Provable Scaling Laws for the Test-Time Compute
of Large Language Models

Yanxi Chen* Xuchen Pan*

Alibaba Group Alibaba Group
chenyanxi.cyx@alibaba-inc.com panxuchen.pxc@alibaba-inc.com
Yaliang Li Bolin Ding
Alibaba Group Alibaba Group
yaliang.li@alibaba-inc.com bolin.ding@alibaba-inc.com

Jingren Zhou
Alibaba Group

jingren.zhou@alibaba-inc.com

Abstract

We propose two simple, principled and practical algorithms that enjoy provable
scaling laws for the test-time compute of large language models (LLMs). The
first one is a two-stage knockout-style algorithm: given an input problem, it first
generates multiple candidate solutions, and then aggregate them via a knockout
tournament for the final output. Assuming that the LLM can generate a correct
solution with non-zero probability and do better than a random guess in comparing
a pair of correct and incorrect solutions, we prove theoretically that the failure
probability of this algorithm decays to zero exponentially or by a power law
(depending on the specific way of scaling) as its test-time compute grows. The
second one is a two-stage league-style algorithm, where each candidate is evaluated
by its average win rate against multiple opponents, rather than eliminated upon
loss to a single opponent. Under analogous but more robust assumptions, we prove
that its failure probability also decays to zero exponentially with more test-time
compute. Both algorithms require a black-box LLM and nothing else (e.g., no
verifier or reward model) for a minimalistic implementation, which makes them
appealing for practical applications and easy to adapt for different tasks. Through
extensive experiments with diverse models and datasets, we validate the proposed
theories and demonstrate the outstanding scaling properties of both algorithms.

1 Introduction

Despite the astonishing advancements of large language models (LLMs) in the past few years, they
still face challenges with reliability and stability. This hinders their applications in high-stakes
scenarios where a problem need to be solved with success probability 99.9% rather than 90%.
Similarly, in an LL.M-based agentic workflow that involves solving many sub-problems, each of
them need to be solved with near-perfect success rate, since a single error in the process can lead
to an incorrect final output. In these and many other similar scenarios, one is willing to boost
the success probability by spending more test-time compute on LLM inference. One category of
methods for this purpose include iterative approaches like generating a sequential chain of thoughts

*Equal contributions.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

[43L 18] 29115317, 137] or self-refinement [6, [25] 18,50} I51]. Another category, which is the focus of
this work, is about repeatedly sampling multiple solutions and then aggregating them for the final
output; examples include best-of-N sampling [5} 2} 36} 155} [34], majority voting [41} 3, 21]], among
others [[13} 115} 22} 147} 54]. These two categories are complementary and often used together for the
best performance [35] 144, (53} 12} 28]].

Goal of this work. We aim to augment the toolkit of LLM inference scaling with practical algo-
rithms and foundational insights. Throughout this work, we consider a generic problem formulation
where an LLM-based algorithm is given an input problem and asked to output a solution. For
conceptual simplicity, we evaluate any solution with a binary metric indicating whether it is correct
or incorrect. We desire algorithms that enjoy provable inference scaling laws in the following sense:

Definition 1.1. We say that an LLM-based algorithm enjoys a provable inference scaling law for
a specific input problem, if its success probability (with respect to the inherent randomness of the
algorithm) in returning a correct solution to the problem can be boosted arbitrarily close to 100% as
its test-time compute grows, provided that certain clearly identified assumptions about the problem
and the LLM(s) being used are satisfied.

Limitations of existing methods. Strong baseline methods widely adopted in practice may fail
(in theory and practice) to achieve this goal, even if a single LLM call already solves the input
problem correctly with high or moderate success probability. For example, best-of-N (BoN) sampling
with an imperfect verifier might suffer from performance decay as the number of sampled solutions
grows because, as explained in Section 5.1 of [5]], “the benefits of search are eventually outweighed
by the risk of finding adversarial solutions that fool the verifier”. Indeed, prior works highlighted
that developing test-time scaling methods that do not rely on perfect verifiers remains an important
direction for further research [2,36]. Majority voting, another strong baseline, might fail for different
reasons: even if the LLM has moderate probability, say 45%, of generating a correct final answer, the
success probability of majority voting will actually converge to zero as the number of samples grow
if there exists an incorrect final answer that a single LLM call generates with probability 46% [3]].

Main contributions. In pursuit of provable inference scaling laws, we propose a two-stage knockout-
style algorithm that first generates multiple candidate solutions, and then select one via a knockout
tournament where pairwise comparisons among the candidates are conducted. We prove theoretically
that its failure probability decays to zero exponentially (Theorem[2.3) or by a power law (Theorem[2.4)
with respect to the total number of LLM calls, depending on the specific way of scaling. These
guarantees rely on two assumptions: (1) the LLM can generate a correct solution with non-zero
probability, and (2) the LLM can do better than a random guess in choosing the right winner between
any pair of correct and incorrect solutions.

We further propose a two-stage league-style algorithm that also enjoys a provable scaling law. Unlike
the knockout-style algorithm that eliminates a candidate upon loss to a single opponent, the league-
style algorithm evaluates each candidate by its average win rate against multiple opponents. We prove
that its failure probability also decays to zero exponentially (Theorem [3.3) as its test-time compute
scales up, under the technical assumption that there exist correct solutions whose average win rates
against a distribution of opponents are higher than that of any incorrect solution.

Both proposed algorithms require a black-box LLM and nothing else (e.g., no external verifier
or reward model) for a minimalistic implementation, which makes them appealing for practical
applications and easy to adapt for different scenarios. Our practical implementations are efficient
and scalable, with support for parallel and distributed computation. While the technical assumptions
in our theories might seem strong from a practical perspective, our empirical results confirm that
the proposed algorithms — developed based on the theoretical insights — indeed perform well and
demonstrate outstanding scaling properties across diverse LLMs (Llama3. 1, Qwen2.5, GPT-4o,
QwQ-32B) and datasets (GPQA, MMLU-Pro, MATH-500).

2 A two-stage knockout-style algorithm

This section studies the following two-stage knockout-style algorithm for solving an input problem:

1. Generation. We first generate N candidate solutions, which can run in parallel. In situations
where the final answer contains only a few tokens (e.g., for multiple-choice problems or
math calculation), we require that each solution contains a thinking process, which can be
elicited by chain-of-thought (CoT) prompting [43} 18] for example; such information can be

useful for enhancing pairwise comparisons in the next stage.

2. Aggregation. We aggregate the candidate solutions via a knockout tournament. At each
round, the candidates are grouped into pairs randomly, and each pair of candidates are
compared for K times. The winner of each pair is the one that is favored for more than K /2
times; ties are broken randomly. Only the winners will move on to the next round. The
final-round winner at the end of this tournament will be the final output of the algorithm.

Figure [I] visualizes this process. For a mini-
malistic implementation, both stages can be

lemen — (Gondeme)
executed with a single black-box LLM (or
an ensemble of multiple LLMs). We next
introduce some formal notations, followed : -
by our analysis for both success probabil- N —
ity and computational efficiency [16] 4] of oroblem 7] , o
the proposed algorithm, to be presented in
Sections[2.T|and[2.2] respectively.

:
Formal notations. Let Mg, and Mcomp L

denote the probability distribution of the out-
put of one LLM call for generating a solu-
tion and for comparing a pair of solutions
respectively. Given an input problem x, the
proposed algorithm first samples N inde-
pendent candidate solutions 1, ...,yn ~
Meen(2) during the generation stage. Then, for each pair of candidates (y,y’) encountered
in the knockout stage, the algorithm samples K independent comparison results ry,...,7x ~
Meomp(2,9,%'), and identifies the candidate that is favored by the majority of {r;};cx] as the win-
ner. Sampling from M, and Mo, throughout the algorithm is the sole source of randomness in
the following analysis of success probability. The randomness within Mg, and M omp can originate
from LLM decoding with a non-zero temperature, the randomized choice of prompting method or
LLM backend for each LLM call, among others.

Stage 1: generate N candidate solutions Stage 2: aggregate via a knockout tournament

Figure 1: A visualization of the proposed two-stage
knockout-style algorithm, with N = 8 in this example.

2.1 Analysis of success probability

Our theoretical guarantees for the proposed algorithm rely on the following assumption about the
input problem under consideration and the LLM(s) being used.

Assumption 2.1. For the input problem x, there exists pgen > 0 such that
Py My (2) (¥ 18 @ correct solution) > peen > 0.

In addition, there exists peomp > 0.5 such that, for an arbitrary pair of candidate solutions (y,y’)
where one of them is correct and the other is incorrect, it holds that

P Meomp (29,97 (r identifies the right winner) > peomp > 0.5.

In other words, we assume that the LLLM can generate a correct solution with non-zero probability,
and do better than a random guess in comparing a pair of correct and incorrect solutions. Here, pgen
and pcomp are defined for a specific input problem, not for a distribution of problems or a benchmark.
Remark 2.2. While this assumption seems minimal and natural at first glance, its requirement that
Deomp > 0.5 holds for any pair of correct and incorrect solutions renders it somewhat restricted and
non-robust. This will motivate our development for an alternative algorithm and its provable scaling
law under different technical assumptions, to be elaborated in Section

Scaling up both N and K. As N (the number of initial candidate solutions) and K (the number
of times that each pair of solutions involved in the knockout stage are compared) grow, it becomes

more likely that (1) there exist initial candidate solutions that are correct ones, and (2) they tend to be
selected as the winners in pairwise comparisons against incorrect solutions, which together lead to
the correctness of the final output of the algorithm. This is formalized in the following theorem.

Theorem 2.3. If Assumption holds for the input problem, then the probability that the proposed
knockout-style algorithm returns an incorrect final output decays to zero exponentially with respect
to the hyperparameters N and K:

P(failure) < (1 — pgen)™ + [log, N-Ie—QK(pmmp—O.5)2.

A proof can be found in Appendix [B.I] Another way to interpret this theorem is as follows: for a
targeted success probability 1 — § (which can be arbitrarily close to 1 as the failure probability § > 0
approaches zero), it suffices to have

1

Pgen

N>

2[log, NW) (1

log (%) and K = 2(pcompl— 0.5)2 k’g(5

In other words, N and K have logarithmic dependence on 1/4, and linear dependence on 1/ Dgen and
1/(peomp — 0.5)? respectively.

Scaling up N while K is fixed. Although Theorem guarantees an arbitrarily small failure
probability, it requires K to be sufficiently large, depending on the value of peomp that might be
unknown a priori in practice. To resolve this, we provide an alternative theorem suggesting that
scaling up NV alone is sufficient, even when K is a fixed constant and thus there is still a good chance
that the wrong winner is identified when comparing a specific pair of candidates.

To streamline the statement of our theorem, we introduce the notations M omp, k' and Peomp, x> Which
generalize Momp and peomp that appear in Assumption Let Momp,ic denote the probability
distribution of the comparison result obtained with K independent LLM calls followed by majority
voting (with ties broken randomly). Then we have

Py Meomp. 1 (a,y,y) (7 identifies the right winner) > peomp, x> 0.5,

where Peompx = Yoo ica1 (4)Plomp(l = Peomp) ¢ if K is odd, and peompr =
K K — K K/2 . .
Ze=K/2+1 (g)p({omp(l - pcomp)K ¢y %(K/Q)pcoép(l - pC(,mp)K/2 if K is even.

Theorem 2.4. Suppose that Assumption holds and N is a power of 2. Let p; be the prob-
ability that a candidate solution at the i-th level of the knockout tournament is correct, where
1=0,1,...,log, N.E] Then py = pgen and

Pit1 > Di + eomp.rc — 1)(pi —p7) for i=0,1,...,logy N — 1.

Consequently, the success probability of the overall algorithm, namely piog, N, converges to 1 as N
grows; for any 0 < 6 < 0.5, one has piog, v > 1 — 0 as long as

1 =1 1
log, N > og (max{ Do }) n log (25) .
log (1 + (Peomp, ik — 0.5)) —log (1 — (Deomp, K — 0.5))

A proof can be found in Appendix The linear relationship between log, N and log(1/§) reveals
a power-law relationship between the failure probability § and the number of candidates V.

2.2 Analysis of computational efficiency

The minimalistic implementation of the proposed knockout-style algorithm starts by generating N
candidate solutions with NV LLM calls that can run in parallel. Since the number of candidates is
reduced by half at each round of the knockout tournament, there is at most [log, V'] rounds in total.
For notational convenience, let us assume that IV is a power of 2 for the rest of this analysis. At the

’In our notations, the zeroth level of the tournament contains N initial candidates, the first level contains
N/2 winners after the first round of pairwise comparisons, and so on. All candidates within the same level of
the knockout tournament have the same probability of being a correct one, due to their symmetric roles.

t-th round, there are NV, / 2t pairs of candidates, and each pair need K comparisons; thus a total of
K x N/2* LLM calls are needed, which again can be parallelized.

In sum, the total number of LLM calls required by the two-stage algorithm is N + K x), N/2% <
(K + 1) x N, whereas the end-to-end latency, if sufficiently many machines are available, is merely
Toen + 1085 (N) X Teomp, Where Tyen and Tiomp represent the latency of one LLM call for generating
a candidate solution and for comparing a pair of solutions, respectively.

3 A two-stage league-style algorithm

In this section, we propose a two-stage
league-style algorithm that also enjoys Algorithm 1 The proposed league-style algorithm
a provable inference scaling law, under
technical assumptions that are analogous
to but more robust than those required by
the knockout-style algorithm.

Input: the problem z.

