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ABSTRACT

Text-to-3D human motion generation has emerged as a critical challenge in
human-AI interaction, with transformative applications spanning virtual reality,
robotic control and digital content creation. While recent advances in diffusion
models and transformer architectures have significantly improved motion qual-
ity, we identify two fundamental limitations that persist in state-of-the-art meth-
ods: (1) suboptimal utilization of multi-scale historical context leading to mo-
tion discontinuity, and (2) uniform temporal weighting that fails to capture phase-
dependent feature importance in complex motion sequences. To address these
challenges, we propose FADM (Feedback-Augmented Decay Motion Model), a
novel framework that introduces three key innovations: a hierarchical memory
fusion module with learnable scale adapters for preserving both local kinematics
and global action semantics, an exponentially decaying temporal attention mech-
anism grounded in human motion dynamics, and a semantic-consistent autore-
gressive feedback loop ensuring long-range coherence. Extensive experiments
demonstrate our method’s state-of-the-art performance, achieving a 22.2% FID
reduction on HumanML3D, 64.7% improvement in Top-1 accuracy, and 30.9%
better generalization on KIT-ML, while maintaining competitive motion diversity
(Multimodality score: 1.283±0.044). Beyond its immediate applications, FADM
establishes a new paradigm for temporal modeling that can potentially benefit
various conditional generation tasks including video synthesis and robotic motion
planning.

1 INTRODUCTION

The ability to translate natural language into coherent and lifelike 3D human motions is poised to
become a cornerstone technology in the era of embodied AI. With the convergence of virtual real-
ity (VR), the metaverse, gaming, and human-robot interaction, text-to-motion generation is rapidly
shifting from a niche research problem to an essential enabler for next-generation digital experi-
ences. Imagine describing “a dancer spins twice and leaps gracefully forward” and instantly seeing
a virtual character perform it with natural continuity and semantic fidelity. This capability could re-
define VR immersion, accelerate animation pipelines in film and game production, and enable more
adaptive human-robot collaboration in unstructured environments.

As the field evolves, text-to-motion generation has witnessed substantial progress, yet it remains in-
trinsically challenging due to the need to capture both fine-grained local kinematics and long-range
semantic consistency under natural language guidance. Early approaches, such as the variational au-
toencoder (VAE)-based T2M (Guo et al., 2022), attempted to learn probabilistic mappings between
text and motion; however, their limited semantic expressiveness resulted in coarse and less faithful
outputs. To overcome this limitation, autoregressive models like T2M-GPT (Zhang et al., 2023a)
and diffusion-based methods, such as MotionDiffuse (Zhang et al., 2024a), have been introduced,
leveraging Transformer architectures and discrete motion tokens. These approaches significantly
improved motion fidelity and diversity. However, their reliance on uniform temporal modeling often
causes inconsistencies in long sequences, as they struggle to balance short-term smoothness with
long-term coherence.

More recent studies have explored hierarchical and component-based designs to further enhance
motion generation. For example, MoMask (Guo et al., 2024) adopts a bidirectional masked mod-
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eling framework with a hierarchical Transformer to strengthen contextual representations, while
Mamba-based methods such as KMM (Zhang et al., 2024b) and Motion Mamba (Zhang et al.,
2024d) leverage efficient state space models to capture temporal dependencies—KMM introduces
keyframe attention to highlight critical motion anchors, and Motion Mamba achieves scalable mod-
eling through hierarchical temporal scanning and bidirectional spatial reasoning. Component-level
approaches also demonstrate unique benefits: ParCo (Zou et al., 2024) designs limb-specific gener-
ators to refine local details, and MoGenTS (Yuan et al., 2024) employs joint-level discretization to
alleviate the information loss from global quantization.

However, despite these advancements, existing methods still face fundamental challenges. Specifi-
cally, current generation approaches often fail to fully utilize multi-scale historical context, resulting
in a lack of temporal coherence and consistency in generated motions. Moreover, the uniform tem-
poral weighting mechanism does not accurately reflect the varying importance of features at different
stages of the motion sequence, which limits the model’s flexibility and adaptability.

