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Abstract
Bilingual lexicons form a critical component of001
various NLP applications, including unsuper-002
vised and semisupervised machine translation003
and crosslingual information retrieval. In this004
work, we improve bilingual lexicon induction005
performance across 40 diverse language pairs006
with a graph-matching method based on opti-007
mal transport. The method is especially strong008
with very low amounts of supervision.009

1 Introduction010

Bilingual lexicon induction (BLI) from word em-011

bedding spaces is a popular task with a large body012

of existing literature (e.g. Mikolov et al., 2013;013

Artetxe et al., 2018; Conneau et al., 2018; Patra014

et al., 2019; Shi et al., 2021). The goal is to ex-015

tract a dictionary of translation pairs given sepa-016

rate language-specific embedding spaces, which017

can then be used to bootstrap downstream tasks018

such as cross-lingual information retrieval and019

unsupervised/semi-supervised machine translation.020

A great challenge across NLP is maintaining021

performance in low-resource scenarios. A com-022

mon criticism of the BLI and low-resource MT023

literature is that while claims are made about di-024

verse and under-resourced languages, research is025

often performed on down-sampled corpora of high-026

resource, highly-related languages on similar do-027

mains (Artetxe et al., 2020). Such corpora are not028

good proxies for true low-resource languages ow-029

ing to data challenges such as dissimilar scripts,030

domain shift, noise, and lack of sufficient bitext031

(Marchisio et al., 2020). These differences can lead032

to dissimilarity between the embedding spaces (de-033

creasing isometry), causing BLI to fail (Søgaard034

et al., 2018; Nakashole and Flauger, 2018; Ormaz-035

abal et al., 2019; Glavaš et al., 2019; Vulić et al.,036

2019; Patra et al., 2019; Marchisio et al., 2020).037

There are two axes by which a language dataset038

is considered “low-resource". First, the language it-039

self may be a low-resource language: one for which040

little bitext and/or monolingual text exists. Even 041

for high-resource languages, the long tail of words 042

may have poorly trained word embeddings due rar- 043

ity in the dataset (Gong et al., 2018; Czarnowska 044

et al., 2019). In the data-poor setting of true 045

low-resource languages, a great majority of words 046

have little representation in the corpus, resulting in 047

poorly-trained embeddings for a large proportion 048

of them. The second axis is low-supervision. Here, 049

there are few ground-truth examples from which to 050

learn. For BLI from word embedding spaces, low- 051

supervision means there are few seeds from which 052

to induce a relationship between spaces, regardless 053

of the quality of the spaces themselves. 054

We bring a new algorithm for graph-matching 055

based on optimal transport (OT) to the NLP and 056

BLI literature. We evaluate using 40 diverse lan- 057

guage pairs under varying amounts of supervision. 058

The method works strikingly well across language 059

pairs, especially in low-supervision contexts. As 060

low-supervision on low-resource languages reflects 061

the real-world use case for BLI, this is an encour- 062

aging development on realistic scenarios. 063

2 Background 064

The typical baseline approach for BLI from word 065

embedding spaces assumes that spaces can be 066

mapped via linear transformation. Such methods 067

typically involve solutions to the Procrustes prob- 068

lem (see Gower et al. (2004) for a review). Alter- 069

natively, a graph-based view considers words as 070

nodes in undirected weighted graphs, where edges 071

are the distance between words. Methods taking 072

this view do not assume a linear mapping of the 073

spaces exists, allowing for more flexible matching. 074

BLI from word embedding spaces Assume 075

separately-trained monolingual word embedding 076

spaces: X ∈ Rn×d, Y ∈ Rm×d where n/m are 077

the source/target language vocabulary sizes and d is 078

the embedding dimension. We build the matrices X 079
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and Y of seeds from X and Y, respectively, such080

that given s seed pairs (x1, y1), (x2, y2), ...(xs, ys),081

the first row of X is x1, the second row is x2, etc.082

We build Y analogously for the y-component of083

each seed pair. The goal is to recover matches for084

the X \X and/or Y \Y non-seed words.085

Procrustes Many BLI methods use solutions to086

the Procrustes problem (e.g. Artetxe et al., 2019b;087

Conneau et al., 2018; Patra et al., 2019). These088

compute the optimal transform W to map seeds:089

min
W∈Rd×d

||XW −Y||2F (1)090

Once solved for W, then XW and Y live in a091

shared space and translation pairs can be extracted092

via nearest-neighbor search. Constrained to the093

space of orthogonal matrices, Eq. 1 has a simple094

closed-form solution (Schönemann, 1966):095

W = VUT UΣV = SVD(Y
T
X)096

Graph View Here, words are nodes in mono-097

lingual graphs Gx,Gy ∈ Rn×n. , and cells in098

Gx,Gy are edge weights representing distance099

between words. We use cosine similarity, which100

is common in NLP. The objective function is Eq.101

2, where Π is the set of permutation matrices.1102

Intuitively, PGyP
T finds the optimal relabeling103

of Gy to align with Gx. This “minimizes edge-104

disagreements" between Gx and Gy. This graph-105

matching objective is NP-Hard. Eq. 3 is equivalent.106

107

min
P∈Π

||Gx −PGyP
T||2F (2)108

109
max
P∈Π

trace(Gx
TPGyP

T) (3)110

Ex. Take source words x1, x2. We wish to recover111

valid translations yx1 , yx2 . If distance(x1, x2)=112

distance(yx1 , yx2), a solution P can have an edge-113

disagreement of 0 here. We then extract yx1 , yx2114

as translations of x1, x2. In reality, though, it is un-115

likely that distance(x1, x2) = distance(yx1 , yx2).116

Because Eq. 2 finds the ideal P to minimize edge117

disagreements over the entire graphs, we hope that118

nodes paired by P are valid translations. If Gx and119

Gy are isomorphic and there is a unique solution,120

then P correctly recovers all translations.121

Graph-matching is an active research field and122

is computationally prohibitive on large graphs,123

but approximation algorithms exist. BLI involves124

matching large, non-isomorphic graphs—among125

the greatest challenges for graph-matching.126

1A permutation matrix represents a one-to-one mapping:
There is a single 1 in each row and column, and 0 elsewhere.

2.1 FAQ Algorithm for Graph Matching 127

Vogelstein et al. (2015)’s Fast Approximate 128

Quadratic Assignment Problem algorithm (FAQ) 129

uses gradient ascent to approximate a solution to 130

Eq. 2. Motivated by “connectonomics" in neuro- 131

science (the study of brain graphs with biological 132

[groups of] neurons as nodes and neuronal connec- 133

tions as edges), FAQ was designed to perform ac- 134

curately and efficiently on large graphs. 135

FAQ relaxes the search space of Eq. 3 to allow 136

any doubly-stochastic matrix (the set D). Each cell 137

in a doubly-stochastic matrix is a non-negative real 138

number and each row/column sums to 1. The set 139

D thus contains Π but is much larger. Relaxing the 140

search space makes it easier to optimize Eq. 3 via 141

gradient ascent/descent.2 FAQ solves the objective 142

with the Frank-Wolfe method (Frank et al., 1956) 143

then projects back to a permutation matrix. 144

Algorithm 1 is FAQ; f (P ) = 145

trace(Gx
TPGyP

T). These may be built as 146

Gx = XXT and Gy = YYT. Gx and Gy need 147

not have the same dimensionality. Step 2 finds a 148

permutation matrix approximation Q{i} to P {i} in 149

the direction of the gradient. Finding such a P re- 150

quires approximation when P is high-dimensional. 151

Here, it is solved via the Hungarian Algorithm 152

(Kuhn, 1955; Jonker and Volgenant, 1987), whose 153

solution is a permutation matrix. Finally, Pn 154

is projected back onto to the space of permuta- 155

tion matrices. Seeded Graph Matching (SGM; 156

Fishkind et al., 2019) is a variant of FAQ allow- 157

ing for supervision, and was recently shown to be 158

effective for BLI by Marchisio et al. (2021).

Algorithm 1 FAQ Algorithm for Graph Matching

Let: Gx,Gy ∈ Rn×n, P {0} ∈ D (dbl-stoch.)
while stopping criterion not met do

1. Calculate ∇f(P {i}):
∇f(P {i}) = GxP

{i}GT
y +GT

xP
{i}Gy

2. Q{i} = permutation matrix approx. to ∇f(P {i})
via Hungarian Algorithm

3. Calculate step size:
argmax
α∈[0,1]

f (αP {i} + (1− α)Q{i})

4. Update P {i+1} := αP {i} + (1− α)Q{i}

end while
return permutation matrix approx. to P {n} via Hung. Alg.