1. Generate N candidates y1, ..., yn ~ Mgen(2).

2. Compare each candidate y; against K random oppo-
nents and estimate its average win rate fi; by Eq. ().

The proposed algorithm. To begin Output: the candidate with index ¢ := arg max; [i;.

with, we generate N candidate solu-

tions y1,...,yn ~ Maen(x) as before.
Then, for each candidate with index ¢ € [N], we randomly sample K opponents with indices
0;(1),...,0;(K) € [N]\{¢} uniformly and with replacement, conduct one independent pairwise

comparison against each opponent, and obtain the responses 7; (j) ~ Mecomp (7, ¥i, Yo, (5)) for j € [K].
The average win rate of each candidate y; is then estimated by

- Z ¢ ri(j yzayol)) ()

JG[K

where qﬁ(rl(/)5 Yi> Yo, (;)) denotes the score assigned, based on 7;(j), to the candidate y; in its
comparison against y,, (j), €.g., 1 for a win, 0 for a loss, and 0.5 for a tie. Finally, the candidate with
the highest average win rate fi; is chosen (with ties broken randomly) as the output of the algorithm.
See Algorithm [I]for a summary of this method.

Regarding computational efficiency, the proposed algorithm requires N fully parallelizable LLM
calls for the generation stage, and N x K fully parallelizable LLM calls for the aggregation stage.

Analysis of success probability. For a solution y, we denote its average win rate against Mge, by

Hy = Ey/NMgen(-/I/‘):]ETNMc(\mp(m7y7y/)¢(r7 Y, yl)
Our key assumption is presented below.

Assumption 3.1. For the input problem x, there exist p.s > 0, A > 0, and a way of dividing the set
Y of all possible solutions into three disjoint subsets YV = YVes U Vew U Vine (Where “cs”,

, “cw” and
“inc” stand for “correct-and-strong”, “correct-but-weak” and “incorrect”, respectively), such that

Py Myen(2) (Y € Ves) > pes >0 and ;Ielgl fry = IOBX fiy >A>0.

In other words, we assume that the LLM can generate, with non-zero probability, a correct solution
whose average win rate against M, is higher than that of any incorrect solution; such a solution is
called correct-and-strong by our definition. We also allow the existence of correct-but-weak solutions,
imposing no assumption on their average win rates. Note that Assumption [3.1] can be tolerant of
systematic errors by LLMs in comparing certain pairs of candidates, i.e., it may still hold true when
there exist a correct solution 3 and incorrect solution y’ such that E,. ., Mcomp(a:,y,y/)¢(T7 y,y') < 0.5,
whereas Assumption [2.1] fails in such cases.

Remark 3.2. One limitation of Assumption [3.T]is that it can be broken by an adversarial incorrect
solution whose average win rate is unusually high, similar to the failure mode of best-of-N sampling
discussed in Section[I] Nonetheless, on the presumption (backed by common practice and extensive
empirical evidence) that pairwise comparison is more accurate and reliable than individual point-wise
verification, we might safely say that Assumption [3.1]is conceptually weaker and more robust than
the condition required by BoN (e.g., a perfect point-wise verifier) for provable inference scaling laws.

Intuitively, if Assumption [3.1] holds true and the hyperparameters N and K are sufficiently large,
then with high probability, (1) there exist initial candidates that are correct-and-strong solutions, and
(2) [i; is an accurate estimate of 1, for each ¢ € [N]. These conditions together lead to a correct
final output of the algorithm. We formalize this intuition in the following theorem.

Theorem 3.3. If Assumption[3.1holds for the input problem, then the probability that the league-style
algorithm (with hyperparameters N and K) returns an incorrect final output is bounded by

P(failure) < (1 — pe;)™ + 2Ne KA/8 g N~ (N-DA%/8,

This theorem, whose proof can be found in Appendix ensures that the failure probability of
the league-style algorithm decays to zero exponentially with respect to N and K. Another way to
interpret this theorem is as follows: to guarantee success probability 1 — 4, it suffices to have

N>max{p1cslog (g), %log (g) +1} and K > %log (g)

That is, N and K have logarithmic dependence on 1/, and linear dependence on max{1/p.s, 1/A?}
and 1/A? (up to logarithmic factors) respectively.

Remark 3.4. The provable success of the knockout-style algorithm relies on Assumption 2.1} while
that of the league-style algorithm relies on Assumption[3.1} Although the latter is conceptually more
robust than the former, we note that neither assumption is strictly weaker than the other (and thus
both algorithms have their unique values). In other words, there exist scenarios where Assumption[2.T]
holds true while Assumption@]does not, and also scenarios where the reverse is true. Interested
readers may refer to Appendix [C|for some minimal examples.

4 Experiments

We conduct empirical studies to validate the efficacy and scaling properties of the proposed algorithms,
while bridging their practical performance with the theories developed in previous sections.

Datasets. We use three datasets for our experiments: GPQA [33]], MMLU-Pro [42] and MATH-
500 [26]. GPQA consists of over 1000 graduate-level multiple-choice questions splitted into three
categories (“main”, “diamond” and “extended”), all of which are used in our experiments. MMLU-
Pro contains 14 categories of multiple-choice questions, some of which require advanced reasoning
while others are more knowledge-focused. Due to limited computational resources, we use a randomly
sampled subset of 100 questions for each category of MMLU-Pro in our experiments, which leads to
a total of 1400 questions; we refer to this subset as MMLU-Pro-S throughout this work. MATH-500
is a subset of 500 problems from the MATH dataset introduced in [22]. Due to space limitations, we
focus mainly on GPQA in this section, deferring empirical results for MMLU-Pro-S and MATH-500
(as well as supplementary results for GPQA) to Appendix

Implementations. We use Llama3.1-70B-Instruct (L1ama3. 1 for short) [24]] and Qwen2.5-72B-
Instruct (Qwen2. 5 for short) [49] in our experiments, as well as a Mixed option that uses a mixture
of both LLMs [39, 54, [13]]: during the generation stage, half of the initial candidates are sampled
by Llama3. 1 and the other half by Qwen2. 5; similarly, when a pair of candidates are compared for
multiple times during the aggregation stage, half of them are done by L1ama3. 1 and the other half
by Qwen2.5. The rationale is that the capabilities of different LLMs can be complementary to some
extent, and thus using a mixture of them can make it more likely that Assumptions 2.1|and [3.1|hold
trueﬂ Other models considered in our experiments include QwQ-32B [31]], a long-CoT reasoning
LLM, and GPT-4o [10], a proprietary API-based LLM; due to high computational or monetary costs,
they are tested only on GPQA-diamond for a smaller range of V.

3To formalize this intuition, consider a minimal scenario with two LLMs denoted by M; and My, and
two problems denoted by x1 and x2. Suppose that M; is effective for the first problem x1 (with pgen = 0.2
and peomp = 0.7) but ineffective for x2 (with pgen = 0 and peomp = 0.5), while the reverse holds true for
M>. When either LLM is used alone, only one problem satisfies Assumption [2.1] However, when a mixture
of two LLMs is used, both problems now satisfy Assumption 2.1 with pgen = (0 4 0.2)/2 = 0.1 > 0 and
Peomp = (0.5 +0.7)/2 = 0.6 > 0.5, and thus can be solved by our algorithm.

GPQA GPQA: diamond

0.80
0.600 #Llama3.1 (KO) - @ Llama3.1 (MV) —4-QwQ (KO) -:A- QwQ (MV) Figure 2: Accuracy ver-
Qwen2.5 (KO) Qwen2.5 (MV) 0.75 1 GPT-40 (KO) GPT-40 (MV) .
0.575 { -8-Mixed (KO) - ® Mixed (MV) sus the number of ini-
5 0.550 1 07 tial candidates N for the
€ 0.525 1 g 0651 knockout-style algorithm
=1 . 3
$ 05001 $ 060 (KO), as well as for ma-
0.475 055 jority votmg (MY), a
strong baseline widely
0.450 - 0.50 4 ! :
0.425 1 adopted in practice.

We leverage zero-shot chain-of-thought prompting L8] for both generation and aggregation stages of
the proposed algorithms. Unless specified otherwise, for the knockout-style algorithm, we fix K = 4
for L1ama3. 1/ Qwen2.5/ Mixed, and K = 2 for GPT-40/ QwQ-32B; for the league-style algorithm,
we consider a round-robin [46] version of it, with K = 4 comparisons conducted between each of
(1;/) pairs of initial candidates. To make the proposed algorithms efficient and scalable in practice,
we implement them based on AgentScope [9], a multi-agent framework that supports parallel and
distributed computatiorﬂ Further implementation details can be found in Appendix

In our experiments, we consider a solution as a correct one if its final answer matches the ground-truth
answer, and use accuracy (i.e., the proportion of correctly solved problems) as the performance
metric for running a (deterministic or randomized) algorithm once on a dataset. This metric is, in
expectation, equivalent to the mean success probability of the algorithm on the dataset.

4.1 Results for the knockout-style algorithm

Efficacy and scaling properties. Figure 2|confirms that the accuracy of the knockout-style algo-
rithm improves with N for all LLMs on GPQA or GPQA-diamond. For example, the accuracy of
Mixed improves by 10 points (from 45% to 55%) as N scales to 64, and the accuracy of QuQ-32B
improves by 12 points (from 60% to 72%) as N scales to 16. We also observe that Mixed consistently
outperforms Llama3.1 and Qwen2.5 as IV gets larger, which confirms the previously explained
rationales for using a mixture of different LLMs.

Comparison with majority voting. Figure [2|includes results for majority voting, a strong baseline
widely adopted in practice. It is observed that, for all LLM backends (except for Llama3. 1), the
knockout-style algorithm consistently achieves higher accuracy when given the same number N of
initial candidates. Caution should be taken here: recall from Section [2.2] that the knockout-style
algorithm takes (K + 1) x N LLM calls for solving one problem, i.e., 5 x N for Llama3.1/
Qwen2.5/Mixed and 3 x N for GPT-40/ QwQ-32B, whereas majority voting only requires N LLM
calls. Nonetheless, the knockout-style algorithm still has advantage when this is taken into account,
e.g., its accuracy at N = 8 (resp. 4) is higher than that of majority voting at N = 64 (resp. 16)
for Mixed (resp. QuQ-32B). Moreover, based on the trends shown in Figure[2] it is most likely that
for majority voting, further increasing /N will bring limited performance gains [3] and result in a
converged accuracy lower than what can be achieved by the knockout-style algorithm.

But the theorems promise 100% accuracy, don’t they? The results in Figure [2| are indeed consis-
tent with the theorems developed in Section [2.1] which guarantee that the knockout-style algorithm
can achieve an arbitrarily high success probability for any input problem satisfying Assumption[2.1}
namely pgen > 0 and peomp > 0.5. For a problem that does not, it is still possible that the algorithm
has a chance of solving it correctly (since Assumption is a sufficient condition for its success
and might not be necessary), but there is no formal guarantee. Consequently, for a benchmark or a
distribution of input problems, denoted by D, our algorithm is guaranteed to achieve accuracy at least
P, (x satisfies the assumption) as its test-time compute grows. Indeed, if a benchmark contains an
extremely difficult problem, e.g., “solve the P versus NP problem”, then any test-time scaling method
will fail to achieve 100% accuracy on such a benchmark.

*Our implementations can be found at https://github. com/pan-x-c/AgentScope/tree/feature/
pxc/paper_provable/examples/paper_provable_scaling_law

https://github.com/pan-x-c/AgentScope/tree/feature/pxc/paper_provable/examples/paper_provable_scaling_law
https://github.com/pan-x-c/AgentScope/tree/feature/pxc/paper_provable/examples/paper_provable_scaling_law

To further bridge the empirical results with

. . . GPQA GPQA: subset
theories, let us start by estimating the param- N Prr——rors
. . > b comp = U i
eters Pyen and Peomp in Assumption @ For - ' 0.9
each problem, we define pgen as the propor- . 081 SRR
tion of the N = 64 initial candidate solutions g, e ’
. . <« =1
with a correct final answer, which servesasa ° £077
good proxy for pgen. To find a proxy for peomp, 4 064 KO (0.5) - MV (0.5)
~ . . 2 ! KO (0.6) MV (0.6)
we deﬁr}e pcomp.by picking all LLM calls for S WP <05) = 405 22K (0.7) - MV (0.7)
comparing a pair of correct and incorrect so- 00 o5 10 0.5 ————————
. N N R 1 2 4 8 16 32 64128256
lutions throughout the knockout tournament, — #Pen=01=78 By, #[Poen=11 =89 N

putting higher weights on the comparison re-
sults from later rounds of the tournament, and
taking the sum of the weights of comparisons
that identify the right winner

Figure 3: Left: the distribution of GPQA problems,
characterized by Pgen and Deomp that are estimated with
the knockout-style algorithm (Mixed). Each problem
is represented by a circle if it is solved correctly at
Figure[7)in Appendix [D.2]characterizes the N = 64, and by a cross otherwise. Right: accuracy
distribution of GPQA and MMLU-Pro-S versus N for the knockout-style algorithm and ma-
problems in terms of Py (the X-axis) and jority voting (both with Mixed), on a filtered subset
Peomp (the Y-axis); one such plot can also of problems satisfying 0 < Pgen < 1 and Peomp > T,
be found in Figure [3] (left). On the top where 7 € {0.5,0.6,0.7}. The values of accuracy
half of each scatter plot are problems with are calculated with new trials of the algorithm, thus
Peomp > 0.5, most of which are solved cor- statistically independent of Pgen and Peomp-

rectly by the knockout-style algorithm and

represented as circles. These include some

problems with small pgen, for which the knockout stage successfully identifies a correct candidate
even though the initial candidates are mostly incorrect. We further observe from Figure [7] that,
compared to Llama3.1 and Qwen2.5, the Mixed option achieves Pgen > 0 and Peomp > 0.5 for a
larger proportion of problems, which explains its superior accuracy shown in Figure 2] To further
consolidate this analysis, we pay special attention to the subset of problems satisfying 0 < Pgen < 1
and Peomp > 0.5. These are approximations for the conditions stated in Assumption except that
those easy problems with Dyen = 1 are excluded. We run new, independent trials of the knockout-style
algorithm (Mixed) on this subset. Figure [3](right) confirms that significant improvements in accuracy
(from 55% to 80%) can be achieved by scaling up N, which matches what our theories predict.
Unsurprisingly, the scaling curve still plateaus eventually (since Peomp > 0.5 is merely a proxy for
Peomp > 0.5), and tightening the filtering condition (e.g., Deomp > 0.6 or 0.7) will bring it closer to
100% accuracy.