Particularly for the second point, we introduce a dynamic decay factor inspired by the memory
decay patterns observed in cognitive science. When processing continuous motions, humans tend
to rely more heavily on recent movements while their attention to distant historical information
diminishes unevenly, exhibiting a nonlinear decay of memory weights. FADM simulates this natural
phenomenon by designing an exponentially decaying temporal attention mechanism, enabling the
model to allocate attention across time steps more reasonably and thus better capture the dynamic
changes and critical information at different stages of motion sequences.

To address these issues, this paper proposes a novel framework named FADM (Feedback-
Augmented Decay Motion Model), which effectively enhances the fusion of historical information
and the modeling of temporal importance through multi-scale autoregressive feedback and dynamic
decay weights. The main contributions are as follows:

• We propose a multi-scale memory fusion module with a dynamic feedback gating mech-
anism, which effectively integrates historical motions with current textual conditions,
thereby enhancing contextual modeling and ensuring semantic consistency of generated
sequences.

• We introduce a dynamic temporal weighting mechanism based on exponential decay, which
adaptively allocates feature importance across time steps, suppressing excessive interfer-
ence from early information and enhancing rhythm adaptability.

• We conduct experiments on two benchmark text-to-motion datasets, HumanML3D and
KIT-ML. Results demonstrate that our method significantly reduces FID scores and im-
proves multiple accuracy metrics, validating its effectiveness and superiority.

The rest of this paper is organized as follows: Section 2 reviews related work in text-to-motion
generation; Section 3 details the proposed FADM framework and its key module designs; Section
4 presents and analyzes experimental results across multiple datasets; and Section 5 concludes the
paper and discusses future research directions.

2 RELATED WORK

2.1 TEXT-TO-MOTION GENERATION

The development of text-to-motion generation has evolved from traditional approaches to deep
learning-based methods. Early studies primarily employed deterministic techniques such as Lan-
guage2Pose (Ahuja & Morency, 2019) to establish mappings between text and motion. With the
introduction of generative models like VAE, researchers began to learn probabilistic distributions
from text to motion; however, these methods still face challenges in modeling long-term motion
sequences. Recently, Transformer-based architectures have substantially improved motion genera-
tion quality. For example, MotionDiffuse (Zhang et al., 2024a) utilizes diffusion models to achieve
progressive denoising, making strides in generating natural and fluid motions; BAMM (Pinyoanun-
tapong et al., 2024) employs bidirectional autoregressive modeling to support more flexible sequence
generation. Nonetheless, these methods continue to suffer from insufficient utilization of historical
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information, particularly struggling to maintain long-term consistency in complex continuous mo-
tions.

State Space Models (SSM), due to their efficient handling of long sequences, have become a new
research focus. Motion Mamba (Zhang et al., 2024d) enhances computational efficiency while pre-
serving generation quality through hierarchical temporal scanning and bidirectional spatial model-
ing; InfiniMotion (Zhang et al., 2024c) further introduces memory-augmented mechanisms to cache
historical motion features, strengthening sequence coherence. Although these methods perform well
overall, they lack mechanisms to differentiate the importance of features across different temporal
steps, making it difficult to adapt to the varying rhythms of motion.

2.2 DYNAMIC SEQUENCE MODELING

Advances in sequence modeling have opened new possibilities for motion generation. Early works
like T2M-GPT (Zhang et al., 2023a) primarily rely on positional encoding to convey temporal in-
formation but struggle to effectively capture long-range dependencies. Recent research, such as
MotionDiffuse (Zhang et al., 2024a), attempts to enhance temporal modeling through diffusion
processes but still lacks robustness in handling changes in motion rhythm. Pose-guided Motion
Diffusion (Cai et al., 2024) employs a pose memory bank for motion composition, while InfiniMo-
tion (Zhang et al., 2024c) introduces memory modules to preserve historical states. Although these
methods improve sequence modeling to some degree, they remain limited in dynamically integrating
historical information and differentiating feature importance across temporal steps.

