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Towards E�icient Communication and Secure Federated
Recommendation System via Low-rank Training

Anonymous Author(s)∗

ABSTRACT
With increasing regulatory constraints on centralized data gather-
ing, federated recommendation (FedRec) systems have emerged as
a promising solution for safeguarding user privacy. However, the
deployment of FedRec introduces challenges in communication e�-
ciency, stemming from the need to transmit neural network models
between individual user devices and a central server. This study
addresses prior shortcomings in e�orts to enhance communication
e�ciency in FedRec. Common approaches often lead to issues such
as computational overheads, inadvertent disclosure of sensitive
user information, model speci�city constraints, and compatibility
issues with secure aggregation protocols. In response, we propose a
novel framework inspired by Parameter-E�cient Fine-tuning. Our
framework leverages the concept of adjusting lightweight train-
able parameters while keeping most pre-trained parameters frozen.
This innovative approach yields a substantial reduction in both
uplink and downlink communication overheads while avoiding the
introduction of additional computational burdens. Critically, our
framework remains fully compatible with secure aggregation pro-
tocols, including the robust use of Homomorphic Encryption. This
research o�ers a promising avenue to address the drastic need for
e�cient and secure FedRec systems, ensuring user privacy protec-
tion in an era of stringent data regulations. Extensive experimental
results and analysis on multiple datasets across various model ar-
chitectures and security mechanisms validate the e�ectiveness of
the proposed method.
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1 INTRODUCTION
In a centralized recommendation system, all user behavior data is
collected on a central server for training. However, this method can
potentially expose private information that users may be hesitant
to share with others. As a result, various regulations such as the
General Data Protection Regulation (GDPR)[22] and the California
Consumer Privacy Act (CCPA)[18] have been implemented to limit
the centralized collection of users’ personal data. In response to
this challenge, and in light of the increasing prevalence of edge
devices, federated recommendation (FedRec) systems have gained
signi�cant attention for their ability to uphold user privacy.

The training of FedRec involves numerous edge devices, such
as mobile phones, laptops, and PCs. This scenario is often referred
to as cross-device federated learning (FL). However, training large
models on edge devices poses challenges due to unreliable connec-
tions and the need to transfer a recommendation model between
each user’s device and a central server. This task is becoming in-
creasingly challenging due to increasing model complexity and
parameters in modern recommendation systems [17]. In addition,
clients participating in federated systems often exhibit di�erences
in their computational processing speeds and communication band-
width capabilities, primarily stemming from variations in their
hardware and infrastructure. These discrepancies can give rise to
stragglers and decrease the number of participants involved in
training, potentially leading to diminished system performance.

Practical FedRec systems require implementing mechanisms that
decrease the amount of communication relative to computation.
Three commonly employed approaches for reducing communica-
tion costs include (i) diminishing the frequency of communication
by permitting local updates, (ii) minimizing message size through
message compression, (iii) reducing server-side communication
tra�c by restricting the number of participating clients per round
[23]. Importantly, these three methods are independent and can be
combined for enhanced e�ciency.

In this study, we address the challenge of communication e�-
ciency in federated recommendations by introducing an alternative
to compression methods. While compression techniques aim to
reduce the volume of data transmitted between clients and servers,
however, many existing compression methods involve encoding
and decoding steps that can introduce signi�cant delays, potentially
outweighing the gains achieved in per-bit communication time [21].
Another crucial consideration is the compatibility with aggregation
protocols. For example, compression techniques that do not align
with the all-reduce approach may yield reduced communication
e�ciency in systems employing all-reduce style aggregation tech-
niques [21]. This is also necessary for many secure aggregation pro-
tocols such as Homomorphic Encryption (HE) [4]. Moreover, many
algorithms assume clients have the same computational power, but
this may induce stragglers due to computational heterogeneity and
can increase the runtime of algorithms.
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Based on our observation that the update transferred between
clients and a central server has a low-rank structure bias, we pro-
pose Correlated Low-rank Structure update (CoLR). CoLRincreases
communication e�ciency by adjusting lightweight trainable pa-
rameters while keeping most pre-trained parameters frozen. Under
this training scheme, only a small amount of trainable parameters
will be shared between the server and clients and can greatly re-
duce the amount of communication needed to transmit a model
update. Compared with other compression techniques, our methods
have the following bene�ts. (i) Reduce both up-link and down-
link communication cost: CoLR avoid the need of unrolling the
low-rank message at the aggregation step by using correlated pro-
jection to reduce server runtime and downlink message size, (ii)
Low computational overheads: Our method enforces a low-rank
structure on the local update during the local optimization stage so
it removes the need to perform an expensive decomposition step.
Moreover, CoLR can be integrated into common aggregation meth-
ods such as F��A�� and does not require additional computation.
(iii) Compatible with secure aggregation protocols: the aggre-
gation step on CoLR can be carried by simple additive operations,
this simplicity makes it compatible with strong secure aggregation
methods such as HE, (iv) Bandwidth Heterogeneity Awareness:
Allowing adaptive rank for clients based on computational and
communication budget.

Our contributions can be summarized as below:

• We propose a novel framework, CoLR, designed to tackle
the communication challenge in training FedRec systems.

• Our framework demonstrates a capability to provide a
strong foundation for building a secure and practical rec-
ommendation system. Speci�cally, CoLR is compatible with
robust secure aggregation protocols and hence, reinforces
the security of the overall recommendation systems.

• We conducted experiments to showcase the e�ectiveness of
CoLR. Notably, even with an update size equates to 6.25%
of the baseline model, CoLRdemonstrates remarkable e�-
ciency by retaining 93.65% accuracy (in terms of HR) com-
pared to the much larger baseline.

2 RELATEDWORK
Federated Recommendation (FedRec) Systems. In recent years,

FedRec systems have risen to prominence as a key area of research
in both machine learning and recommendation systems. FCF [2]
and FedRec [14] are the pioneering FL-based methods for collabora-
tive �ltering based on matrix factorization. The former is designed
for implicit feedback, while the latter is for explicit feedback. To
enhance user privacy, FedMF [5] applies distributed matrix factor-
ization within the FL framework and introduces the HE technique
for securing gradients before they are transmitted to the server.
MetaMF [15] is a distributed matrix factorization framework using
a meta-network to generate rating prediction models and private
item embedding. [25] presents FedPerGNN, where each user main-
tains a GNNmodel to incorporate high-order user-item information.
FedNCF [19] adapts Neural Collaborative Filtering (NCF) [9] to the
federated setting, incorporating neural networks to learn user-item
interaction functions and thus enhancing the model’s learning ca-
pabilities.