Intuitions: when does Assumption 2.1 hold? MMLU-Pro-S: engineering MMLU-Pro-S: philosophy

Interestingly, we observe that the scaling prop- 0.701 -=Llama3.1
A . . 0.70 1 Qwen2.5

erties of the algorithm vary across different cat- o Mixed

egories of MMLU-Pro-S, and also across LLM 0-651

backends. For instance, Figure E| shows that the

performance scales well for all of L1ama3. 1/

0.68 1

0.66 1

Accuracy

—#-Llama3.1 0.64

Qwen2.5/Mixed in the “engineering” category, 0-331 TAquenzs
while the scaling of L1ama3. 1 outperforms the Sy e ——~ OAGZAi o
other two options in “philosophy”. An intuitive N N

explanation is that, for a reasoning-focused task
like “engineering”, LLMs can compare the rea-
soning processes of two candidate solutions
side by side, which provides additional infor-
mation compared to generating or verifying an individual solution, and thus leads to a large value of
Deomp and accurate comparison results. In contrast, for a knowledge-heavy task like “philosophy”,

Figure 4: Accuracy versus N for the knockout-style
algorithm on two categories of MMLU-Pro-S.

SThe rationale for weighting the comparison results is explained as follows. In the early rounds of the
knockout tournament, the comparison result between a correct-but-weak candidate and an incorrect candidate
can cause a negative bias in estimating pcomp; similarly, a correct candidate might have a very high win rate
against an opponent that is not only incorrect but also very weak, which can cause a positive bias in estimating
Peomp- In contrast, the correct or incorrect candidates that survive the early rounds of the knockout tournament
tend to be stronger ones, which make the comparison results among them (in later rounds of the tournament)
more reliable and meaningful for the purpose of estimating pcomp.

GPQA GPQA GPQA: subset GPQA

1.0 #14>0.0] = 486

0.5 1 i i! >'0v75
’millﬂm.I

t< 004 i S o0
!!!!guﬂ!lx g

~#-Uama3.1 (LG) -® Llama3.1 (k0) | 0]

Qwen2.5 (LG) Qwen2.5 (KO) " 0.60
-8-Mixed (LG) @ Mixed (KO) -1.0 ’#‘[Aso o] = 408 jI-LIama3 1-4-Qwen2.5-@-Mixed J gk b "

12345678 910111213141516 oo 05 Lo 12345678 910111213141516 12345678 9101112131415
N #[Pes=0]=156 P, #[Pes=1] =142 N M

=
o
¢
Fad
o
¢

)
I
S

o

I

S

0.481 3

~#-Llama3.1 Qwen2.5 -@-Mixed

Accuracy
Accuracy

=
P
o
o
=
®

o
S
S

(@) (b) (© (@

Figure 5: Empirical results for the league-style algorithm. (a) Accuracy versus the number of initial
candidates NV for the league-style (LG, solid lines) and knockout-style (KO, dotted lines) algorithms,
given the same initial candidates. (b) The distribution of GPQA problems, characterized by pes
and A that are estimated with the Mixed option. Each problem is represented by a circle if it is
solved correctly at N = 16, and by a cross otherwise. (¢) Accuracy versus N on the subset of

problems satisfying 0 < pes < 1 and A > 0. The values of accuracy are calculated with new trials of

the algorithm, thus statistically independent of p.s and A. (d) Accuracy versus M, the number of
subsampled opponents for each candidate, for the league-style algorithm with N = 16.

one would not expect significant gains from pairwise comparison if the LLM simply does not have
the right knowledge embedded within its model weights, in which case pcomp might be close to (or
even below) 0.5.

4.2 Results for the league-style algorithm

Efficacy and scaling properties. Figure[5](a) shows that the accuracy of the league-style algorithm
grows with NV for all of Llama3.1, Qwen2.5 and Mixed options on GPQA, e.g., accuracy of
Mixed improves by 8 points (from 45% to 53%) as N grows to 16. The Mixed option consistently
outperforms L1ama3. 1 and Qwen2.5, similar to the case for the knockout-style algorithm. Given the
same initial candidates, the league-style algorithm achieves higher accuracy than the knockout-style
algorithm does in some cases and lower in other cases, although the differences are minor in general.

Bridging with the theories. Let us start by finding proxies for the p.s and A parameters in
Assumption For the former, we define p, as the fraction of initial candidate solutions with the
correct final answer. For the latter, we define A= Hi, — iy, Where i1 = arg maxX;e[nJ: y, is correct i
and 7g = argmax;c(NJ: y; is incorrect i1; are the indices for the strongest correct candidate and for the
strongest incorrect candidate, respectively. Note that by definition, for any problem with pes ¢ {0, 1},

the league-style algorithm returns a correct solution to the problem if and only if A > 0.

Figure [15]in Appendix characterizes the distribution of GPQA and MMLU-Pro-S problems

in terms of p.s (X-axis) and A (Y-axis); the plot corresponding to GPQA and Mixed can also be
found in Figure 3] (b). It is noteworthy that there exists a non-trivial proportion of problems for
which D is fairly small (i.e., most of the initial candidates are incorrect), yet the proposed league-

style aggregation stage still manages to attain a positive A and thus identify a correct candidate

for the final output. On the other hand, for problems with A<0 (which indicates violations of
Assumption [3.1)), there is no success guarantee for the algorithm. Figure [5](c) further confirms that
significant improvements in accuracy, e.g., a 25% increase for Mixed, can be achieved on the subset
of problems that approximately satisfy Assumption[3.1]

Efficacy of subsampling opponents. While all previous experiments consider the round-robin
version of the league-style algorithm, we also wonder if it is feasible to improve its computational
efficiency by estimating the average win rate of each candidate with M/ < N — 1 subsampled
opponents, while maintaining its accuracy. The empirical results in Figure[5](d) provide a positive
answer and match what our theories in Section 3| predict: (1) accuracy initially increases with M,
which confirms the benefits of comparing each candidate with multiple opponents; (2) once M
exceeds a threshold (around 4 or 5) that is much smaller than N = 16, accuracy saturates around the
level achieved by the round-robin version, but at a lower computational cost.

5 Related works

There exist other test-time strategies that enjoy provable inference scaling laws in the sense of
Definition One example is majority voting, whose provable success requires two assumptions
[3L147]: (1) it is feasible to divide the candidate solutions into several groups and have a meaningful
count for each group (which is not the case in tasks like open-ended writing, where all candidate
solutions are distinct), and (2) the probability that one LLM call generates a solution belonging to the
correct group is higher than that for any other group. In comparison, our proposed algorithms are
free from the first restriction, and only require pgen, > 0 while making additional assumptions about
LLMs’ capabilities in pairwise comparisons. Another example is best-of-N (BoN) sampling, for
which deriving a provable scaling law is straightforward provided that a perfect verifier is available:
if one LLM call generates a correct solution with probability pee, > 0, then the failure probability of
BoNis (1 — pgen)N . One obvious limitation is that verifiers are unavailable or imperfect in many
practical scenarios, which can hinder the performance of BoN [5} 136} 2]]. We refrain from comparing
our methods with BoN in our experiments, since introducing an external verifier or reward model will
bring extra variability that makes it difficult to conduct a fair and meaningful empirical comparison.

Our algorithm design has drawn inspiration from various areas. For example, the essential idea of
pairwise comparison has been prominent in LLM alignment [1} 30, 32] and the LLM-as-a-judge
paradigm [S7,[20]. Although it is possible to verify, score or refine a solution by itself [14} 25116} [11],
it is often much easier (for LLMs or human) to detect the errors or hallucinations in an incorrect
solution when it is placed right next to a correct one, or evaluate the quality of a solution by
comparing it to another one. The knockout and league tournaments have also been investigated in
prior LLM research [17} 23156, [19} [13]], albeit with purposes or implementations that are different
from ours. Given this context, we remark that the main novelty and contributions in this work are
perhaps less about the proposed two-stage algorithms themselves, but rather more about developing
rigorous and theoretical understanding of their underlying assumptions and efficacy (via clearly
identifying sufficient conditions for boosting their success probability up to 100% and formally
deriving quantitative bounds for their computational and sample complexities), and demonstrating
their promising empirical performance through extensive experiments.

6 Limitations and future work

One limitation of this work is that, like any other test-time scaling method, the proposed algorithms
trade computation for a higher success rate. Future work may try to find practical ways to determine
the smallest values of hyperparameters N and K necessary for a targeted success probability. We also
note that the provable success of the proposed algorithms relies on technical assumptions that might
not always hold true (as is the case for many other theories), although we anticipate optimistically
that with the ongoing developments of LL.Ms, the assumptions made in this work (and thus our
algorithms) will automatically become feasible for more and more challenging tasks.

Future work may also try to extend the methodologies and theories to broader scenarios, including
(1) evaluating the proposed algorithms in more diverse tasks; (2) combining the proposed algorithms
with other test-time scaling strategies for the best performance [35]]; (3) efficiently amplifying the
success probability of an agentic workflow by applying the proposed algorithms to each sub-task;
(4) converting the proposed methods to anytime algorithms [45] in online scenarios where the amount
of available test-time compute is adaptive and unknown a priori. We defer detailed discussions to
Appendix [A] due to space limitations.

Acknowledgments

The authors would like to thank the anonymous reviewers and Area Chairs for their constructive
feedback that has helped improve this work.

References

[1] Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: 1. the
method of paired comparisons. Biometrika, 39:324, 1952.

10

[2] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré,
and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated
sampling. arXiv, 2024.

[3] Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and
James Zou. Are more llm calls all you need? towards the scaling properties of compound ai
systems. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024.

[4] Yanxi Chen, Yaliang Li, Bolin Ding, and Jingren Zhou. Designing algorithms empowered by
language models: An analytical framework, case studies, and insights. Transactions on Machine
Learning Research, 2025.

[5] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv, 2021.

[6] Jared Quincy Davis, Boris Hanin, Lingjiao Chen, Peter Bailis, Ion Stoica, and Matei Zaharia.
Networks of networks: Complexity class principles applied to compound ai systems design.
arXiv, 2024.

[7] DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv, 2025.

[8] Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improv-
ing factuality and reasoning in language models through multiagent debate. In Forty-first
International Conference on Machine Learning, 2024.

[9] Dawei Gao, Zitao Li, Xuchen Pan, Weirui Kuang, Zhijian Ma, Bingchen Qian, Fei Wei, Wenhao
Zhang, Yuexiang Xie, Daoyuan Chen, Liuyi Yao, Hongyi Peng, Zeyu Zhang, Lin Zhu, Chen
Cheng, Hongzhu Shi, Yaliang Li, Bolin Ding, and Jingren Zhou. Agentscope: A flexible yet
robust multi-agent platform. arXiv, 2024.

[10] Hello gpt-40. https://openai.com/index/hello-gpt-4o0/, 2024.

[11] Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying
Song, and Denny Zhou. Large language models cannot self-correct reasoning yet. In The
Twelfth International Conference on Learning Representations, 2024.

[12] Yixin Ji, Juntao Li, Hai Ye, Kaixin Wu, Jia Xu, Linjian Mo, and Min Zhang. Test-time
computing: from system-1 thinking to system-2 thinking. arXiv, 2025.

[13] Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language
models with pairwise ranking and generative fusion. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1416514178,
2023.

[14] Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott Johnston,
Sheer El-Showk, Andy Jones, Nelson Elhage, Tristan Hume, Anna Chen, Yuntao Bai, Sam
Bowman, Stanislav Fort, Deep Ganguli, Danny Hernandez, Josh Jacobson, Jackson Kernion,
Shauna Kravec, Liane Lovitt, Kamal Ndousse, Catherine Olsson, Sam Ringer, Dario Amodei,
Tom Brown, Jack Clark, Nicholas Joseph, Ben Mann, Sam McCandlish, Chris Olah, and Jared
Kaplan. Language models (mostly) know what they know. arXiv, 2022.

[15] Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Paul Saldyt, and Anil B Murthy. Position: Llms can’t plan, but can help
planning in llm-modulo frameworks. In Forty-first International Conference on Machine
Learning, 2024.

[16] Sayash Kapoor, Benedikt Stroebl, Zachary S. Siegel, Nitya Nadgir, and Arvind Narayanan. Ai
agents that matter. arXiv, 2024.

11

https://openai.com/index/hello-gpt-4o/

[17] Akira Kawabata and Saku Sugawara. Rationale-aware answer verification by pairwise self-
evaluation. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, 2024.

[18] Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
Large language models are zero-shot reasoners. In Advances in Neural Information Processing
Systems, volume 35, pages 22199-22213, 2022.

[19] Sangkyu Lee, Sungdong Kim, Ashkan Yousefpour, Minjoon Seo, Kang Min Yoo, and Youngjae
Yu. Aligning large language models by on-policy self-judgment. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 11442-11459, 2024.

[20] Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad Beigi, Chengshuai Zhao, Zhen Tan,
Amrita Bhattacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu, Kai Shu, Lu Cheng, and Huan
Liu. From generation to judgment: Opportunities and challenges of llm-as-a-judge. arXiv,
2024.

[21] Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and Deheng Ye. More agents is all you need.
Transactions on Machine Learning Research, 2024.

[22] Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The
Twelfth International Conference on Learning Representations, 2024.

[23] Tiangi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and
Jialu Liu. Statistical rejection sampling improves preference optimization. In The Twelfth
International Conference on Learning Representations, 2024.

[24] Llama Team, Al @ Meta. The llama 3 herd of models. arXiv, 2024.

[25] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[26] Math-500. https://huggingface.co/datasets/HuggingFaceH4/MATH-500, 2024.

[27] Soheil Mohajer, Changho Suh, and Adel Elmahdy. Active learning for top-k rank aggregation
from noisy comparisons. In Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pages 2488-2497. PMLR,
2017.

[28] Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi,
Luke Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple
test-time scaling. arXiv, 2025.