In summary, existing text-to-motion generation methods have achieved varying degrees of progress
in generation quality, local motion control, and long-range dependency modeling. However,
they commonly fall short in globally integrating historical information and dynamically assign-
ing weights to temporal step features. These challenges are especially prominent when generating
long, rhythmically diverse, and logically coherent motion sequences, resulting in deficiencies in
coherence, naturalness, and semantic alignment. To address these issues, this paper proposes the
Feedback-Augmented Decay Motion Model (FADM) framework, which more effectively exploits
historical information and enhances the model’s capability to weight temporal step features, thereby
generating motion sequences that better align with textual semantics and exhibit higher coherence.

3 METHOD

3.1 OVERALL OVERVIEW

In recent years, text-driven human motion generation has witnessed rapid progress, with substantial
gains in both motion quality and expressive diversity. Much of this progress stems from advances
in deep generative modeling and sequence architectures. Nevertheless, autoregressive or masked
Transformer backbones alone remain insufficient to achieve truly natural, coherent, and semanti-
cally faithful human motions. In particular, long-sequence generation requires a delicate balance
between local smoothness and global semantic consistency, which places higher demands on histor-
ical context modeling and the adaptive weighting of temporal features.

Motivated by these challenges, we propose the Feedback-Augmented Decay Motion Model
(FADM), which enhances the utilization of historical context and the dynamic weighting of tem-
poral features through multi-scale feedback and decaying mechanisms.

Although the Masked Transformer (M-Transformer) demonstrates strong performance in generation
tasks, its utilization of historical information in motion sequence modeling remains inadequate, par-
ticularly for capturing long-range dependencies. Moreover, its temporal step weighting is relatively
static, making it difficult to adapt to the varying importance of motion features across different time
steps during generation. These deficiencies directly affect the coherence of the generated sequences
and their alignment with the input text.

To address these issues, FADM extends the M-Transformer with two core innovations, designed
to simultaneously strengthen historical context modeling and dynamically allocate temporal impor-
tance, thereby enabling more natural and semantically consistent motion generation:
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Figure 1: Overview of the Feedback-Augmented Decay Motion Model (FADM), highlighting the
integration of the Multi-Scale Autoregressive Feedback Module (AFM) and the Dynamic Decay
Module (DDM) to improve historical context modeling and dynamic temporal weighting in motion
generation.

• Multi-Scale Autoregressive Feedback Module (AFM): Enhances the guidance from his-
torically generated tokens on current decisions through multi-scale memory fusion and
dynamic gating.

• Dynamic Decay Module (DDM): Applies exponential decay to temporal step weights in
the input sequence to reduce the interference of early-step information on later generation
stages.

In implementation, the model first extracts textual and initial motion features via an encoder, fol-
lowed by processing through a masking module. Subsequently, the AFM module integrates his-
torical information to strengthen contextual correlations during generation, while the DDM module
dynamically adjusts temporal weights based on time-step characteristics. Together, these compo-
nents enable the generation of high-quality motion sequences.

3.2 MULTI-SCALE AUTOREGRESSIVE FEEDBACK MECHANISM

Conventional masked models generate the current output by conditioning only on the present masked
sequence and the provided text description. They do not explicitly leverage previously generated re-
sults, which can lead to reduced coherence in sequential motion synthesis. To address this limitation,
we introduce the Multi-Scale Autoregressive Feedback Mechanism (AFM), illustrated in Figure 2.
This mechanism explicitly integrates historical information with current conditions, and operates in
three main steps as follows.

Historical Feature Extraction. The first step is to obtain a compact representation of prior motion
context. During training, the initial k time steps of the input sequence are treated as historical
reference frames. We average their token features and project them into a latent space via a small
network:

hhist = FA

(
1

k

k∑
t=1

xt

)
(1)

Here, xt denotes the token feature at historical time step t, and FA is a two-layer linear network
responsible for compressing these aggregated features. This allows the model to retain high-level
motion semantics from the past.
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Figure 2: The structure of the Multi-Scale Autoregressive Feedback Mechanism (AFM), which
enhances motion coherence by extracting historical features, applying multi-scale memory fusion,
and dynamically gating feedback to balance past motion cues with current textual conditions.

