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ABSTRACT

Autonomous agents capable of executing computer tasks have demonstrated sig-
nificant potential in automating complex multistep decision-making processes.
However, even state-of-the-art vision-language models (VLMs), such as GPT-4o,
still fall short of human-level performance, particularly in intricate web environ-
ments and long-horizon planning tasks. To address these limitations, we introduce
Reflective Monte Carlo Tree Search (R-MCTS), a novel test-time algorithm de-
signed to enhance the ability of AI agents, e.g., powered by GPT-4o, to explore
decision space on the fly. R-MCTS extends traditional MCTS by 1) incorporating
contrastive reflection, allowing agents to learn from past interactions and dynam-
ically improve their search efficiency; and 2) using multi-agent debate to provide
reliable state evaluation. Moreover, we improve the agent’s performance by fine-
tuning GPT-4o through self-learning, using R-MCTS generated tree traversals
without any human-provided labels. On the challenging VisualWebArena bench-
mark, our GPT-4o-based R-MCTS agent achieves a 6% to 30% relative improve-
ment across various tasks compared to the previous state-of-the-art. Additionally,
we show that the knowledge gained from test-time search can be effectively trans-
ferred back to GPT-4o via fine-tuning. The fine-tuned GPT-4o matches 97% of
R-MCTS’s performance while reducing compute usage by a factor of four at test
time. Furthermore, qualitative results reveal that the fine-tuned GPT-4o model
demonstrates the ability to explore the environment, evaluate a state, and back-
track to viable ones when it detects that the current state cannot lead to success.
Moreover, our work demonstrates the compute scaling properties in both training
- data collection with R-MCTS - and testing time. These results suggest a promis-
ing research direction to enhance VLMs’ reasoning and planning capabilities for
agentic applications via test-time search and self-learning.
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Figure 1: Our work yields compute scaling of GPT-4o with R-MCTS (left) and fine-tuned GPT-4o
(right), for both training and testing, respectively. Left is evaluated on all 234 tasks from Classifieds
in VisualWebArena, and right is evaluated on 169 unseen tasks from Classifieds.

1 INTRODUCTION

Visual-Language Models (VLMs) have seen significant advancements, becoming increasingly pow-
erful at processing and generating multimodal content. High-capacity models such as GPT-4o (Ope-
nAI, 2024a), Gemini (Gemini, 2024), Phi-3 (Abdin et al., 2024), and Opus (Anthropic, 2024) have
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demonstrated promising understanding and reasoning abilities, paving the way for building VLM-
based agents that can automate computer tasks such as software engineering (Yang et al., 2024;
Wang et al., 2024), web navigation (Zhou et al., 2024b; Koh et al., 2024a) and mobile device con-
trol (Rawles et al., 2023; 2024). As many computer tasks require agents to interact with complex
environments for long-term objectives, one critical challenge is to reason over extended periods
and dynamically explore a large decision space. Current models often struggle at accessing a wide
range of potential actions in these environments, and balancing exploration and exploitation in long-
horizon tasks. Even GPT-4o-based agents significantly underperform humans, achieving success
rates less than 20% compared to human performance of 89% (Koh et al., 2024a).

As demonstrated by OpenAI’s o1 (OpenAI, 2024b) and Snell et al. (2024), increasing the number
of thinking tokens as chain of thoughts at test time improves accuracy on tasks that require long-
horizon planning and reasoning, such as math and coding. This naturally raises the question: Can we
scale test-time computation to improve VLMs’ decision-making capabilities in multistep planning
and reasoning for agentic tasks? An intuitive strategy for agentic tasks, such as web navigation,
is search. By exploring different actions and evaluating their consequences, models can gain a
better understanding of the environment, reason about correct actions, and plan more effectively for
long-term objectives. Recent work in this direction includes Tree of Thought (Yao et al., 2023a)
and Search Agent (Koh et al., 2024b), which rely on best-first search in the form of BFS/DFS and
A* search, respectively, to augment the VLM’s decision-making process. However, these methods
suffer from 1) a lack of balance between exploration and exploitation, which is crucial for handling
complex tasks, and 2) an inability to learn from past interactions to improve future searches, which
humans naturally do. More importantly, these works focus primarily on prompt-based methods and
do not address how to transfer knowledge from search back into the model. This results in agents
with high inference costs for complex tasks, as it requires the use of VLMs with search algorithms.

In this work, we explore how to effectively scale test-time compute to improve VLM agents, and
efficiently transfer knowledge acquired from search back to the model to enhance its reasoning and
planning abilities. First, we introduce our Reflective Monte Carlo Tree Search (R-MCTS) agent.
Our method extends the classic MCTS with two innovations: contrastive reflection to improve search
quality in real time using high-quality reflections obtained from past experiences, inspired by con-
ceptual models of human learning (Marton, 2014); and a multi-agent debate technique for reliable
state evaluation, inspired by collaborative and iterative human evaluation approaches (van der Lee
et al., 2019). Second, to transfer new knowledge acquired from our R-MCTS agents with increased
test-time compute, we propose to update the base VLM with two supervised fine-tuning (SFT) meth-
ods, 1) Best-in-Tree SFT, which involves utilizing the optimal, final actions returned from the search
process; and 2) Tree-Traversal SFT, which leverages search tree traversals to enable the model to
learn how to explore the environment, evaluate states, and backtrack to viable states.

Experiments on the challenging VisualWebArena (Koh et al., 2024a) show that our GPT-4o-based R-
MCTS agent achieves a new state-of-the-art performance, with a 6% to 30% relative improvement
across various environments compared to the previous state-of-the-art. Additionally, when trained
with Best-in-Tree SFT on only 65 trajectories, GPT-4o can recover 97% of the search performance,
while reducing the inference cost by 4x. Furthermore, GPT-4o trained with Tree-Traversal SFT
demonstrates the ability to 1) explore, evaluate, and backtrack without any search augmentation.
Moreover, our work yields the compute scaling properties in both training - where data collection
with R-MCTS occurs - and testing time, as shown in Figure 1. This represents an important step
towards improving VLM’s planning and reasoning capabilities for agentic applications by leveraging
test-time search and self-learning.

2 BACKGROUND

2.1 NAVIGATING THE WEB

Decision making in a complex environment is typically formulated as a Partially Observable Markov
Decision Process (POMDP) of (S,A,Ω, T ), which consists of sets of states, actions, observations,
and a transition function. In the context of web navigation, a state s ∈ S represents the entire
environment’s state including the current webpage and database states; an action a ∈ A is an ac-
tion the agent can express in natural language and execute in the environment (see Table 1); an
observation is a textual or visual representation of the current webpage; and the transition function
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T (s, a)→ (s′, o′) executes an action a in the environment and returns the next state and observation.
For more details, we refer the reader to Zhou et al. (2024b); Koh et al. (2024a).

2.2 MONTE CARLO TREE SEARCH

Action Type a Description
click [elem] Click on elem.
hover [elem] Hover over elem.
type [elem] [text] Type text into elem.
press [key comb] Press a key combo.
new tab Open a new tab.
tab focus [index] Focus on the i-th tab.
tab close Close current tab.
goto [url] Go to url.
go back Click back.
go forward Click forward.
scroll [up/down] Scroll up or down.
stop [answer] End with an output.

Table 1: Action space for web navigation de-
fined in VisualWebArena (Koh et al., 2024a).

In long-horizon tasks with a large action space,
Monte Carlo Tree Search (MCTS) (Coulom, 2006;
Silver et al., 2017; Świechowski et al., 2022) is a
popular method to improve decision making. MCTS
explores multiple actions, evaluates their conse-
quences, and returns the best action for execution
after conducting a large number of simulations. We
briefly describe the MCTS algorithm here and re-
fer to Appendix A.1 for more details. Given a state
to search from, MCTS iteratively constructs a tree
by: 1) selecting an action a to explore/exploit us-
ing Upper Confidence Tree Bound (UCT) (Kocsis
& Szepesvári, 2006; Rosin, 2011); 2) expanding
and evaluating the selected action by simulating the
next state T (s, a) → (s′, o′) and evaluating current
progress; 3) backpropagating the evaluation to up-
date the tree’s value estimates of quality of the ex-
ecuted action. This search process is repeated until the search budget is exhausted, and the most-
visited (Silver et al., 2017) or the highest-value action (Kocsis & Szepesvári, 2006) is returned.

