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ABSTRACT

Deploying complex machine learning models on resource-constrained devices is
challenging due to limited computational power, memory, and model retrainabil-
ity. To address these limitations, a hybrid system can be established by augment-
ing the local model with a server-side model, where samples are selectively de-
ferred by a rejector and then sent to the server for processing. The hybrid system
enables efficient use of computational resources while minimizing the overhead
associated with server usage. The recently proposed Learning to Help (L2H)
model proposed training a server model given a fixed local (client) model. This
differs from the Learning to Defer (L2D) framework which trains the client for a
fixed (expert) server. In both L2D and L2H, the training includes learning a rejec-
tor at the client to determine when to query the server. In this work, we extend the
L2H model from binary to multi-class classification problems and demonstrate
its applicability in a number of different scenarios of practical interest in which
access to the server may be limited by cost, availability, or policy. We derive a
stage-switching surrogate loss function that is differentiable, convex, and consis-
tent with the Bayes rule corresponding to the 0-1 loss for the L2H model. Experi-
ments show that our proposed methods offer an efficient and practical solution for
multi-class classification in resource-constrained environments.

1 INTRODUCTION

Machine Learning (ML) models deployed on local devices often face significant limitations in terms
of computational resources and retrainability. Local devices are typically constrained by limited
processing power, memory, and battery life (Ajani et al., 2021; Biglari & Tang, 2023), which can
impede the model’s ability to handle large-scale data or perform complex computations in real-time.
Furthermore, once a local model is deployed, it may be difficult to retrain or update (Hanzlik et al.,
2021), leading to a potential degradation in performance over time when data distribution drifts (Lu
et al., 2019).

To address these issues, one strategy is to augment the local machine learning system (a “client”)
with an external model hosted on a remote server. This approach, seen in recent applications like
Apple Intelligence (Gunter et al., 2024), enhances the overall system performance by leveraging the
server’s superior computational power and capacity for model updates. Recent studies have shown
that efficient fine-tuning methods, like few-shot learning (Brown et al., 2020) and parameter-efficient
fine-tuning (Fu et al., 2023), can achieve competitive performance, making it a feasible choice for
server-side model deployment. Those methods utilize the pre-trained model’s capabilities while
requiring minimal computational resources, allowing for easy and cost-effective updates to adapt to
specific tasks or data distributions. Consequently, it enables the deployment of powerful models on
servers without the high costs of comprehensive model training.

While training a server model can be relatively inexpensive, extensive use of server-side models can
be costly due to data transfer, latency, instability connection, and service fees. Moreover, server
operators may wish to limit the frequency of offloaded inferences from clients by imposing costs
or access constraints. In the presence of such restrictions, the practical solution for clients to use a
rejector that selectively defers/offloads only the most challenging and uncertain samples to the server
for processing, thereby optimizing the balance between usage cost and performance. Informally, the
rejector is defined as a decision function to either select the local model or server model for a sample
(a rigorous definition is given in Sec. 2).
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A framework for training a rejector and server model given a fixed “legacy” device-bound model was
recently proposed for binary classification models under the name “Learning to Help” (L2H) (Wu
& Sarwate, 2024). In this work, we extend and generalize this framework to encompass a variety of
problems of more practical interest. We can identify several scenarios that can arise in the context of
building ML systems in those settings with a fixed local model. In particular, we demonstrate how
to handle various restrictions on the use of the server:

• PAY-PER-REQUEST (PPR): the device must pay a cost each time the rejector defers to the
server; as an example, the server can be thought of as a consultant who offers their services
at a cost.

• INTERMITTENT AVAILABILITY (IA): in the PPR model, the rejection rule must also ac-
count for the server being potentially unavailable; for example, this can occur when the
internet connection is unstable, or the server is busy servicing requests of other devices.

• BOUNDED REJECT RATE (BRR): instead of PPR, the rate of rejections/deferrals per unit
time may not exceed a predefined upper limit; for example, there is a limit on the usage of
some LLMs even with a paid subscription.

The L2H model is a natural complement to prior works on two-party decision systems, includ-
ing Learning with Abstention (LWA) and Learning to Defer (L2D). These models either assume
that rejected samples can be discarded at a fixed cost or that the server is a pre-trained “expert” and
optimize decision rules for the device/rejector. As ML/AI decision systems become integrated into
physical devices and infrastructure, issues of sustainability will require newer server systems to sup-
port pre-existing legacy models which can allow only partial retraining. Relatively little attention
has been given to this scenario: we address the extreme case where only the rejection rule can be
updated with the server.

Existing work (Wu & Sarwate, 2024) on the L2H model only studies binary classification in the
PPR model. In this work, we further extend the L2H framework to multi-class problems and show
how to train systems under the three scenarios mentioned above. More specifically, we propose a
generalized (non-differentiable) 0-1 loss to measure the prediction system’s performance and find the
Bayes rule for this loss. We then provide a surrogate loss function which is convex and differentiable
and show that its minimizer is consistent with the Bayes rule for the generalized 0-1 loss.

We then design algorithms which can optimize rules for training multi-class predictors in the three
scenarios mentioned earlier: PPR, IA, and BRR. To guarantee BRR we use a “post-hoc” method
to control the rejection rate. We show experimentally that incorporating a server model with a
rejector enhances the overall performance of the ML system in all three scenarios. Training with
our surrogate loss function, the rejector helps in identifying the challenging and uncertain samples,
while balancing the accuracy and usage of the server model.

RELATED WORKS

Hybrid ML systems. The hybrid ML systems that consist of client side and server side, have
been of substantial research in many fields, including federated learning (Zhang et al., 2021; McMa-
han et al., 2017), distributed learning (Cao et al., 2023a; Horváth et al., 2023), and decentralized
learning (Sun et al., 2022; Fang et al., 2022; Liu et al., 2024; Li & Han, 2023). However, those
frameworks only focus on interaction between different sides during the training process. Once the
training is done, no more communication is needed among them. In this work, we are interested in
the collaboration between client and server both in the training and inference phases.

Learning with Abstention (LWA). The foundational work that first considered extra options for
recognition tasks was proposed by Chow (1957) and Chow (1970). Herbei & Wegkamp (2006) re-
visit the framework in classification tasks and propose a score-based reject method. Subsequent
works extend this framework to different types of classifiers (Rigollet, 2007; Wegkamp, 2007;
Bartlett & Wegkamp, 2008; Wegkamp & Yuan, 2011). Cortes et al. (2016) consider a separate
function to make reject decisions in binary classification. Zhu & Nowak (2022b;a) introduce the
reject option in active learning. Cortes et al. (2018) add abstention to online learning. Zhang et al.
(2024) consider the rejection rule when the data distribution contains noisy labels. Yin et al. (2024)
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use rejection for ensuring fairness. Mao et al. (2024d) and Mao et al. (2024c) analyze the theoretical
bounds and algorithms for score-based and predictor-rejector-based methods, respectively.

Unlike the setting where rejection incurs an extra cost, few works focus on scenarios with no extra
cost for rejection, but the reject rate is bounded. Pietraszek (2005) construct the rejection rule using
ROC analysis. Denis & Hebiri (2020) derive the Bayes optimal classifier for the bounded reject
rate setting. Shekhar et al. (2020) consider binary classification with bounded reject rates in the
active learning setting. In LWA, although there are works that can identify data samples that are
uncertain or challenging for the local model to predict, the subsequent action is merely to discard
those samples without providing an answer. While this framework can indeed improve prediction
accuracy, the system still cannot handle the samples that are challenging for the local model.

Learning to Defer (L2D). Building upon LWA, Madras et al. (2018) were the first to consider a
subsequent expert can process the rejected samples. Raghu et al. (2019) consider binary classifi-
cation with expert deferral using uncertainty estimators. Mozannar & Sontag (2020a) propose the
first method that jointly trains the local model and rejector in multi-class classification. Verma &
Nalisnick (2022); Mozannar et al. (2023); Hemmer et al. (2023); Cao et al. (2023b) propose differ-
ent surrogate loss functions for L2D. Okati et al. (2021) and Narasimhan et al. (2022) add post-hoc
algorithms to the cases where the reject decision incurs extra cost.