Multi-Scale Memory Fusion. Realistic motions evolve at both global and local temporal scales.
To capture these, we introduce three parallel memory modules, each applying a different level of
smoothing to the historical representation:

mi = Memi(hhist), i = 1, 2, 3 (2)

where Memi is a linear transformation layer, and the multi-scale memory is fused with a scale factor
αi = 0.5i for weighted fusion:

hmem =

3∑
i=1

αi ·mi (3)

This design enables the model to perceive both long-term trends and fine-grained dynamics. For
example, when generating a “turning—kicking” sequence, the model can track the global rotation
while preserving nuanced leg movements.

Dynamic Feedback Gating. Finally, to adaptively balance the influence between historical cues
and the current textual condition, we apply a gating mechanism. The gate value is computed as:

g = σ (Gate (concat(hmem, c)) · s) (4)

Here, c is the text condition feature, Gate is a single-layer linear network, σ is the Sigmoid function,
and s = min

( len
20 , 1.0

)
is the feedback intensity factor that increases with the sequence length. The

final fused feature is:
cupdated = c · (1− g) + hmem · g (5)

Through this mechanism, the model primarily relies on textual guidance at the beginning of genera-
tion, while progressively shifting attention toward maintaining historical coherence as the sequence
lengthens.

3.3 DYNAMIC DECAY FACTOR

To address the issue of equal weighting assigned to all time steps in Transformer models, particularly
the problem of early time steps excessively interfering with later generations, this paper proposes the
design of a Dynamic Decay Module (DDM). This module introduces a weight distribution method
that exponentially decays over time steps, effectively reducing the interference from historical time
steps on the current generation.

It is important to note that the choice of an exponential decay function is not arbitrary. Its form
aligns with the need to progressively decrease the interference from historical information as time
progresses. Specifically, the exponential form in the equation expresses that, as the time steps in-
crease, the decay factor rapidly diminishes, indicating that the influence of past information on the
current time step follows a diminishing trend. This design draws inspiration from various natural
phenomena, such as radioactive decay in physics, which adhere to similar exponential decay pat-
terns. By employing this method, we ensure that the interference from early time steps on later
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Figure 3: An illustration of the Dynamic Decay Module (DDM). The example shows how exponen-
tial decay weighting reduces the influence of early-step actions.

generations is effectively suppressed, thus enhancing the coherence and accuracy of the generated
sequences.

As shown in Figure 3, the model introduces an exponential decay mechanism that allows it to focus
more on recent action features during the generation process. For example, before the “jump” action,
the model will give more attention to the features of the “kneel” action, rather than the earlier
“standing” action features. This approach helps the model more accurately capture the key details
of the current action, improving the coherence and naturalness of the generated results. To formalize
this mechanism, we begin by introducing its specific implementation, starting from the decay weight
design of the time steps:

Time Step Decay Weight. A decay weight is assigned to each time step t of the input sequence:

wt = exp

(
− t

τ

)
(6)

where τ = 10 is the decay factor, used to control the rate at which the weights decay over time steps.
This design allows recent time steps to receive higher weights during the generation process, while
the influence of earlier time steps gradually diminishes, ensuring that the model focuses more on the
temporal information closely related to the current action during generation decisions.

Weighted Input Sequence. To emphasize the importance of different time steps in the generation
process, the decay weight wt is applied to the input features:

x̃t = xt ·Wt (7)

This weighting method effectively enhances the model’s focus on recent temporal information that
is highly relevant to the current action, while suppressing the detrimental interference of earlier time
step features on the generation process.