Communication E�cient Federated Recommendation. Communi-
cation e�ciency is of the utmost importance in FL [11]. Some works
explore reducing the entire item latent matrix payload by meta-
learning techniques [15, 24]. For example, MetaMF [15] adopts the
meta recommender to deploy smaller models on the client to re-
duce memory consumption. LightFR [26] proposes a framework
to reduce communication costs by exploiting the learning-to-hash
technique under federated settings and enjoys both fast online
inference and economic memory consumption. However, these

Low-rank Structured Update. Konečný et al. [11] propose to en-
force every update to local model �D to have a low rank structure by
express �D = �(C )

D ⌫ (C )
D where �(C )

D 2 R31⇥: and ⌫ (C )
D 2 R:⇥32 . In

subsequent computation, �(C )
D 2 R3⇥: is generated randomly and

frozen during a local training procedure. In each round, the method
generates the matrix ⌫ (C )

D afresh for each client independently. This
approach saves a factor of 31/: . They interpret ⌫ (C )

D as a projec-
tion matrix, and �(C )

D as a reconstruction matrix. Hyeon-Woo et al.
[10] proposes a method that re-parameterizes weight parameters of
layers using low-rank weights followed by the Hadamard product.

, =,1 �,2 =
�
-1.

>
1

�
�

�
-2.

>
2

�
Given this parameterization, the rank of , is upper bound by
rank(,1) rank(,2) is less constrained than a conventional low-
rank parameterization, = -.>. The authors show that FedPara
can achieve comparable performance to the original model with 3
to 10 times lower communication costs on various tasks, such as
image classi�cation, and natural language processing.

Secure FedRec. Sending updates directly to the server without
implementing privacy-preserving mechanisms can lead to secu-
rity vulnerabilities. Chai et al. [5] demonstrated that in the case
of the Matrix Factorization (MF) model using the FedAvg learning
algorithm, if adversaries gain access to a user’s gradients in two
consecutive steps, they can deduce the user’s rating information.
Therefore, it is crucial to incorporate privacy-preserving mecha-
nisms for the update parameters transmitted from clients to the
server. One approach, as proposed by Chai et al. [5], involves lever-
aging HE to encrypt intermediate parameters before transmitting
them to the server. This method e�ectively safeguards user ratings
while maintaining recommendation accuracy. However, it intro-
duces signi�cant computational overhead, including encryption
and decryption steps on the client side, as well as aggregation on
the server side, which is performed on ciphertext. Approximately
95% of the time consumed by Chai et al. [5] system is dedicated
to server updates, where all computations are carried out on the
ciphertext.

3 PRELIMINARIES
In this section, we present the preliminaries and the setting that the
paper is working with. Also, this part will discuss the challenges in
applying compression methods.

3.1 Federated Learning for Recommendation
In the typical settings of item-based FedRec systems [14], there are
" users and # items where each userD has a private interaction set
denoted as $D = {(8, A8D )} ⇢ [# ] ⇥ R. These users want to jointly

2
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build a recommendation system based on local computations with-
out violating participants’ privacy. This scenario naturally aligns
with the horizontal federated setting [16], as it allows us to treat
each user as an active participant. In this work, we also use the
terms user and client interchangeably since each user is equivalent
to one client. The primary goal of such a system is to generate a
ranked list of top-K items that a given user has not interacted with
and are relevant to the user’s preferences. Mathematically, we can
formalize the problem as �nding a global model parameterized by
\ that minimizes the following global loss function L(·):

L(\ ) ,
"’
D=1

FDLD () ) (1)

where \ is the global parameter,FD is the relative weight of user D.
And LD (\ ) :=

Õ
82$D

✓D (\ , (8, AD8 )) is the local loss function at user
D’s device. Here (8, AD8 ) represents a data sample from the user’s
private dataset, and ✓D is the (non-convex) loss function de�ned by
the learning algorithm. SettingFD = #D/# where #D = |$D | and
# =

Õ"
D=1 #D makes the objective function L(\ ) equivalent to the

empirical risk minimization objective function of the union of all
the users’ dataset. Once the global model is learned, it can be used
for user prediction tasks.

In terms of learning algorithms, Federated Averaging (FedAvg)
[16] is one of the most popular algorithms in FL. FedAvg divides
the training process into rounds. At the beginning of the C-th round
(C � 0), the server broadcasts the current global model \ (C ) to a
subset of users S(C ) which is often uniformly sampled without
replacement in simulation [14, 23]. Then each sampled client in
the round’s cohort performs gD local SGD updates on its own local
dataset and sends the local model changes �(C )

D = \ (C,gD )D � \ (C )

to the server. Finally, the server performs an aggregation step to
update the global model:

\ (C+1) = \ (C ) +
Õ
D2S(C ) ?D�

(C )
DÕ

D2S(C ) ?D
(2)

The above procedure will repeat until the algorithm converges.

3.2 Limitation of current compression methods
Communication is one of the main bottlenecks in FedRec systems.
Model transmission from server to devices can be a serious con-
straint for both servers and clients. For example, when stragglers
with limited network connections exist, the central server must
decide whether to wait for them to �nish or perform the aggre-
gation step with only available participants. Conversely, sending
the model updates back to the server can be challenging, as uplink
is typically much slower than downlink. The download and up-
load bandwidths in a real cross-device FL system are estimated at
0.75MB/s and 0.25MB/s, respectively, by Wang et al. [23]. Although
diverse optimization techniques exist to enhance communication
e�ciency, such methods may not preserve privacy. Moreover, tack-
ling privacy and communication e�ciency as separate concerns
can result in suboptimal solutions.

Top-K compression. The process of allocating memory for copy-
ing the gradient (which can grow to a large size, often in the
millions) and then sorting this copied data to identify the top-K

threshold during each iteration is costly enough that it negates any
potential enhancements in overall training time when applied to
real-world systems. As a result, employing these gradient compres-
sion methods in their simplest form does not yield the expected
improvements in training e�ciency. As observed in Gupta et al. [7],
employing the Top-K compression for training large-scale recom-
mendation models takes 11% more time than the baseline with no
compression.

SVD compression. After obtaining factorization results*D and+D ,
the aggregation step requires performing decompression and com-
puting

Õ
D2S

#D
# *D+D and this sum is not necessarily low-rank

so there is no readily reducing cost in the downlink communi-
cation without additional compression-decompression step. The
need to perform matrix multiplication makes this method incom-
patible with HE. Moreover, performing SVD decomposition on an
encrypted matrix by known schemes remains an open problem.