159
Strengths/Weaknesses FAQ/SGM perform well 160

solving the exact graph-matching problem: where 161

graphs are isomorphic and a full matching exists. 162

2“descent" for the Quadratic Assignment Problem, “as-
cent" for the Graph Matching Problem. The optimization ob-
jectives are equivalent: See Vogelstein et al. (2015) for a proof.
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In reality, large graphs are rarely isomorphic. For163

BLI, languages have differing vocabulary size, syn-164

onyms/antonyms, and idiosyncratic concepts; it is165

more natural to assume that an exact matching be-166

tween word spaces does not exist, and that mul-167

tiple matchings may be equally valid. This is an168

inexact graph-matching problem. FAQ generally169

performs poorly finding non-seeded inexact match-170

ings (Saad-Eldin et al., 2021).171

2.2 GOAT172

Graph Matching via OptimAl Transport (GOAT)173

(Saad-Eldin et al., 2021) is a new graph-matching174

method which uses advances in OT. Similar to175

SGM, GOAT amends FAQ and can use seeds.176

GOAT has been successful for the inexact graph-177

matching problem on non-isomorphic graphs:178

whereas FAQ rapidly fails on non-isomorphic179

graphs, GOAT maintains strong performance.180

Optimal Transport OT is an optimization prob-181

lem concerned with the most efficient way to trans-182

fer probability mass from distribution µ to distribu-183

tion v . Discrete3 OT minimizes the inner product of184

a transportation “plan" matrix P with a cost matrix185

C, as in Eq. 4. ⟨·, ·⟩ is the Frobenius inner product.186

P ∗ = argmin
P∈U(r,c)

⟨P,C⟩ (4)187

P is an element of the “transportation polytope"188

U(r, c)—the set of matrices whose rows sum to r189

and columns sum to c. The Hungarian Algorithm190

approximately solves OT, but the search space is191

restricted to permutation matrices.192

Sinkhorn: Lightspeed OT Cuturi (2013) intro-193

duce Sinkhorn distance, an approximation of OT194

distance that can be solved quickly and accurately195

by adding an entropy penalty h to Eq. 4. Adding196

h makes the objective easier and more efficient to197

compute, and encourages “intermediary" solutions198

similar to that seen in the Intuition subsection.199

P λ = argmin
P∈U(r,c)

⟨P,C⟩ − 1

λ
h(P ) (5)200

As λ → ∞, P λ approaches the ideal transportation201

matrix P ∗. Cuturi (2013) show that Eq. 5 can be202

computed using Sinkhorn’s algorithm (Sinkhorn,203

1967). The interested reader can see details of204

the algorithm in Cuturi (2013); Peyre and Cuturi205

(2019). Unlike the Hungarian Algorithm, Sinkhorn206

has no restriction to a permutation matrix solution207

and can be solved over any U(r, c).208

3As ours is, as we compute over matrices.

Sinkhorn in GOAT GOAT uses Cuturi (2013)’s 209

algorithm to solve Eq. 5 over U(1, 1), the set 210

of doubly-stochastic matrices D. They call this 211

the “doubly stochastic OT problem", and the algo- 212

rithm that solves it “Lightspeed Optimal Transport" 213

(LOT). Although Sinkhorn distance was created for 214

efficiency, Saad-Eldin et al. (2021) find that using 215

the matrix P λ that minimizes Sinkhorn distance 216

also improves matching performance on large and 217

non-isometric graphs. Algorithm 2 is GOAT.

Algorithm 2 GOAT

Let: Gx,Gy ∈ Rn×n, P {0} ∈ D (dbl-stoch.)
while stopping criterion not met do

1. Calculate ∇f(P {i}):
∇f(P {i}) = GxP

{i}GT
y +GT

xP
{i}Gy

2. Q{i} = dbl-stoch. approx. to ∇f(P {i}) via LOT.
3. Calculate step size:

argmax
α∈[0,1]

f (αP {i} + (1− α)Q{i})

4. Update P {i+1} := αP {i} + (1− α)Q{i}

end while
return permutation matrix approx. to P {n} via Hung. Alg.

218
Intuition The critical difference between 219

SGM/FAQ and GOAT is how each calculates step 220

direction based on the gradient. Under the hood, 221

each algorithm maximizes trace(QT∇f(P {i}) to 222

compute Q{i} (the step direction) in Step 2 of their 223

respective algorithms. See Saad-Eldin et al. (2021) 224

or Fishkind et al. (2019) for a derivation. FAQ uses 225

the Hungarian Algorithm and GOAT uses LOT. 226

For ∇f(P {i}) below, there are two valid permu- 227

tation matrices Q1 and Q2 that maximize the trace. 228

When multiple solutions exist, the Hungarian Algo- 229

rithm chooses one arbitrarily. Thus, updates of P 230

in FAQ are constrained to be permutation matrices. 231

∇f(P {i}) =

0 3 0
2 1 2
0 0 0

 232

233

Q1 =

0 1 0
0 0 1
1 0 0

 , Q2 =

0 1 0
1 0 0
0 0 1

 234

235
trace(QT

1 ∇f(P {i})) = trace(QT
2 ∇f(P {i})) = 5 236

Concerningly, Saad-Eldin et al. (2021) find that 237

seed order influences the solution in a popular im- 238

plementation of the Hungarian Algorithm. Since 239

BLI is a high-dimensional many-to-many task, ar- 240

bitrary choices could meaningfully affect the result. 241

GOAT, on the other hand, can step in the direc- 242

tion of a doubly-stochastic matrix. Saad-Eldin et al. 243

(2021) prove that given multiple permutation matri- 244

ces that equally approximate the gradient at P {i}, 245
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Figure 1: Optimization step of FAQ vs. GOAT. FAQ
arbitrarily chooses the direction of a permutation matrix.
GOAT averages perm. matrices to take a smoother path.

any convex linear combination is a doubly stochas-246

tic matrix that equally approximates the gradient:247

Pλ =
n∑
i

λiPi s.t. λ1+...+λn = 1; λi ∈ [0, 1]248

Pλ is a weighted combination of many valid249

solutions—obviating the need to arbitrarily select250

one for the gradient-based update. LOT’s output251

of a doubly-stochastic matrix in Step 2 is similar252

to finding a Pλ in that it needn’t discretize to a sin-253

gle permutation matrix. In this way, GOAT can254

be thought of as taking a step that incorporates255

many possible permutation solutions. For instance,256

GOAT may select Qds =
1
2Q1 +

1
2Q2, which also257

maximizes trace(QT∇f(P {i}).258

Qds =

0 1 0
1
2 0 1

2
1
2 0 1

2

259

260
trace(QT

ds∇f(P {i})) = 5261

Thus whereas FAQ takes non-deterministic262

“choppy" update steps, GOAT optimizes smoothly263

and deterministically. Figure 1 is an illustration.264

3 Experimental Setup265

We run Procrustes, SGM, and GOAT on 40 lan-266

guage pairs. We also run system combination ex-267

periments similar to Marchisio et al. (2021). We268

evaluate with the standard precision@1 (P@1).269

We induce lexicons using (1) the closed-form270

solution to the orthogonal Procrustes problem of271

Eq. 1, extracting nearest neighbors using CSLS272

(Conneau et al., 2018), (2) SGM, solving the seeded273

version of Eq. 2, and (3) GOAT. Word graphs are274

Gx = XXT, Gy = YYT.275

System Combination We perform system com-276

bination experiments analogous to those of Marchi-277

Figure 2: Combo system: Iter.Proc. & GOAT. (1) run
GOAT in fwd/rev directions (2) intersect hypotheses,
pass to IterProc, (3) run IterProc fwd/rev (4) intersect
hypotheses, pass to Step (1). Repeat N cycles. (End)
Get final translations from fwd GOAT or IterProc.

sio et al. (2021), incorporating GOAT. Figure 2 278

shows the system, which is made of two compo- 279

nents: GOAT run in forward and reverse directions, 280

and “Iterative Procrustes with Stochastic-Add" 281

from Marchisio et al. (2021). This iterative version 282

of Procrustes runs Procrustes in source→target and 283

target→source directions and feeds H random hy- 284

potheses from the intersection of both directions 285

into another run of Procrustes with the gold seeds. 286

The process repeats for I iterations, adding H more 287

random hypotheses each time until all are chosen. 288

We set H = 100 and I = 5, as in the original work. 289

3.1 Data & Software 290

We use publicly-available fastText word embed- 291

dings (Bojanowski et al., 2017)4 which we normal- 292

ize, mean-center, and renormalize (Artetxe et al., 293

2018; Zhang et al., 2019) and bilingual dictionaries 294

from MUSE5 filtered to be one-to-one.6 For lan- 295

guages with 200,000+ embeddings, we use the first 296

200,000. Dictionary and embeddings space sizes 297

are in Appendix Table A1. Each language pair has 298

∼4100-4900 translation pairs post-filtering. We 299

choose 0-4000 pairs in frequency order as seeds 300

for experiments, leaving the rest as the test set.7 301

For SGM and GOAT, we use the publicly-available 302

implementations from the GOAT repository8 with 303

default hyperparameters (barycenter initialization). 304

We set reg=500 for GOAT. For system combination 305

experiments, we amend the code from Marchisio 306

et al. (2021)9 to incorporate GOAT. 307

4https://fasttext.cc/docs/en/pretrained-vectors.html
5https://github.com/facebookresearch/MUSE
6For each source word, keep the first unused target word.

