
PERTURBATION-INDUCED LINEARIZATION: CON-
STRUCTING UNLEARNABLE DATA WITH SOLELY LIN-
EAR CLASSIFIERS

Jinlin Liu, Wei Chen, Xiaojin Zhang∗
Huazhong University of Science and Technology, Wuhan 430074, China
{jinlinliu, lemuria_chen, xiaojinzhang}@hust.edu.cn

ABSTRACT

Collecting web data to train deep models has become increasingly common, rais-
ing concerns about unauthorized data usage. To mitigate this issue, unlearnable
examples introduce imperceptible perturbations into data, preventing models from
learning effectively. However, existing methods typically rely on deep neural
networks as surrogate models for perturbation generation, resulting in significant
computational costs. In this work, we propose Perturbation-Induced Linearization
(PIL), a computationally efficient yet effective method that generates perturbations
using only linear surrogate models. PIL achieves comparable or better perfor-
mance than existing surrogate-based methods while reducing computational time
dramatically. We further reveal a key mechanism underlying unlearnable exam-
ples: inducing linearization to deep models, which explains why PIL can achieve
competitive results in a very short time. Beyond this, we provide an analysis about
the property of unlearnable examples under percentage-based partial perturbation.
Our work not only provides a practical approach for data protection but also offers
insights into what makes unlearnable examples effective. Code is available at
https://github.com/jinlinll/pil.

1 INTRODUCTION

Collecting vast amounts of data from the Internet has become a common practice for training
advanced deep learning models (Russakovsky et al., 2015; Zhang et al., 2018). However, much of this
data—including human faces (Birhane & Prabhu, 2021), artwork, and text—is scraped without the
consent of the original creators, raising serious concerns about the unauthorized use of personal data.
To mitigate this issue, researchers have proposed unlearnable examples, a family of data protection
methods that add imperceptible perturbations to the data. The perturbed data look unchanged to
humans, but when used for training, they cause deep neural networks (DNNs) to fail to generalize
and perform like random guessing on unseen samples. The intuition is that by rendering scraped data
"unlearnable," unauthorized third parties will be disincentivized from exploiting it for model training.

Existing studies often use deep neural networks (DNNs) as surrogates to generate such protective
perturbations. However, these approaches are often computationally intensive, as training complex
surrogate DNNs and executing adversarial attack methods like PGD (Madry et al., 2017) are very time
consuming. For instance, the REM (Fu et al., 2022) method needs over 15 GPU hours to generate
perturbations for the CIFAR-10 dataset.

In this paper, we introduce Perturbation-Induced Linearization (PIL), a novel method for degrading
the generalization ability of DNNs. PIL creates perturbation–label correspondences that can be easily
captured by simple linear models, thereby inducing the linearization of DNNs. PIL employs a simple
linear surrogate model to generate perturbations that transfer effectively to various deep learning
models. Owing to the simplicity of linear models, PIL is highly efficient, for example, it requires less
than one GPU minute to generate perturbations for the CIFAR-10 dataset. Moreover, we demonstrate
PIL do improve the linearity of deep models and find that existing unlearnable example methods,
though not designed to induce linearization, also cause deep models to exhibit stronger linear behavior.
This suggests that induced linearization may be the underlying mechanism behind the success of
unlearnable examples.

∗Corresponding author

1

https://github.com/jinlinll/pil


Clean Data

Unlearnable Data

Perturbation

DNNs

Te
st

 D
at

a

Test Accuracy

Train

Train

Test

Test

Figure 1: Illustration of the workflow of unlearnable examples. DNNs trained on the unlearnable
data perform poorly on the clean test data. Results are reported for PIL on ImageNet-100.

We further conduct comprehensive experiments to evaluate the effectiveness of PIL and to analyze
the performance and fundamental property of unlearnable examples under percentage-based partial
perturbation. Our contributions can be summarized as follows:

• We propose PIL, an efficient method for generating protective perturbations using a simple
linear surrogate model, and demonstrate its effectiveness across architectures, datasets, and
defenses.