4 PROPOSED METHOD
4.1 Motivation
Our method is motivated by analyzing the optimization process at
each user’s local device. We consider an e�ective federated matrix
factorization (FedMF) as the backbonemodel. This model represents
each item and user by a vector with the size of 3 denoted q8 and pD
respectively. And the predicted ratings AD8 are given by ÂD8 = q>8 pD .
Then the user-wise local parameter \D consists of the user D’s
embedding pD and the item embedding matrix & , where q8 is the
8th column of & . The loss function LD at user D’s device is given in
the following.

LD (pD ,&) =
’

(8,AD8 )2$D

✓
�
AD8 , (&>pD )8

�
+ _kpD k2 + _k& k2

Let [ be the learning rate, the update on the user embedding pD at
each local optimization step is given by:

p(C+1)D =p(C )D (1 � [_) + [& (C )> (r � r̂(C ) ). (3)

Let m 2 R# be a binary vector where m8 = 1 if 8 2 $D , then the
item embedding’s q8 is

& (C+1) = & (C ) � [ (_& (C ) � (m ⇤ (rD � r̂D )) p(C )>D ) (4)
The update that is sent to the central server has the following
formula,

�(C )
& = & (C+1) �& (C ) = [

h
(m ⇤ (rD � r̂D )) p(C )>D � _& (C )

i
(5)

As we can see from equation 4, since each client only stores the
presentation of only one user pD , the update on the item embedding
matrix on each user’s device at each local step are just sum of a rank-
1 matrix and a regularization component. Given that _ is typically
small, the low-rank component contributes most to the update �(C )

& .
And if the direction of pD does not change much during the local
optimization phase, the update �(C )

& can stay low-rank. From this
observation, we �rst assume that the update of the item embedding
matrix in training FedRec systems �(C )

& can be well approximated
by a low-rank matrix. We empirically verify this assumption by
monitoring the e�ective rank of �(C )

& at each training round for
3
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Figure 1: Illustration of CoLR at training round C . At �rst, the server conducts aggregation over the local model �(C�1,gD )
D to

obtain the global model update �(C ) . Subsequently, �(C ) are transmitted to the clients. The client will update their & (C )
D using

this �(C ) , then initilizes a new matrix �(C,0)
D and download the matrix ⌫ (C ) which is sampled at the server and shared between

clients. Finally, the client carries out local training and then sends the local model update �(C ,gD )
D to the server for the next

training round.

di�erent datasets. The result is plotted in �gure 2 where we plot the
mean and standard deviation averaged over a set of participants in
each round.

Figure 2: PCA components progression. The �gures show
the number of components that account for 99% (N99-PCA
in green) and 90% (N95-PCA in blue) explained variance of
all transfer item embedding matrix across communication
rounds on MovieLens-1M (left) and Pinterest (right) datasets.

This analysis suggests that restricting the update to be low-rank
can get away with aggressive communication reduction without
sacri�cing much performance. In the next section, we will propose
an e�cient communication framework based on this motivation.
Since most of the transferred parameters in recommendation mod-
els are from the item embedding layers, we will focus on applying
the proposed method for embedding layers in this work. Note that
our framework can still be applied to di�erent types of layers that
are commonly used in recommendation models, such as fully con-
nected layers, convolution layers, and self-attention layers.

4.2 Low-rank Structure
We propose explicitly enforcing a low-rank structure on the local
update of the item embedding matrix & . In particular, the local
update (�& ) (C )D is parameterized by a matrix product

(�& ) (C )D = ⌫ (C )
D �(C )

D

where ⌫ (C )
D 2 R3⇥A and �(C )

D 2 RA⇥# . Given this parameterization,
the embedding q8 of an item with index 8 is given by

q(C )8 =
⇣
& (C ) + ⌫ (C )

D �(C )
D

⌘
e8

where e8 2 R# is a one-hot vector whose value at 8-th is 1. This
approach e�ectively saves a factor of #⇥3

#⇥A+3⇥A in communication
since clients only need to send the much smaller matrices �D and
⌫D to the central server.

4.3 Correlated Low-rank Structure Update
Even though enforcing a low-rank structure on the update can
greatly reduce the uplink communication size, doing aggregation
and performing privacy-preserving is not trivial and faces the fol-
lowing three challenges: (1) the server needs to multiply out all the
pairs �(C )

D and ⌫ (C )
D before performing the aggregation step; (2) the

sum of low-rank solutions would typically leads to a larger rank
update so there is no reducing footprint in the downlink communi-
cation; (3) secure aggregation method such as HE cannot directly
apply to �(C )

D and ⌫ (C )
D since it will require to perform the multipli-

cation between two encrypted matrices, which is much more costly
than simple additive operation.

To reduce the downlink communication cost, we observe that if
either�(C )

D or ⌫ (C )
D is identical between users and is �xed during the

local training process, then the result of the aggregation step can be
4
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represented by a low-rank matrix with the following formulation.

�(C )
& = ⌫ (C )

 ’
D2(

�(C )
D

!
.

Notice that this aggregation is also compatible with HE since it
only requires additive operations on a set of �(C )

D and clients can
decrypt this result and then compute the global update �(C )

& at their
local device.

Based on the above observation, we propose the Correlated Low-
rank Structure Update (CoLR) framework. In this framework, the
server randomly initializes a matrix ⌫ (C ) at the beginning of each
training round and shares it among all participants. Participants
then set ⌫ (C )

D = ⌫ (C ) and freeze this matrix during the local training
phase and only optimize for �(C )

D . The framework is presented in
Algorithm 1 and illustrated in Figure 1. Note that the communica-
tion cost can be further reduced by sending only the random seed
of the matrix ⌫ (C ) .