Seeking help from multiple experts has been explored in different machine learning models (Ker-
rigan et al., 2021; Keswani et al., 2021; Corvelo Benz & Gomez Rodriguez, 2022; Hemmer et al.,
2022). Verma et al. (2022) extend the one-vs-all-parameterized L2D to the multiple experts case.
Mao et al. (2023) study a two-stage scenario for L2D with multiple experts. Mozannar et al. (2023)
provide a linear-programming formulation that optimally solve L2D in the linear setting. Verma
et al. (2023) incorporate a conformal inference technique for multiple experts. Tailor et al. (2024)
formulate a L2D system that can cope with never-before-seen experts. Mao et al. (2024b) introduce
regression with deferral to multiple experts. Mao et al. (2024a) present a theoretical study of sur-
rogate losses and algorithms for L2D with multiple experts. L2D complements the missing part of
LWA; that is, after a reject decision, instead of being discarded, samples are sent to remote experts
for predictions. However, in L2D, the experts on the server side are assumed to be either human or
well-trained ML models, which are fixed during the training process. L2D focuses on training the
local model and the rejector under the existence of expert models. This framework cannot handle
the cases described in Sec. 1, where local models are legacy systems that have been deployed to the
client side, and retraining the local models is not available.

Learning to Help (L2H). Learning to Help (L2H) (Wu & Sarwate, 2024) is a complementary
model to L2D whose aim is to train a server model and rejector to enhance the usability of systems
containing a “legacy” local ML model that is unavailable for updating or retraining. The prior
work focused on binary classification in the PPR setting and proposes a surrogate loss function that
requires model-based calibration. This cannot be directly extended to multi-class problems due to
issues with differentiability. In this work we generalize this model to multi-class problems and more
scenarios (see Appendix A for a comparison).

2 PROBLEM FORMULATION

We consider a decision system with two parties: a client and the server. We think of the client
as a device with relatively limited computational power while the server has access to more com-
puting resources. We study a multi-class problem in which the goal is to learn a prediction func-
tion f : X → Y , where X ⊂ Rl is a space of instances/feature vectors with l dimensions and
Y = [K] ≜ {1, 2, . . . ,K} is a set of labels.

The L2H decision system (See Fig. 1) is constrained to have a certain architecture: in operation,
the client receives an input x and has two options: it can either make a prediction ŷlocal locally on
the client or forward the input (“defer”) x to the remote server which produces a response ŷremote .
We can represent this system by a tuple of functions (r(x),m(x), e(x)) , where the client side has
a reject function r(x) and prediction function m(x) and the server has a prediction function e(x) .
The function r(x) makes a binary choice representing the client’s choice to use from those two
options and then lets either m(x) or e(x) make a prediction for x .
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ServerClient

rejector

client
classifier

server
classifier

LOCAL

REMOTE

Trainable Part

Fixed Part

Figure 1: Diagram of learning to help framework.

We assume that the training algorithm has access to training set {(xi, yi) : i ∈ [n]} of n feature-
label pairs in X ×Y . For the purposes of analysis we make the standard assumption (Vapnik, 2010;
Shalev-Shwartz & Ben-David, 2014) that random variables of feature vector X and label Y are
sampled independently and identically distributed (i.i.d.) according to an unknown distribution D .

The function r : X → {LOCAL, REMOTE} , known as the rejection rule or rejector, determines
whether the client should label the input locally or send it to the remote server for labeling. Formally,
if r(x) = LOCAL , the client uses the local classifier m(x) to provide a label. Conversely, if
r(x) = REMOTE , the client forwards sample x to the server, which then labels the input using
remote classifier e(x) .

For the functions r(x) , m(x) , and e(x) , there are four possible outcomes for a given sample
(x, y) . The first event occurs when r(x) = LOCAL and m(x) = y , representing a correct decision
by the client. The second event is when r(x) = LOCAL and m(x) ̸= y indicate an error by
the client. The third event occurs when r(x) = REMOTE and e(x) = y , representing a correct
decision by the server. The fourth event is when r(x) = REMOTE and e(x) ̸= y , indicate an error
by the server. We define the costs associated with each of these outcomes as ccc , cce , csc , and
cse , respectively. For the scenarios discussed in Sec. 1, our goal is to provide accurate predictions,
satisfying ccc ≤ cce and csc ≤ cse , as well as instant predictions, satisfying ccc ≤ csc and
cce ≤ cse . Based on four outcomes and corresponding costs, the general loss function of this two-
side framework given sample (x, y) is defined as:

L(r, e, x, y,m) = ccc1m(x)=y1r(x)=LOCAL + cce1m(x)̸=y1r(x)=LOCAL (1)

+ csc1e(x)=y1r(x)=REMOTE + cse1e(x)̸=y1r(x)=REMOTE,

where 1[·] is the indicator function. The expected loss, also known as risk, is defined as
R(r,m, e) ≜ E(X,Y )∼D[L(r, e, x, y,m)] . The Bayes Classifiers then defined as: rB ,mB , eB ∈
argminr,m,e R(r,m, e) . Jointly training all three functions is trivial because the Bayes classifiers
satisfy mB = eB = argmaxi ηi(x) , where

ηi(x) = P (Y = i | X = x) (2)

represents the regression function for i -th class. The proof is similar with Proposition 2 derived
by Mozannar & Sontag (2020b). Since the Bayes client classifier equals the Bayes server classifier,
together with the cost constraints stated above, we have rB(x) = LOCAL , for all x . No input will
be sent to the server.

Since jointly training three functions leads to a trivial solution, we focus on a constrained but still
interesting case, learning to help (L2H), where the client classifier cannot be updated or retrained
(Fig. 1). While the prior work on L2H only considers binary classification, in this paper we extend
the approach to multi-class problems.

2.1 GENERALIZED 0-1 LOSS FOR MULTI-CLASS CLASSIFICATION

To extend L2H to multi-class classification, we consider a special case of the general loss function
(equation 1), often referred to as the generalized 0 - 1 loss in binary classification for L2H. In the
generalized 0 - 1 loss, the parameters are defined as follows: ccc = 0 , cce = 1 , csc = ce , and
cse = ce + c1 . The idea behind this setup is that there is no cost when the local prediction is
correct, but a cost of 1 is incurred when the local prediction is incorrect. Therefore, we set ccc =
0 and cce = 1 . Additionally, recall the interesting settings we mentioned in Sec. 1; requesting
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assistance from a remote server is not free. Once a sample is sent to the server, a constant reject
cost ce is incurred, regardless of the server’s prediction. Therefore, csc = ce . Furthermore, if the
server prediction is incorrect, an additional penalty inaccuracy cost c1 is imposed to account for the
mistake. It is important to note that c1 may be greater than 1, especially in critical scenarios such as
medical diagnoses, where expert misdiagnoses can lead to more severe consequences. As a result,
we set cse = ce + c1 . In summary, the generalized 0 - 1 loss for multi-class classification for L2H
is defined as:

Lgeneral(r, e, x, y;m) = 1m(x)̸=y1r(x)=LOCAL

+ ce1e(x)=y1r(x)=REMOTE + (ce + c1)1e(x)̸=y1r(x)=REMOTE. (3)

As discussed previously, we assume that m(x) is fixed while jointly training r(x) and e(x) . The
risk of equation 3 is defined as Rgeneral ≜ E(X,Y )∼D[Lgeneral(r, e, x, y;m)] and the Bayes Classi-
fiers for multi-class L2H is defined as:

rB , eB ∈ argmin
r,e

Rgeneral(r, e;m). (4)

The existence of these two Bayes classifiers will be proved in the next subsection.

2.2 BAYES OPTIMAL REJECTOR AND SERVER CLASSIFIER

In this subsection, we derive the Bayes classifiers as defined in equation 4 for both rejector and server
classifier with a fixed client classifier m(x) under generalized 0 -1 loss function in equation 3. As
mentioned at the beginning of Sec. 2, the task we considered is multi-class classification. The client
classifier m(x) and server classifier e(x) are multi-class classifiers with output to be one label
among K classes. The rejector r(x) is a binary classifier with two possible labels: LOCAL and
REMOTE , which means either making a prediction on the client or on the server. The rejector r(x)
will give a label LOCAL to x if r(x) > 0 and give a label REMOTE to x when r(x) ≤ 0 . Without
loss of generality, we assume that for the Bayes classifier of rejector, rB(x) ∈ {+1,−1} .

As discussed after equation 3, we consider the case where the client classifier m is given and fixed
during training. The output of the client classifier depends on input sample x , which can either be
deterministic or stochastic, depending on the machine learning model of m . We formally consider
the case where the client classifiers consist of K sub-functions, say [m1(x),m2(x), · · · ,mK(x)] .
The i -th sub-function mi(x) represents the score for i -th class on sample x . Then the prediction
of client classifier is argmaxi mi(x) . For simplicity, we assume that argmaxi mi(x) is unique.
Choosing the class that has the highest output score as prediction is a standard operation for multi-
class classification. In the following analysis, we assume that the output of client is a random
variable M conditioned on the input x (Neal, 2012).
Theorem 2.1. Given a client classifier m(x) , the solutions of Bayes classifiers (defined in equa-
tion 4) for generalized 0 - 1 loss under the space of all measurable functions are:

eB = argmax
i

ηi(x), (5)

where ηi(x) is defined in equation 2 and

rB = 1[ηj∗(x)(x) > (1− ce − c1) + c1 max
i

ηi(x)] · 2− 1, (6)

where j∗(x) ≜ argmaxj mj(x) .