Targets are in arbitrary order, so this is random sampling.
7Ex. En-De with 100 seeds has 4803 test items. With 1000

seeds, the test set contains 3903 items.
8https://github.com/neurodata/goat. Some exps. used

SGM from Graspologic (github.com/microsoft/graspologic;
Chung et al., 2019), but they are mathematically equal.

9https://github.com/kellymarchisio/euc-v-graph-bli
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4 Results308

Results of Procrustes vs. SGM vs. GOAT are in309

Table 1, visualized in Figure 3.310

Procrustes vs. SGM Marchisio et al. (2021) con-311

clude that SGM strongly outperforms Procrustes312

for English→German and Russian→English with313

100+ seeds. We find that the trend holds314

across language pairs, with the effect even315

stronger with less supervision. SGM performs316

reasonably with only 50 seeds for nearly all317

languages, and with only 25 seeds in many.318

Chinese↔English and Japanese↔English perform319

relatively worse, and highly-related languages per-320

form best: French, Spanish, Italian, and Por-321

tuguese. German↔English performance is low322

relative to some less-related languages, which323

have surprisingly strong performance from SGM:324

Indonesian↔English and Macedonian↔English325

score P@1 ≈ 50-60, even with low supervision.326

Except for the aforementioned highly-related lan-327

guage pairs, Procrustes does not perform above ∼328

10 for any language pair with ≤ 100 seeds, whereas329

SGM exceeds P@1 = 10 with only 25 seeds for330

33 of 40 pairs.331

SGM vs. GOAT GOAT improves considerably332

over SGM for nearly all language pairs, and the ef-333

fect is particularly strong with very low amounts334

of seeds and less-related languages. GOAT im-335

proves upon SGM by +19.0, +8.5, and +7.9 on336

English→Bengali with 25, 50, and 75 seeds, re-337

spectively. As the major use case of low-resource338

BLI and MT is dissimilar languages with low su-339

pervision, this is an encouraging result. It gener-340

ally takes 200+ seeds for SGM to achieve similar341

scores to GOAT with just 25 seeds.342

4.1 Isomorphism of Embedding Spaces343

Eigenvector similarity (EVS; Søgaard et al.,344

2018) measures isomorphism of embedding spaces345

based on the difference of Laplacian eigenvalues.346

Gromov-Hausdorff distance (GH) measures dis-347

tance based on nearest neighbors after an optimal348

orthogonal transformation (Patra et al., 2019). EVS349

and GH are symmetric, and lower means more iso-350

metric spaces. Refer to the original papers for math-351

ematical descriptions. We compute the metrics over352

the word embedding using scripts from Vulić et al.353

(2020)10 and show results in Table 2. We observe a354

10https://github.com/cambridgeltl/iso-study/scripts

moderate correlation between EVS and GH (Spear- 355

man’s ρ = 0.434, Pearson’s r = 0.44). 356

Figure 4 shows the relationship between relative 357

isomorphism of each language vs. English, and per- 358

formance of Procrustes/GOAT at 200 seeds. Trends 359

indicate that higher isomorphism varies with higher 360

precision from Procrustes and GOAT. GH shows 361

a moderate to strong negative Pearson’s correla- 362

tion with performance from Procrustes and GOAT: 363

r = −0.47 and r = −0.53, respectively, for *- 364

to-en and -0.55 and -0.61 for en-to-*. EVS corre- 365

lates weakly negatively with performance from Pro- 366

crustes (*-to-en: -0.06, en-to-*: -0.28) and strongly 367

negatively with GOAT (*-to-en: -0.67, en-to-*: - 368

0.75). As higher GH/EVS indicates less isomor- 369

phism, negative correlations imply that lower de- 370

grees of isomorphism correlate with lower scores 371

from Procrustes/GOAT. 372

4.2 System Combination 373

System combination results are in Table 3. Sim- 374

ilar to Marchisio et al. (2021)’s findings for their 375

combined Procrustes/SGM system, we find (1) our 376

combined Procrustes/GOAT system outperforms 377

Procrustes and GOAT alone, (2) ending with the It- 378

erative Procrustes is best for moderate amounts of 379

seeds, (3) ending with GOAT is best for very low 380

or very high number of seeds. 381

Whether we end with Iterative Procrustes vs. 382

GOAT is critically important for the lowest seed 383

sizes: -EndGOAT (-EG) usually fails with 25 seeds; 384

all language pairs except German↔English and 385

Russian↔English score P@1 < 15.0, and most 386

score P@1< 2.0. Simply switching the order of 387

processing in the combination system, however, 388

boosts performance dramatically: ex. from 0.6 389

for StartProc-EndGOAT to 61.5 for StartGOAT- 390

EndProc for Bosnian→English with 25 seeds. 391

There are some language pairs such as 392

English→Persian and Russian↔English where a 393

previous experiment with no seeds had reasonable 394

performance, but the combined system failed. It is 395

worth investigating where this discrepancy arises. 396

5 Discussion 397

We have seen GOAT’s strength in low-resource sce- 398

narios and in non-isomorphic embedding spaces. 399

As the major use case of low-resource BLI and 400

MT is dissimilar languages with low supervision, 401

GOAT’s strong performance is an encouraging 402

result for real-world applications. Furthermore, 403
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Seeds P S G ∆ P S G ∆ P S G ∆ P S G ∆

English-to-*

Bengali Bosnian Estonian Persian
25 0.0 12.9 31.9 (+19.0) 0.1 37.0 48.1 (+11.1) 0.1 37.5 47.0 (+9.5) 0.2 35.2 42.7 (+7.5)
200 4.4 30.9 35.4 (+4.5) 7.0 44.5 49.9 (+5.4) 9.0 46.0 49.6 (+3.6) 7.0 40.0 44.4 (+4.4)
1000 30.6 40.7 41.3 (+0.6) 39.1 54.4 55.1 (+0.7) 45.5 57.0 57.3 (+0.3) 40.9 48.2 49.9 (+1.7)
2000 36.9 45.9 45.5 (-0.4) 45.9 58.1 57.1 (-1.0) 53.1 63.4 64.0 (+0.6) 47.6 54.1 54.7 (+0.6)

Indonesian Macedonian Malay Tamil
25 0.1 49.2 51.3 (+2.1) 0.1 51.0 55.8 (+4.8) 0.3 24.9 36.6 (+11.7) 0.1 1.5 1.8 (+0.3)
200 13.0 54.1 55.9 (+1.8) 12.2 53.3 57.6 (+4.3) 11.5 43.3 46.0 (+2.7) 4.1 26.7 31.0 (+4.3)
1000 58.0 64.5 63.6 (-0.9) 51.0 60.3 61.8 (+1.5) 48.9 58.9 58.3 (-0.6) 26.9 36.2 36.2 (+0.0)
2000 65.0 70.7 69.5 (-1.2) 56.3 63.9 64.6 (+0.7) 55.3 65.0 63.0 (-2.0) 32.3 40.6 39.8 (-0.8)

Vietnamese Chinese Japanese Russian
25 0.2 0.4 0.4 (+0.0) 0.3 8.7 7.9 (-0.8) 0.0 1.1 1.0 (-0.1) 0.4 49.6 55.7 (+6.1)
200 2.9 34.8 40.6 (+5.8) 12.0 22.7 17.3 (-5.4) 8.3 20.7 15.6 (-5.1) 16.5 54.3 57.3 (+3.0)
1000 37.4 53.7 54.9 (+1.2) 44.4 34.5 29.5 (-5.0) 47.8 35.6 27.4 (-8.2) 58.3 61.7 61.5 (-0.2)
2000 50.7 60.7 61.1 (+0.4) 49.3 45.6 41.7 (-3.9) 56.0 45.1 40.3 (-4.8) 65.8 67.4 67.5 (+0.1)

German French Spanish Italian
25 0.3 44.8 48.5 (+3.7) 0.4 58.6 62.4 (+3.8) 0.3 59.5 62.8 (+3.3) 0.4 60.0 63.0 (+3.0)
200 16.1 47.5 50.2 (+2.7) 24.9 60.9 63.2 (+2.3) 27.2 62.1 63.9 (+1.8) 24.9 63.2 64.4 (+1.2)
1000 57.2 54.9 54.5 (-0.4) 67.9 68.3 67.9 (-0.4) 69.6 68.8 69.0 (+0.2) 69.8 70.5 70.3 (-0.2)
2000 63.1 61.4 61.8 (+0.4) 72.5 72.9 72.2 (-0.7) 74.1 75.2 74.9 (-0.3) 75.6 75.9 76.0 (+0.1)

