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Abstract

Knowledge in materials science is widely dispersed across extensive scientific
literature, posing significant challenges to the efficient discovery and integration of
new materials. Traditional methods, often reliant on costly and time-consuming
experimental approaches, further complicate rapid innovation. Addressing these
challenges, the integration of artificial intelligence with materials science has
opened avenues for accelerating the discovery process, though it also demands
precise annotation, data extraction, and traceability of information. To tackle
these issues, this article introduces the Materials Knowledge Graph (MKG), which
utilizes advanced natural language processing techniques integrated with large
language models to extract and systematically organize a decade’s worth of high-
quality research into structured triples, contains 162,605 nodes and 731,772 edges.
MKG categorizes information into comprehensive labels such as Name, Formula,
and Application, structured around a meticulously designed ontology, thus enhanc-
ing data usability and integration. By implementing network-based algorithms,
MKG not only facilitates efficient link prediction but also significantly reduces
reliance on traditional experimental methods. This structured approach not only
streamlines materials research but also lays the groundwork for more sophisticated
science knowledge graphs.

1 Introduction

In the contemporary information era, despite notable advancements, the creation and advancement of
novel materials still heavily rely on traditional, time-consuming trial-and-error methods intertwined
with chemical and physical intuitions. These conventional research approaches significantly impede
the life-cycle of high-performance material research. Given the specialization, inherent complexity,
and vast knowledge base of material science, researchers focusing on a single direction often struggle
to efficiently access and understand material knowledge from multidisciplinary studies. For instance,
researchers in solar cell development might not fully comprehend studies related to solid-state
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batteries or organic light-emitting diodes. Yet, the electronic properties of materials across these
different domains are highly related, and researchers in different domains can potentially learn from
each other. To accelerate the progress of materials research, there is a pressing need to efficiently
integrate knowledge from various disciplines [|1]. However, this vital knowledge is scattered across
a vast array of over 10 million scientific papers, covering diverse topics and disciplines such as
materials preparation and functionalization methods, advanced materials characterization techniques,
and the exploration of physical, chemical, and biological properties, along with their applications in
fields like electronic devices, clean energy storage and transfer, and mechanical engineering. This
fragmentation of knowledge represents a significant barrier to interdisciplinary collaboration and
innovation. A critical gap in current research infrastructure is the lack of an effective materials science
database that can consolidate this scattered knowledge, facilitating easier access and interdisciplinary
integration.

Despite the existence of current databases of scientific literature such as Scopus, Web of Science,
and Crossref, which offer ways to search for research papers based on specific labels, extracting
useful information about material science from the vast ocean of literature remains demanding. To
obtain a clearer sense of materials properties, some structured database projects such as Materials
Project [2], OQMD [3], and NOMAD [4] were developed. However, these databases contain
many computational results obtained through techniques like Density Functional Theory (DFT)
or Molecular Dynamics (MD) simulations [5]]. While these computational databases can provide
valuable references for predicting and understanding certain materials systems, they often face
discrepancies with experimental observations. Therefore, there is an urgent need within the field of
materials science for a database grounded in experimental research and practical information.

Knowledge graph (KG) is a structured representation of information that models the controlled
vocabulary and ontological relations of a topical domain as nodes and edges, enabling complex
queries and insights that traditional databases cannot easily provide. The adoption of knowledge
graphs offers several advantages, including enhanced data interoperability, the ability to infer new
knowledge through relational data analysis, and improved data quality and consistency through
structured representation [6]], [7]. These features make knowledge graphs particularly valuable
for integrating diverse information sources and providing a unified view of a domain’s knowledge,
thereby facilitating more informed decision-making and discovery [§]]. However, the construction of
knowledge graphs in specific fields always requires the participation of a large number of experts [9]].
This labor-intensive process not only limits the scalability of KGs but also impacts their performance
and timeliness [[10]. With the rapid development of natural language processing (NLP), methods for
extracting information from unstructured text and constructing knowledge graphs have become more
efficient and accurate [[11]. For instance, in 2016, the Metallic Materials Knowledge Graph (MMKG)
was developed to store materials information from various web data resources [[12]. Knowledge
graphs tailored to lithium-ion battery cathodes have been constructed, aimed at identifying potential
new materials candidates [13]]. User-friendly databases focusing on specific material types, such as
Metal-Organic Framework Knowledge Graphs (MOF-KG), have been developed [[14]. Recently, a
material knowledge graph, MatKG, and MatKG?2, containing information on material properties,
structure, and applications, has been developed [1]], [15].