• We uncover a key mechanism behind unlearnable examples: they induce deep models
to behave more like linear models, which may reduce their capacity to learn meaningful
representations.

• We provide an analysis revealing a fundamental property of unlearnable examples: they
cannot substantially reduce test accuracy when only part of the dataset is perturbed.

2 RELATED WORK

Unlearnable Examples. Unlearnable examples (Huang et al., 2021; Jiang et al., 2023; Zhu et al.,
2024; Hapuarachchi et al., 2024; Wang et al., 2024), also referred to as availability attacks (Fowl et al.,
2021; Yu et al., 2022), perturbative availability poisons (Liu et al., 2023), generalization attacks (Yuan
& Wu, 2021), or delusive attacks (Tao et al., 2021), aim to protect datasets from unauthorized ex-
ploitation. One of the earliest unlearnable examples (Biggio et al., 2012) considered convex models
and demonstrated that optimizing a single poisoning sample could significantly disrupt SVM training.
However, extending poisoning techniques to DNNs is much more challenging. Several methods have
recently been proposed. Error-Minimizing (EM) (Huang et al., 2021) attacks minimize the classifi-
cation errors of images while training a surrogate deep learning model. Robust Error-Minimizing
(REM) (Fu et al., 2022) replaces the normally-trained surrogate in EM with an adversarially-trained
model, making the attacks more robust against adversarial training. Targeted Adversarial Poisoning
(TAP) (Fowl et al., 2021) further extends this idea by using a fixed, pretrained surrogate model
and minimizing the classification loss with target labels. Neural Tangent Generalization Attacks
(NTGA) (Yuan & Wu, 2021) use the neural tangent kernel (Jacot et al., 2018) as the surrogate to
model the training dynamics of a class of wide DNNs. In addition, several works have explored using
multiple models as surrogates (Chen et al., 2022) or developing surrogate-free approaches (Yu et al.,
2022; Sandoval-Segura et al., 2022; Sadasivan et al., 2023). It is worth noting that the evaluation
criteria of unlearnability is not yet unified. We provide a detailed discussion in Appendix A.1.

Adversarial Attacks. Adversarial attacks (Szegedy et al., 2013; Goodfellow et al., 2014; Kurakin
et al., 2018; Carlini & Wagner, 2017; Kurakin et al., 2018; Carlini & Wagner, 2017; Madry et al.,
2017; Croce & Hein, 2020) typically craft perturbations that maximize the model’s prediction loss.
Existing research has demonstrated that adversarial attacks can effectively deceive deep neural
networks at the inference stage. However, conventional adversarial examples, such as those generated
by a 20-step Projected Gradient Descent (PGD-20) attack, fail to mislead deep neural networks
during the training phase like unlearnable examples (Huang et al., 2021). Further investigations (Fowl
et al., 2021) reveal that increasing the steps of PGD attack to 250 (PGD-250) enables the generated
adversarial examples to also deceive deep neural networks during training.

2



Shortcut learning. Shortcut learning (Geirhos et al., 2020) refers to the phenomenon where deep
neural networks rely on spurious correlations or low-level cues in the training data rather than learning
the intended, generalizable representations. This phenomenon is common in deep learning, appearing
in tasks like image classification (Beery et al., 2018), where models rely on background features,
and question answering (Niven & Kao, 2019), where they exploit superficial textual cues. Recent
work (Yu et al., 2022) suggests that unlearnable examples essentially embed imperceptible shortcuts.
In particular, perturbations generated by many existing methods can be recognized by simple linear
models. Motivated by this observation, we design perturbations that linear models can easily associate
with class labels.

3 THE PROPOSED METHOD

3.1 PROBLEM STATEMENT

We frame the generation of unlearnable examples within a standard attacker-defender framework,
which we outline below.