[29] OpenAl Openai ol system card. https://openai.com/index/
openai-ol-system-card/, 2024.

[30] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis
Christiano, Jan Leike, and Ryan J. Lowe. Training language models to follow instructions with
human feedback. In Advances in Neural Information Processing Systems, 2022.

[31] Qwg-32b: Embracing the power of reinforcement learning. https://qwenlm.github.io/
blog/qwq-32b/} 2025.

[32] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
In Advances in Neural Information Processing Systems, 2023.

12

https://huggingface.co/datasets/HuggingFaceH4/MATH-500
https://openai.com/index/openai-o1-system-card/
https://openai.com/index/openai-o1-system-card/
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/

[33] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024.

[34] Rylan Schaeffer, Joshua Kazdan, John Hughes, Jordan Juravsky, Sara Price, Aengus Lynch, Erik
Jones, Robert Kirk, Azalia Mirhoseini, and Sanmi Koyejo. How do large language monkeys get
their power (laws)? arXiv, 2025.

[35] Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute
optimally can be more effective than scaling model parameters. arXiv, 2024.

[36] Benedikt Stroebl, Sayash Kapoor, and Arvind Narayanan. Inference scaling flaws: The limits
of llm resampling with imperfect verifiers. arXiv, 2024.

[37] Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li,
Chenjun Xiao, Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang,
Enming Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing
Guo, Han Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu
Lu, Haoze Li, Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang
Guo, Jianlin Su, Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu,
Lidong Shi, Ling Ye, Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan,
Qucheng Gong, Shaowei Liu, Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao
Jiang, Weihao Gao, Weimin Xiong, Weiran He, Weixiao Huang, Wenhao Wu, Wenyang He,
Xianghui Wei, Xianqing Jia, Xingzhe Wu, Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan,
Y. Charles, Yang Li, Yangyang Hu, Yangyang Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao
Qin, Yifeng Liu, Ying Yang, Yiping Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida Zhou,
Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu Wang, Zhilin Yang, Zhiqi Huang,
Zihao Huang, Ziyao Xu, and Zonghan Yang. Kimi k1.5: Scaling reinforcement learning with
llms. arXiv, 2025.

[38] Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data
Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University
Press, 2018.

[39] Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents
enhances large language model capabilities. arXiv, 2024.

[40] Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, Binghuai Lin, Yunbo Cao, Lingpeng
Kong, Qi Liu, Tianyu Liu, and Zhifang Sui. Large language models are not fair evaluators.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 9440-9450, 2024.

[41] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023.

[42] Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo,
Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and
challenging multi-task language understanding benchmark. In Advances in Neural Information
Processing Systems, 2024.

[43] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi, F. Xia, Quoc
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models.
In Advances in Neural Information Processing Systems, 2022.

[44] Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham
Neubig, Ilia Kulikov, and Zaid Harchaoui. From decoding to meta-generation: Inference-time
algorithms for large language models. Transactions on Machine Learning Research, 2024.

[45] Wikipedia. Anytime algorithm. https://en.wikipedia.org/wiki/Anytime_algorithm,
2024.

13

https://en.wikipedia.org/wiki/Anytime_algorithm

[46] Wikipedia. Round-robin tournament. https://en.wikipedia.org/wiki/Round-robin_
tournament) 2024.

[47] Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. An empirical analysis
of compute-optimal inference for problem-solving with language models. arXiv, 2024.

[48] Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang,
Junzhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong,
Yuhao Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin,
Shihan Dou, Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng,
Xipeng Qiu, Xuanjing Huang, and Tao Gui. The rise and potential of large language model
based agents: A survey. arXiv, 2023.

[49] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqgiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv, 2024.

[50] Zhangyue Yin, Qiushi Sun, Cheng Chang, Qipeng Guo, Junqi Dai, Xuanjing Huang, and Xipeng
Qiu. Exchange-of-thought: Enhancing large language model capabilities through cross-model
communication. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pages 15135-15153, 2023.

[51] Zhangyue Yin, Qiushi Sun, Qipeng Guo, Zhiyuan Zeng, Xiaonan Li, Tianxiang Sun, Cheng
Chang, Qinyuan Cheng, Ding Wang, Xiaofeng Mou, Xipeng Qiu, and Xuanjing Huang. Ag-
gregation of reasoning: A hierarchical framework for enhancing answer selection in large
language models. In Proceedings of the 2024 Joint International Conference on Computational
Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 609-625, 2024.

[52] Matei Zaharia, Omar Khattab, Lingjiao Chen, Jared Quincy Davis, Heather Miller, Chris
Potts, James Zou, Michael Carbin, Jonathan Frankle, Naveen Rao, and Ali Ghodsi. The shift
from models to compound ai systems. https://bair.berkeley.edu/blog/2024/02/18/
compound-ai-systems, 2024.

[53] Zhiyuan Zeng, Qinyuan Cheng, Zhangyue Yin, Bo Wang, Shimin Li, Yunhua Zhou, Qipeng
Guo, Xuanjing Huang, and Xipeng Qiu. Scaling of search and learning: A roadmap to reproduce
ol from reinforcement learning perspective. arXiv, 2024.

[54] Kexun Zhang, Shang Zhou, Danqing Wang, William Yang Wang, and Lei Li. Scaling llm
inference with optimized sample compute allocation. arXiv, 2024.

[55] Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh
Agarwal. Generative verifiers: Reward modeling as next-token prediction. In The 4th Workshop
on Mathematical Reasoning and Al at NeurIPS’24, 2024.

[56] Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J. Liu.
Slic-hf: Sequence likelihood calibration with human feedback. arXiv, 2023.

[57] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LL.M-as-a-judge with MT-bench and chatbot arena. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023.

14

https://en.wikipedia.org/wiki/Round-robin_tournament
https://en.wikipedia.org/wiki/Round-robin_tournament
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope, matching both theoretical and experimental results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of this work are discussed in Section [6l
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

15

Justification: Technical assumptions are stated in Sections[2]and [3] Complete proofs can be
found in Appendix

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed information needed to reproduce the main experimental results can
be found in Section[dand Appendix [D]

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided the GitHub link to our codebase, as well as sufficient
instructions to reproduce the main experimental results, in Section d]and Appendix

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details necessary to understand the experimental results can be found in
Section] and Appendix [D}

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Error bars are not reported because it would be too computationally expensive
to run the necessary experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: This work involves a large number of experiments that were executed on
different days and possibly on different machines, which makes it difficult to track the
computer resources for each of them. We have provided detailed information about the
datasets, LLMs and hyperparameters (e.g., [N and K) for our experiments, which can be
useful for estimating the amount of computer resources needed to reproduce the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

18

https://neurips.cc/public/EthicsGuidelines

11.

12.

Justification: This work is foundational research, and we do not see obvious societal impacts
that this work will make.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This work poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of all assets used in this work have been
properly credited, e.g., we have cited in Section 4] the papers for the datasets and LLMs used
in our experiments.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

19

13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

20

paperswithcode.com/datasets

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

Structure of the appendix

This appendix is organized as follows. Appendix [A]supplements the discussions in Section 6] about
potential extensions of the current work to broader scenarios. Appendix [B]includes the proofs for
our main theorems, and Appendix [C| presents some minimal examples that assist our understanding
about how Assumptions [2.1] and [3.1] compare with each other. Appendix [D]includes additional
implementation details and the prompt templates used throughout our experiments, as well as
supplementary empirical results.

A Discussions: extensions to broader scenarios

Combination with other test-time strategies. The proposed two-stage methods are orthogonal
and complementary to many other test-time scaling strategies. For example, our experiment with
QwQ-32B shows that the performance of a long-CoT reasoning LLM can be further boosted with the
knockout-style algorithm. Future work may investigate systematic approaches of combining different
inference scaling strategies for achieving the best performance [33]].

Application to agentic workflows. In complex real-world scenarios, a common practice is to adopt
an agentic workflow that decomposes the original task into manageable sub-problems and involves
multiple LLM calls to solve all of them [52] 48], 4]. Applying the knockout/league-style algorithm
proposed in this work to each sub-problem can efficiently amplify the success probability of the overall
workflow. To see how this works, consider a scenario where solving the original problem requires
solving all S > 1 sub-problems correctly, and each sub-problem satisfies Assumption with
parameters pgen > 0 and peomp > 0.5. Directly solving all S sub-problems has a exponentially small
success probability p*ggen, and thus generating a correct solution alone already requires Q((1/ pgen)s)
attempts, not to mention identifying which attempt is successful. In contrast, by applying the
knockout-style algorithm (with hyperparameters N and K) to each sub-problem, an overall success
probability 1 — 4 for solving the original problem can be guaranteed as long as the failure probability
for each sub-problem is bounded by §/5, thanks to the union bound. According to Eq. (I), this is
guaranteed with

N>

1 1 2[logy NS
5 log ()
Pgen 2(pcomp - 05) 0
both with logarithmic dependence on S. The total number of LLM calls with this approach is
(K +1) x N x S (cf. Section|[2.2), which grows with S linearly, up to logarithmic factors.

10g<¥> and K >

Anytime algorithms for online settings. In many real-world scenarios, the available amount of
test-time compute is adaptive and unknown a priori. To address such cases, we can easily convert
the knockout-style algorithm to an “anytime” variant [45]] that does not require pre-specifying N.
For example, the algorithm might start with 4 candidate solutions and choose the winner via a
knockout tournament. If more test-time compute is allowed (e.g., the user is not eagerly requesting
the solution, or more computational resources become available), then the algorithm can launch
another tournament with 4 freshly sampled candidates, the winner of which will compete with the
winner of the previous tournament. This complete process is indeed equivalent to a single tournament
with N = 4 + 4 = 8. Such a process can continue until the user finally requests the solution; the
eventual value of N is determined online and automatically achieves the maximum value allowed by
the available test-time compute. Similarly, the league-style algorithm can be converted to an anytime
variant, where the total number of candidates and/or the number of comparisons for each candidate
increase gradually as more test-time compute becomes available. It would be interesting future work
to investigate such anytime algorithms from a theoretical or practical perspective.

B Proofs of main theorems

B.1 Proof of Theorem[2.3|

To begin with, we have a straightforward analysis for the failure probability of the generation stage of
the algorithm, where N candidate solutions are sampled independently:

P(no candidate solution is correct) < (1 — pgen)™ .

22

As for the knockout stage, let us first consider a single pair of correct and incorrect candidate solutions.
Recall that they are compared for K times with K LLM calls (followed by majority voting), and each
LLM call identifies the correct candidate solution as the winner with probability p1 > peomp > 0.5 by
assumption. Therefore, the failure probability of comparing this pair of candidates can be bounded as
follows, where X; denotes an independent Bernoulli random variable with mean w:

P(failure of comparison) < IP’(Z X; <) (Z X; <0. 5)
1€[K]

2{ED> Xi—ﬂg—(u—tw))

i€[K]
< exp (— 2K (p— 0.5)2) < exp (— 2K (Peomp — 0.5)2).
Here we use Hoeffding’s inequality [38] in the last line.

Now we are ready to control the failure probability of the complete knockout stage. Let us condition
on the event that the generation stage succeeds, i.e., there is at least one initial candidate solution
that is correct. We arbitrarily pick a correct candidate, and focus on its path to the final output of
the algorithm in the binary tree visualized in Figure [l} We claim that, with high probability, the
comparison (with K LLM calls) for each pair along this path yields the correct outcome. This can be
proved by induction: for each pair along this path, if one of the input candidates (which is the output
of the previous pairwise comparison on this same path) is correct, then the output of comparing this
pair will also be correct with a failure probability no greater than exp(—2K (peomp — 0.5)?), regardless
of whether the other input candidate is correct or not. By taking a union bound over the failure events
along this path with [log, | pairs to be compared, we claim that the comparison for each pair along
this path yields the correct outcome (which immediately implies that the final output of the algorithm
is correct), with a failure probability no greater than [log, N exp(—2K (Pcomp — 0.5)?).

Finally, taking a union bound over the failure events of both stages of the algorithm completes our
proof of Theorem [2.3]

Remark B.1. There exists analysis in the literature of top-k ranking (e.g., Section 4.1 of [27]) that are
similar to our analysis for the knockout stage. We choose to present our own version here to make
our work more self-contained and complete.

B.2 Proof of Theorem 2.4

For the first part of the theorem, we can derive p;1; from p; as follows. Notice that a candidate at the
(i 4 1)-th level of the knockout tournament is the winner of pairwise comparison between a pair of
statistically independent candidates at the i-th level. Thus, the winner is a correct solution if both
candidates of the pair are correct, or only one of them is correct and happens (with probability at least
Peomp, K DY assumption) to be chosen as the winner. Therefore,

Dit1 = p? + 2pi(1 - pi)pcomp,K = P? + 2pcomp,K(pi - p%) =pi—pit+ p? + 2pcomp,K(p7l - pZQ)
=pi+ (2pcomp,K - 1)(pi - p?)
This implies p; 1 > p;, as long as peomp,x > 0.5 and p; < 1.