2.3 SETUP

We now present the setup commonly used by VLMs for agentic tasks, e.g., that of VisualWebArena
(Koh et al., 2024a). A web agent begins by receiving a task g in natural language (and images)
and starting webpage o0. Then, at each time step t: 1) the agent generates an action at ∈ A based
on the last state st, which encodes information from past actions and observations; and 2) at is
executed, transiting to a new state T (st, at)→ (st+1, ot+1), and observation ot+1 is returned to the
agent. This agent-environment interaction continues until either the maximum number of steps T
is reached, or the agent issues a STOP action to terminate the episode. Finally, a terminal reward
rT ∈ {0, 1} is returned based on the final answer or the last environment state sT . We note that
these agents only have access to a visual or textual representation of the environment state (e.g., a
screenshot) and outputs actions such as clicking, typing, scrolling, etc (Table 1). They do not have
access to unrealistic resources such as the internal database of a website.

In practice, visual agents are often implemented using a large vision-language model (VLM) such
as GPT-4o (OpenAI, 2024a). Common approaches include directly prompting the VLM as a policy
function to generate an action π(·) → a given a task and previous actions and observations (Yao
et al., 2023b; Koh et al., 2024a); or to additionally construct value functions V (·) and conduct
simulation-based searches before returning an action (Yao et al., 2023a; Zhou et al., 2024a; Koh
et al., 2024b). We detail these methods below.

VLM as a Policy Function Given a task g and an trajectory τ = {o0, a0, . . . , ..., at−1, ot}, a
policy π(g, τ) → at returns the next action at to execute. Popular methods such as ReACT (Yao
et al., 2023b) use a VLM model as policy by directly prompting it for an action, after optionally
generating a reasoning step. Then, the environment executes action at and returns a new observation
ot+1. This process repeats until a STOP action is issued or the maximum number of steps is reached.

VLM as a Value Function To augment an agent’s decision-making process, many recent works
implement a value function V (·) to guide the VLM to predict better actions. Given a trajectory τ ,
a value function estimates the expected success rate given the current state st. However, since state
st of the environment (e.g., including database information) may not always be accessible to the
agent, value functions are often implemented using the current observed trajectory τ and the task
description g instead: V (g, τ) → [0, 1]. In this work, we consider two value functions. A single-
agent value function (Yao et al., 2023a; Koh et al., 2024b) directly prompts a VLM with all inputs
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(task g, trajectory τ ) to generate a value estimate vSA:

vSA = VLM (g, τ) ∈ [0, 1],

and a value function based on multi-agent debate, which we describe in the next section.

3 METHOD

3.1 REFLECTIVE MCTS

Web tasks are highly diverse as different websites have different layouts and functionalities (e.g.,
Amazon versus Reddit), and almost every webpage is unique. Although search-augmented agents
have shown promising results in web navigation tasks, their performance is limited by the complex-
ity of web environments and their inability to quickly adapt to unseen environments.

task

Reflection

vector db

+ reflection

+

INFERENCE

IMPROVEMENT

... STOP reflect

improve

ActionState VLMLegend:

best

final trajectory
tree search

Figure 2: Overview of an R-MCTS Agent. We
omit value function reflection for brevity.

We propose Reflective Monte Carlo Tree Search
(R-MCTS), an extension of classic MCTS that
improves the agent’s decision making process
on the fly by incorporating reflection over its
past task executions, and state estimations us-
ing multi-agent-debate (Section 2.3). We present
a high-level overview of an R-MCTS agent in
Figure 2, and a pseudo-code description in Ap-
pendix A.2. Similarly to classic MCTS, an R-
MCTS agent during inference predicts an ac-
tion at by iteratively building a search tree that
explores the current decision space (i.e., looping
over selection, expansion, simulation, and back-
propagation steps). Unlike classic MCTS, R-
MCTS also iteratively improves the search pro-
cess by 1) using contrastive reflection to identify-
ing past mistakes/successes; and 2) updating the
agent’s policy and value functions (in-context) to
improve its future task executions during infer-
ence. This improvement step helps R-MCTS to avoid repeating the same mistakes and to explore
more promising actions when faced with similar situations in the future. For clarity, we describe this
improvement process in the context of policy reflection, since value reflection is highly similar1.

Contrastive Reflection Policy (or value) function consists of three steps: 1) error attribution; 2)
constrastive learning; and 3) memorization of reflection. Given a (long-horizon) trajectory τ , this
process intuitively corresponds to first identifying the most ‘erroneous’ action, then analyzing the
error by comparing what the agent is expected to achieve with what actually happens, and finally
storing this knowledge by remembering the task and state where the error occurred. This process
is inspired by human cognitive learning (Marton, 2014), where contrasting our mental model of the
world with reality serves as an effective way to gather new knowledge.

Formally, given a task g and trajectory τ , we first identify nπ most erroneous actions (and nV value
estimates for value reflection) for reflection, based on the difference between the VLM’s predicted
future success V and the search-tree’s simulated future success Q:

errorπ(at|τ) = |V (ot+1)−Q(ot, at)|, errorV (ot|τ) = |V (ot)−Q(ot−1, at−1)|.

Note that this form of comparing value function V and action-value function Q is similar to Tem-
poral Difference Error used in reinforcement learning (Sutton & Barto, 2018). For each of the
erroneous actions {ã1, ..., ãnπ

}, we then prompt the VLM to identify reasoning mistakes and gain
understanding of navigating in the specific environment. We achieve this by contrastive learning2:

1For value reflection, we reflect on states for erroneous state estimations instead of actions. Then, we prompt
the VLM to predict the expected future actions, and generate a reflection contrasting the agent’s actual actions.

2For simplicity, we use the accessibility tree representation of o in text modality throughout this process.
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Tree-Traversal
task R-MCTS R-MCTS

...

Best-In-Tree

V=0.2 N=2

V=0.1 N=1

V=0.5 N=4 V=0.7 N=3V=0.1 N=1

... ...

data= data=

task R-MCTS R-MCTS

...

V=0.2 N=2

V=0.1 N=1

V=0.5 N=4 V=0.7 N=3V=0.1 N=1

... ...

... ...
V V V V

Figure 3: Given a task and a trajectory from R-MCTS, Best-in-Tree SFT removes intermediate
search trees and directly trains GPT-4o to learn from the final executed actions; Tree-Traversal SFT
flattens tree traversals into a single trajectory and trains GPT-4o to explore, evaluate, and backtrack.

we first 1) prompt the VLM to predict the expected transition ôt+1 after executing ãt, and 2) prompt
the VLM to generate a reflection by contrasting the current ot, ãt, the expected ôt+1 and real ot+1:

ôt+1 = VLMsimulate(g, {o0, a0, ..., ot, ãt}), reflect(ãt|g, τ) = VLMreflect(g, ot, ãt, {ot+1, ôt+1}).
Finally, to help the agent memorize this reflection at test-time, we embed the reflection using the
current task and state (g, ot) and store it in a vector database.

Improvement Then, given a new task and a new observation (gnew, onewt ) to perform inference,
we improve the policy (and value) function by 1) retrieving the most relevant reflections using cosine
similarity of their embeddings3, and 2) appending them into the agent’s current context. For clarity,
we also illustrate this reflection and improvement process in Figure 6 (Appendix A.2).

Multi-Agent Value Function In addition to the reflection-improvement loop, we also experiment
with using multi-agent value function to provide more reliable state estimates. Intuitively, this
method offers 1) a more holistic view of the current state to mitigate mistakes caused by oversights;
and 2) stronger reasoning elicited by collaborative/adversarial incentives (Bowman et al., 2022).