The proof is given in Appendix C. By Theorem 2.1, we find that the Bayes classifier for the servers
eB is the same as the Bayes classifier for single classifiers (right side of equation 5). Also, the Bayes
classifier for rejector rB compares the posterior risk (expected loss) for two different decisions:
predicting on the client classifier or predicting on the server classifier. The function ηj∗(x)(x) is the
regression function for class predicted by client classifier m(x) , while maxi ηi(x) is the regression
function of the class predicted by server classifier. A larger value of the regression function tends
to pull a sample to the classifier corresponding to the ηi(x) because the regression function here
means how likely that a sample belongs to the class predicted either by m(x) or eB(x) . If we
write the right-hand side of the inequality inside the indicator (from equation 6) in another form:
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(1 − ce − c1) + c1 maxi ηi(x) = 1 − ce − c1(1 − maxi ηi(x)) , it’s clear that larger ce and c1
would impede reject decision. This result coincides with the intuition in scenarios we are interested
in: if inquiring servers are likely to be more costly, we tend to finish tasks without asking for help
too often.

However, we cannot directly get the Bayes classifiers (eB , rB) in real-world tasks. To see this, in
reality, we don’t have the knowledge of the distribution D of the data set. Furthermore, we cannot
approach the Bayes optimal classifiers through gradient-based methods because the generalized 0 -
1 loss (equation 3) is not differentiable since it contains variables in the indicator function. To
solve this problem, we propose a surrogate loss function in Sec. 3. We show that the surrogate
loss function is differentiable and convex, and optimal solutions of this surrogate loss function are
consistent with the Bayes optimal classifiers.

3 STAGE-SWITCHING SURROGATE LOSS FUNCTION

In Sec. 2.2, the Bayes classifiers we derived minimize the risk of generalized 0 - 1 loss (equation 3).
Since the distribution of the data set is unknown and the loss function is not differentiable, it’s
computationally intractable to get (eB , rB) by solving equation 4. Another potential concern comes
from the framework of the client-server system. In this system, the rejector is placed on the client
side while the server classifier is placed on the server side, which requires synchronous updates
between two sides while searching for the solution of the problem equation 4. In scenarios where
the connection between the client and server is unstable, or bandwidth is limited as discussed in
Sec. 1, continuously synchronizing the client and server during training becomes costly. These
conditions necessitate that both the rejector and server classifier be capable of being trained in an
asynchronous setting.

Similar with the definition of client classifier m(x) in Sec. 2.2, we consider the case where server
classifier e(x) also consists of K sub-functions, denoted as [e1(x), e2(x), · · · , eK(x)] . The pre-
diction of the server classifier is argmaxi ei(x) and assumed to be unique. We further consider
the case that the rejector consists of 2 sub-functions, say [r1(x), r2(x)] , where r1 stands for the
score of LOCAL while r2 stands for the score of REMOTE . In accordance with the space of rB

as stated in Sec. 2.2, the output of the rejector is defined as r(x) ≜ 1[r1(x) > r2(x)] · 2 − 1 .
Based on the definitions stated above, we propose a stage-switching surrogate loss function, which
is differentiable and can be used in both synchronous and asynchronous settings. The surrogate loss
function is defined as:

LS(r, e, x, y;m) = L1(e, x, y) + L2(r, e, x, y;m) (7)

where

L1(e, x, y) = − ln
exp(ey(x))∑K
j=1 exp(ej(x))

, (8)

and

L2(r, e, x, y;m) = −(1− ce − c1 + c11e(x)=y) ln
exp(r2(x))

exp(r2(x)) + exp(r1(x))
(9)

− 1m(x)=y ln
exp(r1(x))

exp(r2(x)) + exp(r1(x))
.

Similarly, the surrogate risk is defined as

RS ≜ E(X,Y )∼D[LS(r, e, x, y;m)]. (10)

The surrogate loss function is designed as the summation of two sub-loss functions, L1 and L2
1. In

the training process, we iteratively update the rejector or the server classifier while keeping the other
fixed under each sub-loss function at one stage. Specifically, in server stage, we update the param-
eters of the server classifier under the sub-loss function L1 while keeping the rejector unchanged,
and in rejector stage, we update the parameters of rejector r under sub-loss function L2 while

1Minimizing RS now becomes an additive composite optimization problem (Boyd et al., 2011; He & Yuan,
2012; Nesterov, 2013; Li & Han, 2022).
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keeping server classifier unchanged. The way of switching stages depends on specific synchronous
or asynchronous settings. Notice that the client classifier m(x) is always fixed in all stages in the
L2H framework. Detailed comparison with previous surrogate loss function for binary L2H is in
Appendix A and comparison with direct extensions from other proposed surrogate loss functions in
LWA and L2D is attached in Appendix B. The results show that previous works can not fully cover
the settings that we are interested in.

Based on the stage-switching training method, the surrogate loss function is differentiable in all
stages. In the server stage, the sub-surrogate loss function L1 is the same as the cross-entropy
loss function. In the rejector stage, for each given input sample x with true label y , the indicator
1e(x)=y and 1e(x)=y are constants, that is, either one or zero. In either case, L2 is differentiable
since only the r1 and r2 are variables in this stage, and we can calculate the gradient with respect to
r1 and r2 . What’s more, both L1 and L2 are convex w.r.t. e as shown in the following subsection.

3.1 CONVEXITY AND MONOTONICITY OF THE SURROGATE LOSS FUNCTION

In the following proposition, we show that in both stages, the sub-surrogate loss function L1 and
L2 are both convex or monotone.

Proposition 3.1. For each given (x, y) , the loss function L1 is convex over ei(x) , for any i ∈ [K] ;
and the loss function L2 is:

• convex over r1(x) and r2(x) , when 1− ce − c1 + c11e=y > 0 ;

• monotonically decreasing over r1 and monotonically increasing over r2 when 1 − ce −
c1 + c11e=y ≤ 0 .

The proof is given in Appendix D. The convexity of a function ensures that we can find the global
minimizer through gradient-related optimization methods (Boyd & Vandenberghe, 2004; Nesterov,
2014). As for the monotonicity of L2 when 1 − ce − c1 + c11e=y ≥ 0 , we will show that in
Theorem 3.2, this property can help for solving the corner case in the proof. Based on differentia-
bility, convexity, or monotonicity, we prove in Sec. 3.2 that our proposed surrogate loss function is
consistent, that is, any minimizer of the surrogate risk (equation 10) also minimizes the generalized
0 - 1 risk of equation 3, referring to the consistency defined in Section 2.2 by Cao et al. (2023b).

3.2 CONSISTENCY OF SURROGATE LOSS FUNCTION

In this subsection, we verify the consistency between the surrogate loss function (equation 7) and
the generalized 0 - 1 loss function (equation 3). Formally, we prove the following theorem:

Theorem 3.2. Under the space of all measurable functions, the surrogate loss function (equation 7)
is consistent with the generalized 0 -1 loss function (equation 3), that is, the minimizer of the risk
of surrogate loss function also minimizes the risk of original loss function:

r∗, e∗ ∈ argmin
r,e

Rgeneral(r, e;m),

for all r∗, e∗ ∈ argminr,e RS(r, e;m) .

The proof is given in Appendix E. As shown in Theorem 3.2, the function spaces for server classifier
e and rejector r are both spaces of all measurable functions; training our model with this stage-
switching surrogate loss function would eventually lead to Bayes classifiers, which is the global
optimal solution.

In summary, we propose a stage-switching surrogate loss function, which is differentiable, convex,
or monotone, and theoretically prove that this surrogate loss function is consistent. Based on those
properties of our surrogate loss function, practical optimization methods can be conducted to derive
the empirical minimizer of surrogate risk RS , as defined in equation 10, with a finite number of data
samples in real-world scenarios. In the next section, we propose computationally feasible algorithms
for different settings PPR, IA, and BRR discussed in Sec. 1.
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4 COMPUTATIONALLY FEASIBLE ALGORITHMS FOR LEARNING TO HELP

The stage-switching surrogate loss function that we propose in equation 7 ensures the usability of
gradient-based optimization methods to train the rejector and server classifiers with flexibility in
three settings we discuss in Section 1: PPR, IA, and BRR settings.