For the second part of the theorem, we consider the convergence of {p;} in two cases: when it is still
below 0.5, and when it has exceeded 0.5.

e If p; < 0.5,then 1 — p; > 0.5, and
Pi+1 = Pi + (2Pcomp,k — 1)(1 — pi)p;
> pi + (Peomp,x — 0.5)p;
= (1 + (Peomp, K — 0~5)>pz‘~
In other words, the sequence {p;} grows exponentially when it is below 0.5, and
log (max{ 51— She ,13)

~ log (14 (peomp,x — 0.5))
3

J
DJ > Dgen (1 + (Peomp, & — 0.5)) >0.5 aslongas J>

23

» For any ¢ > J and hence p; > 0.5, we have
1 —pit1 <1 —pi — (2Pcomp,x — 1)pi(1 — pi)
<1-p;— (pcomp,K - 05)(1 _pi)

= (1 - (pcomp,K - 05))(1 _pi)-
In other words, the sequence {1 — p; } converges to 0, and
i-J] i—J
1—p; < (1 - pJ) (1 - (pcomp,K - O~5)) < 5 (1 - (pcomp,K - 0-5)) <6

1
i J> log (55) _ 4)
- IOg (1 - (pcomp,K - 05))

Putting Eq. (3) and Eq. (@) together concludes our proof of the theorem.

as long as

B.3 Proof of Theorem 3.3
To begin with, we have a straightforward analysis for the generation stage:

P(us ¢ Yes, Vi € [N]) < (1= pu)

For the aggregation stage, we aim to show that for each ¢ € [IN], the estimated average win rate fi;
calculated within the algorithm is close to its average win rate against Mg, denoted by pi; == py, .
To see this, let us recall the definitions of j; and [i;, as well as introduce a new notation z;:

Mg = Ey/NMgen(x)]ETNMcomp(acvyi7yl)¢(r7 yi’y/)’
/’(‘i = ﬁ Z ET"’Mcon1p(x:yi1yj)¢(r’ y'“y7)
JEINN{i}
=E, ~Unif(yj,je[I Ere Mo (21,5 (15 Y ¥,
= Z ¢ rz yzaym]))
JE[K

Note that in the last line, y,, ;) ~ Unif(y;,j € [N]\{7}), and 7;(j) ~ Meomp(Z,¥is Yo, (j))- B
Hoeffding’s inequality, we have the following for each ¢ € [N]:
A <9 (KA?)
— exp (—
=7)= p 3)

PO A
P(l“z - ,uil > Z) (’ Z (b Tz ywyol(]))
E[K]

~ A 1 A

]P)(Lul _:U'z| > Z) P(‘]V—l , Z ' ETNMcomp(w,yi,yj)d)(Ta yivy]) Hi| = 4>
JEINN{i}
(N — 1)A2)
5 .

These, together with the fact that |zz; — w;| < |f; — @] + |; —], implies that

P(mi—ﬂi‘Z%)SPOM il > i)ﬂP’(Im il > ﬁ)
2

=)+26Xp(—¥).

§2exp<—

§26Xp(—

Finally, taking a union bound over i € [N] and over both stages of the league-style algorithm, we
have the following: with probability at least

KA?

17(1*pc5)N*2N6XP(*)*2N€XP(*%)7

there exists some ¢ € [N] such that y; € Vi, and |fi; — p;] < A/2forall j € [N]. These conditions,
together with the assumption that min,cy,, pt, — maxyey,. fy > A, guarantee that the final output
of the algorithm is a correct solution.

24

C Examples for understanding and comparing the assumptions

This section presents some minimal examples for assisting our understanding of Assumptions
and@ and in particular, for comparing the condition peomp > 0.5 stated in the former and A > 0
stated 1n the latter. For simplicity, we assume that the set of all possible candidate solutions returned
by the generation stage, denoted by), has a small number of unique elements, e.g.,) = {4, B, C}.
We use the notation pa = Py ., (2)(y = A), and let P(A > B) denote the probability that one
comparison between A and B identifies the former as the winner. When two identical candidates are
compared, we assume that tie is broken randomly and thus either candidate wins with probability 0.5.
All average win rates involved in these examples are calculated with respect to the distribution Mgey,.

Example C.1. We demonstrate a scenario where both Assumptions @] and @] hold, and there
is a correspondence between the parameter peomp in the former and A in the latter. Suppose that
Y = {A, B}, where A is correct and B is incorrect. In addition, p4 = a,pp = 1 — «, and
P(A = B) = peomp > 0.5. Then we can calculate the average win rate of each candidate as follows:

pta =pax0.5+Dp X peomp = 0.5 X & + Peomp % (1 —)
= (0'5 - pcomp) X &+ Peomp,
uB =pB %X 0.5+ pa x (1= peomp) =0.5x (1 =)+ (1 = peomp) X @
= (0.5 — Peomp) X a + 0.5,
which implies that
A =pa— B = Peomp — 0.5 >0
is independent of the value of .

Example C.2. We demonstrate a scenario where both Assumptions[2.T|and[3.T]hold, but the parameter
A in the latter can be much smaller than peomp — 0.5 in the former. Suppose that) = {A, B, C},
where only A is correct. In addition, ps = pp = o, pc =1 — 2a, P(A > B) = peomp > 0.5, and
P(A > C) =P(B > C) = 0.9. Then we can calculate the average win rate of each candidate as
follows:

pta =pax0.5+Dpp X peomp + pc % 0.9 =a x (0.5 + peomp) + (1 — 2a) x 0.9,
wB =pa *x (1 = peomp) + 2B X 0.5+ pc x 0.9 =a x (1.5 — peomp) + (1 — 2a) x 0.9,
pic =pa x 0.1+ pp x 0.1 +pc x 0.5 —ax02+(1-2a)x 0.5,

which implies
A= HaA — uUB = 20 X (pcomp - 05)

As aresult, A > 0 can be much smaller than peomp — 0.5 if o is small.
Example C.3. We demonstrate a scenario where Assumption [2.1holds true but Assumption [3.1]does
not. Suppose that Y = {4, B, C'}, where only A is correct. In addition, p4 = 0.2,pp = 0.2, pc =
0.6, P(A = B) =P(A > C) = 0.6, and P(B - C) = 0.9, which satisfies Assumption 2.1} Then
we have

pwa=pax05+pp x0.6+pcx0.6=0.58,

up =pa x04+pp x0.5+pc x0.9=0.72,

e =pa X 0.4+ pp x 0.1+ pc x0.5=0.40.
In other words, the average win rate of the only correct solution A is lower than that of an incorrect
solution B, which violates Assumption [3.1]

Example C.4. We demonstrate a scenario where Assumption [3.1holds true but Assumption[2.1]does
not. Suppose that Y = {4, B, C'}, where only A is correct. In addition, p4 = 0.2,pp = 0.2, pc =
0.6, P(A > B) = 0.4,P(A = C) = 0.9, and P(B > C) = 0.5, which violates Assumption [2.1]
However, we have

pwa=pax05+ppx04+pcx0.9=0.72

up =pa x0.6+pp x0.5+pc x0.5=0.52,

o =pa X 0.14+pp x0.5+pc x0.5=0.42,

which satisfies Assumption since the only correct solution A has the highest average win rate.

25

MMLU-Pro-S MATH-500
—#-Llama3.1 Qwen2.5 -8-Mixed

4
©
S

0.76

o
©
vl

Accuracy
e o K
~ ©
w o

o
N
N

Accuracy

o

~

N
s

—#-Llama3.1

0.70

Qwen2.5 -@—Mixed T./.’/‘.’/‘.\.\.
T T T T

T T T
0.50
1 2 4 : 16 32 64 1 > 4 " 8 16 3

Figure 6: Accuracy versus the number of initial candidates /N for the knockout-style algorithm on
MMLU-Pro-S (left) and MATH-500 (right).

D Supplementary materials for experiments

D.1 Additional implementation details

Throughout our experiments, the temperature for LLM decoding is set to 0.5 for the generation stage,
and 0.1 for pairwise comparisons during the aggregation stage. Our early exploration suggests that
these choices strike a good balance between diversity and preciseness in LLM decoding.

During the generation stage, we ask the LLM (via zero-shot CoT prompting [[18]) to generate a
reasoning process first and then its final answer. For each pairwise comparison during the aggregation
stage, we also leverage zero-shot CoT prompting and ask the LLM to think step by step before
deciding which solution in the pair is more plausible, unless specified otherwise. Tables [I] and 2]
at the end of this section include the prompt templates used in our experiments for GPQA and
MMLU-Pro-S, both of which are multiple-choice datasets. The prompt templates for MATH-500 are
largely the same, only slightly adjusted to account for the desired output formats. Some parts of our
prompts, as well as code for parsing LLMs’ responses and extracting the answers for evaluation, are
modified from those in the official GitHub repository of MMLU-Préﬂ

To account for the positional bias of LLMs [57, |40], we ensure that when a pair of candidates
are compared for multiple times, they are placed in one order within the prompt for half of the
comparisons, and in the opposite order for the other half.

Due to the high computational or monetary costs of the experiments, we have run the knockout/league-
style algorithm only once for each <model, dataset> combination. To enhance the stability and
reliability of the plots in this paper, we take the following approaches:

* For the knockout-style algorithm, we take advantage of its binary tree structure (shown in
Figure[T). After running the algorithm once with N = 64, we automatically get the results
of 64 independent trials for N = 1, 32 trials for N = 2, 16 trials for N = 4, and so on. We
have thus taken the average of accuracy values from multiple independent trials for each
datapoint (except for the rightmost one) in each scaling curve.

* For the league-style algorithm, after running it once with N = 16, we are able to obtain
the results of multiple trials for N = 8 (or any value smaller than 16), each corresponding
to 8 randomly sampled candidate solutions and the comparison results among them. Each
datapoint (except for the rightmost one) in each scaling curve has been calculated by an
average of multiple results obtained this way.

D.2 Additional results for the knockout-style algorithm

Experiments with more datasets. Figure[6| validates the efficacy of the knockout-style algorithm
on MMLU-Pro-S and MATH-500.

Distribution of problems. Figure[7illustrates the distribution of GPQA and MMLU-Pro-S prob-
lems, characterized by Dgen and Peomp that are estimated with the empirical results for the knockout-

Shttps://github.com/TIGER-AI-Lab/MMLU-Pro/tree/main

26

https://github.com/TIGER-AI-Lab/MMLU-Pro/tree/main

GPQA GPQA GPQA

1.00 A#[&m >051=538 . cpem 1.00 {#[Pegmp > 0.5] = 500 - 1.00 ~#Wcomp > 0.51 = 620 -0 0qm
S 4 X 0 33 "
A SIS AR R R o8
0.75 { o 3S¥ 2R, b Ly 0.75 = ; N 0751 %
o o B = B
£ 3 g (A g g
§ 0.50 1~ o - s 0.50 Sl Ak *] P § 0.50
“a “a (s hogte 5 “a
3 ok % ° e %

0.25 1 0254 % 4t : 0.25 1

&

0-00 i <0.5] = 466 000 148, ,p=0.51 = 361 0.00 ‘#mompso 51 = 405
0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00 000 025 050 075 1.00
#[Pgen = 0] = 99 Pyen #[Pgen =11 = 89 #lPuen=01=164 Py, #[Pgen =11 = 167 #[Pgen=01=T78 Pyen #[Pgen =11 = 89
MMLU-Pro-S MMLU-Pro-S MMLU-Pro-S
1.00 A#[P amp > 0.5 =530 = 1.00 $#1Pcomp > 0.51 = 356 1.00 f#lPeomp>051=578
i or S
0751 39‘;% ﬁx 0.75 b 0751 4 L S
¥ 8 JGe A 2
§ 0.50 M‘% Q% i £ 00 g § 050 15

o » . e "~ i ¢ o
0254 % SRR % 0.254 #. 0.25
0.00 0.00 0.00 1

#Fﬁmmpso.sl =258 #{Promp=0.5] = 228 WP omp=0.5] = 232

T T , T T T T v T T + v
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

#[Pgen=0] = 91 #[Pgen =11 = 521 #[Pgen = 0] = 127 #[Pgen = 1] = 689 #[Pgen =01 =71 #[Pgen =11 = 519

Pgen Poen Poen

Figure 7: The distribution of GPQA (top) and MMLU-Pro-S (bottom) problems, characterized by
Degen and Deomp that are estimated with the empirical results for the knockout-style algorithm using the
Llama3.1 (left), Qwen2.5 (middle) or Mixed (right) option. Each plot is annotated with the number
of problems satisfying the condition Deomp > 0.5, Deomp < 0.5, Dgen = 0 0F Pgen = 1. To the right of
each plot is a histogram for Deomp. Each problem is represented by a circle if it is solved correctly
by the knockout-style algorithm with N = 64, and by a cross otherwise. We neglect problems with
ﬁgen = 0 or 1, i.e., problems for which the initial candidate solutions are all incorrect or all correct,
since there is no way of obtaining meaningful estimate of Peomp for such problems.

GPQA: diamond GPQA: diamond
1.00 HPeomp>051=69 s ee 1.00 #1Peomp >051 =105 . oo
oo LR $
0.75 0.75
g boo | g
§ 0.50 £ 50.9 £ § 0.50
<« <’
% > o,
0.25 0.25
0-00 1418 <051 = 30 000 1418 =051 = 54
T T T T T T

T T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

#[Pgen=0] = 25 ﬁygn #[Pgen=11=74 #[Pgen=0] = 25 ;Sge" #[Pgen=11= 14

Figure 8: The distribution of GPQA-diamond problems, characterized by Pgen and Deomp that are
estimated with the empirical results for the knockout-style algorithm using the QwQ-32B (left) or
GPT-4o (right) option. Other settings are the same as those in Figurem

style algorithm using the L1ama3.1 (left), Qwen2.5 (middle) or Mixed (right) option. Similarly,
Figure |§| illustrates the results for QwQ-32B and GPT-4o.

Ablation: the impact of K. The results in Figure [9]suggest that the performance of the knockout-
style algorithm is insensitive to K (the number of times that each pair of candidates are compared) in
the setting of our experiments, as long as ' > 2 for L1lama3.1 and Qwen2.5, or K > 4 for Mixed.
This is mainly due to our choice of a small temperature (0.1) for LLM calls that conduct pairwise
comparisons. For L1ama3.1 and Qwen2.5, K = 2 suffices to cover all prompting options, i.e., the
order in which two candidate solutions are placed within the prompt. Similarly, for Mixed, K =4
suffices to cover both prompting options and both LLM backends.

Ablation: the impact of CoT prompting for pairwise comparison. Figure [T0] confirms the
benefits of using zero-shot chain-of-thought prompting for the aggregation stage of the knockout-style
algorithm (versus prompting the LLM to answer directly which solution is preferred), especially as
the test-time compute scales up. This matches the intuition that CoT prompting improves LLMs’
performance in conducting pairwise comparisons.