3.4 LOSS FUNCTION

To ensure the logical coherence and semantic consistency of the generated sequence, this paper es-
tablishes a consistency constraint between historical and predicted features based on the loss design
of MoMask, which is defined as follows:

Lconsist =

∥∥∥∥∥hhist − FA

(
1

n

n∑
t=1

x̂t

)∥∥∥∥∥
2

2

(8)

where x̂t represents the predicted token features, and hhist denotes the historical features. This loss
function is used to encourage the model to maintain alignment with historical trends during the
generation process, thereby reducing semantic drift.
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Table 1: Quantitative Evaluation Results on HumanML3D Dataset

Datasets Methods
R Precision ↑

FID ↓ MM-Dist ↓ MultiModality ↑
Top 1 Top 2 Top 3

Human
ML3D

Ground Truth 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 -
TM2T (Gong et al., 2023) 0.424±.003 0.618±.003 0.729±.002 1.501±.017 3.467±.011 2.424±.093

T2M (Guo et al., 2022) 0.455±.003 0.636±.003 0.736±.002 1.087±.021 3.347±.008 2.219±.074

MDM (Tevet et al., 2022) 0.320±.005 0.498±.004 0.611±.007 0.544±.044 5.566±.027 2.799±.072

MLD (Chen et al., 2023) 0.481±.003 0.673±.003 0.772±.002 0.473±.013 3.196±.010 2.413±.079

MotionDiffuse (Zhang et al., 2024a) 0.491±.001 0.681±.001 0.782±.001 0.630±.001 3.113±.001 1.553±.042

ReMoDiffuse (Zhang et al., 2023b) 0.510±.005 0.698±.006 0.795±.004 0.103±.004 2.974±.016 1.795±.043

T2M-GPT (Zhang et al., 2023a) 0.492±.003 0.679±.002 0.775±.002 0.141±.005 3.121±.009 1.831±.048

MotionGPT (Jiang et al., 2023) 0.492±.003 0.681±.003 0.778±.002 0.232±.008 3.096±.008 2.008±.084

ParCo (Zou et al., 2024) 0.515±.003 0.706±.003 0.801±.002 0.109±.005 2.927±.008 1.382±.060

Motion Mamba (Zhang et al., 2024d) 0.502±.003 0.693±.002 0.792±.002 0.281±.009 3.060±.058 2.294±.058

MoMask (Guo et al., 2024) 0.521±.002 0.713±.002 0.807±.002 0.045±.002 2.958±.008 1.241±.040

Ours 0.527±.003 0.716±.002 0.810±.001 0.035±.003 2.936±.007 1.283±.044

Table 2: Quantitative Evaluation Results on KIT-ML Dataset

Datasets Methods
R Precision ↑

FID ↓ MM-Dist ↓ MultiModality ↑
Top 1 Top 2 Top 3

KIT-
ML

Ground Truth 0.424±.005 0.649±.006 0.779±.006 0.031±.004 2.788±.012 -
TM2T (Gong et al., 2023) 0.280±.005 0.463±.006 0.587±.005 3.599±.153 4.591±.026 3.292±.081

T2M (Guo et al., 2022) 0.361±.005 0.559±.007 0.681±.007 3.022±.107 3.488±.028 2.052±.107

MDM (Tevet et al., 2022) 0.164±.004 0.291±.004 0.396±.004 0.497±.021 9.191±.022 1.907±.214

MLD (Chen et al., 2023) 0.390±.008 0.609±.008 0.734±.007 0.404±.027 3.204±.027 2.192±.071

MotionDiffuse (Zhang et al., 2024a) 0.417±.004 0.621±.004 0.739±.004 1.954±.062 2.958±.005 0.730±.013

ReMoDiffuse (Zhang et al., 2023b) 0.427±.014 0.641±.004 0.765±.055 0.155±.006 2.814±.012 1.239±.028

ParCo (Zou et al., 2024) 0.430±.004 0.649±.007 0.772±.006 0.453±.027 2.820±.028 1.245±.022

Motion Mamba (Zhang et al., 2024d) 0.419±.006 0.645±.005 0.765±.006 0.307±.041 3.021±.025 1.678±.064

MoMask (Guo et al., 2024) 0.433±.007 0.656±.005 0.781±.005 0.204±.011 2.779±.022 1.131±.043