Formally, a multi-agent value function prompts multiple VLMs to each generate a value estimate vi,
and then aggregate all estimates {v1, v2, ...} to produce a final estimate vMA:

vi = VLMi (g, τ) ∈ [0, 1] and vMA = aggregate(g, τ, {v1, v2, ...}) ∈ [0, 1].

In this study, we implement the multi-agent value function using multi-agent-debate (MAD). Given
a task g and a trajectory τ , MAD prompts two VLMs to generate two opposing arguments for the
current value estimate (i.e., why the current state is promising/not promising), and then aggregates
the two arguments using another VLM to obtain a final judgement:

aggregate(g, τ, {v1, v2, ...}) = VLMjudge
(
g, τ, {v1, v2, ...}

)
.

For the prompts used by contrastive reflection, improvement, and MAD, please refer to Appendix D.2.

3.2 SELF-LEARNING

Search-augmented agents such as R-MCTS improve performance at the expense of increased test-
time computation. Using GPT-4o powered R-MCTS as an example, we explore how to effectively
transfer the knowledge gained from tree search back to GPT-4o. We propose two methods: Best-
in-Tree SFT (BiT SFT) which directly fine-tunes GPT-4o on the actions returned by the search
algorithm, and Tree-Traversal SFT (TrT SFT) which finetunes GPT-4o on all tree traversals that
happened during search. We illustrate these two methods in Figure 3.

Given a task g, a trajectory τ = {o0, a0, ..., aT }, and all search trees Tree(o0), ..,Tree(oT ) obtained
during R-MCTS, Best-in-Tree SFT trains GPT-4o to learn an improved policy by directly fine-
tuning on the actions executed in τ (i.e., best actions selected by search). This method is simple, but

3For simplicity, we directly concatenate (gnew, onewt ) into a single string and feed into an embedding model
(text-ada-003-small, OpenAI (2024c)).
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relies on the model itself to learn the implicit reasoning process. Tree-Traversal SFT improves GPT-
4o’s decision making ability by using both τ and tree traversals Tree(o0), ..,Tree(oT ). Specifically,
given a tree Tree(oi), we 1) replay the tree search process4 to obtain observations o, actions explored
or backtracked a, and the estimated values v; 2) combine value estimation and action into a single
action a ← (v, a), and 3) append them to form a single trajectory τ ′i . We then repeat this for all
trees, and obtain a single trajectory τ ′ = {τ ′0, ..., τ ′T } used to train GPT-4o. We note that in general,
TrT SFT can be applied to any search method that iteratively constructs a tree. In this work, we use
R-MCTS as an example due to its improved performance compared to other algorithms (Table 2).

4 EXPERIMENTS

We experiment on VisualWebArena (VWA), a benchmark designed to evaluate5 multimodal agents
performance on across a wide range of web navigation tasks and environments. We describe the
experimental setup, baselines, and other relevant implementation details below.

Benchmarks VisualWebArena (Koh et al., 2024a) is a large-scale benchmark consisting of 910
tasks across three different web environments: Classifieds, Reddit, and Shopping. All tasks in VWA
require visual understanding of webpage content to solve effectively, and 25.2% of the tasks also
include images as input (e.g., help me make a post selling this item + an image of a phone). We host
all web environments locally and evaluate on all 910 tasks, unless otherwise specified. We follow
(Koh et al., 2024a;b) and use Set-of-Mark (Yang et al., 2023b) augmented web screenshots as the
agent’s input. An example is presented in Appendix D.1.

Baselines We compare R-MCTS against direct prompting methods as well as search-augmented
agents backed by various algorithms. For direct prompting methods, we consider REACT (Yao
et al., 2023b), which prompts a VLM to generate the reasoning step before generating the action.
For search, we consider Tree of Thought (TOT, Yao et al. (2023a), which uses BFS or DFS to
explore the decision space and returns the best action found according to V ; SEARCH AGENT (Koh
et al., 2024b), which is a best-first method inspired by A* search; and MCTS (Silver et al., 2017;
Zhou et al., 2024a; Yu et al., 2023), which uses MCTS to determine the best action to take. Despite
drastically different names, we note that the main algorithmic difference is selecting which node
to expand/explore next. TOT and SEARCH AGENT use a greedy, best-first strategy, while MCTS
and R-MCTS uses UCT to balance exploration and exploitation. This difference is not part of our
contributions in the R-MCTS algorithm.

Policy and Value Implementation Search methods require a policy that can generate up to b ac-
tions for exploration, and a value function that returns a value between 0 and 1. We follow Koh
et al. (2024b) to implement such a policy by 1) sampling up to 20 responses from the VLM with a
temperature of 1.0 and a top-p of 0.95, using nucleus sampling (Holtzman et al., 2020); 2) aggre-
gating the counts of each unique action; and 3) returning the top-b actions with the highest counts.
We implement the single-agent value function VSA by 1) prompting the VLM with a multiple-choice
based prompt; 2) sampling 20 responses with temperature of 1.0 and top-p of 0.95; 3) converting the
selected choices into a numeric value; and 4) returning the average value of all responses. We im-
plement the multi-agent value function VMA by 1) prompting the VLM twice to generate reasons why
the current state is promising/unpromising; 2) prompt the VLM again to generate a final judgement
with a multiple-choice-based prompt; and 3) converting the selected choice into a numeric value.
We use GPT-4o (2024-05-13) (OpenAI, 2024a) as the VLM for all methods as it has been widely
used in the development of state-of-the-art agents (Koh et al., 2024b; Wang et al., 2024)

Search Parameters We follow Koh et al. (2024b) to compare all search methods with a breadth
b and depth d limit of 5 per tree, and to stop task execution after a maximum of 5 actions. Since
different algorithms behave differently during search, we also set a maximum search time of 5
minutes per state. For MCTS-based algorithms, we use a UCT bound with cp = 1.0 for action
selection, and use the most-visited child for selecting the best action (Silver et al., 2017). To ensure

4This replay stops at the first time when the search process reached the best action.
5We note that alike many other agent benchmarks, VWA does not provide ground-truth, optimal trajectories

for training, but contains diverse test tasks accompanied by human-crafted evaluation scripts.
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Search Value Classifieds (VWA) Reddit (VWA) Shopping (VWA) GitLab (WA)

Tokens Success Tokens Success Tokens Success Tokens Success

✗ (REACT) - 1x 28.6% (±0.9%) 1x 13.8% (±0.9%) 1x 23.2% (±0.7%) 1x 11.3% (±1.1%)

TOTBFS SA 3.2x 30.7% (±0.9%) 4.7x 19.5% (±0.9%) 4.3x 29.2% (±0.8%) 4.6x 14.1% (±1.0%)

TOTDFS SA 3.1x 30.3% (±0.7%) 4.2x 16.7% (±1.2%) 4.0x 28.3% (±0.9%) 4.3x 14.1% (±1.0%)

SEARCH AGENT SA 4.2x 33.8% (±1.0%) 5.4x 21.9% (±1.2%) 5.1x 30.3% (±0.8%) 3.0x 13.8% (±1.7%)

MCTS SA 7.2x 37.6% (±1.1%) 9.5x 23.8% (±1.4%) 8.9x 29.4% (±0.7%) 5.7x 19.9% (±1.7%)

R-MCTS SA 7.3x 40.2% (±0.7%) 7.3x 25.2% (±1.3%) 7.6x 31.9% (±0.7%) 6.0x 20.9% (±1.9%)

R-MCTS MAD 7.4x 41.0% (±0.9%) 9.7x 28.7% (±1.4%) 10.1x 32.3% (±0.7%) 8.8x 23.5% (±1.3%)

Table 2: Comparing different agent’s token consumption and performance on VisualWebArena
(VWA) as well as on the GitLab domain from WebArena (WA). We show average token used per
task using REACT as a baseline. We adopt the bootstrap method by sampling 90% of the test data
100 times to calculate the standard deviation.

a fair comparison, all search methods use the same set of hyperparameters (e.g., b, d, and search
budget), have full access to a web browser instance to perform simluation, and use a self-evaluated
value function. No methods have access to ground-truth reward function or any human-related
signals during search.