However, these material knowledge graphs face even greater challenges. Firstly, although advance-
ments in NLP technology have reduced the dependency on experts to a certain extent, training data
still requires extensive annotation to enhance model accuracy [16]. Secondly, the construction of
these knowledge graphs often involves predicting relationships between nodes to form triples, which
means the entities represented in the KG are not always based on real instances [[17]. This can
diminish the authenticity and credibility of the KG. Additionally, this approach makes updating
the knowledge graph difficult, as each new node introduced necessitates predicting its relationship
with every other node, complicating the maintenance of a dynamic and accurate knowledge graph,
especially in advanced fields like material science. Acknowledging these challenges, the emergence
of LLMs like GPT and LLaMA represents a breakthrough, offering new solutions to enhance the
zero-shot method [[18]], extraction, and credibility of structured information [[19]], [20]. The fine-tuning
technique of LLMs can significantly enhance their performance in specific domain text tasks through
training with fewer samples [21]],[22]. This means improving the results of Named Entity Recognition
(NER) and Relation Extraction (RE) without requiring a large amount of labor becomes possible and
was adopted in our research.



In this paper, we have achieved significant advancements in the development of Materials Knowl-
edge Graph (MKGQG), a pioneering graph database tailored for the field of materials science. Our
contributions are highlighted in three key areas: 1) We propose a method to achieve NER, RE, and
entity resolution (ER) with high accuracy. Through this method, we can easily convert unstructured
text into triples and retain the source information of each triplet. This method also makes updating
KG very convenient. 2) We constructed the first accurate knowledge graph dedicated to materials,
where researchers can easily get information about the material by querying the MKG. 3) We use a
well-defined label system so our KG can be easily scaled up and potentially combined with other
structured databases or KGs. 4) We demonstrate a similarity calculation method based on Jaccard
Similarity for materials and applications.

2 Methods

Figure [T] presents the elaborated pipeline of our study. The KG construction part can be divided into
there tasks - ontology design, knowledge extraction, and entity resolution (ER). For domain-specific
KG, the design of ontology often relies on experts in the field. This work forms an effective ontology
by defining and summarizing a small number of papers through LLM. The knowledge extraction task
begins with the manual annotation and normalization of the initial training dataset, annotated training
set is used to finetune the LLM for NERRE tasks. Simultaneously, the inference dataset is divided
into ten batches, facilitating the iterative refinement process that follows. The ER tasks are conducted
using advanced NLP technologies, including ChemDataExtractor [23]], mat2vec [24], and our expertly
curated dictionary. These steps enable the integration of information from these distinct fields into a
unified knowledge graph and clean the extracted data. After ER, we selectively enhance the training
dataset with high-quality results to improve the model’s performance in subsequent iterations. The
knowledge graph is finally constructed using the normalized data from the last iteration. To complete
the graph and predict potential material applications, we employ both network-based algorithms and
graph embeddings. This methodology provides critical insights and recommendations for researchers
in the materials science domain.
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Figure 1: Pipeline of the fine-tuned LLM for knowledge graph tasks.

2.1 Data preparation and schema design

Material experts annotated nine distinct categories from the abstracts of 75 research papers, forming
the training dataset for the Large Language Models (LLMs). The structure of the data reflects
the structure of the KG. This structure summarizes ten articles through LLM and extracts key
attributes. As illustrated in Figure (a), the "Formula", "Name" and "Acronym" node serves as
the central hub within the graph, linking to nodes that encapsulate its nomenclature, composition,
and various attributes. Among these core attributes, the priority of the attribute pointed to by the



arrow decreases in sequence. The "Structure/Phase" node describes the material’s physical state,
while the "Application" node denotes its practical uses, and the "Property" node details its inherent
characteristics. Additionally, the "Descriptor" node provides qualitative information enhancing the
contextual understanding of the material.

non

Furthermore, the "Application" node is extended to include "Property", "Descriptor”, and "Domain"
nodes, indicating the specific attributes and the broader context of the material’s application. Among
them, "Domain" is unique to "Application" and represents the field to which the application belongs.
To maintain data provenance and traceability, each node is linked to a "Digital Object Identifier
(DOID)" node. This allows for source verification where querying the intersections of "DOI" node
connections at both ends of a relation can pinpoint the source article from which the relations were
derived, ensuring data integrity within the graph structure. Figure [2] (b) is an example of MKG,
from which it can be seen that the core of MKG is to capture the connection and structure between
materials and their applications.
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Figure 2: This schematic represents the (a) MKG schema and (b) an example of path in MKG
between the "Name" node "Copper Indium Gallium Selenide" and "Application"” node "Thin Films".