Ours 0.437±.003 0.659±.003 0.783±.002 0.141±.003 2.761±.008 1.157±.062

Table 3: Ablation Study on M-Transformer

Methods
R Precision ↑

FID ↓ MM-Dist ↓ MultiModality ↑
Top 1 Top 2 Top 3

w/o DDM 0.520±.003 0.713±.002 0.806±.002 0.037±.002 2.939±.008 1.293±.050

w/o AFM 0.515±.003 0.710±.002 0.804±.002 0.045±.002 2.979±.006 1.350±.043

Ours 0.527±.003 0.716±.002 0.810±.001 0.035±.003 2.936±.007 1.283±.044

The total loss function of the model consists of three components:

Ltotal = Lmask + Lres + Lconsist (9)

where Lmask is the mask prediction loss, which is the negative log-likelihood of predicting the
masked tokens; Lres is the residual layer prediction loss; and Lconsist is the semantic consistency
loss. Through the joint optimization of these three components, the model not only maintains its
baseline performance but also more effectively utilizes historical information, improving the coher-
ence of the generated sequence and its alignment with the text semantics.

4 EXPERIMENTS

Dataset. This study conducted experiments using two commonly used public text-action datasets:
the HumanML3D dataset and the KIT-ML dataset. The HumanML3D dataset contains 14,616 ac-
tion sequences and 44,970 text descriptions, covering a variety of human activities such as sports,
dance, and acrobatics. The data is sourced from the AMASS (Mahmood et al., 2019) and Human-
Act12 (Guo et al., 2020) datasets, and each action sequence has been standardized. The KIT-ML
dataset is smaller in scale, containing 3,911 action sequences and 6,278 text descriptions. Both
datasets are divided into training, validation, and test sets in the ratio of 80%, 15%, and 5%, respec-
tively.

7
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Evaluation Metrics. Based on the T2M evaluation framework, this paper extracts features us-
ing the same pre-trained text-action encoder and computes the following multimodal metrics: (1)
Frechet Inception Distance (FID) quantifies the overall generation quality by comparing the dis-
tribution differences between the generated actions and the real actions in the high-level semantic
space; (2) R-Precision and Multimodal Distance (MM-Dist) assess the semantic consistency be-
tween the generated sequences and the input text in terms of retrieval accuracy and feature distance,
respectively; (3) Multimodality, by repeatedly sampling the same text input, calculates the aver-
age Euclidean distance between generated action pairs to measure the model’s response diversity to
potential textual ambiguities.

4.1 IMPLEMENTATION DETAILS

The proposed framework is implemented using PyTorch and trained on a single NVIDIA GeForce
RTX 4090 GPU. During training on the HumanML3D dataset, the batch size is set to 64, while it
is set to 32 for the KIT-ML dataset. The learning rate for all models is linearly warmed up over the
first 2000 iterations to reach 2×10−4, followed by a learning rate decay strategy where the learning
rate is reduced by a factor of 0.1 after 50,000 iterations. The training process spans a total of 2000
epochs. The latent dimension of the Transformer is set to 384, and the dropout rate is configured to
0.2. Model checkpoints are saved every 500 iterations to facilitate model recovery and performance
evaluation.

4.2 EXPERIMENTAL RESULTS AND ANALYSIS

To assess the effectiveness of the proposed method, we compare it with several state-of-the-art mod-
els, including VAE-based, diffusion-based, and autoregressive models. All experiments are con-
ducted under standard protocols, with each experiment repeated 20 times. The results are reported
as mean values along with the 95% confidence intervals.