4.1 R-MCTS RESULTS

We summarize the performance of R-MCTS and other search-augmented agents in Table 2. We ob-
serve that all search-based methods deliver significant improvements across the VWA environments,
albeit with increased test-time compute measured by the number of tokens. Among these methods,
MCTS consistently outperforms its counterparts. This is likely due to MCTS’s ability to balance
exploration and exploitation through UCT, whereas other methods primarily rely on V to guide
the search. Additionally, our R-MCTS agent sets a new state-of-the-art performance benchmark
across all VWA environments, with relative improvements ranging from 6% to 30% over the previ-
ous best-performing method, Search Agent. When using a single-agent value function, R-MCTS
improves upon MCTS by an average of 2.2 points. Furthermore, with the integration of multi-
agent debate, R-MCTS achieves an additional 1.6-point improvement on average. These findings
highlight a promising approach to scaling test-time compute in agentic applications by integrating
search, reflection, and multi-agent debate strategies.

Finally, despite running under the same maximum search budget, we find there is still variations
in token usages. This arises from agents terminating the search either when they believe they have
achieved the task (with an estimated value of 1.0) or when the search budget is exhausted, whichever
comes first. In practice, we find best-first methods such as TOT and SEARCH AGENT often terminate
quickly with incorrect states, as they focus solely on rolling out states perceived to have high value
(see Section 5.3).

4.2 SELF-LEARNING RESULTS

Next, we evaluate whether knowledge from R-MCTS can be transferred back to GPT-4o to improve
its performance. Since GPT-4o fine-tuning does not support images, we evaluate all methods with
a text-only modality from VWA. We mainly consider training and evaluating on 234 tasks from the
Classifieds environment, as GPT-4o finetuning is costly. For simplicity, we refer to R-MCTS with
a multi-agent-debate value function VMAD as R-MCTSMAD.

Training Data We first run R-MCTSMAD on Classifieds with the same setup as in Section 4.1, and
then sampled 65 trajectories for Best-in-Tree SFT according to the estimated values of final success.
However, since search tree traversals are typically long, we further remove trajectory that results in
more than 20 actions, producing 35 trajectories. We format these data into multi-turn chats, and use
OpenAI finetuning API for training.

Quantitative Results We present the results in Table 3. First, we find that both Best-in-Tree SFT
and Tree-Traversal SFT outperform the untrained GPT-4o by a large margin without relying on any
search algorithm. When compared to R-MCTSMAD, we find that both methods recovered more than
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Method Model Max Steps Training Tokens Success

Seen Unseen Overall

REACT GPT-4o-mini 20 ✗ 1.0x - - 20.9%
REACT o1-mini 20 ✗ 1.0x† - - 23.9%

REACT GPT-4o 5 ✗ 1.0x - - 22.2%
REACT GPT-4o 20 ✗ 2.4x - - 22.2%
R-MCTSMAD GPT-4o 20 ✗ 9.6x - - 32.1%

REACT BiT SFT 20 65 2.5x 80.0% 12.4% 31.2%
REACT TrT SFT 20 35 3.6x 80.0% 18.6% 27.8%

Table 3: Comparing different model’s performance evaluated in the Classifieds environment. Since
GPT-4o finetuning does not support images, we run all experiments in a text-only modality provided
by VisualWebArena. “Training” indicates whether the model has undergone training in Section 3.2,
and if so, how many trajectories are used. †While total token consumption is similar, o1-mini used
20x more output tokens (reasoning + output) than GPT-4o-mini’s output tokens (output).

Action sequence: 

          Task: Find the most recent 'coffee maker with a touch
screen'. Then, comment with "great item". 

Agent output: 

V=
[stop]

Legend:

V=

Start [search] 'coffee maker 
with touch screen'

1

 [click] 'Keurig K2.0'

V=
[click] 'Appliances'

V=    ; [go_back]

V=
[type] 'great item'↵

V=...;  [xxx]
value action

State transition: 
1

2

3 4 5

6

2 ...

Figure 4: After Tree-Traversal SFT, GPT-4o demonstrates the ability to explore, evaluate, and back-
track without augmenting with search algorithms.

85% of the performance while reducing compute usage by up to 4x. We believe this result indicates
even strong models like GPT-4o can still significantly benefit from training with agentic data.

Qualitative Results With Tree-Traversal SFT, we find that GPT-4o is able to perform better on
unseen tasks by performing exploration, state evaluation, and backtracking without relying on any
search algorithm. We illustrate an example in Figure 4: after attempting to directly search for “coffee
maker with a touch screen”, the TrT SFT-trained GPT-4o finds that the search function in Classifieds
may be unreliable (top search result is a sofa) and backtracked to use category filters instead.

4.3 COMPUTE SCALING RESULTS

We explore whether R-MCTSMAD and the fine-tuned model after the self-learning stage has the
property of test-time computing scaling, i.e., whether performance can increase when more test-time
computes, such search tokens, are allocated. To study this, we follow the same experiment setup in
our main results in Section 4.1, but vary the search budget to allow R-MCTSMAD for {2, 5, 10, 15}
nodes per search tree. We then compare performance (Success Rate) and token consumption per
task to ReACT (Tokens) Best-of-N REACT under the same token usage by changing N in Figure 1a.
Since searching with more nodes significantly increases time and cost, we report results by testing
on all 234 tasks in the Classifieds environment.

As shown in Figure 1, our proposed R-MCTS and Tree-Traversal SFT exhibit strong scaling prop-
erties for both train-time and test-time compute. Particularly, in Figure 1 left, we find that R-
MCTSMAD significantly improves performance when allocated with more test-time compute: us-
ing 15 nodes per tree, R-MCTSMAD achieves a relative improvement of 66% compared to REACT.
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Furthermore, Figure 1 right also illustrates that without search, both Best-in-Tree SFT and Tree-
Traversal SFT substantially boost the performance of an untrained GPT-4o when allowed more ac-
tions per task. Notably, Tree-Traversal SFT demonstrates a more favorable scaling trend in test-time
compute compared to Best-in-Tree SFT, as it is trained to learn to search. These results highlight
the potential for self-improvement via reflective search and self-learning in agentic applications.

5 ANALYSIS

5.1 SUCCESS RATE BREAKDOWN

Search Easy Medium Hard

✗ (REACT) 42.4% 20.9% 11.6%
ToTBFS 46.4% 28.0% 14.7%
ToTDFS 46.8% 26.5% 12.8%
Search Agent 45.9% 29.6% 18.4%
MCTS 47.8% 32.5% 16.5%

R-MCTS 50.7% 33.6% 19.9%
R-MCTSMAD 49.3% 34.1% 23.6%

Table 4: VWA performance by difficulty.

In addition to having tasks in different environ-
ments, VWA labels these task for action difficulty.
These are labeled by estimating the number of
steps an average human6 would take to complete
the task: easy (1-3 steps), medium (4-9 steps), and
hard (10 steps or more). We evaluate all methods
using the same setup as in our main results in Sec-
tion 4.1. We present the results in Table 4.

R-MCTS improves performance across dif-
ficulties Compared to prior best, we find R-
MCTS agent improved performance by an
avearge of 2.5% absolute across all difficulties.
This shows that the search and improvement loop in the R-MCTS agent not only benefits plan-
ning in long-horizon tasks, but also enhances robustness in solving easier tasks.