Given the inherent complexity of sentences and the variability in terminologies across abstracts,
a normalization process was employed after the initial extraction. This normalization ensured a
uniform representation of entities with similar meanings. For example, terms such as "Lithium-
Ion Battery" and "Li-ion batteries" were standardized to "lithium-ion battery", while phrases like
"solution casting method", "solvent post-treatment method", and "solution-based deposition" were
simplified to "solution-processed"”. All annotated entities underwent this normalization process,
ensuring consistency and facilitating effective training of LLMs. The field of materials encompasses
a wide range of areas. At this stage, our priority is to focus on energy materials. We downloaded
150,000 abstracts of peer-reviewed research articles on energy material science, including batteries,
solar cells, and catalysts, from the Web of Science. Each abstract was stored in a JSON file format,
structured as "DOI - text", facilitating seamless processing and analysis.

2.2 LLMs training, evaluation and inference

The training dataset, composed of compiled data, was employed to fine-tune models including LLaMA
7b, LLaMA2 7b [25]], and Darwin [26]]. Upon obtaining high-quality results from the normalized
inference, we iteratively retrain a fine-tuned LLM to infer subsequent batches of data. The models
underwent training over 10 epochs with a batch size of 1. Additionally, 60 abstracts were annotated
to assess the LLMs" performance. Our evaluation primarily focused on the NER capabilities of the
model and preliminarily explored the RE task’s ability to identify potential internal relations among
relevant element sets. Moreover, since we standardized entities during the data compilation phase,
we also assessed the LLMs" effectiveness in standardizing the entities. Specifically, for NER, RE,
and ER tasks, we employ a unified framework for evaluation based on precision, recall, and the F1
score, taking into account the instances of false positives (FP) and false negatives (fn) to quantify the
performance.

For NER, a true positive is a correctly identified entity, while for RE, it is a correctly identified
relationship between entities, and for ER, it is a correctly standardized entity according to the schema.
Conversely, a false positive occurs when the model incorrectly identifies an entity, relation, or
standardization, and a false negative is when the model fails to identify a correct entity, relation, or



schema element that should have been recognized. After defining these terms, we can evaluate each
task using standard precision, recall, and F1 score metrics.

After evaluation, we chose a fine-tuned LLM that demonstrates optimal performance in both NER
and RE tasks to iteratively infer the 150,000 abstracts. The output of inferences is organized in the
"DOIl—text—response" format. Consequently, the fine-tuned LLM not only extracts entities but also
assigns them appropriate labels, thereby accomplishing NER and RE tasks concurrently. Moreover,
every entity and relation identified in the response is traceable, enhancing the integrity and utility of
the data.

2.3 Entity resolution

The quality of KG is crucial for its credibility in checking and correcting the inference results before
graph construction. To ensure the precision of these results, we initially employed ChemDataExtractor
to identify chemical formulas and "Name-Acronym" pairs from abstracts. Subsequently, entities
recognized by both the Large Language Model (LLM) and ChemDataExtractor are embedded using
the mat2vec model. We analyze their similarities to rectify core entities and ensure accurate "Name"
to "Acronym" associations. Through this step, we can make the "Name" and "Formula" different
from "Acronym" in MKG. Therefore, we have named this stage "ER-NF/A" ("Entity resolution
- Name/Formula and Acronym"). Given the frequent mislabeling of "Name" and "Formula", we
progress to the "Entity resolution - Name and Formulas" ("ER-N/F") phase. Here, we refine the
LLM using a specifically curated training set comprising 2,000 accurately labeled entities for binary
classification, which is evaluated against an additional set of 200 labels.

For other labels, we implement a Density-Based Spatial Clustering of Applications with Noise [27]]
algorithm to create the "Entity resolution - expert dictionary" ("ER-ED"). This algorithm dynamically
forms clusters based on vector similarity without the need to predefine the number of clusters. Each
cluster is named by material science experts, leading to the creation of an expert dictionary containing
approximately 600 terms related to structures, phases, applications, and more. This dictionary, along
with the entities extracted by the LLM, undergoes similarity analysis to standardize and confirm the
accuracy of both entities and relations. To elevate the quality of the training dataset, we selectively
integrate high-quality data from normalized inference outputs from each iteration into the training set,
continuously monitoring and enhancing the performance of the fine-tuned LLM to ensure its efficacy.