27

0.55 -

0.50 -

Accuracy

045 & Llama (K=2) -~ Qwen (K=2)
—#-Llama (K=4) -4-Qwen (K=4)
-# Llama (K=8) -A- Qwen (K=8)
0.40 + -8-Mixed (K=4) - ® Mixed (K=8)

6 1‘0 2‘0 3‘0 46 56 60
N

Figure 9: The impact of K for the knockout-style algorithm.

GPQA MMLU-Pro-S
0.54
0.75 4
0.52 1
0.74 4
3 0.50 oy
g 073
3 0.48 i
< < 0.72
0.46 !
0.44 -# Llama3.1-noCoT Qwen2.5-noCoT 0.71 4 -® Llama3.1-noCoT Qwen2.5-noCoT
! —#-Llama3.1-CoT —A-Qwen2.5-CoT —#-Llama3.1-CoT —A-Qwen2.5-CoT
— T T T T T T 0.70 -+ T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
N N

Figure 10: The advantages of zero-shot chain-of-thought prompting for pairwise comparisons,
versus prompting the LLM to answer directly which solution is preferred (dashed lines), during the
aggregation stage of the knockout-style algorithm.

Results for each category of GPQA and MMLU-Pro-S. Figure[T1]includes empirical results of
the knockout-style algorithm for each category of GPQA, while Figures[12]and [T3]include those for
MMLU-Pro-S.

GPQA: diamond GPQA: diamond GPQA: diamond GPQA: diamond
1.00 {#(Peomp>0.51 =101 1.00 f#{Peomp > 0.51 = 90 o 1.00 f#1Peomp > 0.51 = 112 -
A 3 3 o ® g0,
5 00,9 3o %
-~ . o o o 4 %ol ey
055 0757 , o . e e 0754 = T 0751 % g0y ;.," B2
B aox & ° 0% yoon of &P 00e%%, o
3 U o AR . AV e s
g ¥, . g ® g] o H
S os0 50504 -Q};, #“,’!wy Wywe 5050 § 050 Wk 5
3 B o x o x %
g « x) *
025 0.25 0.25{ ol x
0.45
o -Llama3.1-4-Quen2.5 -e-Mixed | 000 000945, 5051 = 55 0:00 14 20,51 = 62
T 3 & & 15 3 o 0.00 025 050 075 1.00 000 025 050 075 1.00 0.00 025 050 075 1.00
N #[Pgen=01=17 Pgen #[Pyen=11=11 #[Pgen =01 = 24 Poen #{Pgen=11=29 #[Pyen=01=12 Pgen #lBgen=11= 12
GPQA: extended GPQA: extended GPQA: extended
GPOA: extended 1.00 [P =051 =230 p 1,00 JFProms > 051 = 222 1,00 J#Pamp>051=279 o =
0.550 | —#-Llama3.1-4-Quen2.5 -8-Mixed .~ e % e e of 3 X]
8og® 2 e X s 8
0.525 0751 23 fion 5 0.75 o S 075 ?
R o | e . " % 3 R
g 0.500 5 0.50 - § 0.50 {-si e > 5 0.50
5 <o % o " o’
g X ST R N
20475 0.25 m e x "‘: Mz 0.25 4 %% 0.25
0.450 Boxkw N
o 0.00 = 0.00 5 051171 0-00 1B pp=0.51 = 189
: S S S S A S 0.00 025 050 075 1.00 000 025 050 075 1.00 0.00 025 050 075 1.00
N #[Pgen =01 = 47 Pgen #[Pgen=1] = 39 #[Pgen =01 =75 Poen #{Poen=11=78 #[Pgen=0] =39 Pgen #[Pgen=1] = 39
GPQA: main GPQA: main GPQA: main
GPQA: main Q — Q — Q
f#(Pgmp > 0.5] = 188 1.00 {#Pome>0.51=229 4 oo
054 450 e AP,
052 v 0751 © somutde b ok '5.»4%
5% 2% Ko oy A 4 2 GO Vs ey
€050 0 £ 050 XY
H] o o B
2048 0.25 %
0.46 ®
044 —m-Llama3.1-4-Qwen2.5 -&-Mixed l#1Beomp=0.51 = 135 0-00 145" <0.51=154
T 3 4 s 1 % o 000 025 050 075 1.00 000 025 050 075 1.00 000 025 050 075 1.00
N #{Pgen =01 = 35 Poen #lPoen=11=39 #[Pgen =01 = 65 Boen #lPyen=11=160 #lPyen =01 = 27 Prn #lPor=11=138

Figure 11: Empirical results of the knockout-style algorithm for each category of GPQA.

28

o o o
& 2 @
2 &8 &8

Accuracy

°
Y
2

Accuracy

o o o o o
% 5 ® @ o
8B 23 828

o
®
&g

Accuracy

Accuracy

° ° °
® m Y
2 i i+

Accuracy

°
»
8

o o
a3
& 3

°
2
8

Accuracy

o
n
a

Accuracy
e o o0
S 32 3
RN

°
Y
8

Figure 12: Empirical results of the knockout-style algorithm for each category of MMLU-Pro-S (Part

1.

MMLU-Pro-S: biology

-B-Liama3.1-4-Quwen2.5 -o-Mixed 7

MMLU-Pro-S: business

-#-Llama3.1-4-Qwen2.5 -@-Mixed

1 2) 8 16 32 64
N

MMLU-Pro-S: chemistry

-#-Llama3.1 -4-Qwen2.5 -8~ Mixed

MMLU-Pro-S: computer_science

-#-Llama3.1 -A-Qwen2.5 -8-Mixed

1 2 4 8 16 32 64

N

MMLU-Pro-S: economics

/ -#-Llama3.1 -A-Qwen2.5 -#-Mixed

1 2 4 8 16 32 64
N

MMLU-Pro-S: engineering

-#-Llama3.1-4-Qwen2.5 -@-Mixed

-

2) 8 16 32 64

MMLU-Pro-S: health

-B-Llama3.1-A-Qwen2.5 &~ Mixed

-
IS
©
&
w
N
@
2

Peomp

MMLU-Pro-S: biology
[#1Peomp > 0.51 = 23

0.25
=3

050 075 1.00
Pgen #1Poen=
MMLU-Pro-S: business

[#Pomp<0.51 = 9
0.00 025 050 075 1.00
#[Pyen=01=3 Pgen #[Pgen=1] = 41
MMLU-Pro-S: chemistry
[#1Peamp > 0.51 = 56,
os o o

L4

° °®

Lo g
x N bk

[#Pomp<0.51 = 18
0.00 025 0.50
4

Byen -2

MMLU-Pro-S: computer_science

0.25
#[Pgen=01=8

050 075 1.00

Poen #1Poen=1] = 39
MMLU-Pro-5: economics
[#1Peomp > 0.5] = 26

025
#Poen=01=5

0.50 0.75 1.00

Pgen #[Pgen=1] =54
MMLU-Pro-S: engineering
-

cos gy
° e

0.00 025

050 075 1.00
#[Pgen=01=3 P

Pgen #Pgen=11=11
MMLU-Pro-S: health

0.00
#[Pgen=01= 10

025 050 075 1.00

Pgen #[Poen =11 = 47

#1Poen =01 = 4

MMLU-Pro-S: biology
[#Peomp > 0.51 = 19 o

B [Promp=0.51 = 10
0.00 025 0.50

0.75 1.00
Boen #Poen=1] = 67
MMLU-Pro-S: business
#[Peomp > 0.5] = 25

B (Peomp=0.51 = 13

000 025 050 075 1.00
#[Pgen=01=3 Pgen #[Pgen =11 =59
MMLU-Pro-S: chemistry
1.00 f#{Peomp > 0.51 = 35 o 0®
0.75
o
g
0.50
o
0.25
0:00 f4(p,y=0.51 = 16
000 025 050 075 1.00
#1Poen=0]=6 Pgen #[Pgen=1]= 43

#[Pgen=0] = 10

MMLU-Pro-S: computer_science

[#[Peomp > 0.51 = 25 =e

.
#‘[ﬁ <05]=13 . .
000 025 050 075 1.00

Boen #lPeen=11=52

MMLU-Pro-S: economics

[#Peomp > 0.5 = 18 o
bt (Promp=0.51 = 6
000 025 050 075 1.00
#[Pgen =01 =11 Pgen #[Pyen=1] = 65
MMLU-Pro-S: engineering
[#1Peomp > 0.5] = 52 -

#[Poen=01=3

#Pgen =01 = 16

29

B (Promp=0.51 = 23
000 025 050
Poen
MMLU-Pro-S: health
[(Peomp > 0.5] = 16

075 1.00
#[Pgen=11=22

bt [Peomp=0.51 = 18
0.00 025 050

0.75 1.00

Poen #[Pyen =11 = 50

Peomp

Peomp

MMLU-Pro-S: biology

1.00 J#1Pcomp > 0.51 = 28 -
* . e
o 00 m ®
075 . o n g e
I
0.50 =
s ®
0.25
0-00 1413 <051 =11
0.00 025 050 075 1.00
#Poen=01 =2 Poen #Pgen
MMLU-Pro-S: business
1.00 {#{Peomp>0.51 = 50
ot ¥
. i
075 ope -2
N ot o o
0.50 —
0.25
0:00 41 =051 = 0
0.00 025 050 075 1.00
#1Pgen=01=2 Pgen

MMLU-Pro-S: chemistry

1.00 f#{Peomp > 0.51 = 56 5=
IR
AN A
075 o . e,
e ® . .
)
0.50
025
0:00 11 20,51 = 12
0.00 025 050 075 1.00
4 P

MMLU-Pro-S: computer_science
1.00 {#(Peomp > 0.51 = 47 R

R
0757 ¢ = e %
050 #
025
000 J415 .51 =0

000 025 050

#[Poen=01=6 Pgen
MMLU-Pro-5: economics
[#1Peomp > 0.51 = 30

1.00 o ep
. L 4
0151, . .0
050 -
0.25
000 14p ppp=0.5) = 11
0.00 025 050 075 1.00
#[Pyen=01=14 Pgen
MMLU-Pro-S: engineering
1.00 {#1Peomp > 0.5] = 67 -
. HES AN
ors) FoTg sl
. o ° B 4 e,
0.50 e
0.25
000 Y4p =051 = 20
0.00 025 050
#[Pyen=01=1 Pgen
MMLU-Pro-S: health
1.00 f#1Peomp > 0.51 = 30 o
075 e : .
. . ©
0.50 3
025
0:00 11 00,51 = 20
0.00 025 050 075 1.00
#[Poen=01=7 Pgen #[Pyen=11= 43

MMLU-Pro-S: history

Accuracy
o o
[
S0

°
3

°
3

_/./-/'\'\./'

ma&] ~A-Qwen2.5 -®-Mixed o

MMLU-Pro-S: law

Accuracy

-#-Llama3.1-4-Qwen2.5 -@-Mixed

-

2) 8
N

MMLU-Pro-S: math

16 32 64

o
©
3

Accuracy
°
@
&

o
®
3

-#-Llama3.1 -4-Qwen2.5 -8-Mixed

16 32 64

MMLU-Pro-S: other

-#-Llama3.1 -A-Qwen2.5 -8-Mixed

-
IS
©

MMLU-Pro-S: philosophy

Accuracy

-#-Llama3.1 -4-Qwen2.5 -8-Mixed

0.825
0.800
0.775
0.750

Accuracy

0.725
0.700
0.675

IS

8 16
N

32

MMLU-Pro-S: physics

-B-Llama3.1-4-Qwen2.5 -8 Mixed

1 2 4 8 16 32 64

N

MMLU-Pro-S: psychology

Accuracy
°
S
3

e
2

-#-Llama3.1-4-Qwen2.5 -8~ Mixed

Figure 13: Empirical results of the knockout-style algorithm for each category of MMLU-Pro-S (Part

2).

1 2 4 8

Beomp

Peomp

Peomp

Peomp

Peomp

Peomp

Peomp.

MMLU-Pro-S: history

1.00 {#lPeomp > 0.51 = 26 ..
e =

. .

075 o el
x o
0.50 - g Sy
0257 * e
0-00 Y4 . <0.5] = 20 [
000 025 050 075 1.00

#[Ppen=01= 9 Pgen 45

MMLU-Pro-S: law

1.00
075
%
0.50 {
025
0.00
000 025 050 075 1.00
#[Pyen=0] = 14 Pgen #[Pgen=11=9

MMLU-Pro-S: math

1.00
075
0.50 1
025
0.00
0.00 025 050 075 1.00
#[Pgen 1 Pgen 36
MMLU-Pro-S: other
1.00 {#1Peomp > 0.51 = 35 -r —
% . ° e tpm
075 —
X xe x " o -
050
x % =
025 e i
0-00 1485 .51 = 15 : ;
0.00 025 050 075 1.00
#Boen=0] = 10 Pgen #1Poen =11 = 40

MMLU-Pro-S: philosophy
[#1Peomp > 0.51 = 36

1.00
075
0.50 1
0.25
0.00
0.00 025 050 075 1.00
#[Pyen=01=9 Pgen #[Pgen=1]=33
MMLU-Pro-S: physics
1.00 {#(Peomp>0.51 = 51

075
0.50 1
025
0.00
000 025 050 075 1.00
#Poen=01=5 Byen #1Poen=11=26
MMLU-Pro-S: psychology
1.00 f#1Peomp > 0.51 =19 o
13 S
075 " =
SO
0.50 1
025
0.00
0.00 025 050 075 1.00
#[Pgen=01=7 Byen #Pyen=1]= 57

MMLU-Pro-S: history

1.00 J#1Peomp > 0.51 =12
0.75 s
§ 0.50
o
0.25
000443 =05 = 19
000 025 050 075 1.00
#[Pgen=0] = 12 Bgen #[Pgen =11 = 57
MMLU-Pro-S: law
1.00 #1Peomp > 0.5 = 36 o
.
0.75 -
§ 0.50
o *
0.25
0-00 (=051 = 22
000 025 050 075 1.00
#[Pgen =01 = 23 Poen #[Pgen=11=19
MMLU-Pro-S: math
1.00 {#Peoms > 0.5 = 28 .o
0.75
o
g
0.50
o
0.25
00045 =051 =8
000 025 050 075 1.00
#1Poen=01=1 Poen #[Pgen=11= 63
MMLU-Pro-S: other
1.00 {#1Pomp > 0.51 = 14 =
0.75
§ 050
«
0.25
000 Y45, p=0.51 = 21
000 025 050 075 1.00
#[Pgen=0] = 14 Bgen #[Pgen=1]1 =51
MMLU-Pro-S: philosophy
1.00 #Peomp > 0.51 = 20 -
0.75
§ 0.50
BN
0.25
000415 0.5 = 28
000 025 050 075 1.00
#[Poen =0] = 11 Pgen #Poen=1] = 41
MMLU-Pro-S: physics
1.00 ¥1Peomp > 0.5] = 40 ou
’
0.75
£ 050 =2
o
0.25
0:00 fu(p =051 = 10
000 025 050 075 1.00
#1Poen=01=4 PByen #[Pgen =11 = 42
MMLU-Pro-S: psychology
1.00 {#1Peoms > 0.51 = 16 .
.
0.75 >
o
§ 050
«
0.25
0:00 Y4B =051 = 17
000 025 050 075 1.00
#1Poen=01=9 Ben #[Pgen=1] = 58

30

Peomp

Peomp

Peomp

Peomp

Peomp

Peomp

Peomp.