Algorithm 1: Correlated Low-rank Structure Update Ma-
trix Factorization
Input: Initial model & (0) ; update rank A , a distribution D⌫

for initializing ⌫; C�����O��, S�����O�� with
learning rates [,[B ;

1 for C 2 {0, 1, 2, . . . ,) } do
2 Sample a subset S(C ) of clients
3 Sample ⌫ (C ) ⇠ D⌫

4 for client D 2 S(C ) in parallel do
5 if C > 0 then
6 Download �(C )

7 Merge & (C ,0)
D = & (C�1) + ⌫ (C�1)�(C )

8 end
9 Initialize & (C ,0)

D = & (C )

10 Download ⌫ (C ) and Initialize �(C,0)
D = 0

11 Set trainable parameters \ (C ,0)D = {�(C ,0)
D , p(C ,0)D }

12 for : = 0, . . . , gD � 1 do
13 Compute local stochastic gradient rLD (\ (C,: )D )
14 Perform local update \ (C ,:+1)D =

C�����O��
⇣
\ (C,: )D ,r\DLD (\ (C ,: )D ),[

⌘
15 end
16 p(C+1)D = p(C,gD )D

17 Upload {�(C,gD )
D } to the central server

18 end
19 Aggregate local changes

�(C+1) =
’

D2S(C )

#D

#
�(C ,gD )
D ;

20 end

Di�erences w.r.t. SVD compression. We compare our method with
SVD since it also uses a low-rank structure. The di�erence is that in

CoLR, participants directly optimize these models on the low-rank
parameterization, while SVD only compresses the result from the
local training step.

4.4 Subsampling Correlated Low-rank Structure
update (SCoLR)

While CoLR o�ers its merits, there is a potential drawback to con-
sider - it may impact recommendation performance as it con�nes
the global update within a randomly generated low-rank subspace.
In the following section, we introduce a modi�cation to this base
algorithm, considering a practical reality: downlink bandwidth of-
ten surpasses uplink capacity, as observed in cross-device scenarios
[23]. In these settings, edge devices establish communication with a
central server using network connections that vary in quality. Prac-
tical implementations have demonstrated signi�cant di�erences
in network bandwidth between download and upload capabilities.
We propose a variant of CoLR termed Subsampling Correlated
Low-rank Structure update (SCoLR) to address this. SCoLR strate-
gically harnesses the more abundant downlink bandwidth while
maintaining communication e�ciency and HE compatibility.

We denote A6 as the rank of global update, which is sent from the
server to participants through downlink connections, and AD as the
rank of local update, which is sent from clients to the central server
for aggregation through uplink connections. In practice, we can
set A6 to be larger than AD , re�ecting that downlink bandwidth is
often higher than uplink. Given these rank parameters, at the start
of each training round, the central server �rst initializes a matrix
⌫ with the shape of R3⇥A6 . Then, participants in that round will
download this matrix to their local devices and select a subset of
columns of ⌫ to perform the local optimization step. In particular,
we demonstrate this process through the following formulation:

(�& ) (C )D = ⌫(D�D (6)

where ⌫ is a matrix with the shape of R3⇥A6 , (D is a binary matrix
with the shape of RA6⇥AD and �D is a matrix with the shape of
RAD⇥# . Speci�cally, (D is a binary matrix with AD rows and A6
columns, where each row has exactly one non-zero element. The
non-zero element in the 8-th row is at the 9-th column, where 9 is
the 8-th element of a randomly shu�ed array of integers from 1 to
A6 . The detail is presented in Algorithm 2.

Moreover, in scenarios where clients have diverse computational
resources, each can choose a unique local rank, denoted as AD ,
aligning with their speci�c computational capacities and individual
preferences throughout the training process. Importantly, sharing
the matrix (D does not divulge sensitive user information. Multiply-
ing this matrix with (D is essentially a row reordering operation on
the matrix �D . As a result, we can e�ectively perform additive HE
between pairs of rows from �D1 and �D2 . This approach ensures
privacy while accommodating varying computational capabilities
among clients.

5 EXPERIMENTS
5.1 Experimental Setup

Datasets. We experiment with two publicly available datasets,
which are MovieLens-1M [8] and Pinterest [6]. Table 1 summarizes
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Figure 3: HR and NDCG on MovieLens-1M dataset (Top) and
Pinterest Dataset (Bottom). We plot the utilities versus the
communication size and compare CoLRwith the base model
with the same transfer size. The x-axis is plotted using a log
scale.

Table 1: Statistics of the datasets used in evaluation.

Datasets # Users # Items # Ratings Data Density

MovieLens-1M [8] 6, 040 3, 706 1, 000, 209 4.47%
Pinterest [6] 55187 9916 1, 500, 809 0.27%

the statistics of our datasets. We follow common practice in rec-
ommendation systems for preprocessing by retaining users with at
least 20 interactions and converting numerical ratings into implicit
feedback [2, 9].

Evaluation Protocols. We employ the standard leave-one-out eval-
uation to set up our test set [9]. For each user, we use all their
interactions for training while holding out their last interaction for
testing. During the testing phase, we randomly sampled 99 non-
interacted items for each user and ranked the test item amongst
these sampled items.

To evaluate the performance and verify the e�ectiveness of our
model, we utilize two commonly used evaluation metrics, i.e., Hit
Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG),
which are widely adopted for item ranking tasks. The above two
metrics are usually truncated at a particular rank level (e.g. the �rst
: ranked items) to emphasize the importance of the �rst retrieved
items. Intuitively, the HR metric measures whether the test item is
present on the top-: ranked list, and the NDCG metric measures
the ranking quality, which comprehensively considers both the
positions of ratings and the ranking precision.

Models and Optimization. For the base models, we adopt Matrix
Factorization with the FedAvg learning algorithm, also used in
Chai et al. [5]. In our experiments, the dimension of user and item
embedding3 is set to 64 for theMovieLens-1M dataset and 16 for the
Pinterest dataset. This is based on our observation that increasing
the embedding size on the Pinterest dataset leads to over�tting and
decreased performance on the test set. The result is also consistent

with [9]. We use the simple SGD optimizer for local training at edge
devices.

Federated settings. In each round, we sample" clients uniformly
randomly, without replacement in a given round and across rounds.
Instead of performing g8 steps of ClientOpt, we perform ⇢ epochs
of training over each client’s dataset. This is because, in practical
settings, clients have heterogeneous datasets of varying sizes. Thus,
specifying a �xed number of steps can cause some clients to repeat-
edly train on the same examples, while certain clients only see a
small fraction of their data.

Baselines. We compare our framework with two compression
methods: SVD and TopK compression. The �rst method is based on
singular value decomposition, which returns a compressed update
with a low-rank structure. The second method is based on sparsi�-
cation, which represents updates as sparse matrices to reduce the
transfer size.

Hyper-parameter settings. To determine hyper-parameters, we
create a validation set from the training set by extracting the second
last interaction of each user and tuning hyper-parameters on it.
We tested the batch size of [32, 64, 128, 256], the learning rate of
[0.5, 0.1, 0.05, 0.01], and weight decay in [54 � 4, 14 � 4]. For each
dataset, we set the number of clients participating in each round
to be equal to 1%. The number of aggregation epochs is set at 1000
for MovieLens-1M and 2000 for Pinterest as the training process is
converged at these epochs.