*-to-English

Bengali Bosnian Estonian Persian
25 0.2 37.2 44.4 (+7.2) 0.2 44.7 54.6 (+9.9) 0.3 55.9 63.2 (+7.3) 0.1 37.1 45.1 (+8.0)
200 7.6 43.0 46.6 (+3.6) 6.8 50.4 56.2 (+5.8) 12.6 60.7 64.8 (+4.1) 9.9 42.7 46.8 (+4.1)
1000 39.0 51.5 51.3 (-0.2) 44.7 59.2 61.6 (+2.4) 54.6 67.7 70.0 (+2.3) 45.9 48.5 49.6 (+1.1)
2000 45.2 55.2 54.2 (-1.0) 54.5 64.8 65.9 (+1.1) 62.6 72.8 74.2 (+1.4) 50.3 53.8 53.6 (-0.2)

Indonesian Macedonian Malay Tamil
25 0.1 54.6 58.0 (+3.4) 0.2 60.1 63.2 (+3.1) 0.2 10.0 38.6 (+28.6) 0.2 35.2 44.4 (+9.2)
200 13.3 55.7 58.3 (+2.6) 16.5 62.0 64.5 (+2.5) 15.5 56.2 58.9 (+2.7) 7.4 43.4 45.8 (+2.4)
1000 58.5 63.2 64.1 (+0.9) 58.5 66.1 67.9 (+1.8) 55.7 61.6 62.3 (+0.7) 37.1 49.6 50.3 (+0.7)
2000 66.0 70.1 70.1 (+0.0) 62.6 71.7 71.6 (-0.1) 60.2 67.4 67.2 (-0.2) 45.2 55.1 53.5 (-1.6)

Vietnamese Chinese Japanese Russian
25 0.1 1.0 3.3 (+2.3) 0.1 6.8 9.3 (+2.5) 0.2 8.0 31.2 (+23.2) 0.3 49.1 54.4 (+5.3)
200 1.7 41.3 48.6 (+7.3) 12.0 19.8 16.1 (-3.7) 19.1 34.6 34.2 (-0.4) 16.6 52.5 55.2 (+2.7)
1000 29.1 52.4 57.2 (+4.8) 44.5 33.2 31.9 (-1.3) 47.7 42.7 38.9 (-3.8) 56.6 58.1 60.3 (+2.2)
2000 56.3 64.1 66.3 (+2.2) 50.8 41.5 41.8 (+0.3) 54.0 48.6 47.6 (-1.0) 62.7 67.1 68.5 (+1.4)

German French Spanish Italian
25 0.2 30.3 34.1 (+3.8) 0.3 62.5 65.3 (+2.8) 0.4 61.4 64.4 (+3.0) 0.4 63.6 66.9 (+3.3)
200 10.6 45.0 48.3 (+3.3) 26.8 64.2 66.4 (+2.2) 32.6 65.0 65.9 (+0.9) 28.2 66.6 68.7 (+2.1)
1000 52.8 53.1 53.3 (+0.2) 71.4 70.1 70.4 (+0.3) 69.5 69.8 70.6 (+0.8) 71.6 71.8 73.0 (+1.2)
2000 60.7 60.5 60.4 (-0.1) 76.2 75.3 74.8 (-0.5) 72.9 74.5 73.9 (-0.6) 76.3 75.6 75.8 (+0.2)

*-to-*

German-Spanish Italian-French Spanish-Portuguese Portuguese-German
25 0.5 67.4 70.5 (+3.1) 1.1 85.4 87.3 (+1.9) 2.5 94.3 94.9 (+0.6) 0.5 72.5 76.2 (+3.7)
200 26.0 67.9 71.0 (+3.1) 57.3 86.7 87.7 (+1.0) 74.1 94.9 95.2 (+0.3) 36.3 74.8 76.9 (+2.1)
1000 71.1 74.0 75.4 (+1.4) 86.1 89.1 89.4 (+0.3) 93.3 95.8 96.0 (+0.2) 75.5 78.9 79.6 (+0.7)
2000 76.1 78.8 79.1 (+0.3) 88.8 89.6 90.4 (+0.8) 94.5 97 97.1 (+0.1) 80 81.9 82.0 (+0.1)

Spanish-German French-Italian Portuguese-Spanish German-Portuguese
25 0.5 62.1 66.2 (+4.1) 0.6 88.9 90.2 (+1.3) 1.1 89.7 90.5 (+0.8) 0.3 72.9 76.2 (+3.3)
200 27.7 65.2 67.2 (+2.0) 58.4 90.4 91.2 (+0.8) 70.0 90.4 90.7 (+0.3) 24.3 73.9 77.1 (+3.2)
1000 68.8 70.6 70.6 (+0.0) 89.6 92.1 92.7 (+0.6) 89.5 90.4 91.1 (+0.7) 73.7 79.8 80.8 (+1.0)
2000 73.6 74.0 74.0 (+0.0) 91.8 93.9 94.1 (+0.2) 90.9 91.7 92.3 (+0.6) 78.7 80.6 82.2 (+1.6)

Averages

English-to-* *-to-English Non-English Overall
25 0.2 33.2 38.6 (+5.4) 0.2 38.6 46.3 (+7.7) 0.9 79.2 81.5 (+2.3) 0.3 37.1 41.9 (+4.8)
200 12.6 44.1 46.4 (+2.3) 14.8 50.2 52.8 (+2.6) 23.4 40.3 41.1 (+0.8) 16.9 44.8 46.8 (+2.0)
1000 49.6 54.3 53.7 (-0.6) 52.3 57.4 58.3 (+0.9) 40.5 41.9 42.2 (+0.3) 47.5 51.2 51.4 (+0.2)
2000 56.2 60.4 59.6 (-0.8) 59.8 63.6 63.7 (+0.1) 42.1 43.0 43.2 (+0.2) 52.7 55.7 55.5 (-0.2)

Table 1: P@1 of Procrustes (P), SGM (S) or GOAT (G). ∆ is gain/loss of GOAT vs. SGM. Full results in Appendix.
Figure 3 is a visualization of these results.
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Figure 3: Visualization of Table 1 for select languages. Procrustes (dashed) vs. SGM (dotted) vs. GOAT (solid).
X-axis: # of seeds (log scale). Y-axis: Precision@1 (↑ is better). GOAT is typically best.

EVS GH EVS GH

bn 37.79 0.49 it 22.42 0.20
bs 35.93 0.41 ja 894.20 0.55
de 11.49 0.31 mk 151.02 0.19
es 9.91 0.21 ms 153.42 0.49
et 35.22 0.68 ru 14.19 0.46
fa 86.98 0.39 ta 56.66 0.26
fr 27.92 0.17 vi 256.28 0.42
id 188.98 0.39 zh 519.82 0.61

Table 2: Degree of isomorphism of embedding spaces in
relation to English. EVS = Eigenvector Similarity. GH
= Gromov-Hausdorff Distance. ↓: more isomorphic.

Figure 4: X-axis: Eigenvector Similarity (EVS) /
Gromov-Hausdorff (GH) Distance of language com-
pared to English. Y-axis: Precision@1 from Procrustes
& GOAT with 200 seeds. ↓ EVS/GH = ↑ isomorphic.

GOAT outperforms SGM. As the graph-matching 404

objective is NP-hard so all algorithms are approx- 405

imate, GOAT does a better job by making a bet- 406

ter calculation of step direction. Chinese↔English 407

and Japanese↔English are outliers, which is wor- 408

thy of future investigation. Notably, these lan- 409

guages have very poor isomorphism scores in rela- 410

tion to English. 411

Why might graph-based methods work? The 412

goal for Procrustes is to find the ideal linear trans- 413

formation Wideal ∈ Rdxd to map the spaces, where 414

d is the word embedding dimension. Seeds in Pro- 415

crustes solve Eq. 1 to find an approximation W 416

to Wideal. Accordingly, the seeds can be thought 417

of as samples from which one deduces the optimal 418

linear transformation. This is a supervised learning 419

problem, so when there are few seeds/samples, it is 420

difficult to estimate Wideal. Furthermore, the entire 421

space X is mapped by W to a shared space with Y 422

meaning that every point in X is subject to a poten- 423

tially inaccurate mapping W : the mapping extrap- 424

olates to the entire space. As graph-based methods, 425

GOAT and SGM do not suffer this issue and can in- 426

duce non-linear relationships. Graph methods can 427

be thought of as a semi-supervised learning prob- 428

lem: even words that don’t serve as seeds are incor- 429

porated in the matching process. The graph mani- 430

fold provides addition information that can be ex- 431

ploited. 432

Secondly, the dimension of the relationship be- 433

tween words in GOAT/SGM is much lower than 434

for Procrustes. For the former, the relationship is 435

one-dimensional: distance. As words for the Pro- 436

crustes method are embedded in d-dimensional Eu- 437
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Prev -EP -EG Prev -EP -EG Prev -EP -EG Prev -EP -EG Prev -EP -EG Prev -EP -EG
Seeds en-bn bn-en en-bs bs-en en-de de-en
25 31.9 44.3 0.5 44.4 53.1 6.2 48.1 58.4 0.4 54.6 61.5 0.6 48.5 61.7 59.1 34.1 59.3 56.8
75 33.1 44.7 39.5 45.2 53.5 49.1 47.9 58.1 55.1 54.6 61.7 57.2 48.8 62.3 59.7 47.0 59.4 57.1
100 33.8 45.3 39.7 45.5 53.9 48.1 47.7 58.1 55.4 55.5 61.3 57.5 49.0 62.2 59.7 47.6 59.4 56.8
2000 45.9 48.7 49.3 55.2 56.6 56.3 58.1 59.9 60.5 65.9 66.6 69.1 63.1 66.3 69.4 60.7 65.1 67.9
4000 60.3 50.5 61.2 65.9 55.2 68.9 70.6 63.4 71.8 86.1 69.7 85.7 74.2 72.9 79.5 71.4 67.2 77.6