Multi-Agent-Debate benefits difficult tasks When using a multi-agent value function (R-
MCTSMAD), performance is further improved in medium and hard tasks. We believe this is be-
cause multi-agent debate encourages a more critical view of the current state, and making it less
error-prone in long horizon tasks. However, in easier tasks, we find such method can suffer from
“over-thinking” by trying to avoid non-existent issues, which can slightly reduce performance.

5.2 ABLATION STUDIES

Method Overall
Token Success

R-MCTSMAD 9.3x 33.7%
- Value refl. 9.0x 32.9%
- Policy refl. 8.6x 30.2%
- Search 1.0x 21.9%

Table 5: Ablation studies on VWA.

We perform ablation studies for each of component in
R-MCTSMAD to understand their contributions to the
overall performance. In Table 5, we report the over-
all performance across all 910 tasks in VWA when
removing 1) reflection from value function; 2) reflec-
tion from policy; and 3) the search algorithm. We find
that reflections for policy improvement are more cru-
cial than reflections for value function, and that search
is essential for competitive performance.

5.3 QUALITATIVE ANALYSIS

To better understand the search process in R-MCTSMAD, we manually inspect 80 randomly sampled
trajectories and their corresponding search trees. We compare against trajectories generated by
SEARCH AGENT and analyze errors made by our method.

Exploration and Reflection improves action quality Amongst the 80 samples, we find that R-
MCTSMAD outperforms SEARCH AGENT in 12.5% of the tasks. We find that this is primarily due to
R-MCTSMAD’s ability to improve its policy (60%) using the reflection-improvement process (Sec-
tion 3.1); and its ability to balance exploration-exploitation (30%) using UCT instead of best-first.

6Annotations guides are approximate and devised by human annotators of VWA (Koh et al., 2024a).
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Error Type
answer formatting error
environmental error
model image understanding
model web understanding

Figure 5: R-MCTSMAD error anal-
ysis. Sub-error types are omitted
for brevity (see Appendix C.1).

GPT-4o still lacks finegrained image and web understand-
ing In Figure 5, we categorize all errors made by R-
MCTSMAD during its search process by 1. failing to correctly
format the final answer (answer formatting error); 2. errors
caused by the agent-environment interaction (environmental
error); 3. errors caused by GPT-4o’s inability to perform fine-
grained image understanding (model image understanding);
and 4. errors caused by GPT-4o’s limited web understand-
ing/reasoning ability (model web understanding). For a more
detailed categorization, we refer the reader to Appendix C.1.
Our analysis reveals that most of the errors are caused by the
backbone VLM’s inability to understand the provided web-
page screenshot/product images. Examples include failing to
correctly identify the item on a-th row and b-th column on a
shopping page; and misunderstanding that the cheapest prod-
uct shown on the current page (sorted by most recently listed)
is the cheapest product available on the entire site. We believe
these model issues are fundamental to many current agents that
rely on prompting and suggest that model training (alike Sec-
tion 3.2) is essential to further improve agent’s performance.

6 RELATED WORK

Language-Guided Agents Advances in large language models (LLMs) have motivated many re-
cent works to re-purpose LLMs for automating agentic tasks (Nakano et al., 2022; Kim et al., 2023;
Xi et al., 2023). These methods include prompting LLM directly as a policy (Hong et al., 2023;
Yao et al., 2023b; Sridhar et al., 2023; Yang et al., 2023a), as a component of a manually designed
agentic framework (Park et al., 2023; Sumers et al., 2024), combined with manually crafted heuris-
tics/prompt designs to improve performance (Fu et al., 2024; Sodhi et al., 2024), or combined with
tool uses for question answering/code generation (Yang et al., 2024; Xia et al., 2024). For tasks
that requires visual understanding, many recent work have thus swapped the prompting LLMs to
prompting visual language models (VLMs) such as GPT-4o (Zheng et al., 2024; Koh et al., 2024a).
However, these methods typically suffer in long-horizon tasks that requires planning and error re-
covery. Our work thus augments VLMs agents with search algorithms such as MCTS (Coulom,
2006; Silver et al., 2017) to complete tasks in complex and realistic web environments.

Augmenting Agent with Search/Reflection Using LLMs or VLMs to solve long-horizon tasks
such as web navigation is a highly challenging task (Liu et al., 2023; Zhou et al., 2024b; Koh et al.,
2024a). Many recent work thus also explored various strategies to improve agent’s decision making
process, such as: iteratively prompting the model to improve its own output (Madaan et al., 2023; Yu
et al., 2024; Shinn et al., 2023); and augmenting agent’s decision process using search algorithms
such as BFS/DFS (Yao et al., 2023a), best-first search (Koh et al., 2024b), MCTS (Yu et al., 2023;
Zhou et al., 2024a), and more (Ecoffet et al., 2021; Lu et al., 2024). However, many of these methods
primarily focus on text-based environments such as question answering and programming, and do
not involve substantial interaction with a complex environment. In contrast, our work focuses on 1)
conducting MCTS in long-horizon, agentic tasks in a realistic web environment; 2) incorporating
multi-agent-debate value function to improve state evaluation; and 3) using contrastive reflection to
learn from past successes and failures in long execution trajectories.

Training Agents Besides improving agent’s performance at test-time, many works also explored
methods to train the backbone LLM/VLM. Examples include Mind2Web (Deng et al., 2023), Fire-
ACT Chen et al. (2023), AgentInstruct (Zeng et al., 2023), WebGum (Furuta et al., 2024), AutoWe-
bGLM (Lai et al., 2024), and more (Zhang et al., 2024b; Liu et al., 2024; Zhang et al., 2024a). These
methods rely on collecting human or machine generated trajectories based on direct prompting, and
perform supervised training to improve model’s performance. To our knowledge, we are the first to
train GPT-4o using trajectories produced by MCTS, and to teach GPT-4o to explore, evaluate, and
backtrack in complex web environments through training on MCTS tree traversal.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 CONCLUSION

In this work, we first introduced R-MCTS agent, a search-augmented agent powered by 1) MCTS
to explore, evaluate, and backtrack in complex and realistic web environments; 2) a multi-agent-
debate value function for reliable state evaluation; and 3) contrastive reflection to learn from past
successes and failures in long execution trajectories. Then, we proposed methods to transfer knowl-
edge acquired from search back to GPT-4o by 1) training on best actions returned by tree search
(Best-in-Tree SFT); and 2) training on the entire MCTS tree traversal (Tree-Traversal SFT). Exper-
iments on the challenging VisualWebArena benchmark show that R-MCTS achieves a new state
of the art, and that our finetuned GPT-4o agent begins to display test-time compute scaling proper-
ties similar to search algorithms. We believe our work presents a promising direction to combine
test-time search and model self-learning to develop the next-generation autonomous agents.

8 LIMITATIONS

High cost of scaling test-time compute Although MCTS-based agents achieve strong perfor-
mance on benchmarks such as VWA, they consume nearly 10x more tokens compared to REACT.
This presents a clear trade-off between performance and cost/time, and may limit the practicality
of deploying such agents in real-world applications. However, these search-augmented agents can
be used to curate training data for VLMs without human labels, which can in turn help develop
stronger VLMs. Our work presents a promising step in this direction using Best-in-Tree SFT and
Tree-Traversal SFT, and we believe such a self-learning loop is crucial to build stronger agents.

Difficulty in precise token usage control In Table 2, we find variations in token used by different
agents, despite running under the same search budget or hyperparameters. This is because 1) agents
can terminate the search when they believe they have achieved the task, but more importantly, 2)
different search algorithms result in different search tree shapes (e.g., a deep tree branch generally
uses more tokens due to increased context length). Since it is difficult to control these a priori, we
directly reported the token usages alongside success rate. We believe that developing methods to
accurately estimate and control token usage in advance would be a valuable enhancement for search
algorithms, and we leave this exploration for future work.

Interacting with an environment during search In this work, all search methods have full access
to a web browser during the search process. This can be costly and may not always be available. We
believe implementing search methods that performs simulation with a trained VLM (e.g., similar to
Schrittwieser et al. (2020)) would be an exciting future direction. We believe developing simulator-
based search methods such as Silver et al. (2017) and this work is a crucial first step toward building
environment-free planning approaches.