4.2.1 QUANTITATIVE EVALUATION

As shown in Table 1, the experimental results demonstrate that FADM outperforms existing main-
stream methods across the board. Compared to MoMask, FADM significantly reduces the FID
score from 0.045 to 0.035, representing a relative improvement of 22.2%, which validates that the
generated motions align more closely with real data in terms of distribution. In terms of semantic
understanding, the model achieves a Top-1 accuracy of 0.527, reflecting a 64.7% improvement over
the baseline, while the Top-3 accuracy reaches 0.810. These substantial gains confirm the model’s
ability to capture fine-grained semantics from text. Notably, FADM maintains a competitive ad-
vantage in the Multimodality metric while simultaneously reducing the MM-Dist score. This result
indicates that the model effectively controls motion distortion caused by semantic deviation, without
sacrificing diversity in response to textual ambiguity.

Table 2 demonstrates the experimental results, further validating the generalization capability of
FADM. On the KIT-ML dataset, the model demonstrates three core advantages: In terms of gener-
ation quality, the FID score is reduced by 30.9% compared to MoMask, and a significant improve-
ment of 54.1% is achieved compared to Mamba, proving that the generated motion quality closely
approximates the real data distribution. Regarding semantic alignment, the Top-3 accuracy of 0.783
represents a 97.8% improvement over MDM, highlighting a higher degree of text-action alignment.
In terms of multimodal expression capability, our method shows a slight gap compared to Motion
Mamba, but when combined with the superior MM-Dist metric, FADM achieves a better balance
between quality and diversity through precise semantic control.

4.2.2 ABLATION STUDY

To verify the necessity of the multi-scale autoregressive feedback mechanism and dynamic decay
factor, we designed an ablation study comparing the performance differences between the model
with ”removed dynamic decay factor,” ”removed multi-scale autoregressive feedback mechanism,”
and the complete model. The results are shown in Table 3. The model without the dynamic decay
factor, which removes the time step weight exponential decay mechanism, showed an increase in
FID (from 0.035 to 0.037) and a decrease in Top accuracy due to early information interference.
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This confirms that the dynamic decay factor improves generation quality and semantic alignment by
emphasizing recent information. The model without the multi-scale autoregressive feedback mech-
anism failed to utilize the semantic features of historical generated tokens, with FID increasing to
0.045 and a significant drop in Top accuracy, highlighting the critical role of the multi-scale au-
toregressive feedback mechanism in maintaining sequence action coherence through the integration
of global historical context. The complete model outperformed in all metrics, demonstrating that
both modules work collaboratively through ”precise reuse of historical information and dynamic ad-
justment of time step weights” to solve core issues in sequence generation, validating the rationale
of the framework design and emphasizing the indispensability of these two innovative modules in
improving generation quality and enhancing text-motion alignment.

5 CONCLUSION

The proposed FADM framework, comprising the Multi-Scale Autoregressive Feedback Module
(AFM) and the Dynamic Decay Module (DDM), effectively addresses two core challenges in text-
to-motion generation: insufficient utilization of historical information and imbalanced temporal step
weighting. By leveraging multi-scale memory fusion, dynamic gating techniques, and decay factors,
the model systematically improves the logical continuity and dynamic adaptability of generated mo-
tions. Experimental results on the HumanML3D dataset demonstrate that FADM not only achieves
a substantial 22.2% reduction in FID but also attains a Top-1 accuracy improvement of 64.7%.
These outcomes validate that the weighted feature summation combined with an exponential decay
mechanism can simultaneously enhance sequence coherence and semantic alignment.

Notably, the technical approach proposed in this study has broad applicability. On one hand, the
multi-scale autoregressive feedback mechanism provides a scalable solution for modeling long-term
dependencies via multi-scale memory fusion, making it suitable for tasks requiring sustained long-
range consistency, such as video generation and dialogue systems. On the other hand, the dynamic
decay factor’s differentiated weighting of temporal steps offers a novel perspective for generation
tasks that demand fine-grained rhythm control, including music synthesis and sign language recogni-
tion. Future work will further explore the universal applicability of memory-augmented mechanisms
in cross-modal generation and optimize computational efficiency in real-time generation scenarios,
thereby advancing human-computer interaction experiences in virtual reality and the metaverse.
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A APPENDIX

A.1 THE USE OF LLMS

In this work, large language models were used only to assist in polishing the writing. All ideas,
analyses, and conclusions are the authors’ own.
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