent performance analysis
	Image classification on ImageNet
	Semantic segmentation on CityScapes
	Differentially private image classification on ImageNet3232

	Discussion
	Conclusion and Future Work
	KNResNet Architectures
	Reproducibility
	Training Time