The training in the server stage is the same for all three settings since L1 is only a function of the
server classifier; no knowledge of the rejector or client classifier is needed. In the rejector stage, we
set up different algorithms based on the constraints in different settings. Besides, for BRR settings,
we propose post-hoc Algo. 4 and 5 after standard training. Since the stage-switching surrogate
loss function is differentiable, any gradient-based optimization method can be used for training our
model. To reduce the computation, we use Stochastic Gradient Descent (SGD) for presentation.

Pay-Per-Request (PPR) Recall the scenarios we depict in Section 1, in the PPR setting, we con-
sider that the client is always connected with the server; that is, the rejector has instant access to
the latest version of server classifier e(x) during the whole training phase. This setting works for
scenarios where the connection is in real-time, and the bandwidth is ample and free during training,
but each request conducts payment.

We design a synchronized algorithm, Algo. 1, that works for the PPR setting. The algorithm itera-
tively runs in the server stage, and in the rejector stage for each pair of samples and labels (x, y) .
In the server stage, the server classifier e(x) is updated by the sub-loss L1 . In the rejector stage,
the current e(x) is instantly shared with the rejector. Together with the outputs of the fixed client
classifier and current server classifier, the sub-loss L2 is calculated to update the rejector.

Algorithm 1 Optimization With Our Surrogate Loss Function

Input: Training set {(xi, yi) : i ∈ [n]} , Fixed client classifier m , Rejector r0 , Sever classifier
e0 , Constant cost c1 and ce .

1: for t = 1 to n do
2: Lt

1(xt, yt) = − ln
exp (eyt (xt))∑
j exp (ej(xt))

3: et ← SGD(Lt
1(xt, yt), e

t−1)

4: Lt
2(xt, yt) = −1m(xt)=yt

ln exp (r1(xt))
exp (r2(xt))+exp (r1(xt))

− (1 − ce − c1 +

c11et(xt)=yt
) ln exp (r2(xt))

exp (r2(xt))+exp (r1(xt))

5: rt ← SGD(L2(xt, yt), rt−1)
6: end for
7: return rn, en

Intermittent Availability (IA) In the IA setting, the connection between the client and the server
is not always available. This scenario may happen in any distributed system that is connected to the
public network because of traffic control. Also in private networks, connection may be lost due to
instability of the network. If we still train our model with synchronized algorithm 1, the training
process will be postponed once the connection is delayed or lost. Holding the status of both the
rejector and server classifier will cause a waste of resources and time.

Our stage-switching surrogate loss function in equation 7 consists of two sub-loss functions. An
asynchronized algorithm is best to tackle those issues. The idea is to separately train the server clas-
sifier with L1 on the server side and train the rejector with L2 while keeping a temporary version
of the server classifier e− on the client side. The e− will be updated only when the intermittent
connection between client and server is built. Considering that the client and server only connect
every S time slot we propose the asynchronized training algorithm in Algo. 2. In line 4 of Algo. 2,
the server connects with the client and sends the current server classifier e as the latest e− . In
line 5, we calculate the L2 loss with stored server classifier e− .

Bounded-Reject-Rate (BRR) While a few works focus on the BRR setting in L2D and L2H
frameworks, the setting is indeed realistic. For example, subscribers of ChatGPT or other AI as-
sistants don’t pay extra money for each inquiry to advanced models, but they are allowed to only

8
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Algorithm 2 Asynchronous Optimization With Our Surrogate Loss Function

Input: Training set {(xi, yi) | i ∈ [n]} , Fixed client classifier m , Rejector r0 , Sever classifier
e0 , Constant cost c1 and ce , Synchronization interval S , .

1: for t = 1 to n do
2: Lt

1(xt, yt) = − ln
exp (eyt (xt))∑
j exp (ej(xt))

3: et ← SGD(Lt
1(xt, yt), e

t−1)
4: if t mod S = 1 then e− ← et end if
5: Lt

2(xt, yt) = −(1 − ce − c1 + c11e−(xt)=yt
) ln exp (r2(xt))

exp (r2(xt))+exp (r1(xt))
−

1m(xt)=yt
ln exp (r1(xt))

exp (r2(xt))+exp (r1(xt))

6: rt ← SGD(L2(xt, yt), rt−1)
7: end for
8: return rn, en
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Figure 2: Impact of ce nad c1 on accuracy and reject rate. First row: change of accuracy as reject rate changes;
Second row: change of reject rate as reject cost ce changes.

ask an assigned number of questions each hour during peak hours. In this setting, we consider that
making a reject decision and sending samples to the server is free, but the number of samples that
can be sent to the server in units of time, i.e., reject rate, has a fixed upper bound q . There are two
concerns in this setting: a) the rejector should actively pick up the samples that have higher accu-
racy on the server classifier compared to the client classifier; b) the actual reject rate in the inference
phase should be bounded.

To address the concerns stated above, we propose stochastic post-hoc algorithms in Algo. 3, 4,
and 5. These algorithms sample random variables to decide either sending extra samples to server
when empirical reject rate is lower than upper bound q or keep a portion of rejected samples locally
when it’s higher than upper bound q . By conducting this stochastic post-hoc algorithm, we can
ensure the bounded reject rate while making the best use of server classifier. The detailed discussions
and algorithms are in Appendix F.

5 EXPERIMENT

In this section, we test the proposed surrogate loss function in equation 7 and algorithms for different
settings on CIFAR-10 (Krizhevsky & Hinton, 2009), SVHN (Netzer et al., 2011) , and CIFAR-
100 (Krizhevsky & Hinton, 2009) datasets.

In our experiments, the base network structure for the client classifier and the rejector is LeNet-5,
and the server classifier is either AlexNet or ViT. The client classifier is trained solely and works as
a fixed model in the following process. Since Algo. 1 is the basic algorithm for our multi-class L2H
framework, we start from the evaluation for the PPR setting.

Trade-off accuracy and reject rate on reject cost and inaccuracy cost In this experiment, we
evaluate the impact of reject cost ce and inaccuracy cost c1 on the overall accuracy and reject rate,

9
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Table 1: Contrastive Evaluation Results with c1 = 1.25 and ce = 0.25

cifar10 (%) SVHN (%)

ratio m e differ. ratio m e differ.

data with r(x) = LOCAL 44.11 73.9 81.9 8.0 91.71 90.6 93.3 2.7
data with r(x) = REMOTE 55.9 54.5 67.7 13.2 8.29 61.2 72.8 11.6
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Figure 3: Comparison of the training loss for different synchronized settings.

respectively. Specifically, we choose ce from an interval between [0, 0.5] with fixed inaccuracy
costs c1 = 1 and c1 = 1.25 . From Fig. 2 we see that, incorporating a server classifier indeed
helps increase the overall accuracy, while both the cost of rejection and inaccuracy on the server will
balance the usage of the client classifier and server classifier.

Contrastive evaluation over client and server classifiers To see what the rejector learns in train-
ing and how it works in the inference phase, we conduct a contrastive evaluation, where in the
inference phase, we split the testing set into a rejected subset and non-rejected subset, according to
the output of r(x) . We test the accuracy of the rejected and non-rejected subset on both the client
classifier m(x) and the server classifier e(x) . The result is shown in Table 1, which implies that
the rejector mostly only sends the samples that are predicted inaccurately on m(x) while predicted
more accurately on e(x) to the server end. Column “ratio” indicates the percentage of samples over
dataset have the same r(x) . For different ce and c1 , the results are similar as shown in Appendix G.

Convergence rate comparison over synchronization and asynchronization We compare the
convergence rate and accuracy with models trained by Algo. 1 for PPR and that trained by Algo. 2
for IA. The accuracy performances are similar in both algorithms, as compared Table 1 with Table 7
in Appendix G. This result coincides with the comparison in Fig. 3, where a larger synchronization
interval S causes a slower convergence rate but converges to the same level of loss. The experiment
results are in line with our expectation since the minimizers of our surrogate loss function derived
in Theorem 3.2, are independent to specific optimization algorithms.

Experiments for stochastic post-hoc Algorithm 3, 4, and 5, its comparison with randomly reject
under BRR settings, experiments on CIFAR-100 with server classifier to be ViT, together with other
additional experiment materials, are in Appendix G.

6 CONCLUSION

In this paper, we extend the Learning to Help framework to address multi-class classification
with different resource constraints: PAY-PER-REQUEST, INTERMITTENT AVAILABILITY, and
BOUNDED REJECT RATE. By introducing a stage-switching surrogate loss function, we enabled
effective training of both the server-side classifier and the rejector with computationally feasible al-
gorithms for three settings. Our experimental results demonstrate that the proposed methods offer
a practical and efficient solution for multi-class classification, aligning with the theoretical guar-
antees we established. This work opens new opportunities for further exploration of multi-party
collaboration in hybrid machine learning systems, especially in the era of LLM.
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A COMPARISON WITH BINARY SURROGATE LOSS

In this section, we compare the surrogate loss function proposed in binary case by Wu & Sarwate
(2024) with our proposed method in Section 3.