MMLU-Pro-S: history

1.00 {ftlPeomp > 0.51 = 27 .
Ce. 0%
075 i O o o
s e
0.50 T
0.25
0-00 Y4 . <0.51 = 23
0.00 025 050 075 1.00
#(Pgen=01=7 Pgen
MMLU-Pro-S: law
1.00 JFlPomp>0.51=26 —
00 o
0.75 ‘e ° ® o0 o° ‘e’
. T8 e
0.50 -5 :
i)
025
0:00 141 20,5 = 31
0.00 025 050 075 1.00
#1Poen =01 =13 Pgen

MMLU-Pro-S: math

1.00 J#lPeomp>0.51=54
. ° %%
0.75 {1ty
050
025
000 15 50516
0.00 025 050 075 1.00
#Pgen 1 Pgen

MMLU-Pro-S: other

1.00 {#(Peomp > 051 = 32 N
o P
cas
S . s
075 4 git
o . N
050 =
025
0-00 1415 ppys.51 = 16 : ;
000 025 050 075 1.00
#Boen=0]= 10 Poen

MMLU-Pro-S: philosophy

1.00 {#1Pcomp > 0.51 = 37 .
0.75 v igtiet- Y
°s 1y o8®
Kx o oXg .
0.50 f 5
0.25
000 141p =05 = 26
0.00 025 050 075 1.00
#[Pyen=01=6 Pgen
MMLU-Pro-S: physics
1.00 {#(Peomp > 051 = 50
.
0754 *
o o
0.50 2
025 =
000 Yup =051 = 19
0.00 025 050
#1Pgen=01=2 Pgen

MMLU-Pro-S: psychology
[#1Pcomp > 0.51 = 24

1.00 -
o %

075 5% Lo

0.50

025 *

0:00 110,51 = 10

0.00 025 050 075 1.00
#{Pgen=01=6 Pgen #[Bgen=11= 51

MMLU-Pro-S MMLU-Pro-S

— 0.765
A EE® SARiReReEGEl 0.760
0.751 0.755 A
> 1 A0 e .y >
goray g g t® g 0750 /—‘/kkﬁa—w‘
=1 =1
3 0.73 1 3
2 - g 0.745
: -m-Llama3.1 (LG) -# Llama3.1 (KO) 0.740
0.71 1 —4—Qwen2.5 (LG) -A- Qwen2.5 (KO)
-8-Mixed (LG) - ® Mixed (KO) 0.7351 /" —m-Llama3.1 -4 Qwen2.5 —8-Mixed
[- S
12345678 910111213141516 12345678 9101112131415
N M

Figure 14: Empirical results for the league-style algorithm on MMLU-Pro-S. Left: accuracy versus
the number of initial candidates N for the league-style (LG, solid lines) and knockout-style (KO,
dotted lines) algorithms, given the same initial candidates. Right: accuracy versus M, the number of
subsampled opponents for each candidate, for the league-style algorithm with N = 16.

GPQA GPQA GPQA
1.0 $#IA>0.0] = 411 R 1.0 $#1A>0.0] = 373 1.0 4#1A>0.0] = 486
. : cied
] >0 0
ol it st sninii| oo il
TR T
= oo I ST HUL - ool diiiild
‘ LLELLIE LA ‘ TH L L : L LLLEEM
¥ pEane gEis *
~0.51 " —o54 i —os{ fEAHE
04, :) 0 X of -
- k(A=0.0] = 452 : -L kiA=0.0] =341 . . -L #(4=0.0] = 408 :
0.00 025 0.50 075 1.00 0.00 0.5 0.50 0.75 1.00 0.00 025 0.50 075 1.00
#[Pgen=01=186 Py, #[Pgen =11 = 143 #[Pgen=01=247 Py, #[Pgen=1]= 231 #[Pgen=01=156 Py,, #[Pgen =11 = 142
MMLU-Pro-S MMLU-Pro-S MMLU-Pro-S
1.0 4#14>0.0] = 401 1.0 4#[A>0.0] = 281 1.0 $#14>0.0] = 453
0.5 1+--¢ig oogoﬁ 0.5 o 0.51 g 3‘
I H sl
< 0.0 ;‘“l Lh., 24 < oot-# ':’ﬁgﬂg 2o < 00 “;“! Bdes
LU | THLLH LLEL b
"% ¥ gEat ¥ LE]
-0.579 . & -054 © -059 FE%%
L] L]
-1.01 -1.04 -1.01

l#[A=0.0] = 231 W#[A=<0.0] = 182 l#[A=0.0] = 225
0.00 025 0.50 0.75 1.00 0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00
#[Pgen = 0] = 139 #[Pgen =11 = 629 #[Pgen =01 = 164 #[Pgen=11= 773 #[Pgen = 0] = 109 #[Pgen =11 = 613

Bgen Pyen Pgen

Figure 15: The distribution of GPQA (top) and MMLU-Pro-S (bottom) problems, characterized

by pes and A that are estimated with the empirical results for the league-style algorithm using the
Llama3.1 (left), Qwen2.5 (middle) or Mixed (right) option. Each plot is annotated with the number

of problems satisfying the condition A > 0, A < 0, pes = 0 or pes = 1. To the right of each plot is a

histogram for A. Each problem is represented by a circle if it is solved correctly by the league-style
algorithm with N = 16, and by a cross otherwise. We neglect problems with p,; = 0 or 1, i.e.,
problems for which the initial candidate solutions are all incorrect or all correct, since there is no way

of obtaining meaningful estimate of A for such problems.

D.3 Additional results for the league-style algorithm

Results for MMLU-Pro-S. Figure [[4]includes empirical results for the league-style algorithm on
MMLU-Pro-S.

Distribution of problems. Figure [T3]illustrates the distribution of GPQA and MMLU-Pro-S

problems, characterized by p.s and A that are estimated with the empirical results for the league-style
algorithm using the L1ama3. 1 (left), Qwen2.5 (middle) or Mixed (right) option.

A closer look at both algorithms and their differences. Figure [I6|provides a detailed comparison
between the empirical performance of both algorithms. It characterizes the distribution of GPQA
and MMLU-Pro-S problems in terms of pcomp from the knockout-style algorithm and A from the
league-style algorithm, and provides the concrete number of problems that one algorithm solves
correctly/incorrectly and the other algorithm solves correctly/incorrectly.

31

GPQA (Llama3.1) GPQA (Qwen2.5) GPQA (Mixed)

1001 o KR-LR (# = 341) 1001 o KR-LR (# = 332) 1.001 4 KR-LR (# = 420)
KR-LW (# = 85) KR-LW (# = 60) KR-LW (# = 62) .
0759 . KW-LR (# =72) 3 0.754 KW-LR (# = 41) 07519 KW-LR (# = 66) LIS o
KW-LW (# = 365) KW-LW (# = 281) | KW-LW (# = 346) o e I
0.50 N 0.50 : 0.50
0.25 0.25 0.25
w o N6
9 0.00 0.00 - 0.00 4
g Lt
-0.25 1 —0.254 g * L ~0.25
- :
—0.50 4 ~0504 4 ¥y H ~0.50 4
% H
-0.754 ! & -0.754 * ~0.754
-1.004 -1.004 -1.004
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
#Boen =01 = 186 Poomp #1Paen=11=143 #Poen =01 = 247 Peomp #lPyer=11=231 #Byen = 0] = 156 Beomp #lPyen=11= 142
MMLU-Pro-S (Llama3.1) MMLU-Pro-S (Qwen2.5) MMLU-Pro-S (Mixed)
1.001 o KR-LR (# = 365) « o 1.009 & KR-LR (# = 261) 1.001 o KR-LR (# = 420)
KR-LW (# = 30) KR-LW (# = 34)
0.75 0.75 KW-LR (# = 20) 0.75 KW-LR (# = 33)
KW-LW (# = 152) KW-LW (# = 191)
0.50 0.50 . 0.50
0.25 0.25 . 0.25
4 * o2
D000 ey B | 0.00 Ao e Toled 0,00 e
~0.251 -0.251 o FEPENA ~0.251
x, B M
~0.50 4 -0.50 ¥ -0.504 &
% "
% ®
—0.754 * -0.751 # ~0.754 #
-1.00 4 -1.00 4 -1.00 4
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
#[Pgen=0] = 139 Peomp #[Bgen =11 = 629 #[Pgen=0] = 164 Peomp #[Boen=11=773 #[Pgen=0] = 109 Peomp #Pgen =11 = 613

Figure 16: The distribution of GPQA (top) and MMLU-Pro-S (bottom) problems, characterized by
Peomp from the knockout-style algorithm and A from the league-style algorithm (both with N = 16)
using the L1ama3.1 (left), Qwen2.5 (middle) or Mixed (right) option. The following abbreviations
are used for the legend: K — knockout, L. — league, R — right, W — wrong. For example, “KW-LR
(# = 66)” means that there are 66 problems for which the knockout-style algorithm did wrong while
the league-style algorithm did right.

GPQA: diamond GPQA: diamond GPQA: diamond

GPQA: diamond - - —
0.550 o JHA>001=73 1.0 J#1a>0.01 = 67 1.0 J#[4>0.0] = 84
0525 05 s 0.5 °“x°gE§
. 'Y e e seeteltec.
3 0.500] 8, 1°% TP | H LIS
4 0.0] < 0.0 EI IR EL
g 0475 x 2ui
< -0.5 -059 % *
0.450 -
0.425 -#-Llama3.1 - Qwen2.5 -@-Mixed 10 4<0.0) = 55 ~10 li<0.0) = 66
s 5o 75 100 135 150 000 025 050 075 1.00 000 025 050 075 1.00 000 025 050 075 1.00
N #Poen=01=31 P, #lPeen=11=20 #Poen=01=36 Py, #[Poen=11=40 #Poen=01=27 By, #lPen=11=21
GPQA: extended GPQA: extended A GPQA: extended) GPQA: extended
i [¢14>0.01 = 163 Jrid>001=217
052 1.0 1.0 . 1.0 B
050 05 05 H 05] 'E
. - of o
. RITRIATH T it
g) HIHTLH T TR
€ 0.48 < 0.0 < oo p-drittrly ey < 00 I
H IO | HLHLLE
2 046 ~0.54 —054 §RE*ER —05 gHxER
H
0.44
-#-Llama3.1 4-Qwen2.5-0-Mixed | ~107ui 1.0 Yy (i<0.0] = 162 1.0 {y(4=0.0] = 196
0.42 ; ; T T T] : T T T
25 50 75 100 135 150 000 025 050 075 1.00 000 025 050 075 1.00 000 025 050 075 1.00
N #Poen=01=81 Py, #[Pen=11=65 #Poen=01=114 fu,, #lPger=1]=107 #Poen=01=66 Py, #lPen=11=67
GPQA: main GPQA: main A GPQA: main A GPQA: main
0.54 [#14>0.01 = 143 1.0 J#tA>0.0]=185
o e
0.52 0.5 °
N s§ostd STH ﬂa!!ﬂ !
goso ! TIEH < oolchisiliitisqz;
< i ML L LA
g 0.48 I'H 54 LE
g i —os1 |l
0.46
044 -m-Llama3.1 -4-Qwen2.5 ~o-Mixed) 0 leh<0.0] = 124 ~1.0914<0.0] = 146
25 50 75 100 135 150 000 025 050 075 1.00 000 025 050 075 1.00 000 025 050 075 1.00
N #Poen=01=74 P, #[Pen=11=58 #MPpun=01=97 B, #lPn=11=84 #Poen=01=63 P, #[Peen=11=54

Figure 17: Empirical results of the league-style algorithm for each category of GPQA.

Results for each category of GPQA and MMLU-Pro-S. Figure[I7)includes empirical results of
the league-style algorithm for each category of GPQA, while Figures [T8and [T9]include those for
MMLU-Pro-S.