Machine. The experimentswere conducted on amachine equipped
with an Intel(R) Xeon(R) W-1250 CPU @ 3.30GHz and a Quadro
RTX 4000 GPU.

5.2 Experimental Results
(1) CoLR can achieve comparable performances with the

base models. Given our primary focus is on recommendation per-
formance within communication-limited environments, we com-
mence our investigation by comparing the recommendation perfor-
mance between CoLR and the base model given the same communi-
cation budget. For our base model, we implement FedMF with the
FedAvg learning algorithm. For the ML-1M dataset, We adjust the
dimensions of user and item embeddings across the set [1, 2, 4, 8,
16, 32, 64] for FedMF while �xing the embedding size of CoLR to 64,
with di�erent rank settings within [1, 2, 4, 8, 16, 32]. Similarly, for
Pinterest, the embedding range for FedMF is [1, 2, 4, 8, 16], while
CoLR has an embedding size of 16 and ranks in the range of [1, 2,
4, 8]. Our settings lead to approximately equivalent transfer sizes
for both methods in each dataset.

In Figure 3, we present the HR and NDCG metrics across a
range of di�erent transfer sizes. With equal transfer budget on the
Pinterest dataset, CoLR consistently outperforms their counterparts.
To illustrate, even with an update size equates to 6.25% of the
largest model, CoLR achieves a notable performance (81.03% HR
and 48.50% NDCG) compared to the base model (84.74% HR and
51.79% NDCG) while attaining a much larger reduction in terms
of communication cost (16x). In contrast, the FedMF models with
corresponding embedding sizes achieve much lower accuracies.
On the MovieLens-1M dataset, we also observe a similar pattern
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Figure 4: HR and NDCG on MovieLens-1M dataset (Top) and
Pinterest Dataset (Bottom). We plot the utilities versus the
communication size and compare CoLRwith the base model
with the same transfer size. The x-axis is plotted using a log
scale. The dashed black line is the base model’s performance
with di�erent embedding sizes. For fair comparisons, we set
the compression ratio of each method to be equal.

where CoLR consistently demonstrates lower training losses when
compared to their counterparts.

The result from this experiment highlights that CoLR can achieve
competitive performance when compared to the base model, FedMF
while greatly reducing the cost of communication.

Table 2: Communication times and Training times for
MovieLens-1M dataset.

Method Communication
time (minutes)

Computation
time (minutes)

Total Training
Time (minutes)

MF-64 80.43 169.07 249.50

CoLR@1 1.26 169.18 170.43
CoLR@2 2.51 169.21 171.72
CoLR@4 5.03 169.27 174.30
CoLR@8 10.05 169.29 179.34
CoLR@16 20.11 169.30 189.41
CoLR@32 40.21 169.38 209.60

SVD@1 1.26 169.49 170.75
SVD@2 2.51 169.50 172.02
SVD@4 5.03 169.53 174.55
SVD@8 10.05 169.59 179.65
SVD@16 20.11 169.64 189.74
SVD@32 40.21 169.60 209.82

TopK@1 2.51 169.76 172.28
TopK@2 5.03 169.79 174.81
TopK@4 10.05 169.82 179.87
TopK@8 20.11 169.92 190.03
TopK@16 40.21 170.14 210.35

(2) Comparison between CoLR and other compression-based
methods. We run the above experiment with two compression

methods, SVD and TopK, with the compression ratio about the
same as CoLR. For a fair comparison, we compress both the upload
and downloadmessageswith the same compression ratio. The result
in terms of transfer size is presented in Figure 4. In the case with the
same communication budget, CoLR achieves better performance
across the range of communication budgets.

In the previous results, the evaluation of techniques focuses
on the overall number of transmitted bits. Although this serves
as a broad indicator, it fails to consider the time consumed by
encoding/decoding processes and the �xed network latency within
the system. When these time delays signi�cantly exceed the per-bit
communication time, employing compression techniques may o�er
limited or minimal bene�ts. In the following, we do an analysis to
understand the e�ects of using CoLR and compression methods in
training FedRec models.

We follow the model from [23] to estimate the communication
e�ciency of deploying methods to real-world systems. The execu-
tion time per round when deploying an optimization algorithm in
a cross-device FL system is estimated as follows,

)round (A) = )comm (A) +)comp (A),

)comm (A) = (down (A)
⌫down

+
(up (A)
⌫up

)comp (A) = max
92Dround

) 9
client +)server (A),

) 9
client (A) = 'comp )

9
sim (A) +⇠comp

where client download size (d>F= (A), upload size (u? (A), server
computation time )server , and client computation time ) 9

client de-
pend onmodel and algorithmA. Simulation time)server and) 9

client
can be estimated from FL simulation in our machine. We get the
estimation of parameters (⌫down ,⌫up ),'comp ,⇠comp from Wang
et al. [23].

⌫down ⇠ 0.75MB/secs,⌫up ⇠ 0.25MB/secs,
'comp ⇠ 7, and ⇠comp ⇠ 10 secs.

Table 2 presents our estimation in terms of communication times
and computation time. Notice that CoLR adds smaller overheads to
the computation time while still greatly reducing the communica-
tion cost.

(3) CoLR is compatible with HE. In our experiment, we con-
duct tests using two di�erent compression methods: CoLR and
TopK. These tests are carried out under identical con�gurations,
encompassing local updates and the number of clients involved
in training rounds. The current setup entails the utilization of the
CKKS Cryptosystem for our CoLR method, while the TopK method
employs the Paillier cryptosystem for encryption, decryption, and
aggregation in place of the TopK vector.

Currently, multiple open-source HE libraries are available, such
as OpenFHE [1], TenSeal [3], and Microsoft SEAL [20]. We chose
OpenFHE for its renowned speed and compatibility with essential
operations in our federated learning framework. Regarding the run-
time aspect, our CoLR compression method leverages the inherent
e�ciency of the CKKS cryptosystem, which can execute operations

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Overheads, and Communication ratios for MovieLens-1M dataset; Comm Ratio is calculated by �le sizes of Ciphertext
over �le sizes of Plaintext.