In this work, the formula of the surrogate loss function is:

LWu(r, e, x, y) = c1 exp

(
β

2
(−ey − r)

)
+ ce exp(−r) + 1m(x)y≤0 exp (αr)

where α and β are parameters for calibration. If we directly make the extension to multi-class
in our setting, we can keep the same definition of rejector while the output of client classifier and
server classifier becomes argmaxi mi(x) andargmaxi ei(x) , which results in the surrogate loss:

L
′

Wu(r, e, x, y) = c1 exp

(
β

2
(− argmax

i
ei(x)y − r)

)
+ ce exp(−r) + 1argmaxi mi(x)y≤0 exp (αr)

The client classifier part works well since the client classifier is fixed during training. However, this
part argmaxi mi(x)y will lead to trouble since both argmaxi mi(x) and y are index numbers of
class in multi-class and therefore, the function is not differentiable with respect to ei(x) .

Furthermore, this surrogate loss function requires to calculate calibration parameters α and β ,
which depends on the estimation of the accuracy of the client classifier, for each input sample x
as shown in Theorem 2 in this work (Wu & Sarwate, 2024), which adds more calculations and
estimation errors to practical experiments. This surrogate loss function is not available in the IA
setting since it’s jointly training the rejector and server classifier at the same time.

Compared to the extension of the surrogate loss function proposed by Wu & Sarwate (2024) with
our stage-switching surrogate loss function, our method is differentiable in multi-class and more
flexible for fitting different settings.

B COMPARISON WITH DIFFERENT SURROGATE LOSS FUNCTIONS

In this section, we justify that previous surrogate loss functions, proposed from LWA and L2D,
can not be directly extended to L2H by comparing those surrogate loss functions with our method,
shown in Table 2, on the properties that are needed in the settings that we are interested in.

Confindence-LWA (or score-based-LWA) represents the methods in LWA that use the output m(x)
or function of output f(m(x)) of the client classifier as a metric of confidence on current prediction.
If the value of the metric is smaller than a threshold, then the input sample x will be discarded as a
result of rejection. The theoretical framework of Confidence-LWA was first proposed by Herbei &
Wegkamp (2006). There is no separate rejector in those methods. The rejected samples will be aban-
doned since there will be no more actions after rejection. Separate rejector-LWA represents those
surrogate loss functions in LWA that assume a separate rejector to independently decide whether to
reject or not. This kind of method was first proposed by Cortes et al. (2016) and proves the inability
of confidence-based methods in special cases, referring to Sec. 2.2 of this work. However, in the
LWA framework, the rejection decision only depends on the local classifier m and does not consider
the issues after rejection.

In the L2D framework, samples are sent to an expert after rejection. Softmax-L2D, firstly proposed
by Mozannar & Sontag (2020b), and OvA-L2D, firstly proposed by Verma & Nalisnick (2022)
are two different classes of surrogate loss functions. Softmax-L2D adds a reject option as another
class of task to the cross-entropy loss function, while OvA-L2D uses surrogate loss functions that
transform multi-class classification into a combination of multi-binary classifiers. However, the
output of the rejector on both methods also depends on the output of each class mi(x) on mobile
classifier m(x) . Moreover, during training, the client and the server must keep connection with
each other.

Two-stage (TS) confidence-L2D and two-stage (TS) separate rejector-L2D are those kinds of surro-
gate loss functions that consist of different sub-loss functions and can be trained in corresponding
stages for both confidence and separate rejector cases, firstly proposed by Mao et al. (2023). Those
two methods can be used for IA settings where the training is asynchronized since their surrogate loss
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function can be easily split and run in different locations. However, in two-stage confidence-L2D
methods, the rejector takes the output of m(x) as input, while in two-stage separate rejector-L2D
methods, the rejector only considers the performance of experts on different servers.

For those methods that do not have a separate rejector, the limitation has been proved by Cortes
et al. (2016). What’s more, usually ML classifiers are more complex than rejectors in scale. In the
scenarios of our PPR and IA settings, when the latency is a concern, a system with a separate reject
is faster since in a non-separate rejector system, all samples are firstly sent to the client classifier and
then decided by the rejector, which may take longer time.

For those methods that the rejector does not learn from client classifier m(x) during training, the
reject decision only depends on the performance of server classifier e(x) . For those methods that
the rejector does not learn from server classifier e(x) , the reject decision only depends on the
performance of client classifier m(x) . In our PPR and IA settings, asking the server for help is
not free, so we have to balance the use of the server. A desired rejector should learn the ability
to compare the performance of m(x) and e(x) for each input x as shown in the Bayes classifier
by 2.1.

Those methods that can not train in asynchronized fields may fail in the IA setting since the connec-
tion between client and server is unstable and intermittent.

Based on the settings that are realistic and interesting in real-world scenarios, we require a surro-
gate loss function for a multi-class L2H system to have a separate rejector, and the rejector learns
from the knowledge of both the client classifier and server classifier during training and can operate
in asynchronized fashion. Previous works that stem from LWA and L2H can not be directly ex-
tended to L2H because they are either technically non-differentiable for training server classifiers or
conceptually unmatched with the required properties stated above.

Table 2: Difference among surrogate loss function proposed in LWA and L2D

Separate rejector Rejector learns m(x) Rejector learns e(x) Async
Confidence-LWA × ✓ × -

Separate rejector-LWA ✓ ✓ × -
Softmax-L2D × ✓ ✓ ×

OvA-L2D × ✓ ✓ ×
TS confidence-L2D × ✓ ✓ ✓

TS separate rejector-L2D ✓ × ✓ ✓
Ours ✓ ✓ ✓ ✓

C PROOF OF THEOREM 2.1

The standard approach to deriving the Bayes classifier for any given loss function is to compare the
posterior risk associated with each possible decision of the classifier. The decision that minimizes
the posterior risk is then chosen as the output. Recall in Section 2.1, the regression function is
ηi(x) = P (Y = i|X = x) and the generalized 0 - 1 loss function defined in equation 3 is:

Lgeneral(r, e, x, y;m) = 1m(x)̸=y1r(x)=LOCAL

+ ce1e(x)=y1r(x)=REMOTE + (ce + c1)1e(x)̸=y1r(x)=REMOTE.

Note that m(x) is also stochastic, as discussed in Section 2.2. The random variable corresponding
to the client classifier is denoted by M . Then, for any given sample x , the posterior risk over the
conditional distribution of Y and M of any decision r′ ∈ {REMOTE, LOCAL} and e′ ∈ [K] is:

Ey,m|xLgeneral(r
′, e′, x, y;m)

= Ey,m|x(1m(x)̸=y1r′=LOCAL + ce1e′=y1r′=REMOTE + (ce + c1)1e′ ̸=y1r′=REMOTE)

= Em|x(P (Y = e′|X = x)(1m(x) ̸=e′1r′=LOCAL + ce1e′=e′1r′=REMOTE)

+ P (Y ∈ Ye′ |X = x)(1m(x)/∈Ye′
1r′=LOCAL + (ce + c1)1e′ /∈Ye′

1r′=REMOTE)),
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where Ye′ = Y \ {e′} is the set of all labels except for e′ . Then,

Ey,m|xLgeneral(r
′, e′, x, y;m)

= Em|x(ηe′(x)(1m(x)̸=e′1r′=LOCAL + ce1r′=REMOTE)

+ (1− ηe′(x))(1m(x)/∈Ye′
1r′=LOCAL + (ce + c1)1r′=REMOTE))

= Em|x(1r′=LOCAL

(
ηe′(x)1m(x)̸=e′ + (1− ηe′(x))1m(x)/∈Ye′

)
+ 1r′=REMOTE (ceηe′(x) + (ce + c1)(1− ηe′(x))))

= Em|x(1r′=LOCAL(ηe′(x)1m(x) ̸=e′ + (1− ηe′(x))1m(x)/∈Ye′
)

+ 1r′=REMOTE(ce + c1(1− ηe′(x))))

= 1r′=LOCAL(ηe′(x)P (M ̸= e′ | X = x) + (1− ηe′(x))P (M /∈ Ye′ | X = x))

+ 1r′=REMOTE(ce + c1(1− ηe′(x)))

= 1r′=LOCALP (M ̸= Y | X = x) + 1r′=REMOTE(ce + c1(1− ηe′(x))). (11)

Also, for any e′ , the following inequality holds:

1r′=LOCALP (M ̸= Y | X = x) + 1r′=REMOTE(ce + c1(1− ηe′(x)))

≥ 1r′=LOCALP (M ̸= Y | X = x) + 1r′=REMOTE(ce + c1(1−max
i

ηi(x)) (12)

The equality in Inequality 12 holds if and only if the decision e′ satisfies ηe′(x) = maxi ηi(x) . By
combining this with equation 11, the Bayes classifier eB defined in equation 4, which minimizes
Ey,m|xLgeneral(r

′, e′, x, y;m) , satisfies ηeB = maxi ηi(x) . Therefore, the Bayes classifier for the
local client is:

eB = argmax
i

ηi(x).