32

MMLU-Pro-S: biology

MMLU-Pro-S: biology

0.89

0.88

Y

9
0.87

0.86

Accura

0.85

0.84

e

f ~B-Llama3.1 -4-Qwen2.5 -8-Mixed

MMLU-Pro-S: biology

25 50 75 100 125 150
N

MMLU-Pro-S: business

-#-Llama3.1 -4~ Qwen2.5 -®-Mixed

25 50 7.5 100 125 150
N

MMLU-Pro-S: chemistry

o o
© @
g &

Accuracy
°
S
b

0.70

0.65

-#-Llama3.1 -4-Qwen2.5 -&-Mixed

25 50 7.5 100 125 150
N

MMLU-Pro-S: computer_science

Accuracy
e o o o
O
80308

o
Y
N

~#-Llama3.1 -4-Qwen2.5 -#-Mixed

0.815
0.810
> 0.805
[
4
5 0.800
3

0.795

Ac

0.790
0.785

25 50 75 100 125 150
N

MMLU-Pro-S: economics

-#-Llama3.1 -4~ Qwen2.5 -o-Mixed

25 50 75 100 125 150
N

MMLU-Pro-S: engineering

1.0 {#1A>0.01 =19 1.0 f#14>0.01 =13
0.51 0.5
. H
k< 0.0 LR < 0.0 2
" X x
-051 : -05
~10Y1i<0.0 = 10 L0 fiz00= 11
0.00 025 050 075 1.00 0.00 025 050 0.75 1.00
#[Pgen=01=5 Pgen #[Pgen=1] = 66 #[Pgen=0]= 4 Bgen #lPgen=11=72
MMLU-Pro-S: business MMLU-Pro-S: business
1.0 #[4>0.01 = 38 1.0 {#1A>0.01 =21
0.59 0.5 o8 e
0
k< 0.0 < 00
-0.51 -05
-1.01 -1.0 441400
0.00 025 050 075 1.00 0.00 025 050 075 1.00
#[Pgen=0]=4 Boen #[Pgen =11 = 46 #[Pgen=0]=3 Ben #[Pgen=1] = 67
MMLU-Pro-S: chemistry MMLU-Pro-S: chemistry
[#14>0.0] = 31
sty
l#1d<0.0] = 13
0.00 025 050 075 1.00 0.00 025 050 0.75 1.00
#[Pgen=01=9 Poen #[Pgen=1] =31 #[Pgen=0]=8 Boen #[Pgen=1] = 48
MMLU-Pro-S: computer_science MMLU-Pro-S: computer_science
1.0 4 1.0 {#14>0.01 =22
0.5 0.5 o8
k< 0.0 < 00
—0.51 -05
-1.01 10 ic00) =0
0.00 025 050 075 1.00 0.00 025 050 0.75 1.00
#[Pgen=0] =10 Pgen #(Pgen=11= 48 #[Pgen=0] = 10 Pen #[Pgen=11= 59
MMLU-Pro-S: economics MMLU-Pro-S: economics
1.0 #14>0.0) =17 1.0 f#14>0.01 =13
0.51 0.5 .
k< 0.0 < 00
-0.51 -05
“107, M0 %hs00=7 i !
0.00 025 050 075 1.00 000 025 050 075 1.00
#[Pgen=0]=9 Ben #[Poen=11= 61 #[Pgen=0] = 12 Poen #lPoen=11=168

MMLU-Pro-S: engineering

o o
Y o
3 &

Accuracy

o
o
a

—#-Llama3.1 ~4-Qwen2.5 ~®-Mixed

1.0 f#14>0.01=38

25 50 7.5 100 125 15.0

MMLU-Pro-S: health

Accuracy
e o o o
[
N -

o
S
3

Figure 18: Empirical results of the league-style algorithm for each category of MMLU-Pro-S (Part 1).

75 100 125 15.0

0.5
k< 0.0
-0.51
-1.0
0.00 025 050 075 1.00
#[Pgen=01=8 Pgen #[Pgen=11= 19
MMLU-Pro-S: health
1.0
0.5
k< 0.0
—0.5
-1.01
0.00 025 050 075 1.00
#[Pgen=0] = 12 Boen #[Pgen=1] = 56

MMLU-Pro-S: engineering
[#1A>0.0] = 42

1.0
N
05 . [
¢ .
@ 0.04-at 2.8
-05
~10Y4<0.0) = 20
0.00 025 050 0.75 1.00
#[Pgen=0] = 11 Pgen #[Pgen=1]=27
MMLU-Pro-S: health
1.0 {#4>0.01 =17
0.5
< 0.0
-05
-10 tAs0.01=13 : :
0.00 025 050 0.75 1.00
#[Pgen=0] = 17 Ben #[Pgen=1] =53

33

MMLU-Pro-S: biology

1.0 f#lA>0.01=25
0.51
°o go o
¢ 09 .
<@ 00 PRXM |
-0.51
10 %ic001 =8
0.00 025 050 075 1.00
#[Pgen=0]=3 Pgen #[Pgen=1]= 64
MMLU-Pro-S: business
1.0 #[4>0.01 = 40
) N1
0.5 oo o 80y
s % %.3° 8
< 0.0 g
-0.51
“10%gic00
0.00 025 050 075 1.00
#[Pgen=01=2 Pgen #[Pgen=1] = 50
MMLU-Pro-S: chemistry
1.0 H#14>0.01 =51
o
0.54 NILL
© acggec.cte
RO RS 38 1 ATTRIT
-0.59
10 %001 = 0
0.00 025 050 075 1.00
#[Pgen=01=6 Pgen #[Pgen=1]=34

MMLU-Pro-S: computer_science

#[A>0.0] = 30

1.0 7
0.51 S
. o 8337 13
4 0.0 #
—0.51
“10hic00) =14
0.00 025 050 075 1.00
#1Poen=01=6 Pgen #[Pgen=11=50
MMLU-Pro-S: economics
1.0 J#14>0.0) =19
8
0.5 o e
® e ®es
®e
< 0.0 % 2
-0.54
-0 Tidso0i=11 I ;
000 025 050 075 1.00
#[Pyen=01=8 Ben #1Boen=1] = 62
MMLU-Pro-S: engineering
1.0 f#14>0.01 =52
0.51
.
@ 0.0ty A0
'
-0.51
10 li<00 =24
0.00 025 050 075 1.00
#[Pgen=01=8 Pgen #[Pgen=1]= 16

1.0 #14>0.01=26

MMLU-Pro-S: health

0.5 g °f
T IR
o o O

<@ 00 2 *

~0.5

%001

000 025 050 075 1.00
#[Pgen=0] = 11 Boen #[Pgen =11 = 49

MMLU-Pro-S: history

MMLU-Pro-S: history

Accuracy
o o
[
¥ 3

o
3
N

o
3
3

-#-Llama3.1 —+-Qwen2.5 -&-Mixed

#[A>0.0] = 21

100 125 15.0
N

MMLU-Pro-S: law

0.00 025 050 075 1.00
#[Pgen =01 =12 Pgen #[Pgen =11 = 56
MMLU-Pro-S: law

Accuracy
o o
e
2 &

o
o
0

-#-Llama3.1 -4-Qwen2.5 -®-Mixed

1.0 #14>0.0] = 42

25 50 7.5 100 125 150
N

MMLU-Pro-S: math

0.5
< 0.0+
-0.54
-1.01
0.00 025 050 075 1.00
#[Pgen=0] =24 Pgen #[Poen=1] = 18

MMLU-Pro-S: math

0.90 1

0.851

Accuracy

°
@
3

0.751

—#-Llama3.1 -4-Qwen2.5 -8-Mixed

1.0 H#14>0.01=37

75 100 125 15.0

MMLU-Pro-S: other

0.00 025
#[Poen=01=4 Pgen
MMLU-Pro-S: other

050 075 1.00
#1Poen =

Accuracy
o o o 9o 9
2 3 3 3 3
2 3 233

o
Y
&

~#-Llama3.1 -4-Qwen2.5 -#-Mixed

IR

7.5 100 125 15.0
N

MMLU-Pro-S: philosophy

1.0
0.54
< 0.01
-0.51
10 ic0.0 =14
0.00 025 050 0.75 1.00
#[Pgen=0] = 14 Pgen #[Pgen=

MMLU-Pro-S: philosophy

0.68

Accuracy
o o
2 o
2 3

o
EY
iy

—#-Llama3.1-A-Qwen2.5 -@-Mixed

1.0 J#14>0.01= 26
.

25 50 7.5 100 125 150

N
MMLU-Pro-S: physics

A

0.5 A —

< 00 ; x : ?
—os54 " =

-o Tids001=10 I ;
000 025 050 075 1.00
#[Pyen=0] = 14 Pgen #[Pgen=1] = 41
MMLU-Pro-S: physics

0.80
0.78
0.76
0.74

Accuracy

0.72
0.70
0.68

-m-Llama3.1 -4 Qwen2.5 -&-Mixed

f#[A>0.0] = 33

50 75 100 125 150
N

MMLU-Pro-S: psychology

0.25
#[Pgen=01=6 Pgen
MMLU-Pro-S: psychology

050 075 1.00
#[Pgen=11=35

Accuracy
° o o
S S 3
I3 @

o
S
a

o
S
&

~#-Llama3.1-A-Qwen2.5 -@-Mixed

< 0.0+1

-0.51

-1.04

Figure 19: Empirical results of the league-style algorithm for each category of MMLU-Pro-S (Part 2).

25 50 75

N

100 125 15.0

1.00
#[Pgen=1] = 62

0.00 025
#[Pyen=01=8

050 0.75
Pgen

MMLU-Pro-S: history

l#(4>0.0] = 8

#[4<0.0] = 14
0.00 025 050 0.75 1.00
#1Pgen=0]= 16 Pgen #[Pgen=11= 62
MMLU-Pro-S: law
1.0 {#14>0.0] = 23
]
0.5 N
< 00
-05
10 <001 = 20
0.00 025 050 075 1.00
#[Pgen =01 = 27 Ben #[Pgen=1] = 30
MMLU-Pro-S: math
1.0 J#14>0.01 =21
'
l#1d<0.01=7
0.00 025 050 0.75 1.00
#1Poen=0]=2 Boen #lPaen=11=170
MMLU-Pro-S: other
1.0 {#14>0.01 =12
0.5 s
< 00
-05
10 yic00) = 13
0.00 025 050 0.75 1.00
#[Pgen=0] =19 Pgen #[Pgen=1] =56
MMLU-Pro-S: philosophy
1.0 f#14>0.01 =17
0.5 s
< 00
-05
10 %uhs001=23 i !
000 025 050 075 1.00
#[Pgen=0] = 16 Pgen #[Bgen=1] = 44
MMLU-Pro-S: physics
1.0 {#14>0.01 =29
05 R
< 004 ST S I
-05
10 h<0.01 =13
0.00 025 050 0.75 1.00
#[Pgen=0]1=8 Pgen #[Pgen=1]= 50
MMLU-Pro-S: psychology
1.0 #14>0.01 =12
0.5
< 0.0
-05
-10 tAso.01=10 : :
0.00 025 050 0.75 1.00
#[Pgen=0] = 11 Ben #[Pgen=1] = 67

34

MMLU-Pro-S: history

1.0 H#1A>0.01 =21
054 o ® ° 8
. o o8 ,e°8
< 0.0
-0.51
-1.0

Trld=0.01 =17

0.00 025 050 075 1.00
#[Pgen =01 =11 Pgen #[Pgen=1] =51
MMLU-Pro-S: law
1.0 #14>0.01 =37
i
0.5 S8y
. °
R ge0, 80 o
< 0.0 fot
¥ *
-0.51
“10%gic00
0.00 025 050 075 1.00
#Poen=01=20 Py, #lPon=11=16
MMLU-Pro-S: math
1.0 H#14>0.01 =41
o8
N
051 gos 34
o TR L
< 00 23 2
-0.59
10 %i<0.01 =13
0.00 025 050 075 1.00
#[Pyen=0]=2 Pgen #[Pgen=1]= 44

MMLU-Pro-S: other

#[A>0.0] = 26

1.0 7
0.5 . LI |
o8 o g
o o
< 00 foa 2
—0.51
“10hic00) =14
0.00 025 050 075 1.00
#[Pgen =01 =14 Pgen #[Pgen =11 = 46
MMLU-Pro-S: philosophy
1.0 J#14>0.0] = 30
0.51
.
o 0 L%,
< 00 PR TP X
-0.54
x
-0 Tids00i=28 I ;
000 025 050 075 1.00
#[Pgen=0]=7 Pgen #(Poen=11=35
MMLU-Pro-S: physics
1.0 H#14>0.01 = 40
o 40
051 (PR3 | 3]
800800
< 004 2200
-0.51
~10 <o) = 20
0.00 025 050 075 1.00
#[Pgen=01=4 Pgen #[Pgen=1]= 36

1.0 #14>001=15

MMLU-Pro-S: psychology

05 e o
o o .
<@ 00 - ¥
—0.5
-1o Teds001=18 . .
000 025 050 075 1.00
#[Pen=01=7 Pgen #[Pgen =11 = 60

Table 1: The adopted prompt template for generating a candidate solution.

% System prompt
Please read the following multiple—choice questions and provide the most likely correct
answer based on the options given.

% User prompt
Question

{ question }
Output Format

e

<reason>your step—by—step reasoning proecss</reason>
<answer>"the answer is (X)" where X is the correct letter choice</answer>

I

Table 2: The adopted prompt template for pairwise comparison.

% System prompt

You are an impartial Judge. Given a question and two candidate solutions , your task is to
choose which solution answer the question better . Your judgment should be unbiased, without
favoring either Solution 1 or 2.

% User prompt
———— QUESTION ———
{ question }

———— Solution 1 ———-
{ candidate_a}

———— Solution 2 ————
{candidate_b}

———— OUTPUT FORMAT ————

<compare>compare both candidate solutions step—by—step thoroughly, and double check if there
are mistakes in either solution </compare>

<winner>Solution 1 or Solution 2 or Tie</winner>

I3

35

	Introduction
	A two-stage knockout-style algorithm
	Analysis of success probability
	Analysis of computational efficiency

	A two-stage league-style algorithm
	Experiments
	Results for the knockout-style algorithm
	Results for the league-style algorithm

	Related works
	Limitations and future work
	Discussions: extensions to broader scenarios
	Proofs of main theorems
	Proof of Theorem 2.3
	Proof of Theorem 2.4
	Proof of Theorem 3.3

	Examples for understanding and comparing the assumptions
	Supplementary materials for experiments
	Additional implementation details
	Additional results for the knockout-style algorithm
	Additional results for the league-style algorithm