Long trajectories from tree traversal In long-horizon tasks, R-MCTS agents require a large
amount of simulation to identify optimal actions, resulting in long tree traversals. Training on these
long traversals can be costly, and may be difficult for models to learn from. Nevertheless, we believe
this issue can be iteratively mitigated by using self-learning to improve model capability, and by
conducting search using the improved policy/value functions. We leave explorations for future work.
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A ADDITIONAL IMPLEMENTATION DETAILS

A.1 MONTE CARLO TREE SEARCH

We describe the Monte Carlo Tree Search (MCTS) algorithm used in our work in Algorithm 1. We
use the same MCTS search implementation for all relevant methods (MCTS, R-MCTS, and R-
MCTSMAD agent). For clarity, we abuse the notation s to represent observations in this section, in
order to comply with notations used in other works (Świechowski et al., 2022).

Algorithm 1 MCTS

Require: VLM policy π(g, τ)
Require: VLM value V (g, τ)
Require: environment T (e.g., a web browser instance)
Require: goal g and current observation s
Require: actual trajectory so far τ (before s)

1: while search budget is not exhausted do
2: scurr ← s
3: τcurr ← τ ∪ s
4: // selection
5: while scurr is not a leaf node do
6: a← argmaxa Q(scurr, a) + U(scurr, a)
7: scurr ← T (scurr, a)
8: τcurr ← τcurr ∪ {a, scurr}
9: end while

10: // expansion
11: {a1, a2, ..., aN} ← π(g, τcurr)
12: // evaluation
13: v ← V (g, τcurr)
14: // back-propagation
15: while scurr ̸= s do
16: scurr ← parent(scurr, acurr)
17: update Q,N using v with Equation (2)
18: end while
19: end while
20: // prediction
21: a∗ ← argmaxa N(s, a)
22: return a∗

During selection, we follow Silver et al. (2017) and use a variant of PUCT (Rosin, 2011) to balance
exploration and exploitation:

U(s, a) = cp · P (a|s) ·
√∑

b N(s, b)

1 +N(s, a)
(1)

where cp is a hyperparameter controlling the exploration rate, P (a|s) is the VLM’s prior probabil-
ity of generating action a in state s, and N(s, a) is the state visit count. We use cp = 1.0 in our
experiments.

During evaluation, we prompt the VLM as a value function using the process described in Sec-
tion 2.3. During back-propagation, we update the search tree’s action-value estimate Q and visita-
tion count N using running average:

Q(s, a)← Q(s, a) +
v −Q(s, a)

N(s, a)
; N(s, a)← N(s, a) + 1. (2)
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Algorithm 2 R-MCTS Agent

Require: VLM policy π(g, τ)
Require: VLM value V (g, τ)
Require: environment T
Require: list of tasks to complete G

1: for task g in G do
2: // inference loop
3: τ ← {s0}
4: tree← {s0}
5: while task not terminated do
6: while search budget not exhausted do
7: // selection
8: st ← selection(tree)
9: // expansion

10: reflectionsπ ← retrieve(dbπ , g, st)
11: a1t , ..., a

k
t ← π(g, τ, reflectionsπ)

12: // simulation
13: st+1 ← T (st, at)
14: reflectionsV ← retrieve(dbV , g, st+1)
15: v ← V (g, {s0, a0, ..., st+1}, reflectionsV )
16: // back-propagation
17: tree← update(tree, st+1, v)
18: end while
19: at ← best action(tree)
20: st+1 ← T (st, at)
21: τ ← τ ∪ {at, st+1}
22: tree← {st+1}
23: end while
24: r ← task success/failure
25: // improvement loop
26: reflectionsπ , reflectionsV ← reflect(VLM, g, τ )
27: dbπ ← update(reflectionsπ)
28: dbV ← update(reflectionsV )
29: end for

Algorithm 3 Policy Reflection

Require: VLM used during search
Require: Terminated task g and trajectory τ
Require: Search tree statistics Q,V
Require: Vector database db

1: // error attribution
2: ãt ← argmaxa error(a|g, τ)
3: // contrastive reflection
4: ôt+1 ← VLM(g, {o0, a0, ..., ot, ãt})
5: reflection← VLM(g, ot, ãt, {ot+1, ôt+1})
6: // memorization
7: key← embedding(g, ot)
8: db← add(key, reflection)
9: return

Algorithm 4 Value Reflection

Require: VLM used during search
Require: Terminated task g and trajectory τ
Require: Search tree statistics Q,V
Require: Vector database db

1: // error attribution
2: õt ← argmaxo error(o|g, τ)
3: // contrastive reflection
4: ât ← VLM(g, {o0, a0, ..., õt})
5: reflection← VLM(g, at−1, õt, {at, ât})
6: // memorization
7: key← embedding(g, ot)
8: db← add(key, reflection)
9: return

A.2 R-MCTS PSEUDO CODE

Overall Algorithm We describe our R-MCTS agent in Algorithm 2. For clarity, we also abuse the
notation s to represent observations in this section, in order to comply with notations used in other
works (Świechowski et al., 2022). We omitted details about action selection, expansion, simulation,
and back-propagation as they are described in Appendix A.1. We present the main loop in R-MCTS
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Figure 6: In-context reflection-improvement loop for an R-MCTS agent. For brevity, we only present
policy reflection, as value reflection is similar. Left: after a complete episode, the agent 1) uses
search tree statistics to select the most erroneous action ãt from τ to reflect on; 2) prompts the VLM
to generate a reflection by contrasting what it expects to achieve ôt+1 and what actually happens
ot+1; 3) embeds the reflection in a vector database. Right: to generate an action in a new task, the
agent 1) retrieves m most relevant reflections from the database; 2) improves its policy (and value
function) using in-context learning.

which consists of 1) an inference loop where the agent conducts tree search to find the best action for
a given state; and 2) an improvement loop where the agent reflects on its past actions, and updates
its policy and value function in-context using retrieval for future tasks. We detail the reflection and
update process below.

Contrastive Reflection We present the pseudo code for both policy contrastive reflection and
value contrastive reflection in Algorithm 3 and Algorithm 4, respectively, and illustrate the
reflection-update process in Figure 6. This reflection process is repeated for nπ times per trajectory
for the top-nπ erroneous actions during policy reflection, and nV times for value function reflection.
We use nπ = 3 and nV = 1 in our experiments. We use text-ada-003-small (OpenAI, 2024c) as the
embedding model. For clarity, we repeat the error attribution equations in Section 3.1 below:

errorπ(at|τ) = |V (ot+1)−Q(ot, at)|, errorV (ot|τ) = |V (ot)−Q(ot−1, at−1)|. (3)

Improvement Given a new task g and trajectory τ = {o0, a0, ..., ot}, we retrieve the m = 2
most relevant reflections from the database, and use them to improve the policy and value function
by appending them into the existing context (see Appendix D.2 for the prompt template). The
retrieval process is done by computing the cosine similarity between the current task and observation
embedding(g, ot) and the keys stored in the vector database. Since many tasks/webpages are unique,
we also set a minimum similarity threshold of 0.25 to only use relevant reflections.
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Method Task Affected by ID Error Avg. Time per Task Success Rate

Koh et al. (2024b) 40.00% 33.47 min 45.00%
+Asyncio 40.00% 14.65 min 35.00%
+Caching 35.00% 10.03 min 40.00%
+Action Re-mapping 10.00% 10.10 min 45.00%

Table 6: Ablation studies of our modified browser implementation. Results are evaluated using
SEARCH AGENT over 20 randomly sampled task in the Classifieds environment.