Recalling the lower bound given by equation 12, the following lower bound can be derived:

1r′=LOCALP (M ̸= Y | X = x) + 1r′=REMOTE(ce + c1(1−max
i

ηi(x))

≥ min{P (M ̸= Y | X = x), ce + c1(1−max
i

ηi(x)} (13)

Inequality 13 implies that for a given x , if P (M ̸= Y | X = x) ≥ ce + c1(1 −maxi ηi(x)) , the
posterior risk reaches the lower bound when r′ = REMOTE . Conversely, if P (M ̸= Y | X = x) <
ce + c1(1 − maxi ηi(x)) , the posterior risk reaches the lower bound when r′ = LOCAL . By the
definition of the rejector, one way to construct the Bayes classifier of the rejector is:

rB = 1[P (M ̸= Y |X = x) < ce + c1(1−max
i

ηi(x))] · 2− 1

= 1[1− P (M = Y |X = x) < ce + c1(1−max
i

ηi(x))] · 2− 1

= 1[1− ηargmaxj mj(x)(x) < ce + c1(1−max
i

ηi(x))] · 2− 1

= 1[ηargmaxj mj(x)(x) > (1− ce − c1) + c1 max
i

ηi(x)] · 2− 1.

In summary, the Bayes classifiers for 0 - 1 generalized loss are

eB = argmax
i

ηi(x)

and

rB = 1[ηj∗(x)(x) > (1− ce − c1) + c1 max
i

ηi(x)] · 2− 1,

where j∗(x) ≜ argmaxj mj(x) .

D PROOF OF PROPOSITION 3.1

We first show the convexity of L1 and L2 w.r.t e . For L1 in equation 8, we notice that it equals to
cross-entropy loss function for multi-class tasks. Referring to the proof by Cover & Thomas (2005),
in which the cross-entropy is transformed into the form of KL divergence, which is convex, we can
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directly draw the conclusion that the L1 is a convex function over ei(x) for any i ∈ [K] given
(x, y) .

Next, we prove the convexity of L2 w.r.t e . Recall the definition of L2 in equation 9:

L2 = −(1− ce − c1 + c11e=y) ln
exp(r2)

exp(r2) + exp(r1)
− 1m=y ln

exp(r1)

exp(r2) + exp(r1)
.

As described in Section 3, once in the rejector stage, only the rejector r is variable. For convenience,
we rewrite L2 in this form:

f(r1, r2) = −a ln
exp(r2)

exp(r2) + exp(r1)
− b ln

exp(r1)

exp(r2) + exp(r1)
,

where a = 1− ce − c1 + c11e=y and b = 1m=y , which are depends on (x, y) . The analysis can
be divided into two cases:

• case (1): a ≤ 0 ,

• case (2): a > 0 .

In case (1), the partial derivative of f(r1, r2) are:

∂f(r1, r2)

∂r1
= a

exp(r1)

(exp(r2) + exp(r1))
− b

exp(r2)

(exp(r2) + exp(r1))
,

and

∂f(r1, r2)

∂r2
= −a exp(r1)

(exp(r2) + exp(r1))
+ b

exp(r2)

(exp(r2) + exp(r1))
.

Since b = {+1,−1} , we have that:

∂f(r1, r2)

∂r1
≤ a

exp(r1)

(exp(r2) + exp(r1))
≤ 0,

and

∂f(r1, r2)

∂r2
≥ −a exp(r1)

(exp(r2) + exp(r1))
≥ 0

always holds, which means f(r1, r2) (or L2 ), are non-increasing function of r1 and non-
decreasing function of r2 . For the case ce > c1 = 1 , it is impossible for a = 0 . Thus, f(r1, r2)
(or L2 ), are monotonically decreasing function of r1 and monotonically increasing function of r2 .

In case (2), where a > 0 , we have that a + b > 0 always holds. Then we calculate (f(r1, z1) +
f(r1, z2))/2 and f(r1, (z1 + z2)/2) for any z1 and z2 :

(f(r1, z1) + f(r1, z2))/2

=
1

2
(−a(z1 − ln(ez1 + er1))

− b(r1 − ln(er1 + ez1))− a(z2 − ln(ez2 + er1))− b(r1 − ln(er1 + ez2)))

=
1

2
(−az1 + a ln(ez1 + er1)− 2br1

+ b ln(er1 + ez1)− az2 + a ln(ez2 + er1) + b ln(ez2 + er1))

=
1

2
(−a(z1 + z2)− 2br1 + (a+ b) ln(ez1+z2 + er1+z2 + er1+z1 + e2r1)),

and

f(r1, (z1 + z2)/2) = −a((z1 + z2)/2− ln(e(z1+z2)/2 + er1))− b(r1 − ln(er1 + e(z1+z2)/2))

=
−a(z1 + z2)

2
+ a ln(e(z1+z2)/2 + er1)− br1 + b ln(er1 + e(z1+z2)/2).
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The subtraction between them is:

(f(r1, z1) + f(r1, z2))/2− f(r1, (z1 + z2)/2) (14)

=
1

2
(a+ b) ln(ez1+z2 + er1+z2 + er1+z1 + e2r1)

− (a+ b) ln(e(z1+z2)/2 + er1)

= (a+ b) ln

√
(ez1 + er1)(ez2 + er1)

e(z1+z2)/2 + er1

We notice that exponential function exp (z) is convex function such that

ez1 + ez2

2
≥ e(z1+z2)/2

holds for any z1, z2 . Since

ex + ey

2
≥ e(x+y)/2

⇔er1+y + er1+x ≥ 2e(x+y)/2+r1

⇔(ex + er1)(ey + er1) ≥ (e(x+y)/2 + er1)2

⇔
√

(ex + er1)(ey + er1)

e(x+y)/2 + er1
≥ 1,

and a+ b > 0 , we prove that the for equation 14:

(f(r1, z1) + f(r1, z2))/2− f(r1, (z1 + z2)/2) ≥ 0

always holds, that is f(r1, r2) is a convex function over r2 . Following similar steps, we also prove
that f(r1, r2) is a convex function over r1 .

E PROOF OF THEOREM 3.2

The surrogate loss function defined in equation 7 consists of L1 and L2 , which are targeted to the
server classifier and rejector, respectively. Since the rejector and server classifier are trained in a
stage-switching manner as described in Section 3, parameters of e are only updated by the gradient
derived from L1 , and that of r is only updated by the gradient derived from L2 . Therefore, the
minimizer of e is derived from the risk of L1 in the server stage, and the minimizer of r is derived
from the risk of L2 (with the current server classifier) in the rejector stage. The risks are:

Ey,m|xL1 = −
∑
y∈Y

ηy(x) log

(
exp (ey(x))∑

y′∈Y exp (ey′(x))

)
and

Ey,m|xL2 = −Ey,m|x(1−ce−c1+c11e=y) ln
exp (r2)

exp (r2) + exp (r1)
−Ey,m|x1m=y ln

exp (r1)

exp (r2) + exp (r1)

Since the Bayes classifiers are optimal for any x according to the definition in equation 4, it’s
equivalent to deriving the minimizer of risk of each sub-surrogate loss function for any given x .