en-et et-en en-fa fa-en en-id id-en
25 47.0 60.4 5.9 63.2 70.2 15.0 42.7 54.4 4.5 45.1 55.1 2.0 51.3 65.8 0.6 58.0 66.7 1.8
75 47.5 60.6 58.6 64.2 69.8 66.5 42.9 54.1 51.9 45.8 55.3 52.0 53.6 66.0 63.3 57.0 66.7 64.2
100 47.3 61.1 59.0 64.3 70.2 66.7 43.0 54.3 52.3 45.6 55.5 52.7 54.3 66.2 63.2 57.8 67.1 63.9
2000 64.0 66.6 67.4 74.2 74.1 75.0 54.7 58.0 58.4 53.8 57.5 56.9 70.7 72.1 74.2 70.1 72.5 72.9
4000 77.4 71.7 80.2 86.4 80.7 87.2 65.9 62.4 67.4 65.5 60.1 67.0 84.3 76.8 86.2 80.5 78.2 83.7

en-mk mk-en en-ms ms-en en-ru ru-en
25 55.8 63.9 8.0 63.2 68.8 0.6 36.6 62.6 0.9 38.6 65.3 0.2 55.7 67.7 66.1 54.4 63.9 62.0
75 56.5 64.3 63.3 63.6 68.8 67.9 42.6 62.6 59.8 56.8 65.6 62.8 55.7 68.1 67.0 54.8 63.9 61.6
100 56.2 64.1 64.2 64.4 69.4 67.5 42.9 63.0 58.6 57.7 65.8 63.1 55.9 67.9 66.4 55.1 63.8 61.3
2000 64.6 66.8 67.9 71.7 71.0 73.1 65.0 67.0 68.5 67.4 69.4 69.7 67.5 72.6 74.2 68.5 69.3 72.5
4000 75.6 68.9 77.1 88.8 74.1 91.1 79.3 70.7 79.5 77.4 70.0 79.1 83.3 79.3 86.5 89.3 77.4 89.3

en-ta ta-en en-vi vi-en en-zh zh-en
25 1.8 2.2 0.6 44.4 51.4 2.4 0.4 0.4 0.2 3.3 5.3 0.2 8.7 52.7 1.7 9.3 48.1 0.8
75 30.5 40.4 35.7 45.1 52.4 46.9 22.9 55.0 1.2 45.2 59.6 54.4 17.4 51.6 46.4 14.1 51.1 48.0
100 30.6 40.2 36.8 45.4 52.5 47.9 30.2 55.6 36.2 47.1 59.3 56.3 18.5 51.6 47.3 15.2 51.0 48.0
2000 40.6 42.7 44.2 55.1 55.3 56.2 61.1 67.3 65.8 66.3 73.5 71.5 49.3 58.0 57.7 41.8 57.6 56.8
4000 49.1 44.0 51.7 73.8 65.3 71.6 77.9 73.0 80.5 82.1 80.1 84.3 67.5 66.4 75.1 66.2 65.3 73.3

Table 3: P@1 of Combination Exps. -EP starts with GOAT, ends with IterProc. -EG: IterProc, ends with GOAT.
Prev is previous best of prior experiments. Some seed sizes omitted for brevity (see Appendix).

clidean space, their relationships have a magnitude438

and a direction: they are {d+1}-dimensional. It is439

possible that the lower dimension in GOAT/SGM440

makes them robust to noise, explaining why the441

graph-based methods outperform Procrustes in low-442

resource settings. This hypothesis should be inves-443

tigated in follow-up studies.444

6 Related Work445

BLI Recent years have seen a proliferation of the446

BLI literature (e.g. Ruder et al., 2018; Aldarmaki447

et al., 2018; Joulin et al., 2018; Doval et al., 2018;448

Artetxe et al., 2019a; Huang et al., 2019; Patra449

et al., 2019; Zhang et al., 2020; Biesialska and Ruiz450

Costa-Jussà, 2020). Many use Procrustes-based so-451

lutions, which assume that embedding spaces are452

roughly isomorphic. Wang et al. (2021) argue that453

the mapping can only be piece-wise linear, and454

induce multiple mappings. Ganesan et al. (2021)455

learn an “invertible neural network" as a non-linear456

mapping of spaces, and Cao and Zhao (2018)457

align spaces using point set registration. Many458

approaches address only high-resource languages.459

The tendency to evaluate on similar languages with460

high-quality data from similar domains hinders ad-461

vancement in the field (Artetxe et al., 2020).462

BLI with OT Most similar to ours are BLI ap-463

proaches which incorporate OT formulations us-464

ing the Sinkhorn and/or Hungarian algorithms (e.g.465

Alvarez-Melis and Jaakkola, 2018; Alaux et al., 466

2018). Grave et al. (2019) optimize “Procrustes in 467

Wasserstein Distance", iteratively updating a lin- 468

ear transformation and permutation matrix using 469

Frank-Wolfe on samples from embedding spaces 470

X and Y. Zhao et al. (2020b) and Zhang et al. 471

(2017) also use an iterative procedure. Ramírez 472

et al. (2020) combine Procrustes and their Itera- 473

tive Hungarian algorithms. Xu et al. (2018) use 474

Sinkhorn distance in the loss function, and (Zhang 475

et al., 2017) use Sinkhorn to minimize distance be- 476

tween spaces. Haghighi et al. (2008) use the Hun- 477

garian Algorithm for BLI from text. Lian et al. and 478

Alaux et al. (2018) align all languages to a common 479

space for multilingual BLI. The latter use Sinkhorn 480

to approximate a permutation matrix in their for- 481

mulation. Zhao et al. (2020a) incorporate OT for 482

semi-supervised BLI. 483

7 Conclusion 484

We perform bilingual lexicon induction from word 485

embedding spaces of 40 diverse language pairs, uti- 486

lizing the newly-developed GOAT algorithm for 487

graph-matching. Performance is strong across all 488

pairs, especially on dissimilar languages with low- 489

supervision. As the major use case of low-resource 490

BLI and MT is dissimilar languages with low su- 491

pervision, the strong performance of GOAT is an 492

encouraging result for real-world applications. 493
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Appendix782

*-to-en en-to-*
Full 1-1 Full 1-1 # Embs

bn 7588 4299 8467 4556 145350
bs 6164 4294 8153 4795 166505
de 10866 4451 14677 4903 200000
en n/a n/a n/a n/a 200000
es 8667 4445 11977 4866 200000
et 6509 4352 8261 4738 200000
fa 8510 4582 8869 4595 200000
fr 8270 4548 10872 4827 200000
id 9677 4563 9407 4573 200000
it 7364 4478 9657 4815 200000
ja 6819 4112 7135 4351 200000
mk 7197 4259 10075 4820 176947
ms 8140 4650 7394 4454 155629
ru 7452 4084 10887 4812 200000
ta 6850 4225 8091 4744 200000
vi 7251 4775 6353 4507 200000
zh 8891 4450 8728 4381 200000

Table A1: Size of train/test sets before (Full) & after
making one-to-one (1-1), with # of embeddings used.

en-de ru-en

Seeds Rand. Bary. Rand. Bary.
100 45.7 45.9 49.6 50.4
200 47.4 47.5 52.5 52.5
500 52.3 51.9 55.4 55.6

1000 54.6 54.9 58.3 58.1
2000 61.5 61.4 67.1 67.1
4000 74.2 74.2 89.3 89.3

Table A2: SGM with barycenter vs. randomized initial-
ization for languages used in Marchisio et al. (2021).
The difference is negligible.