EC method Client overheads (s) Server overheads (s) Ciphertext Plaintext Comm Ratio

FedMF 0.93 2.39 24,587 KB 927 KB 26.52

FedMF w/ TopK@1/64 88.2 88.06 3,028 KB 29 KB 103.09
FedMF w/ TopK@2/64 182.02 185.59 6,056 KB 58 KB 103.83
FedMF w/ TopK@4/64 353.25 364.67 12,112 KB 116 KB 104.20
FedMF w/ TopK@8/64 723.45 750.98 24,225 KB 232 KB 104.40
FedMF w/ TopK@16/64 1449.9 1,483.91 48,448 KB 464 KB 104.49

FedMF w/ CoLR@1 0.07 0.24 3,073 KB 15 KB 206.31
FedMF w/ CoLR@2 0.07 0.25 3,073 KB 29 KB 104.63
FedMF w/ CoLR@4 0.07 0.25 3,073 KB 58 KB 52.69
FedMF w/ CoLR@8 0.08 0.25 3,073 KB 116 KB 26.44
FedMF w/ CoLR@16 0.15 0.51 6,147 KB 232 KB 26.49
FedMF w/ CoLR@32 0.30 1.03 12,293 KB 464 KB 26.51

onmultiple values as a vector. In our approach, for a �attened vector
of size =, both clients and the server need to perform operations on
at most d =

8096 e blocks, which incurs minimal computational time.
On the other hand, the TopK method necessitates operations to be
executed on every value within the TopK vector, leading us to opt
for the Paillier cryptosystem as it is partially homomorphic and can
accommodate the requirements of both our schemes and the TopK
method. In our experimental setup, when the value of : doubles
(i.e., doubling the TopK vector’s size), the operation time for both
client-side and server-side operations also doubles, as it mandates
operations on each value within the vector. Throughout the experi-
ment, our CoLR consistently outperforms the TopK method across
various : values, exhibiting lower time overheads on both the client
and server sides.

When comparing ciphertext to plaintext sizes, the TopK com-
pression method with Paillier encryption demands encryption for
each value within the TopK vector. Consequently, whenever the
size of the TopK vector doubles, the ciphertext size also doubles.
In contrast, as previously explained, our scheme produced at most
d =
8096 e blocks of ciphertext, with the ciphertext size not doubling

each time : doubles. This phenomenon illustrates why, in several
cases, the ciphertext size remains consistent even as the plaintext
size increases. With higher : values aimed at achieving greater pre-
cision, our scheme demonstrates smaller ciphertext sizes, o�ering
a reduction in bandwidth consumption.

5.3 Dynamic local rank
In this section, we evaluate our proposed method SCoLR, where
we explore the scenario where each client can dynamically select
a random AD value during each training round C . This scenario
re�ects real-world federated learning, where clients often showcase
di�erences in computing capabilities and communication capacities
due to hardware discrepancies, as exempli�ed in [12, 13]. It becomes
ine�cient to impose a uniform training model on all clients within
this heterogeneous context, as some devices may not be able to
harness their computational resources fully.

For this experiment, we set the global rank A in range {4, 8, 16, 32}
and uniformly sample the local rank AD such that 1  AD  A . It’s

crucial to emphasize that AD is independently sampled for each
user and may di�er from one round to the next. This con�guration
mirrors a practical scenario where the available resources of a
speci�c user may undergo substantial variations at di�erent time
points during the training phase. We present the result on the
MovieLens-1M dataset in Table 4. This result demonstrates that
SCoLR is e�ective under the device heterogeneity setting.

Table 4: HR, NDCG of SCoLR algorithm on the MovieLens-
1M dataset under computation/device heterogeneity settings.

Global low-rank Local-rank HR NDCG

32 1 � 32 64.59 37.56
16 1 � 16 60.25 34.33
8 1 � 8 52.75 28.41
4 1 � 4 45.99 23.70

6 CONCLUSION
In this work, we propose Correlated Low-rank Structure update
(CoLR), a framework that enhances communication e�ciency and
privacy preservation in FedRec by leveraging the inherent low-rank
structure in updating transfers, our method reduces communica-
tion overheads. CoLR also bene�ts from the CKKS cryptosystem,
which allows the implementation of a secured aggregation strat-
egy within FedRec. With minimal computational overheads and
bandwidth-heterogeneity awareness, it o�ers a �exible and e�cient
means to address the challenges of federated learning. For future
research, we see several exciting directions. First, our framework
still involves a central server, we would like to test how our meth-
ods can be e�ectively adapted to a fully decentralized, peer-2-peer
communication setting. Secondly, investigating methods to handle
dynamic network conditions and straggler mitigation in real-world
settings will be crucial. Lastly, expanding our approach to accom-
modate more advanced secure aggregation techniques for reduced
server-side computational costs and extending its compatibility
with various encryption protocols can further enhance its utility in
privacy-sensitive applications.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Towards E�icient Communication and Secure Federated Recommendation System via Low-rank Training Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins, Saroja

Erabelli, Nicholas Genise, Shai Halevi, Hamish Hunt, Andrey Kim, Yongwoo Lee,
et al. 2022. Openfhe: Open-source fully homomorphic encryption library. In
Proceedings of the 10thWorkshop on Encrypted Computing&Applied Homomorphic
Cryptography. 53–63.

[2] Muhammad Ammad-Ud-Din, Elena Ivannikova, Suleiman A Khan, Were Oy-
omno, Qiang Fu, Kuan Eeik Tan, and Adrian Flanagan. 2019. Federated collabora-
tive �ltering for privacy-preserving personalized recommendation system. ArXiv
preprint abs/1901.09888 (2019), 4274–4282. https://arxiv.org/abs/1901.09888

[3] Ayoub Benaissa, Bilal Retiat, Bogdan Cebere, and Alaa Eddine Belfedhal. 2021.
TenSEAL: A Library for Encrypted Tensor Operations Using Homomorphic
Encryption. arXiv:2104.03152 [[cs.CR](http://cs.cr/)]

[4] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Practi-
cal Secure Aggregation for Privacy-Preserving Machine Learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security
(Dallas, Texas, USA) (CCS ’17). Association for Computing Machinery, New York,
NY, USA, 1175–1191. https://doi.org/10.1145/3133956.3133982

[5] Di Chai, Leye Wang, Kai Chen, and Qiang Yang. 2020. Secure federated matrix
factorization. IEEE Intelligent Systems 36, 5 (2020), 11–20.