B ADDITIONAL DETAILS ABOUT VWA

B.1 WEB BROWSER

Search-augmented agents require frequent backtracking to explore new actions. As a result, we find
prior implementations of the web browser is inefficient and error prone: 1) all processing is done in
a single thread sequentially; 2) every (backtracked) page is re-processed from scratch; and 3) can
frequently cause action element id mismatch errors since backtracked page may not always be the
same as before (e.g., search history is stored in the website’s database and cannot be reset).

We thus modified the existing web browser used in Koh et al. (2024b), and used the same modified
browser for all methods in our experiments. Our modifications include:

1. use asyncio to parallelize webpage processing (Asyncio);

2. implement a caching mechanism to store and retrieve SoM processing output when the
same webpage is encountered (Caching);

3. when SoM element ids changed after backtracking, we implement a simple heuristic (word
overlap of some metadata associated with the element) to re-map the VLM generated action
id back to the correct element id (Action Re-mapping).

We present a quantitative study of these changes in Table 6.

B.2 VWA EVALUATION

One common error we find with GPT-4o based agents (e.g., using REACT) is to directly return the
(correct) item’s name and description from (e.g.,) the search result page, while VWA evaluates these
tasks by checking if the final state’s URL is the desired item’s URL. However, we believe this is due
to ambiguously phrased task intent, such as “Find me the cheapest blue kayak on this site”, and “Find
the most expensive car from Virginia that is neon green”, which does not explicitly mention/require
navigating to the item’s page to complete.

To this end, we updated these task instructions by appending the sentence: “Finish the task by
navigating to that item’s page and returning me the url link(s)” to these tasks for clarity. This change
affected 93 instances in the Classifieds environment, 0 instance in the Reddit environment, and 34
instances in the Shopping environment. We present a quantitative study of this change in Table 7,
and find that all methods/VLMs significantly improved by simply aligning the task intent with the
evaluation metric. Unless otherwise specified, we use these updated task intents for all methods and
experiments in this work.

C ADDITIONAL ANALYSIS DETAILS

C.1 ERROR ANNOTATION SCHEME

We label errors made by our R-MCTS agent into 4 primary categories (answer formatting error,
environmental error, model text understanding, and model image understanding). We find these
categories covered most of the error cases. We further sub-divided these categories into 8 sub-error
types for a more detailed analysis, and present the result in Figure 7. We detail the error types below.
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Method Model Success Rate Before Success Rate After

REACT GPT-4o-mini 10.67% 14.67%
SEARCH AGENT GPT-4o-mini 18.67% 22.67%

REACT GPT-4o 14.67% 27.27%
SEARCH AGENT GPT-4o 26.67% 38.57%

Table 7: Performance comparison after updating task intents in VWA. We measure the task success
before and after the updates for 75 randomly sampled tasks in the Classifieds environment.

Error Type
answer formatting error
    - URL/product detail formatting error
environmental error
    - environment/representation error
    - [potential] evaluation error
model image understanding
    - image details (color, material, etc)
    - image position (i-th column/row)
    - selected wrong SOM id
model web understanding
    - forgot to sort search results
    - significant web common-sense error

Figure 7: Error analysis for R-MCTSMAD after manually inspecting the search trees for 80 randomly
sampled tasks from the Classfieds environment.

Answer Formatting Answer formatting errors include: 1) returning the item’s name/description
instead of its URL used for evaluation, or failing to format a range of prices into the instructed
format (URL/product detail formatting error).

Environmental Errors Environmental errors include: 1) incompatibility issues with certain web-
site functionality (e.g., dropdown menu) with SoM augmentation (environment/representation er-
ror); and 2) ambiguous task intents leading to more than one potentially correct answer, one of
which the model returned (potential evaluation error).

Model Image Understanding Model image understanding errors include: 1) failing to correctly
identify certain properties (e.g., color, pattern, material, etc.) from an image (image details); 2)
failing to identify product on the i-th row and/or j-th column (image position); and 3) generating an
action with element ID not present on the current observation (selected wrong SoM id).

Model Web Understanding Model web understanding errors include: 1) forgetting to sort search
results and misunderstands the most expensive/cheapest item on the current page is also the most
expensive/cheapest item on the entire website (forgot to sort search results); and 2) other errors
potentially caused by a lack web common-sense knowledge, such as trying to filter for price ranges
by typing in the search bar instead of using price filters, and returning related items on other pages
when specifically instructed to find it on the current page (significant web common-sense error).
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SoM Augmented InputOriginal Webpage

[20] [IMG]   [description: a wooden plate 
              with a bullfighter on it]
[21] [A]     [matador painting on wooden 
              plate]
[StaticText] [15.00 $]
[StaticText] [Leisure World (MD)]

Image

Text

SoM

Figure 8: Example Set-of-Mark augmented webpage used as inputs for VLM agents.

D ADDITIONAL PROMPTING DETAILS

D.1 SET-OF-MARK AUGMENTATION

We follow Koh et al. (2024a;b) and represent visual webpages using Set-of-Mark (SoM) (Yang
et al., 2023b) augmentation. SoM augments a webpage by 1) creating bounding boxes around each
interactive element on the page; and 2) adding a unique identifier to each element. We present an
example in Figure 8.

D.2 PROMPTS FOR R-MCTS AGENT

Prompts for Contrastive Reflection We present the prompts to generate an expected observation
given a previous state an action in Table 8. We then generate a reflection using use the prompts in
Table 9.

Prompts for Improvement We present the prompts used to format the relevant reflections re-
trieved from the vector database back into model’s current context in Table 10.

Prompts for Multi-Agent-Debate We present the prompts to perform multi-agent-debate in Ta-
ble 11, and Table 12. For simplicity, we present prompts to generate opposing arguments for value
estimation Table 11, since prompts to generate supporting arguments is highly similar.
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Role Prompt

System You are an autonomous intelligent agent tasked with navigating a web browser.
You will be given web-based tasks. These tasks will be accomplished through
the use of specific actions you can issue.
Here’s the information you’ll have: (... some content omitted)

User OBSERVATION:
[] [StaticText] [What are you looking for today?]
[5] [INPUT] []
[6] [SELECT] [Select a category]
[7] [BUTTON] [Search]
[] [StaticText] [Latest Listings]
[] [StaticText] [Atlas Powered Audio System w/ Tripod 150.00 $ Music instru-
ments Borough of Red Lion (Pennsylvania) 2023/11/16]
(... some content omitted)
OBJECTIVE: Find me the cheapest red Toyota. It should be between $3000 to
$6000. Finish the task by navigating to that item’s page and returning me the
url link(s).
IMAGES: (1) current page screenshot
image url: data:image/png;base64,iVBORw0KGgoAAAANSUh...

Assistant Based on the objective, I need to find the cheapest red Toyota priced between
$3000 to $6000. (... some content omitted)
In summary, the next action I will perform is “‘type [5] [red Toyota] [1]”’

User What do you expect to happen after taking this action? Briefly describe what
you think will appear on the webpage after performing the action.

Assistant After taking this action, I expect the webpage to display search results display-
ing red Toyotas, (... some content omitted)

Table 8: Prompts used to generate the expected state transition. image url is the base64 encoded
SoM augmented web screenshot. Multimodal input in highlighted in orange. Generated response is
highlighted in blue.
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Role Prompt

System You are an autonomous intelligent agent tasked with navigating a web browser.
You will be given web-based tasks. These tasks will be accomplished through
the use of specific actions you can issue.
Here’s the information you’ll have: (... some content omitted)

User OBSERVATION:
[] [StaticText] [What are you looking for today?]
[5] [INPUT] []
[6] [SELECT] [Select a category]
[7] [BUTTON] [Search]
[] [StaticText] [Latest Listings]
[] [StaticText] [Atlas Powered Audio System w/ Tripod 150.00 $ Music instru-
ments Borough of Red Lion (Pennsylvania) 2023/11/16]
(... some content omitted)
OBJECTIVE: Find me the cheapest red Toyota. It should be between $3000 to
$6000. Finish the task by navigating to that item’s page and returning me the
url link(s).
IMAGES: (1) current page screenshot
image url: data:image/png;base64,iVBORw0KGgoAAAANSUh...