Threat Model. The defender is the data owner (e.g., a user posting personal photos, an artist sharing
their work) who wishes to prevent their data from being used for unauthorized model training. Before
releasing the data, the defender adds carefully crafted, imperceptible perturbations. The attacker is
an unauthorized party who scrapes this publicly available, perturbed data to train a deep learning
model. The attacker is assumed to have full access to the perturbed dataset but not the original clean
data or the perturbations. The defender’s ultimate goal is to make any model trained by the attacker
generalize poorly to clean, unseen data, thereby disincentivizing the unauthorized use of their data.
Our proposed method, PIL, is a defense mechanism from this perspective.

Notation and Objective. We consider standard image classification with a DNN fθ. Let the clean
training set be Dc = {(xi, yi)}ni=1 with xi ∈ Rd and labels yi ∈ {1, . . . ,K}. The defender
constructs an unlearnable dataset Du = {(x′

i, yi)}ni=1 by inducing imperceptible perturbations
x′
i = xi + δi subject to ∥δi∥p ≤ ϵ. In this paper, we specifically use ∥δi∥∞ ≤ 8/255.

The defender’s objective is to craft perturbations {δi}ni=1 that degrade the generalization performance
of any model fθ∗ trained on the unlearnable dataset Du. This goal can be formalized as a bilevel
optimization problem where the defender aims to maximize the final test loss of the attacker’s model:

max
{δi}n

i=1

E(xi,yi)∼Dt
[ℓ(fθ∗(xi), yi)]

s.t. θ∗ = argmin
θ

E(xi,yi)∼Dc
[ℓ(fθ(xi + δi), yi)] .

(1)

Here, ℓ(·, ·) is the loss function (typically cross-entropy), and Dt is the clean test set. The inner
optimization problem describes the attacker’s training process on the perturbed data, while the outer
optimization represents the defender’s goal of maximizing test error.

3.2 PERTURBATION-INDUCED LINEARIZATION

Our core idea is to design a perturbation δ that forces deep neural networks to ignore the complex
semantic features of the original image x during training, and instead learn a simple linear mapping
between δ and the label y. To achieve this, we employ a bias-free linear classifier flin to guide the
perturbation generation:

flin(x;w) = xw, w ∈ Rd×k, (2)
where k denotes the number of classes.

We aim to optimize a perturbation set {δi = δ1i + δ2i }ni=1, where each perturbation δi for a training
sample (xi, yi) conceptually consists of two components with distinct objectives:

1. Semantic Obfuscation. We require that the main semantic content of xi carries little useful
information. This is enforced by encouraging the prediction on the obfuscated image xi − δ1i to be
close to a uniform distribution, which is implemented by minimizing the KL divergence:

{δ1i }ni=1 = arg min
{δi}n

i=1

E(xi,yi)∼Dc

[
LKL

(
flin(xi − δi;w), 1

k11×k

)]
. (3)

3



Pr
ob

ab
ili
ty

Class

pull

Pr
ob

ab
ili
ty

Class

pull

Original distribution

Original distribution
Shortcut distribution

Linear Surrogate

Inducing Linearization

Trick Models into
Easy Patterns

Inject Linearization Perturbation

Clean Data

Unlearnable Data
Linear Mapping

Test Data

Tricked into
Linear Mapping

DNNs

Tricked DNNs

Obfuscation distribution

Distribution

Original Features
Deceptive Features

Semantic Obfuscation

Shortcut Learning

Figure 2: Architecture illustration of PIL. We use ⊕ to denote inducing perturbations into images.
Best viewed in color. Zoom in for details.