Note that L1 is a cross-entropy loss function for server classifier e(x) ; we can directly get the
minimizers for each ei by the arguments in Section 10.6 proposed by Hastie et al. (2009). Let’s
denote the minimizers of each sub-function ei , which is defined in Section 3, of server classifier by
e∗i . The minimizes e∗i satisfy the following condition:

exp (e∗i (x))∑
j exp (e

∗
j (x))

= ηi(x), ∀i,

where ηi(x) is the regression function for i -th class. Therefore, the e∗(x) = argmaxi e
∗
i (x) =

argmaxi ηi(x) = eB(x) . The minimizer of server classifier e∗ is the same as the Bayes classifier
for server eB .
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Next, we consider the rejector r(x) . Since e(x) = argmaxj ej(x) , when we plug in the minimiz-
ers e∗i (x) to L2 , the risk of L2 conditioned on x becomes:

Ey,m|xL2 = Ey,m|x

(
−1e=y ln

exp(r2)

exp(r2) + exp(r1)
− 1m=y ln

exp(r1)

exp(r2) + exp(r1)

)
= −(1− ce − c1 + c1 max

i
ηi(x)) ln

exp(r2)

exp(r2) + exp(r1)

− ηj∗(x) ln
exp(r1)

exp(r2) + exp(r1)
,

where j∗(x) = argmaxi mi(x) as defined in Theorem 2.1. The following analysis will be divided
into two cases:

• case (a): (1− ce − c1) + c1 maxi ηi(x) ≤ 0 ,
• case (b): (1− ce − c1) + c1 maxi ηi(x) > 0 .

In case (a), when (1 − ce − c1) + c1 maxi ηi(x) ≤ 0 , ∂Ey,m|xL2/∂r1 ≤ 0 always holds, such
that Ey,m|xL2 is monotonically decreasing function of r1 . And ∂Ey,m|xL2/∂r2 > 0 always
holds such that Ey,m|xL2 monotonically increasing function of r2 . In fact, we can also draw the
same conclusions by using the monotonicity from Proposition 3.1 since the expectation of monotone
function is still monotone. Therefore, in this case,

exp(r∗1)

(exp(r∗2) + exp(r∗1)
−→ 1 and

exp(r∗2)

(exp(r∗2) + exp(r∗1)
−→ 0

That means r∗1 > r∗2 always holds. Therefore, the rejector always satisfies:
r∗(x) = 1[r∗1(x) > r∗2(x)] · 2− 1 = 1

Also, in this case, the Bayes classifier for rejector is rB = 1[ηargmaxi mi(x)(x) > (1− ce − c1) +

c1 maxi ηi(x)] · 2− 1 = 1 · 2− 1 = 1 . Therefore, r∗(x) = rB(x) .

Then we consider the case (b) when (1 − ce − c1) + c1 maxi ηi(x) > 0 . Since L1 is convex
according to Proposition 3.1, and expectation of convex function is still convex proved by Boyd &
Vandenberghe (2004), Ey|xL2 is convex, and its minimizers are achieved when partial derivative
equal to 0 . We take the partial derivative over r1 and r2 :
∂Ey|xL2

∂r1
= (1− ce − c1 + c1 max

i
ηi(x))

exp(r1)

(exp(r2) + exp(r1))
− ηj∗(x)

exp(r2)

(exp(r2) + exp(r1))
,

and
∂Ey|xL2

∂r2
= −(1− ce − c1 + c1 max

i
ηi(x))

exp(r1)

(exp(r2) + exp(r1))
+ ηj∗(x)

exp(r2)

(exp(r2) + exp(r1))
.

Setting the partial derivatives to 0 , we have that

exp(r∗1)

exp(r∗2)
=

ηj∗(x)(x)

1− ce − c1 + c1 maxi ηi(x)
.

Then, the rejector becomes:
r∗(x) = 1[r∗1(x) > r∗2(x)] · 2− 1

= 1[exp(r∗1(x)) > exp(r∗2(x))]) · 2− 1

= 1[
exp(r∗1(x))

exp(r∗2(x))
> 1]) · 2− 1

= 1[ηj∗(x)(x) > (1− ce − c1) + c1 max
i

ηi(x)] · 2− 1

= rB(x).

We prove that in both cases (a) and (b), the minimizer of L2 , r∗(x) , equals the Bayes Classifier of
rejector rB(x) .

In summary, we prove that (rB(x), eB(x)) = (r∗(x), e∗(x)) for any x , so the stage-switching
surrogate loss function is consistent with the generalized 0 - 1 loss function.
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F STOCHASTIC POST-HOC ALGORITHM FOR BOUNDED REJECT RATE
SETTING

We propose a stochastic post-hoc method, which is shown in Algo. 3, Algo. 4 and Algo 5. In this
algorithm for BRR settings, we firstly train our rejector and server classifier following the process
as shown in Algo. 3, which is similar to algorithms for PPR or IA settings (can also be trained with
asynchronized algorithm 2). After training, we use a calibration set Dcali to calculate the empirical
reject rate q1 , based on the output of rejector r(x) . Once we get the empirical reject rate, we
compare it with the bounded reject rate q .

If q is greater than q1 , that means we have to sacrifice several rejected samples to force them to
make prediction locally at client classifier m(x) ; the input samples are following the Algo. 4, where
each rejected samples are made a final decision by the value of a uniform random variable. Once the
value is below the ratio p , the sample will still be sent to the server. Otherwise, it may be predicted
by the client classifier. When the empirical reject rate is higher than the bounded reject rate, after
adding this post-hoc mechanism, the bounded reject rate q can just ensured.

If q is smaller than or equal to q1 , that means we can reject more times than the rejector r(x)
request. Then, we follow a similar mechanism in Algo. 5, which uses a random variable to decide
which samples the rejector sends to the server classifier. After using the post-hoc mechanism, we
can ensure the bounded reject rate while making the best use of the server classifier.

Algorithm 3 Training Process of Stochastic Post-hoc Method

Input: Training set D = {(xi, yi) : i ∈ [n]} , Calibration set Dcali = {(xi, yi) : i ∈ [k]} , Fixed
client classifier m , Rejector r0 , Sever classifier e0 , Bounded reject rate q .

1: for t = 1 to n do
2: Lt

1(xt, yt) = − ln
exp (eyt (xt))∑
j exp (ej(xt))

3: et ← SGD(Lt
1(xt, yt), e

t−1)

4: Lt
2(xt, yt) = −(1 − ce − c1 + c11et(xt)=yt

) ln exp (r2(xt))
exp (r2(xt))+exp (r1(xt))

−
1m(xt)=yt

ln exp (r1(xt))
exp (r2(xt))+exp (r1(xt))

5: rt ← SGD(L2(xt, yt), rt−1)
6: end for
7: q1 ← EmpiricalRejectRate (Dcali)
8: return rn, en, q, q1

Algorithm 4 Inference Phase of Stochastic Post-hoc Method When q < q1

Input: Client Classifier m , Trained Rejector rn , Trained Sever Classifier en , Input Sample x ,
Bounded reject rate q , empirical reject rate q1 .

1: p = q/q1
2: if r(x) ≤ 0 then
3: Sample i from (0, 1) uniform distribution.
4: if i ≤ p then
5: ŷ ← en(x)
6: else
7: ŷ ← m(x)
8: end if
9: else

10: ŷ ← m(x)
11: end if
12: return ŷ
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Algorithm 5 Inference Phase of Stochastic Post-hoc Method when q ≥ q1

Input: Client Classifier m , Trained Rejector rn , Trained Sever Classifier en , Input Sample x ,
Bounded reject rate q , empirical reject rate q1 .

1: p = (q − q1)/(1− q1)
2: if r(x) > 0 then
3: Sample i from (0, 1) uniform distribution.
4: if i ≤ p then
5: ŷ ← en(x)
6: else
7: ŷ ← m(x)
8: end if
9: else

10: ŷ ← en(x)
11: end if
12: return ŷ

G EXPERIMENT DESCRIPTION AND ADDITIONAL RESULTS

Datasets We test our proposed surrogate loss function 7 and algorithms for different settings on
CIFAR-10 (Krizhevsky & Hinton, 2009), SVHN (Netzer et al., 2011) and CIFAR-100 (Krizhevsky
& Hinton, 2009) data sets. CIFAR-10 consists of 32 × 32 color images drawn from 10 classes and
is split into 50000 training and 10000 testing images. CIFAR-100 has 100 classes containing 600
images each. SVHN is obtained from house numbers with over 600000 photos in Google Street
View images and has 10 classes with 32 × 32 images centered around a single character. The
experiments are conducted in RTX 3090. It takes approximately 5 minutes to train the local model
and 30 minutes to train each remote server classifier with the rejector when server classifier is set to
be AlexNet or 5 hours to train each remote server classifier with the rejector when server classifier
is set to be ViT.

Comparison over synchronization and asynchronization We conduct additional experiments
training the server model and rejector under both synchronized, as shown in Algo 1 and asynchro-
nized settings as shown in Algo 2. The model is evaluated in the same way as in Section 5. The
contrastive evaluation and loss curve are shown in Table 3 and Figure 4.

Result for different c1 and ce on CIFAR-10 and SVHN Besieds the result we show in Sec-
tion 5, we add extensive result for contrastive evaluation with different inaccuracy cost c1 , reject
cost ce and synchronization interval S (for IA setting) for CIFAR-10 and SVHN with local classi-
fier and rejector being LeNets and remote classifier being AlexNet. The results are shown in Table 3.