Assistant Based on the objective, I need to find the cheapest red Toyota priced between
$3000 to $6000. (... some content omitted)
In summary, the next action I will perform is ”’type [5] [red Toyota] [1]”’

Expectation: After taking this action, I expect the webpage to display search
results displaying red Toyotas, (... some content omitted)

User NEXT OBSERVATION:
[596] RootWebArea ’red Toyota - Classifieds’ focused: True
[630] link ’Classifieds, description: a blue and black logo...’
[663] img ’Classifieds, description: a blue and black logo...’
[638] link ’My account’
[639] link ’Logout’
[640] link ’Publish Ad’
[647] link ’Classifieds’
(... some content omitted)
IMAGES: (1) next page screenshot
Image URL: data:image/png;base64,iVBORw0KGgoAAA...

Is this webpage what you expected? If not, can you conclude anything spe-
cial about navigating on this website? If you faced the same situation again,
what would you do differently at a high level? Do NOT propose any specific
actions/answers.
Keep your response within 100 words.

Assistant This webpage does not display the expected car listings but rather includes
various (... some content ommitted)

Table 9: Prompt used to generate contrastive reflections given an expected observation highlighted
in teal. image url is the base64 encoded SoM augmented web screenshot. Multimodal input in
highlighted in orange. Generated response is highlighted in blue.
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Role Prompt

System: You are an autonomous intelligent agent tasked with navigating a web browser.
You will be given web-based tasks. These tasks will be accomplished through
the use of specific actions you can issue.
Here’s the information you’ll have: (... some content omitted)

User REFLECTIONS: here are some relevant reflections from other tasks. Note
that these reflections may not be directly related to the new task below, but
they may provide some useful insights.

OBJECTIVE (1): I recall seeing this exact item (... some content omitted)
ATTEMPTED ACTION (1): Let’s think step-by-step. The objective is to find
the most recent post of the item shown in the image, which is a personal wa-
tercraft. To find this, I will search for ”watercraft” in the search box. (... some
content omitted)
In summary, the next action I will perform is “‘type [5] [watercraft] [1]“‘
REFLECTION (1): This webpage (... some content omitted). However, it did
not directly show the item from the provided image. The search term might
have been too broad. (...some content omitted)
#####
OBJECTIVE (2): Tell me the name of the lister with (... some content omitted)
ATTEMPTED ACTION (2): Let’s think step-by-step. The objective is to
find the name of the lister with the most expensive green vehicle from West
Virginia. (...some content ommitted)
In summary, the next action I will perform is “‘click [60]“‘
REFLECTION (2): Yes, the webpage is what I expected, displaying listings
specifically from West Virginia. However, it appears that filtering by color
(green) is not directly possible. (... some content omitted)

!IMPORTANT! Below is the task you need to solve. Please read the user’s
intent and input images (if any) carefully.
OBSERVATION:
[1] [IMG] [Classifieds, description: a blue and black logo with the words ohm,
url: http://coffee.cs.columbia.edu:57981...]
[2] [A] [My account]
[3] [A] [Logout]
[4] [A] [Publish Ad]
[] [StaticText] [What are you looking for today?]
(... some content omitted)
URL: http://classifieds.com/
OBJECTIVE: How many yellow or blue motorcycles in total were posted on
25th October 2023?
PREVIOUS ACTION: None
NOTE: Remember that you should consider user’s intent and reflections (if
applicable) to better plan the next action.
IMAGES: (1) current page screenshot
Image URL: data:image/png;base64,iVBORw0KGgoAAAAN...

Assistant Let us think step by step. The objective is to find the total number of yellow or
blue motorcycles posted on 25th October 2023. From the reflections (... some
content omitted)

Table 10: Prompt used to generate an action given retrieved reflections, which is highlighted in teal.
image url is the base64 encoded SoM augmented web screenshot. Multimodal input in highlighted
in orange. Generated response is highlighted in blue. For brevity, we present prompts for trajectories
with only one action executed so far.
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Role Prompt

System You are an autonomous intelligent agent tasked with navigating a web browser.
You will be given web-based tasks. These tasks will be accomplished through
the use of specific actions you can issue.
Here’s the information you’ll have: (... some content omitted)

User User Intent: Find me the cheapest red Toyota. It should be between $3000 to
$6000. Finish the task by navigating to that item’s page and returning me the
url link(s).
IMAGES: (1) start page screenshot
Image URL: data:image/png;base64,iVBORw0KGgoAAAAN...

Assistant type [5] [red Toyota] where [5] is [INPUT] element with content []

User Last page URL=http://coffee.cs.columbia.edu:57981/index.php?page=...
IMAGES: (1) last page screenshot.
Image URL: data:image/png;base64,iVBORw0KGgoAAA...

Now, it is your turn to evaluate the success/failure of the agent’s execution so
far. (... some content omitted)
And your goal is to find the most convincing evidence why the agent is NOT
on the right track to complete the task. (... some content omitted)
Keep your response within 100 words.

Assistant The agent has not successfully completed the task. The user’s intent was to find
the cheapest red Toyota priced between $3000 and $6000. The search results
include vehicles that are outside the price range and have the wrong color (...
some content omitted)

Table 11: Prompts used to generate opposing arguments for value estimation. image url is the
base64 encoded SoM augmented web screenshot. Multimodal input in highlighted in orange. Gen-
erated response is highlighted in blue. For brevity, we present prompts for trajectories with only one
action executed so far.
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Role Prompt

System You are an autonomous intelligent agent tasked with navigating a web browser.
You will be given web-based tasks. These tasks will be accomplished through
the use of specific actions you can issue.
Here’s the information you’ll have: (... some content omitted)

User User Intent: Find me the cheapest red Toyota. It should be between $3000 to
$6000. Finish the task by navigating to that item’s page and returning me the
url link(s).
IMAGES: (1) start page screenshot
Image URL: data:image/png;base64,iVBORw0KGgoAAAAN...

Assistant type [5] [red Toyota] where [5] is [INPUT] element with content []

User Last page URL=http://coffee.cs.columbia.edu:57981/index.php?page=...
IMAGES: (1) last page screenshot.
Image URL: data:image/png;base64,iVBORw0KGgoAAA...

Now, it is your turn to evaluate whether the agent’s actions so far are success-
fully aligned with the user’s intent. (... some content omitted)

To better verify if user’s intent is fulfilled correctly, you may find the following
opinions helpful:
Reasons why the agent is NOT on the right track:
The agent has not successfully completed the task. The user’s intent was to find
the cheapest red Toyota priced between $3000 and $6000. The search results
include vehicles that are outside the price range and have the wrong color (...
some content omitted)
Reasons why the agent is on the right track:
The agent has successfully navigated to the search results page for ”red
Toyota”. Specifically, the ”2007 Toyota Yaris” at $3000 and the ”2007 Toyota
Corolla” at $6500 are relevant. (...some content omitted)

Note that these opinions may or may NOT be correct. You should make your
own judgment based on the user’s intent, the observations, and the agent’s
executed actions so far.

To make a final decision, choose one of the following status codes and provide
your thought process.
STATUS CODES:
A. The agent’s last action is “‘stop“‘ and it contains the correct answer (...some
content omitted)
B. The agent is very close to finishing the task (...some content omitted)
C. The agent still needs a few more actions (...some content omitted)
D. (...some content omitted)
E. (...some content omitted)

Assistant Thoughts: The agent has successfully navigated to the results page for ”red
Toyota”. However, it hasn’t identified the cheapest (...some content omitted)
STATUS CODE: C

Table 12: Prompts used to generate the final judgement for value estimation, given opposing ar-
guments highlighted in teal. image url is the base64 encoded SoM augmented web screenshot.
Multimodal input in highlighted in orange. Generated response is highlighted in blue. For brevity,
we present prompts for trajectories with only one action executed so far.
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