2.4 Knowledge graph construction

Given a collection of entities E and relations R, a knowledge graph K=E R E is structured as
a directed multi-relational graph. It comprises triples formatted as (h; r;t) 2 K, where h and t are
entities within E. To structure the inference results into triples, we employ three labels that signify the
material as the core label, with the core label serving as the head h, the names of other labels forming
the relations R, and their values acting as tails t. Within the hierarchy of core labels, "Formula" is
accorded the highest priority, followed by "Name", and then "Acronym". Furthermore, each head h
and tail t node is linked to the DOI of the source article associated with the triplet. This setup allows
us to ascertain the provenance of the relation between any two nodes by examining the intersection in
their connected entities. Then we transfer the triples into MKG and store the MKG via graph database
Neo4j, which also supports the subgraph matching function, where subgraph matching naturally suits
the need to search for certain materials with user-input conditions. To facilitate access to the detailed
information, we also make the dataset available in the RDF and CSV format for straightforward data
handling.

2.5 Graph completion

The process of Graph Completion (GC) is shown in Figure [3|(a), where we perform link prediction
through GC, segmented into four primary stages: graph splitting, similarity calculation, validation
and evaluation, and parameter optimization. This structured approach ensures a comprehensive
exploration of the link prediction capabilities. Graph splitting is meticulously performed based on
the chronological assignment of the nodes. Nodes encapsulated within a defined prediction window

are utilized as Gy, which are designated for the validation of predictions. Nodes preceding
this predictive interval serve as Gy,, employed to train and refine the prediction models. During
the similarity calculation stage, advanced graph algorithms and embeddings are applied on Gy, to



ascertain the similarity between the "Materials" and "Applications" nodes. This phase leverages an
enhanced Jaccard similarity metric, partitioned into three distinct components: S(m; a), F (m; a),
and T (m; @), which collectively improve the specificity of predictions.
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Figure 3: (a)The process of MKG graph completion and (b) the schematic diagram of nodes
comparison.

In the validation and evaluation phase, the sorted "Material" and "Application" nodes undergo
rigorous testing on Gy.,. The effectiveness of the predictive model is assessed by tallying the
incorrect predictions, represented as En, which serves as a crucial measure of performance. The
final stage, parameter optimization, involves the meticulous adjustment of the parameters S(m; a),
F (m;a), and T (m;a) based on their performance on G,.. This iterative process is crucial for
minimizing the count of En and enhancing the overall accuracy of the GC method. This adaptive
adjustment underscores the dynamic and responsive nature of the model in refining link prediction
accuracy within the graph completion framework.

It is worth mentioning that from a global perspective, we not only need to consider whether an
"Application" may be similar to a "Material" node. We also need to consider whether the "Material"
currently associated with this "Application" is similar to the potential "Material". Therefore, further
improvement of Jaccard Similarity:
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wheren is the number of attributes consideréd,andB; are the speci c attributes of materiats

andB respectively, anel; are the weights assigned to each attribute, signifying their importance in
the context of material application. As shown in Figure 3 (b), this approach mimics the investigative
processes commonly employed by materials scientists when developing new materials. In determining
the suitability of new materials for speci c applications, researchers systematically analyze their
chemical and physical properties, as well as their structural characteristics, comparing these attributes
to those of materials well-established in the target eld. This enhanced method not only accounts
for the number of overlapping attributes but also emphasizes the signi cance of each attribute in
relation to the material's potential application. A higllefogieq SCOre indicates a stronger likelihood

of applicability between the material in question and the target application. Thus, materials scoring
high on this metric are considered promising candidates for the speci ed applications.

In addition to the Enhanced Jaccard Similarity, we employ the Trans model [28]. TransE treats
entities and relations as vectors in the same embedding space. The core idea of TransE is to model
relations by interpreting them as translations in the embedding space.

3 Result

To illustrate the advantages of MKG more clearly, we conducted a comparative analysis with
MatKG2 [15], highlighting the differences in their construction methodologies as illustrated in Figure
4. MatKGz2 is built using a multi-step process for named entity recognition (NER) and relation
extraction (RE) that does not retain the origin of each relation. In contrast, our approach employs an
end-to- nish methodology utilizing a single large language model (LLM) designed to handle both
NER and RE simultaneously. This not only preserves the source of each triple within the knowledge
graph, enhancing its factual accuracy, but also demonstrates superior performance in the RE task.