Result for different c1 and ce on CIFAR-100 Since our stage-swtich surrogate loss function
doesn’t set up constraints on the size of dataset and structures of machine learning methods, we
test the Contrastive Evaluation on dataset CIFAR100 with local classifier and rejector being LeNet
and remote classifier being ViT, a transformer-based vision neural network. The results are shown in
Table 4. Both higher c1 and ce can reduce the ratio of numbers that are sent to remote classifier, but
in our experimental results, the reject rate is more sensitive to ce . When ce is close to 1 , almost no
sample is sent to remote classifier, which make sense because ce = 1 means that the cost of asking
for help is always greater than locally prediction.

Samples partitioned by rejector We choose one case where the rejector and remote classifier
AlexNet are trained on SVHN when c1 = 1.25 and ce = 0.25 . Then we let rejector partition the
test set and randomly pick images from the subset with r(x) = REMOTE and r(x) = LOCAL ,
respectively. The results are shown in Fig. 5 and Fig. 6. It’s obvious that samples kept locally
are clearer, contrast, focused, with high-resolution, while the samples that are supposed to send to
the server are blurry, unfocused, with low-resolution. Without any manual adjustment, our rejector
learns to assess “difficulty” using the same metrics as humans, by interacting with both local model
and server model during the training process.
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Table 3: Contrastive Evaluation Results for different cost and synchronization interval

S c1 ce
cifar10 (%) SVHN (%)

m e differ. m e differ.

sync. 1.0 0.25 r(x) = LOCAL 74.8 82.8 8.0 90.1 93.2 3.1
r(x) = REMOTE 54.5 68.6 14.1 62.0 72.5 10.5

sync. 1.25 0.25 r(x) = LOCAL 73.9 81.9 8.0 90.6 93.3 2.7
r(x) = REMOTE 54.5 67.7 13.2 61.2 72.8 11.6

sync. 1.25 0.0 r(x) = LOCAL 82.3 86.8 4.6 97.2 97.9 0.7
r(x) = REMOTE 62.6 73.8 11.2 87.6 90.8 3.2

100 1.0 0.25 r(x) = LOCAL 75.9 84.3 8.4 90.6 92.9 2.3
r(x) = REMOTE 55.3 69.5 14.1 63.6 72.7 9.1

100 1.25 0.25 r(x) = LOCAL 74.5 83.3 8.8 91.4 93.5 2.2
r(x) = REMOTE 55.5 69.9 14.4 65.4 73.9 8.5

100 1.25 0.0 r(x) = LOCAL 81.4 87.4 6.0 97.0 97.8 0.8
r(x) = REMOTE 62.6 75.3 12.7 87.3 90.6 3.3

1000 1.0 0.25 r(x) = LOCAL 74.8 83.1 8.2 90.5 93.2 2.7
r(x) = REMOTE 54.7 69.2 14.6 64.3 72.9 8.6

1000 1.25 0.25 r(x) = LOCAL 75.2 83.3 8.1 90.8 93.9 3.1
r(x) = REMOTE 56.0 69.7 13.7 65.1 75.6 10.5

1000 1.25 0.0 r(x) = LOCAL 80.3 87.7 7.4 97.3 98.0 0.8
r(x) = REMOTE 62.8 74.5 11.7 86.9 90.7 3.7

|D| 1.0 0.25 r(x) = LOCAL 74.1 82.9 8.9 90.1 93.0 2.9
r(x) = REMOTE 56.8 71.1 14.3 62.9 73.3 10.4

|D| 1.25 0.25 r(x) = LOCAL 72.8 82.9 10.1 90.8 93.7 2.9
r(x) = REMOTE 57.1 70.4 13.3 63.8 74.1 10.3

|D| 1.25 0.0 r(x) = LOCAL 78.9 86.8 7.9 96.2 97.5 1.3
r(x) = REMOTE 62.8 74.9 12.0 87.5 90.9 3.3
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Table 4: Contrastive Evaluation Results for different costs on CIFAR-100 with remote classifier being ViT

S c1 ce
cifar100 (%)

ratio m e differ.

sync. 1.0 0.2 r(x) = LOCAL 0.1 78.6 100.0 21.4
r(x) = REMOTE 99.9 27.5 88.1 60.6

sync. 1.0 0.6 r(x) = LOCAL 13.3 46.9 90.9 43.9
r(x) = REMOTE 86.7 24.6 87.9 63.3

sync. 1.0 0.95 r(x) = LOCAL 100.0 27.6 88.2 60.7
r(x) = REMOTE 0.0 N/A N/A N/A

sync. 1.25 0.25 r(x) = LOCAL 0.31 80.6 100.0 19.4
r(x) = REMOTE 99.36 27.4 87.9 60.6

sync. 1.9 0.5 r(x) = LOCAL 4.2 58.6 92.7 34.1
r(x) = REMOTE 95.8 26.2 88.0 61.9

sync. 1.9 0.75 r(x) = LOCAL 50.79 57.8 93.4 35.7
r(x) = REMOTE 49.21 26.3 87.8 61.6

sync. 2.0 0.4 r(x) = LOCAL 1.1 67.3 94.4 27.1
r(x) = REMOTE 98.9 27.1 87.8 60.7

sync. 5.0 0.5 r(x) = LOCAL 4.1 57.8 93.4 35.7
r(x) = REMOTE 95.9 26.3 87.8 61.6
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Figure 4: Comparison of synchronization and synchronization with different parameters
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Figure 5: Samples from SVHN with r(x) = LOCAL
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Figure 6: Samples from SVHN with r(x) = REMOTE
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Table 5: Accuracy of classifiers on CIFAR-10 when client classifier is pre-trained without “truck” class

“truck” (%) other classes (%) all classes (%)

only local classifier 0 64.4 58.0

only remote classifier 87.5 72.5 74.0

jointly work 85.2 70.5 72.0
rejected rate under jointly work 96.1 63.1 72.7

Table 6: Accuracy of classifiers on SVHN when client classifier is pre-trained without “9” class

“9” (%) other classes (%) all classes(%)

only local classifier 0 92.2 83.0

only remote classifier 94.5 89.5 90.0

jointly work 90.0 88.9 89.0
rejected rate under jointly work 93.5 12.0 17.8

Experiments on imbalance dataset We set up an additional experiment to evaluate the impact
of imbalance dataset issues for our multi-class L2H. We choose one case where the rejector and
remote classifier AlexNet are trained on CIFAR-10 or SVHN when c1 = 1.25 and ce = 0.25 .
In this experiment, we pre-train the local model with the reduced dataset that doesn’t contain any
sample from one certain class (no “truck” in CIFAR-10 and no “9” in SVHN). Based on that, we
train rejector and edge model with a full dataset. The results in Table 5 and Table 6 show that almost
all the samples from missing class are identified by rejector and sent to server model. The overall
accuracy doesn’t get undermined compared to standard setting. The training of the rejector makes
the multi-class L2H robust to imbalance dataset or distribution drifting issues. And after training,
the remote classifier becomes expert that is specialized on the missing class.

Accuracy comparison over stochastic post-hoc and randomly reject on bounded reject rate
setting To show that the client classifier under Bounded Reject Rate settings would benefit from
training with Algo. 3 and testing with Algo. 4 and Algo. 5, we set up a randomly reject method as a
baseline. In this randomly reject method, we assume that there is no rejector, the sample is randomly
sent to server classifier according the value of bounded reject rate, e.g., with bounded reject rate 0.5 ,
half of the samples will be randomly chosen and sent to server for inference. We train our rejector
and server classifier by following Algo. 3. After that, given different bounded reject rate, we use
either Algo. 4, or Algo. 5 to strictly control the actual reject rate below the bound. The results of the
accuracy-vs-bounded reject rate for the Stochastic Post-hoc method and the random reject method
are shown in Fig. 7. The result demonstrates that by using the Stochastic Post-hoc Algorithm, the
system can still actively pick up the samples that fit the server classifier even under the constraints
of a bounded reject rate.

Table 7: Contrastive Evaluation on Training Asynchronously with S = 100 , c1 = 1.25 and ce = 0.25

cifar10 (%) SVHN (%)

m e differ. m e differ.

data with rejector r(x) = LOCAL 74.5 83.3 8.8 91.4 93.5 2.2
data with rejector r(x) = REMOTE 55.5 69.9 14.4 65.4 73.9 8.5
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Figure 7: Comparison with randomly reject after Stochastic Post-hoc Algorithm when ce = 0.25 and c1 =
1.12
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