2. Shortcut Learning. We further require δ2i itself to encode strong class-specific signals, serving as
an easily learnable shortcut. This is achieved by enforcing that flin can accurately predict yi directly
from δ2i , via cross-entropy minimization:

{δ2i }ni=1 = arg min
{δi}n

i=1

E(xi,yi)∼Dc
[LCE (flin(δi;w), yi)] . (4)

These two components, δ1i and δ2i , are only a conceptual decomposition used to define the objectives.
In practice, we optimize a single perturbation δi to jointly satisfy both goals. To this end, we combine
the objectives into a unified loss function:

Ltotal(δ,x, y;w, λ) = λLCE (flin(δ;w), y) + (1− λ)LKL
(
flin(x− δ;w), 1

k11×k

)
. (5)

where λ is a balance parameter controlling the trade-off between shortcut learning and semantic
obfuscation.

The optimal perturbations are then obtained by minimizing the total loss across the dataset with norm
constraints (e.g., ∥δi∥∞ ≤ ϵ) to ensure imperceptibility:

{δ∗i }ni=1 = arg min
{δi}n

i=1

E(xi,yi)∼Dc
[Ltotal(δi,xi, yi;w, λ)] . (6)

Finally, the unlearnable dataset is constructed as:

Du = {(xi − δ∗i , yi)}ni=1. (7)

It is worth noting that we subtract δ∗i from the original image, which ensures that when the target
model fθ behaves approximately linearly, its output can be decomposed as:

flin(xi − δ∗i ;w) = flin(xi − δ1
∗

i ;w) + flin(−δ2
∗

i ;w). (8)

According to our optimization goals, the first term approaches a uniform distribution (low infor-
mation), while the second term is strongly correlated with the label yi. This design enforces fθ to
capture the negative correlation between δ∗ and y, rather than the semantic relation between x and y.

Algorithm 1 outlines the main steps of PIL. In Lines 1–4 the bias-free linear model flin is trained
on the dataset D using SGD. In Lines 5–8 the trained linear surrogate is employed to optimize the
perturbations: specifically, Lines 6–8 describe a PGD-like procedure for updating each perturbation

4



Algorithm 1: Perturbation-Induced Linearization
Input: Initial perturbation {δi}ni=1, model flin(·;w), dataset D, learning rate η, perturbation

update rate α, perturbation budget ϵ, balancing factor λ, number of iterations M and N
Output: Optimized {δi}ni=1

1 for m in 1 · · ·M do
2 for x, y in D do
3 Compute gradient ∇wLCE(flin(x;w), y);
4 Update w ← w − η∇wLCE(flin(x;w), y);

5 for xi, yi in D do
6 for n in 1 · · ·N do
7 Compute gradient ∇δi

Ltotal(δi,xi, yi;w, λ);
8 Update δi ← Clip(δi − α · sign(∇δi

Ltotal(δi,xi, yi;w, λ)),−ϵ, ϵ);

9 return {δi}ni=1

δi. To ensure the perturbation remains visually imperceptible, it is clipped after each update by
∥δi∥∞ ≤ ϵ. Once the optimized perturbations are obtained, the unlearnable dataset is constructed as
in Eq. 7. Importantly, we believe that pretraining the linear surrogate on the dataset enhances the
semantic obfuscation defined in Eq. 3. Without pretraining, a randomly initialized model has no
knowledge of the training data, making it difficult to optimize for semantic obfuscation. In contrast,
with a pretrained surrogate, the semantic structure of the data is better captured, and our experiments
confirm that PIL achieves stronger protection under this setting (see Appendix A.7).

4 EXPERIMENTS

Datasets and Models. We evaluate our method on four widely used image classification benchmarks:
SVHN (Netzer et al., 2011), CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and a 100-class subset1
of ImageNet (Russakovsky et al., 2015). In particular, the experiments on the ImageNet subset
are designed to verify the effectiveness of our method on high-resolution images. To validate the
architecture-independent property of our method, we conduct experiments across diverse neural
network architectures, including ResNet-18, ResNet-50 (He et al., 2016), VGG-19 (Simonyan &
Zisserman, 2014), DenseNet-121 (Huang et al., 2017), and MobileNet-V2 (Sandler et al., 2018). By
default, we use the CIFAR-10 dataset and ResNet-18 model unless otherwise specified.