Figure 4: Schematic comparison of MKG and MatKG2.

To demonstrate the effectiveness of this pipeline, we evaluated the performance of each LLM on each
task, as shown in TabJé 1. Darwin signi cantly outperforms both the LLaMA 7b and LLaMA2 7b
models in the F1 scores for NER and RE tasks, suggesting that Darwin yields more effective results
in text-related tasks in materials science. However, there is no marked difference in the performance
of these models on ER tasks; we can say LLM has a weaker ability to complete ER in our task. This
may be attributed to the limited contextual memory capabilities of the LLMs, and this is why we
need to apply additional ER processes. The normailzed Darwin shows the performance of our ER
and normalization process, the result indicates that it not only achieves the ER task successfully, but
also contributes to the NER and RE task.

To better understand the enhancements provided by each component in the ER/Normalization process,
ablation studies were performed. The outcomes, detailed in [Thble 2, demonstrate that each technique



Table 1: Result of NER, RE, and ER through Fine-tuned LLMs.

Model Task Precision Recall F1 score
NER 0.1196 0.6869 0.2036
MatBERT RE 0.0250 0.5696 0.0479

ER 0.0928 0.5303 0.1579

NER 0.6101 0.6216 0.6158
Llama 7b RE 0.5305 0.5405 0.5355
ER 0.3687 0.3757 0.3722

NER 0.7419 0.7667 0.7541
Llama2 7b RE 0.6452 0.6667 0.6557
ER 0.4484 0.4633 0.4557

NER 0.8013 0.7935 0.7974
Darwin RE 0.7036 0.6968 0.7002
ER 0.4593 0.4548 0.4571

NER 0.9520 0.9083 0.9296
Darwin (ER) RE 0.9039 0.8625 0.8827
ER 0.9127 0.8708 0.8913

positively affects the effectiveness of ER. The results highlight that utilizing the expert dictionary
(ER-ED is the most bene cial method, enhancing accuracy comprehensively across nearly all
labels that are included in the dictionary. Additionally, the improvements seerERitNF/Aare
noteworthy; this step is based on the ChemDataExtractor, effectively removes the majority of incorrect
material identi cations in core labels and offers even more substantial bene ts to NER tEd&ED
Furthermore, from the results of the ablation experimeR:;N/Fappears that its contribution is not as
signi cant as the other two components, but considering the confusion between the material Formula
and Name may have an impact on subsequent MKG applicatitiRa\/Fis also an indispensable

part of theER process. The normalized data is transformed into triples to construct the MKG, which
comprises 162,605 nodes and 731,772 edges, as illustrated in the schematic diagram in Figure 5.

Table 2: Result of the ablation experiment in normalization.

Method NER F1 r RE F1 r ERF1 r
Darwin (Normalized) 92.96 - 88.27 - 89.13 -
ER-N/F 92.96 - 83.29 -498 | 89.13 -
ER-NF/A 84.01 -8.85| 83.07 -5.20| 84.54 -4.59
ER-ED 88.59 -4.37 | 80.20 -8.07 | 50.00 -38.83

Finally, to demonstrate the reliability and accuracy of our similarity algorithm, we divided MKG into
two knowledge graphs based on the paper's publication year. KG, with earlier years, applied similarity
calculation algorithms to predict potential links, while KG, with later years, is used to verify how
many sets of "Material-Applications" in these predictions were reported in the following n years. The
result is shown in Figure 6. Speci cally, in Figure 6 (a), the grey line uses only abstracts published
before the year to make predictions, and the percentage of reported predictions in the next few years
is displayed. The predictive capacity of the MKG is substantial; therefore, for each prediction, we
only use the top 200 "material-application” pairs for validation. Looking at the results, as time
progresses, the predicted materials are gradually veri ed. Using data from 2014, within nine years,
48.5% of the "material-application" predictions have been validated. This outcome demonstrates the
effectiveness and reliability of the MKG, and it also lays the foundation for proposing new materials

in some elds. The red, blue, and green lines are the average percentage of reported links based on
network similarity, Jaccard similarity directly between "Formula" and "Application”, and TransE for
link prediction, respectively. Network-based similarity has the highest accurate prediction, which
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