[6] Xue Geng, Hanwang Zhang, Jingwen Bian, and Tat-Seng Chua. 2015. Learning
Image and User Features for Recommendation in Social Networks. In 2015 IEEE
International Conference on Computer Vision (ICCV). IEEE Computer Society,
4274–4282. https://doi.org/10.1109/ICCV.2015.486

[7] Vipul Gupta, Dhruv Choudhary, Peter Tang, Xiaohan Wei, Xing Wang, Yuzhen
Huang, Arun Kejariwal, Kannan Ramchandran, and Michael W. Mahoney.
2021. Training Recommender Systems at Scale: Communication-E�cient
Model and Data Parallelism. In Proceedings of the 27th ACM SIGKDD Confer-
ence on Knowledge Discovery & Data Mining (Virtual Event, Singapore) (KDD
’21). Association for Computing Machinery, New York, NY, USA, 2928–2936.
https://doi.org/10.1145/3447548.3467080

[8] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. ACM Trans. Interact. Intell. Syst. 5, 4 (2015), 1–19.

[9] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th International
Conference onWorldWideWeb (Perth, Australia) (WWW ’17). InternationalWorld
Wide Web Conferences Steering Committee, Republic and Canton of Geneva,
CHE, 173–182. https://doi.org/10.1145/3038912.3052569

[10] Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. 2022. FedPara: Low-rank
Hadamard Product for Communication-E�cient Federated Learning. In In-
ternational Conference on Learning Representations. OpenReview.net. https:
//openreview.net/forum?id=d71n4ftoCBy

[11] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtarik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated Learning: Strategies
for Improving Communication E�ciency. In NIPS Workshop on Private Multi-
Party Machine Learning. https://arxiv.org/abs/1610.05492

[12] Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and Mosharaf Chowdhury.
2021. Oort: E�cient Federated Learning via Guided Participant Selection. In
15th USENIX Symposium on Operating Systems Design and Implementation (OSDI
21). USENIX Association, 19–35. https://www.usenix.org/conference/osdi21/
presentation/lai

[13] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated
Learning: Challenges, Methods, and Future Directions. IEEE Signal Processing
Magazine 37, 3 (2020), 50–60. https://doi.org/10.1109/MSP.2020.2975749

[14] Guanyu Lin, Feng Liang, Weike Pan, and Zhong Ming. 2020. Fedrec: Federated
recommendation with explicit feedback. IEEE Intell. Syst. 36, 5 (2020), 21–30.

[15] Yujie Lin, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Dongxiao Yu, Jun Ma,
Maarten de Rijke, and Xiuzhen Cheng. 2020. Meta Matrix Factorization for
Federated Rating Predictions. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval (Virtual Event,
China) (SIGIR ’20). Association for Computing Machinery, New York, NY, USA,
981–990. https://doi.org/10.1145/3397271.3401081

[16] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Aguera y Arcas. 2017. Communication-E�cient Learning of Deep Networks
from Decentralized Data. In Proceedings of the 20th International Conference on
Arti�cial Intelligence and Statistics (Proceedings of Machine Learning Research,
Vol. 54), Aarti Singh and Jerry Zhu (Eds.). PMLR, 1273–1282. https://proceedings.
mlr.press/v54/mcmahan17a.html

[17] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, XiaodongWang, Udit Gupta, Carole-Jean
Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherni-
avskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kon-
dratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang
Xiong, and Misha Smelyanskiy. 2019. Deep Learning Recommendation Model
for Personalization and Recommendation Systems. arXiv:1906.00091 [cs.IR]

[18] Stuart L Pardau. 2018. The California consumer privacy act: Towards a European-
style privacy regime in the United States. J. Tech. L. & Pol’y 23 (2018), 68.

[19] Vasileios Perifanis and Pavlos S Efraimidis. 2022. Federated Neural Collaborative
Filtering. Knowledge-Based Systems 242 (2022), 108441.

[20] SEAL 2023. Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL.
Microsoft Research, Redmond, WA..

[21] Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. 2019. PowerSGD:
Practical Low-Rank Gradient Compression for Distributed Optimization. In
Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper_�les/paper/2019/�le/
d9fbed9da256e344c1fa46bb46c34c5f-Paper.pdf

[22] Paul Voigt and Axel Von dem Bussche. 2017. The eu general data protection reg-
ulation (gdpr). A Practical Guide, 1st Ed., Cham: Springer International Publishing
10, 3152676 (2017), 10–5555.

[23] Jianyu Wang, Zachary Burr Charles, Zheng Xu, Gauri Joshi, Brendan McMahan,
Blaise Hilary Aguera-Arcas, Maruan Al-Shedivat, Galen Andrew, A. Salman
Avestimehr, Katharine Daly, Deepesh Data, Suhas Diggavi, Hubert Eichner, Ad-
vait Gadhikar, Zachary Garrett, Antonious M. Girgis, Filip Hanzely, Andrew
Hard, Chaoyang He, Samuel Horvath, Zhouyuan Huo, Alex Ingerman, Mar-
tin Jaggi, Tara Javidi, Peter Kairouz, Satyen Chandrakant Kale, Sai Praneeth
Karimireddy, Jakub Konečný, Sanmi Koyejo, Tian Li, Luyang Liu, Mehryar
Mohri, Hang Qi, Sashank Reddi, Peter Richtarik, Karan Singhal, Virginia Smith,
Mahdi Soltanolkotabi, Weikang Song, Ananda Theertha Suresh, Sebastian Stich,
Ameet Talwalkar, Hongyi Wang, Blake Woodworth, Shanshan Wu, Felix Yu,
Honglin Yuan, Manzil Zaheer, Mi Zhang, Tong Zhang, Chunxiang (Jake) Zheng,
Chen Zhu, and Wennan Zhu. 2021. A Field Guide to Federated Optimization.
https://arxiv.org/abs/2107.06917

[24] Qinyong Wang, Hongzhi Yin, Tong Chen, Junliang Yu, Alexander Zhou, and
Xiangliang Zhang. 2021. Fast-adapting and privacy-preserving federated recom-
mender system. The VLDB Journal (2021), 1–20.

[25] Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Tao Qi, Yongfeng Huang, and Xing
Xie. 2022. A federated graph neural network framework for privacy-preserving
personalization. Nature Communications 13, 1 (2022), 1–10.