Experimental Setting for PIL. We initialize perturbations {δi}ni=1 from a uniform distribution
Uniform(−ϵ, ϵ) with budget ϵ = 8/255. Updates are performed with step size α = 8/2550, and the
balancing factor2 is set to λ = 0.9. Further hyperparameter details are provided in Appendix A.5.

Experimental Setting for Baselines. We compare our method with several representative unlearnable
example baselines, including surrogate-based methods: Error-Minimizing (EM) (Huang et al., 2021),
Robust Error-Minimizing (REM) (Fu et al., 2022), Targeted Adversarial Poisoning (TAP) (Fowl
et al., 2021), Neural Tangent Generalization Attacks (NTGA) (Yuan & Wu, 2021), Self-Ensemble
Protection (SEP) (Chen et al., 2022), and surrogate-free methods: Synthetic Perturbations (SP) (Yu
et al., 2022), AutoRegressive poisoning (AR) (Sandoval-Segura et al., 2022), and Convolution-based
Unlearnable Datasets (CUDA) (Sadasivan et al., 2023). Detailed descriptions of these baseline
methods can be found in Appendix A.6. For visualization of unlearnable examples generated by
different methods, please refer to Appendix A.13.

Experimental Setting for Testing. All experiments follow the same procedure: we train the network
on the unlearnable dataset for 100 epochs and then evaluate its accuracy on a clean test set. Training
use an initial learning rate of 0.1, cosine annealing learning rate schedule, weight decay of 1× 10−4,
and momentum of 0.9. For experiments on the ImageNet Subset, we additionally apply gradient
clipping with a threshold of 1.0. Details of computer resources can be found in Appendix A.14.

Perturbation Norm. According to previous studies, an L∞ perturbation with ϵ = 8/255 is com-
monly considered imperceptible (Huang et al., 2021). Our method (PIL) also adopts this bound.

1https://www.kaggle.com/datasets/ambityga/imagenet100/data
2PIL generally performs well for λ ∈ [0.3, 0.9]; see Appendix A.12 for details.

5

https://www.kaggle.com/datasets/ambityga/imagenet100/data


For the baselines, we follow the settings used in their original papers: EM, REM, TAP, NTGA,
and SEP constrain perturbations under the L∞ norm with ϵ = 8/255, while SP and AR constrain
perturbations under the L2 norm with ϵ = 1. The original CUDA does not impose a fixed perturbation
budget, for a fair comparison, we additionally evaluate a budget-matched (L∞ norm with ϵ = 8/255)
version of CUDA, and denote it as CUDA∗.

4.1 EFFECTIVENESS OF PIL METHOD ON DIFFERENT DATASETS AND MODELS

As shown in Table 1, we demonstrate the effectiveness of the proposed PIL method in generating
unlearnable examples across four widely used datasets, which vary in image resolution and number
of classes. The strong performance of PIL clearly indicates its ability to handle diverse image
characteristics. Moreover, PIL generates unlearnable examples using only a linear model, without
relying on specific architectural details such as convolutional layers in deep neural networks. Despite
this, the resulting examples significantly degrade the performance of all tested DNNs, highlighting the
architecture-independence of the method. These results collectively suggest that PIL is a promising
approach for preventing unauthorized data exploitation.

Table 1: Test accuracies (%) on clean data for models trained on clean datasets (Dc) or PIL-constructed
unlearnable datasets (Du).