Unsupervised Performance For some highly-783

related languages, GOAT performs well even with784

no seeds (unsupervised). GOAT scores 48.8 on785

English→German, 34.5 on German→English,786

62.4 on English→Spanish, and 19.6 on787

Spanish→English with no supervision. Particu-788

larly striking is the unsupervised performance on789

highly-related languages: >87 on Italian↔French790

and >90 for Spanish↔Portuguese. We suspect that791

that the word embedding spaces are highly isomor-792

phic for these language pairs, allowing GOAT (and793

sometimes SGM) to easily recover the translations.794

Iterative Results of Iterative Procrustes (Iter-795

Proc), Iterative SGM (IterSGM), and Iterative796

GOAT (IterGOAT) are in Table A5. We run the It-797

erative Procrustes and Iterative SGM procedures of798

Marchisio et al. (2021) with stochastic-add. Here,799

Procrustes [or SGM] is run in source↔target di-800

rections, hypotheses are intersected, and H random801

hypotheses are added to the gold seeds and fed into802

subsequent runs of Procrustes [SGM]. The next it- 803

eration adds 2H hypotheses, repeating until all hy- 804

potheses are chosen. We set H = 100 and create 805

an analogous iterative algorithm for GOAT, which 806

we call Iterative GOAT. 807

IterSGM/GOAT perform similarly across con- 808

ditions, with a few exceptions where either per- 809

forms very strongly with no supervision: Iter- 810

GOAT scores 49.2, 45.2, 34.4, 58.2, and 55.9 811

for En-De, En-Fa, De-En, Id-En, and Ru-En, re- 812

spectively, and IterSGM scores 57.3 for En-Ru. 813

On Chinese↔English, IterGOAT underperforms 814

IterSGM, similar to GOAT’s underperformance of 815

SGM in the single run. 816

Similar to Marchisio et al. (2021), we find that 817

IterProc compensates for an initial poor first run 818

and outperforms IterSGM with a moderate amount 819

of seeds (100+). Extending to the very lowest seeds 820

sizes (0-75), however, IterSGM/IterGOAT are supe- 821

rior. With 25 seeds, IterProc fails for all language 822

pairs except En↔De and En↔Ru, scoring P@1 < 823

5. IterSGM and IterGOAT, however, perform rea- 824

sonably well for most language pairs with 25 seeds, 825

suggesting that the graph-based framing is the bet- 826

ter approach for low-seed levels. At the highest su- 827

pervision level (2000+ seeds), IterSGM/IterGOAT 828

again tends to be superior. 829

Differences are minor btwn using GOAT or 830

SGM in the iterative or system combination experi- 831

ments. This results suggests that mixing Procrustes 832

and graph-based framings is helpful for BLI, re- 833

gardless of which algorithm one picks. It is inter- 834

esting to contemplate what other problems might 835

benefit from examination from multiple mathemat- 836

ical framings in one solution, as each may have 837

complementary benefits. 838
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de-es it-fr es-pt pt-de
Seeds P S G ∆ P S G ∆ P S G ∆ P S G ∆
0 0.0 0.1 0.8 (+0.7) 0.0 0.1 87.6 (+87.5) 0.0 94.5 94.9 (+0.4) 0.0 0.0 0.0 (+0.0)
25 0.5 67.4 70.5 (+3.1) 1.1 85.4 87.3 (+1.9) 2.5 94.3 94.9 (+0.6) 0.5 72.5 76.2 (+3.7)
50 1.6 67.6 70.0 (+2.4) 4.4 85.1 87.3 (+2.2) 10.4 94.4 95.0 (+0.6) 1.6 72.5 75.8 (+3.3)
75 4.2 65.7 69.5 (+3.8) 12.9 85.3 87.2 (+1.9) 23.7 94.4 94.9 (+0.5) 3.4 72.8 76.0 (+3.2)
100 7.0 65.8 69.8 (+4.0) 21.6 85.8 87.4 (+1.6) 38.6 94.8 95.1 (+0.3) 6.4 72.9 76.4 (+3.5)
200 26 67.9 71.0 (+3.1) 57.3 86.7 87.7 (+1.0) 74.1 94.9 95.2 (+0.3) 36.3 74.8 76.9 (+2.1)
500 59.9 72.6 73.5 (+0.9) 81.5 87.8 88.4 (+0.6) 90.6 95.4 95.4 (+0.0) 68.0 77.2 77.7 (+0.5)
1000 71.1 74 75.4 (+1.4) 86.1 89.1 89.4 (+0.3) 93.3 95.8 96.0 (+0.2) 75.5 78.9 79.6 (+0.7)
2000 76.1 78.8 79.1 (+0.3) 88.8 89.6 90.4 (+0.8) 94.5 97.0 97.1 (+0.1) 80.0 81.9 82.0 (+0.1)
4000 79.3 88.6 89.1 (+0.5) 90.0 92.8 92.9 (+0.1) 96.3 98.9 98.9 (+0.0) 82.8 88.6 87.9 (-0.7)

es-de fr-it pt-es de-pt
Seeds P S G ∆ P S G ∆ P S G ∆ P S G ∆
0 0.0 0.0 0.0 (+0.0) 0.0 89.0 90.3 (+1.3) 0.1 1.1 90.4 (+89.3) 0.0 0.1 0.2 (+0.1)
25 0.5 62.1 66.2 (+4.1) 0.6 88.9 90.2 (+1.3) 1.1 89.7 90.5 (+0.8) 0.3 72.9 76.2 (+3.3)
50 1.3 62.4 66.1 (+3.7) 3.6 89.2 90.6 (+1.4) 8.3 89.7 90.7 (+1.0) 1.4 72.5 76.3 (+3.8)
75 4.2 63.0 66.2 (+3.2) 10.2 89.6 91.0 (+1.4) 15.7 89.4 90.7 (+1.3) 3.4 71.6 76.4 (+4.8)
100 7.8 63.6 66.2 (+2.6) 20.9 89.8 91.0 (+1.2) 25.4 89.7 90.8 (+1.1) 4.8 71.7 76.3 (+4.6)
200 27.7 65.2 67.2 (+2.0) 58.4 90.4 91.2 (+0.8) 70.0 90.4 90.7 (+0.3) 24.3 73.9 77.1 (+3.2)
500 59.9 67.5 68.4 (+0.9) 83.9 91.6 91.8 (+0.2) 86.6 90.2 90.8 (+0.6) 62.4 76.9 78.6 (+1.7)
1000 68.8 70.6 70.6 (+0.0) 89.6 92.1 92.7 (+0.6) 89.5 90.4 91.1 (+0.7) 73.7 79.8 80.8 (+1.0)
2000 73.6 74.0 74.0 (+0.0) 91.8 93.9 94.1 (+0.2) 90.9 91.7 92.3 (+0.6) 78.7 80.6 82.2 (+1.6)
4000 75.3 83.8 83.8 (+0.0) 91.8 96.2 96.2 (+0.0) 91.5 93.9 93.8 (-0.1) 83.4 92.9 93.3 (+0.4)