[26] Honglei Zhang, Fangyuan Luo, Jun Wu, Xiangnan He, and Yidong Li. 2023.
LightFR: Lightweight Federated Recommendation with Privacy-Preserving Ma-
trix Factorization. ACM Trans. Inf. Syst. 41, 4, Article 90 (mar 2023), 28 pages.
https://doi.org/10.1145/3578361

9

https://arxiv.org/abs/1901.09888
https://arxiv.org/abs/2104.03152
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1109/ICCV.2015.486
https://doi.org/10.1145/3447548.3467080
https://doi.org/10.1145/3038912.3052569
https://openreview.net/forum?id=d71n4ftoCBy
https://openreview.net/forum?id=d71n4ftoCBy
https://arxiv.org/abs/1610.05492
https://www.usenix.org/conference/osdi21/presentation/lai
https://www.usenix.org/conference/osdi21/presentation/lai
https://doi.org/10.1109/MSP.2020.2975749
https://doi.org/10.1145/3397271.3401081
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://arxiv.org/abs/1906.00091
https://github.com/Microsoft/SEAL
https://proceedings.neurips.cc/paper_files/paper/2019/file/d9fbed9da256e344c1fa46bb46c34c5f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/d9fbed9da256e344c1fa46bb46c34c5f-Paper.pdf
https://arxiv.org/abs/2107.06917
https://doi.org/10.1145/3578361


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A AN ANALYSIS ON THE INITIALIZATION OF
THE MATRIX B

If each client performs only one GD step locally then ⌫ can be seen
as the projection matrix and ⌫a8 is the projection of the update of
item 8 on the subspace spanned by columns of ⌫. We denoite the
error of the update on each item embedding 8 by n8 which has the
following formulation:

n8 = E⌫

266664

������̄& � 1
|( |

 ’
D2(

⌫DaD

!�����
2

2

377775
. (7)

We analyze the e�ect of di�erent initialization of ⌫ on this error.
First, we state the proposition A.1 which gives an upper bound on
the error n8 .

P���������� A.1 (U���� ����� ��� �����). If ⌫D is indepen-
dently generated between users and are chosen from a distribution B
that satis�es:

(1) Bounded operator norm: E
⇥
k⌫k2

⇤
 !B

(2) Bounded bias: kE⌫D⌫>D p̄D � p̄D k2 
p
XB

Then,

n8 = E⌫

266664

������̄& � 1
|( |

 ’
D2(

⌫DaD

!�����
2

2

377775
(8)

 1
|( |⇠

2
pXB + 1

|( | max
D2(

UD kpD k22
⇣
!2⌫ + 1

⌘
. (9)

P����. Assume ⌫D is independently generated between users,
we have

n8 =
1
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If ⌫D are independently chosen from a distribution B that satis-
�es:

(1) Bounded operator norm: E
⇥
k⌫k2

⇤
 !B

(2) Bounded bias: kE⌫D⌫>D p̄D � p̄D k2 
p
XB

We have

E⌫
⌦
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where (11) follows since ⌫D are independently sampled between
users. The second term is

1
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Next, we bound the bias and the operator norm of ⌫D if it is
sampled from a Gaussian distribution in the lemma A.2.

L���� A.2 (G������� I�������������). Let A < 3 . Consider
⌫ 2 R3⇥A be sampled from the Gaussian distribution where ⌫ has
i.i.d. N(0, 1/:) entries and a �xed unit vector v 2 R3 . Then

(1) Bounded operator norm:

Ek⌫k2  3

A

✓
1 +$

✓r
A

3

◆◆

(2) Unbias: for every unit vector v 2 R3��E⌫⌫>v � v
�� = 0

P����. Let ⌫0 = %⌫ where % 2 R3⇥3 is the rotation matrix
such that %v = e1. Due to the rotational symmetry of the normal
distribution, ⌫0 is a random matrix with i.i.d. N(0, 1/A ) entries.
Note that ⌫ = %>⌫0.

E⌫
⇥
⌫⌫>v

⇤
= E⌫

⇥
%>%⌫⌫>%>%v
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= %>E⌫

⇥
⌫0⌫0>e1

⇤

Let z = ⌫0⌫0>e1. Notice that z9 =
⌦
⌫0>e9 ,⌫0>e1

↵
. Because ⌫0

has i.i.d. N(0, 1/A ) entries, z1 = k⌫0>e1k22 =
ÕA
:=1 (⌫

0
1: )

2 is 1/A
times a Chi-square random variable with A degrees of freedom. So
E[z1] = 1

A A = 1 and E[z9 ] = 089 > 1. Thus, E[z] = e1. Therefore,��E⌫ ⇥
⌫⌫>v

⇤�� = ��%>e1 � v
�� = 0. ⇤

From Proposition A.1 and Lemma A.2, we can directly get the
following theorem which bould the error of restricting the local
update in a low-rank subspace which is randomly sampled from a
normal distribution.

T������ A.3. Assume ⌫D is independently generated between
users and are chosen from the normal distribution N(0, 1/A ). Then,

n8 = E⌫
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Figure 5: Result with di�erent initialization strategy for ⌫
on MovieLens-1M dataset

This result demonstrates that the square error can increase for
lower values of the local rank A . Building on this insight, we suggest
scaling the learning rate of the low-rank components by

q
A
3 to

counter the error.

Experementing with di�erent initialization strategies for ⌫. The
result in the main text is reported using ⌫ sampled from a normal
distribution N(0, 1/A ). In this section, we experiment with D⌫
chosen from a normal distribution, distribution of orthonormal
matrix, and Gaussian distribution on a unit sphere. The result is s

B ALGORITHM DETAILS
In Section 4.4, we presented SCoLR to address the bandwidth hetero-
geneity problem. We provide the detail of this method in Algorithm
2.

Algorithm 2: Subsampling Correlated Low-rank Structure
update (SCoLR)

Input: Initial model & (0) ; global update rank A6 , local
update rank {AD }, a distribution D⌫ for initializing
⌫; C�����O��, S�����O�� with learning rates [,[B ;

1 for C 2 {0, 1, 2, . . . ,) } do
2 Sample a subset S(C ) of clients
3 Sample ⌫ (C ) ⇠ D⌫

4 for client D 2 S(C ) in parallel do
5 if C > 0 then
6 Download �(C )

7 Merge & (C ,0)
D = & (C�1) + ⌫ (C�1)�(C )

8 end
9 Initialize & (C ,0)

D = & (C )

10 Download ⌫ (C ) , Initialize �(C ,0)
D = 0, and Randomly

sample ( (C )D

11 Set trainable parameters \ (C ,0)D = {�(C ,0)
D , p(C,0)D }

12 for : = 0, . . . , gD � 1 do
13 Compute local stochastic gradient rLD (\ (C,: )D )
14 Perform local update \ (C ,:+1)D =

C�����O��
⇣
\ (C,: )D ,r\DLD (\ (C ,: )D ),[

⌘
15 end
16 p(C+1)D = p(C ,gD )D

17 Upload {( (C )D ,�(C ,gD )
D } to the central server

18 end
19 Aggregate local changes

�(C+1) =
’

D2S(C )

#D

#
( (C )D �(C ,gD )

D ;

20 end
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