Table A4: Full Results (2 of 2): P@1 of Procrustes (P), SGM (S) or GOAT (G). ∆ is gain/loss of GOAT over SGM.
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IP IS IG IP IS IG IP IS IG IP IS IG IP IS IG IP IS IG
Seeds en-bn bn-en en-bs bs-en en-de de-en
0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.3 49.2 0.1 0.3 34.4
25 0.6 37.3 35.6 3.2 47.3 46.8 0.2 52.3 51.2 0.1 56.5 56.1 61.5 49.8 49.7 58.8 47.6 47.2
50 1.6 37.8 35.8 24.3 47.5 47.2 48.3 52.2 51.4 4.2 57.2 56.2 61.5 49.9 49.6 59.0 47.8 47.9
75 38.8 37.3 36.7 51.9 48.3 47.6 54.7 52.3 51.5 58.4 57.1 56.4 61.5 50.4 49.9 59.0 48.5 47.9
100 44.4 37.7 36.5 53.2 48.2 47.9 54.6 52.5 51.1 59.0 57.1 56.8 62.1 50.2 50.0 59.4 48.4 48.1
200 43.3 38.9 37.2 52.1 48.0 48.1 55.1 52.9 52.4 59.3 58.8 57.7 62.0 50.9 50.4 59.7 49.3 48.8
500 43.9 40.3 39.5 51.8 49.7 48.8 53.7 54.4 53.0 59.8 60.1 59.7 62.8 52.3 52.0 60.4 50.2 50.1
1000 43.4 42.2 41.3 50.8 51.1 51.4 53.4 55.9 55.0 58.8 61.4 61.4 63.5 54.5 54.2 61.4 53.8 53.6
2000 42.8 45.7 45.2 49.8 54.6 54.4 52.3 57.8 57.4 59.8 65.9 65.7 65.2 61.8 61.2 64.0 60.5 60.4
4000 40.3 60.3 58.8 45.2 65.9 66.6 51.9 70.4 69.9 56.8 83.7 86.4 71.7 74.1 74.4 64.5 71.4 71.2
Seeds en-et et-en en-fa fa-en en-id id-en
0 0.0 0.9 0.4 0.0 0.0 0.0 0.0 0.1 45.2 0.0 0.2 0.1 0.0 0.0 15.5 0.1 0.4 58.2
25 4.2 51.8 51.3 3.1 66.4 65.9 1.0 46.7 45.4 1.3 47.6 46.7 0.8 55.9 54.8 1.4 59.5 58.5
50 59.3 52.8 51.6 66.3 66.2 66.0 52.9 46.5 45.7 9.3 47.7 47.0 64.7 56.6 55.4 65.4 59.0 58.5
75 58.8 52.8 51.6 66.6 66.2 66.2 53.1 46.8 46.0 54.0 47.7 47.1 64.9 57.0 55.9 65.8 59.6 58.7
100 59.3 53.1 51.9 66.3 66.6 65.9 53.0 47.3 46.2 54.1 47.8 47.0 65.2 57.0 55.7 66.0 59.2 58.8
200 59.0 53.4 51.9 66.3 66.5 66.7 53.3 47.2 46.3 54.2 47.9 47.6 64.9 57.3 56.8 66.5 60.1 59.5
500 59.4 55.4 54.1 67.1 68.5 68.0 53.3 48.4 48.2 54.3 48.3 48.4 66.4 60.2 59.1 67.4 62.6 61.9
1000 60.1 58.3 57.7 67.6 69.8 70.4 52.9 49.8 49.9 54.2 49.8 49.4 67.8 63.6 62.6 67.6 64.2 64.0
2000 59.6 64.2 63.2 67.3 74.1 74.2 53.3 54.8 54.6 54.5 54.5 54.2 68.7 69.6 69.2 69.3 70.2 70.2
4000 61.7 77.0 77.0 67.0 86.4 86.4 52.1 65.5 65.5 53.4 65.3 64.1 72.1 84.1 83.8 72.8 80.5 80.6
Seeds en-mk mk-en en-ms ms-en en-ru ru-en
0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.2 0.0 0.0 0.1 0.0 57.3 0.1 0.0 1.1 55.9
25 1.0 59.4 58.6 1.0 65.2 64.8 0.7 46.1 43.8 0.7 59.4 58.6 66.2 57.7 57.0 63.0 55.9 55.5
50 62.1 59.2 58.6 66.3 65.6 65.4 58.3 46.4 43.7 64.3 59.4 58.7 66.5 58.2 57.3 63.4 56.0 56.0
75 61.7 59.1 59.1 66.8 65.4 65.5 59.9 47.0 45.3 64.0 58.7 58.5 66.7 58.3 57.6 62.7 55.9 56.1
100 61.8 59.3 59.3 66.2 65.6 65.5 60.9 47.7 45.6 64.1 59.5 58.7 66.8 57.8 57.6 62.7 56.3 55.6
200 62.3 60.0 59.2 67.0 66.0 65.7 60.6 48.5 47.2 64.5 59.5 58.9 66.6 58.9 57.8 63.1 56.4 56.5
500 62.2 60.5 60.6 66.7 66.9 66.5 60.6 52.6 51.0 65.0 61.4 61.1 67.7 60.0 59.3 63.7 58.0 58.0
1000 62.0 62.5 62.5 66.6 68.0 67.9 61.1 58.5 57.4 65.0 62.5 63.2 68.3 62.0 61.8 64.0 60.3 61.1
2000 61.8 65.0 64.8 66.1 71.4 71.8 60.4 63.9 62.6 64.9 67.5 67.5 69.5 67.2 67.6 65.7 68.2 68.5
4000 62.1 75.7 75.6 64.5 88.4 88.0 59.9 79.7 79.5 64.8 77.8 77.5 74.5 81.9 82.4 69.0 89.3 89.3
Seeds en-ta ta-en en-vi vi-en en-zh zh-en
0 0.0 0.0 0.0 0.0 0.2 0.9 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.3 0.0 0.0 0.1 0.1
25 0.3 5.8 4.3 0.9 45.8 46.1 0.1 0.3 0.3 0.2 23.5 44.1 3.3 13.7 7.3 2.0 14.6 7.9
50 5.5 33.6 32.5 18.0 46.6 46.4 0.3 22.0 42.6 1.0 48.9 46.3 52.9 19.0 12.3 52.5 17.2 11.6
75 38.3 33.8 32.4 50.0 46.9 46.2 44.6 46.5 43.3 8.4 49.4 48.7 53.5 19.7 13.7 51.9 17.0 12.9
100 39.5 33.3 32.5 50.5 47.2 46.8 3.4 47.8 43.8 59.4 49.6 48.8 53.2 20.5 13.1 52.1 18.3 13.4
200 40.2 34.0 32.8 50.8 47.0 47.1 57.8 49.1 45.9 60.1 50.9 49.7 53.4 22.4 15.0 52.6 20.2 15.0
500 40.0 35.4 34.0 50.0 49.0 48.1 59.2 52.8 50.6 61.4 54.5 53.1 53.3 29.3 22.1 52.8 28.3 24.4
1000 38.2 37.0 36.0 49.7 50.5 50.3 59.7 57.1 56.4 64.3 58.8 58.9 54.2 34.1 29.6 54.3 34.4 30.8
2000 38.2 40.7 38.8 49.3 54.3 53.8 60.6 61.5 62.1 68.0 65.8 66.3 56.0 44.5 42.4 54.5 42.2 41.3
4000 34.1 48.8 49.6 48.9 72.9 73.3 62.5 77.7 78.3 73.2 82.3 82.3 59.1 67.2 66.9 58.4 66.4 65.8

Table A5: P@1 of Iterative Procrustes (IP), Iterative SGM (IS), and Iterative GOAT (IG). Highest per row.
IterSGM/IterGOAT are italicized when outperforming IterProc but are not highest in row.
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en-to-* *-to-en en-to-* *-to-en
SGM GOAT SGM GOAT SGM GOAT SGM GOAT

Seeds Prev -PP -PS -PP -PG Prev -PP -PS -PP -PG Prev -PP -PS -PP -PG Prev -PP -PS -PP -PG
bn mk

0 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.1
25 37.3 44.0 0.5 44.3 0.5 47.3 52.8 8.4 53.1 6.2 59.4 64.4 1.2 63.9 8.0 65.2 68.7 1.1 68.8 0.6
50 37.8 43.1 2.0 44.3 3.1 47.5 52.1 14.4 53.0 48.2 62.1 64.0 63.6 63.9 62.8 66.3 68.4 68.1 68.5 67.8
75 38.8 44.7 38.8 44.7 39.5 51.9 53.2 49.2 53.5 49.1 61.7 63.8 63.7 64.3 63.3 66.8 69.2 67.3 68.8 67.9
100 44.4 44.3 40.4 45.3 39.7 53.2 52.4 48.5 53.9 48.1 61.8 64.4 65.1 64.1 64.2 66.2 69.3 68.2 69.4 67.5
200 43.3 45.4 40.9 45.2 40.8 52.1 53.8 50.4 54.0 50.6 62.3 64.1 64.5 64.9 64.2 67.0 69.5 67.8 69.7 68.0
500 43.9 46.8 43.9 46.8 43.2 51.8 54.3 50.3 55.1 51.4 62.2 65.3 65.7 65.3 65.5 66.9 69.6 69.1 70.0 68.9
1000 43.4 47.1 45.4 47.1 45.3 51.5 55.3 53.2 55.5 53.9 62.5 65.8 66.5 65.5 66.5 68.0 69.8 69.9 69.9 69.5
2000 45.9 48.9 49.3 48.7 49.3 55.2 56.6 57.2 56.6 56.3 65.0 67.0 68.2 66.8 67.9 71.8 71.2 72.5 71.0 73.1
4000 60.3 52.0 61.2 50.5 61.2 66.6 55.2 68.9 55.2 68.9 75.7 69.0 77.2 68.9 77.1 88.8 74.1 91.1 74.1 91.1

bs ms
0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0
25 52.3 57.4 0.2 58.4 0.4 56.5 61.7 0.8 61.5 0.6 46.1 62.1 0.4 62.6 0.9 59.4 65.6 0.5 65.3 0.2
50 52.2 57.4 25.7 57.4 53.8 57.2 61.2 6.0 61.9 42.3 58.3 61.8 6.4 62.7 58.8 64.3 65.6 63.0 65.6 63.1
75 54.7 57.5 54.6 58.1 55.1 58.4 61.6 57.9 61.7 57.2 59.9 62.4 59.0 62.6 59.8 64.0 65.5 64.0 65.6 62.8
100 54.6 57.4 55.0 58.1 55.4 59.0 61.8 59.0 61.3 57.5 60.9 62.6 59.7 63.0 58.6 64.1 66.0 63.9 65.8 63.1
200 55.1 57.8 56.9 58.6 56.4 59.3 61.9 58.9 62.4 58.3 60.6 63.1 60.6 63.1 59.6 64.5 66.7 64.3 66.4 63.9
500 54.4 58.5 57.1 59.1 56.7 60.1 63.1 61.1 63.8 61.0 60.6 63.4 61.1 64.1 61.0 65.0 67.4 65.9 66.8 65.8
1000 55.9 59.8 59.1 59.6 58.7 61.6 63.6 63.4 64.7 62.9 61.1 65.9 64.8 66.0 64.4 65.0 67.3 67.0 67.7 66.9
2000 57.8 59.2 60.7 59.9 60.5 65.9 66.9 68.8 66.6 69.1 65.0 67.4 68.8 67.0 68.5 67.5 69.1 69.8 69.4 69.7
4000 70.4 63.0 72.2 63.4 71.8 86.4 69.7 84.7 69.7 85.7 79.7 70.9 79.7 70.7 79.5 77.8 70.3 79.2 70.0 79.1

de ru
0 49.2 0.1 0.1 61.8 0.0 34.5 0.5 0.2 59.2 0.3 57.3 0.0 0.0 0.1 0.1 55.9 0.0 0.0 4.4 0.0
25 61.5 61.9 59.3 61.7 59.1 58.8 59.5 56.7 59.3 56.8 66.2 67.8 66.3 67.7 66.1 63.0 64.4 62.6 63.9 62.0
50 61.5 62.1 59.9 62.1 59.3 59.0 59.6 56.5 59.1 56.5 66.5 67.6 66.0 67.5 66.5 63.4 64.4 62.5 63.7 61.5
75 61.5 62.0 59.6 62.3 59.7 59.0 59.5 56.6 59.4 57.1 66.7 67.8 66.6 68.1 67.0 62.7 64.2 62.6 63.9 61.6
100 62.1 62.3 60.1 62.2 59.7 59.4 59.5 57.1 59.4 56.8 66.8 68.3 67.2 67.9 66.4 62.7 64.0 61.6 63.8 61.3
200 62.0 62.5 60.7 62.4 60.3 59.7 60.0 58.1 60.0 57.6 66.6 68.7 67.5 68.6 67.1 63.1 64.5 62.2 64.4 61.9
500 62.8 63.8 61.9 63.8 61.8 60.4 61.1 59.3 61.0 59.5 67.7 69.0 68.8 68.9 68.2 63.7 65.0 63.8 64.8 64.1
1000 63.5 64.1 63.0 64.1 63.1 61.4 62.3 61.4 62.3 61.9 68.3 70.3 69.9 70.4 69.8 64.0 66.5 67.1 66.7 66.5
2000 65.2 66.6 69.6 66.3 69.4 64.0 65.4 68.2 65.1 67.9 69.5 72.2 74.0 72.6 74.2 68.5 69.5 72.7 69.3 72.5
4000 74.4 73.2 79.7 72.9 79.5 71.4 67.0 77.6 67.2 77.6 83.8 78.3 86.5 79.3 86.5 89.3 77.4 89.3 77.4 89.3

et ta
0 0.9 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.9 0.1 0.0 0.6 0.0
25 51.8 60.0 2.6 60.4 5.9 66.4 69.4 8.9 70.2 15.0 5.8 2.1 0.5 2.2 0.6 46.1 51.0 2.0 51.4 2.4
50 59.3 61.0 59.2 60.9 58.4 66.3 69.4 66.2 70.2 66.6 33.6 40.5 2.1 40.2 10.5 46.6 50.7 47.9 52.0 46.3
75 58.8 60.7 58.7 60.6 58.6 66.6 68.8 66.4 69.8 66.5 38.3 40.0 33.5 40.4 35.7 50.0 52.0 47.6 52.4 46.9
100 59.3 61.0 58.3 61.1 59.0 66.6 69.8 66.7 70.2 66.7 39.5 40.5 35.2 40.2 36.8 50.5 51.5 48.2 52.5 47.9
200 59.0 61.3 60.4 61.5 59.9 66.7 70.2 67.7 70.5 67.3 40.2 40.3 36.6 40.5 36.2 50.8 52.2 48.1 52.9 49.3
500 59.4 62.9 61.3 63.2 60.3 68.5 70.8 69.7 71.5 69.0 40.0 41.5 38.7 40.9 39.1 50.0 53.0 51.4 53.0 50.9
1000 60.1 64.3 63.9 64.3 63.4 70.4 72.5 69.9 72.5 70.1 38.2 41.3 41.7 41.6 40.7 50.5 53.0 52.3 53.7 51.2
2000 64.2 66.0 67.7 66.6 67.4 74.2 73.5 74.8 74.1 75.0 40.7 43.5 43.7 42.7 44.2 55.1 55.6 56.6 55.3 56.2
4000 77.4 72.5 80.2 71.7 80.2 86.4 80.7 87.2 80.7 87.2 49.6 43.7 52.4 44.0 51.7 73.8 64.4 71.6 65.3 71.6

fa vi
0 45.2 0.1 0.0 0.5 0.0 0.2 0.2 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.4 0.1 0.9
25 46.7 54.3 1.0 54.4 4.5 47.6 55.1 1.8 55.1 2.0 0.4 0.4 0.1 0.4 0.2 44.1 1.3 0.3 5.3 0.2
50 52.9 54.0 51.6 53.8 51.2 47.7 55.2 51.6 54.9 52.3 42.6 2.4 0.2 5.2 0.4 48.9 58.8 1.2 59.1 2.1
75 53.1 54.5 52.0 54.1 51.9 54.0 55.4 52.7 55.3 52.0 46.5 54.5 8.8 55.0 1.2 49.4 59.3 28.0 59.6 54.4
100 53.0 54.2 52.5 54.3 52.3 54.1 55.0 52.5 55.5 52.7 47.8 55.4 22.3 55.6 36.2 59.4 59.1 56.6 59.3 56.3
200 53.3 54.3 52.3 54.8 52.2 54.2 55.2 53.0 54.6 51.9 57.8 58.0 55.4 57.8 56.0 60.1 60.7 58.7 61.2 57.7
500 53.3 55.5 53.4 55.5 53.1 54.3 55.7 53.4 56.1 52.7 59.2 59.6 59.0 60.0 58.3 61.4 63.4 61.9 63.5 60.8
1000 52.9 56.0 54.8 56.3 54.8 54.2 55.7 54.2 55.6 54.1 59.7 63.5 61.2 63.6 61.2 64.3 67.1 65.8 68.1 65.3
2000 54.8 57.7 58.6 58.0 58.4 54.5 56.9 57.7 57.5 56.9 62.1 66.7 66.7 67.3 65.8 68.0 73.2 71.8 73.5 71.5
4000 65.9 62.9 67.2 62.4 67.4 65.6 61.0 67.7 60.1 67.0 78.3 72.8 80.3 73.0 80.5 82.3 81.0 84.6 80.1 84.3

id zh
0 15.5 0.6 0.0 4.4 0.0 58.2 0.0 0.0 1.2 0.0 0.3 0.2 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0
25 55.9 65.9 1.4 65.8 0.6 59.5 66.8 0.4 66.7 1.8 13.7 52.2 1.7 52.7 1.7 14.6 51.7 0.8 48.1 0.8
50 64.7 65.8 63.4 66.0 63.2 65.4 66.6 64.4 67.0 64.0 52.9 52.6 47.6 52.6 46.2 52.5 51.7 48.0 50.5 47.3
75 64.9 66.1 64.0 66.0 63.3 65.8 66.6 64.1 66.7 64.2 53.5 52.3 48.3 51.6 46.4 51.9 51.2 48.5 51.1 48.0
100 65.2 66.6 63.6 66.2 63.2 66.0 67.0 64.4 67.1 63.9 53.2 51.9 49.4 51.6 47.3 52.1 51.1 48.1 51.0 48.0
200 64.9 66.7 64.8 66.8 65.0 66.5 67.4 64.9 67.3 65.0 53.4 52.7 49.6 52.6 49.2 52.6 51.6 49.3 51.4 48.9
500 66.4 68.0 66.8 68.0 66.7 67.4 68.9 67.1 69.1 67.2 53.3 54.0 52.0 53.1 51.1 52.8 53.0 50.9 52.6 50.4
1000 67.8 69.9 69.8 70.1 69.7 67.6 70.0 68.9 70.0 68.3 54.2 54.9 53.2 55.4 52.2 54.3 54.7 53.0 54.3 52.0
2000 70.7 72.2 74.9 72.1 74.2 70.2 72.2 73.0 72.5 72.9 56.0 59.2 59.1 58.0 57.7 54.5 57.6 57.8 57.6 56.8
4000 84.3 77.1 86.2 76.8 86.2 80.6 78.0 84.0 78.2 83.7 67.5 66.9 74.5 66.4 75.1 66.4 65.8 72.9 65.3 73.3

Table A6: Full Results: P@1 of Combination Experiments. SGM-PP starts with SGM, ends with Procrustes. SGM-
PS: IterProc then SGM. GOAT-PP: start GOAT, end Proc. GOAT-PG: IterProc then GOAT. Previous best of all other
experiments is in the Prev column. Prev here includes iterative results from Table A5.
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