Model SVHN CIFAR-10 CIFAR-100 ImageNet Subset

Dc Du Dc Du Dc Du Dc Du

ResNet-18 95.64 15.94 92.11 12.77 72.70 2.11 66.00 2.26
ResNet-50 95.30 18.19 89.54 20.32 65.90 1.18 71.20 2.26
VGG-19 95.22 9.12 90.61 15.22 64.57 1.40 36.04 1.36

DenseNet-121 95.88 11.57 93.51 17.70 75.22 1.23 76.98 3.14
MobileNet-V2 95.95 28.48 91.94 14.05 70.66 0.99 71.26 2.20

4.2 PIL METHOD AGAINST COMMON COUNTERMEASURES

4.2.1 DATA AUGMENTATIONS.

Common Augmentations. In Table 1, we have applied the Basic augmentation, which includes hori-
zontal flips and random crops. In this subsection, we further investigate the impact of representative
data augmentation strategies on unlearnable examples. As summarized in Table 2, we evaluate nine
augmentations. For simplicity, Perspective and ChannelShuffle are abbreviated as Persp and ChShuf
in the table. Except for None, all augmentations are applied in combination with Basic. We highlight
the top two performing methods under each augmentation strategy with a gray background. As shown
in Table 2, PIL consistently demonstrates strong robustness across diverse data augmentations. It is
worth noting that PIL achieves performance that is highly competitive with state-of-the-art methods
like SEP across a wide range of augmentations. Furthermore, we compare the runtime efficiency of
different methods in Table 5, where PIL is significantly more time-efficient than TAP, SEP, and AR.

Table 2: Clean test accuracies (%) on CIFAR-10 for different unlearnable examples under various
data augmentation strategies. Closer to 10% is better. Gray background indicates top-2 methods.

Method None Basic Rotation Persp GrayScale ChShuf Cutout CutMix MixUp

Clean 83.93 91.45 92.05 93.38 88.84 91.99 92.71 93.49 93.87

EM 21.43 24.82 28.67 29.77 89.15 57.64 23.47 29.39 48.26
REM 21.36 23.24 22.71 26.16 69.35 64.37 17.82 24.46 24.91
TAP 35.90 19.11 21.18 21.47 19.38 13.56 15.09 11.64 20.30
SP 16.06 23.92 23.67 25.28 82.79 73.04 23.74 21.11 26.41
NTGA 27.60 30.22 29.45 31.42 70.55 56.21 25.86 15.80 17.34
CUDA∗ 65.47 87.45 89.49 88.54 80.86 80.82 85.8 81.34 89.05
SEP 28.43 8.94 19.68 23.70 9.61 9.80 9.74 12.02 10.48
AR 16.89 17.57 11.31 13.40 38.38 14.25 10.57 14.05 15.87
PIL (ours) 14.70 12.87 18.15 19.30 17.01 10.88 14.62 10.79 11.05

Note: CUDA∗ uses the perturbation budget (ϵ = 8/255), additional results can be found in Appendix. A.8.

6



JPEG Compression. Liu et al. (2023) has shown that JPEG compression is an effective counter-
measure against unlearnable examples. Here, we investigate how different JPEG quality factors
affect the defense capability against various unlearnable examples. Table 3 summarizes the clean test
accuracies on CIFAR-10 under JPEG compression with quality factors ranging from 90 to 10. For
each compression quality, the top two performing methods are highlighted with a gray background.
As shown in the table, PIL and SP exhibit strong robustness under JPEG compression. Combined
with our experiments in Section 5, which demonstrate that existing unlearnable examples consistently
induce more linear behaviors in the trained DNNs, the superior performance of PIL and SP may
suggest that constructing unlearnable examples based on linear separability is a more fundamental
approach, leading to greater robustness.

Table 3: Clean test accuracies (%) on CIFAR-10 for different unlearnable examples under various
JPEG compression qualities. Closer to 10% is better. Gray background indicates top-2 methods.

Method JPEG90 JPEG80 JPEG70 JPEG60 JPEG50 JPEG40 JPEG30 JPEG20 JPEG10

Clean 90.99 88.61 89.74 89.43 87.87 88.44 87.67 87.06 83.90

EM 25.75 34.04 44.15 51.58 55.12 61.13 70.94 72.50 80.94
REM 67.21 79.92 81.64 81.22 82.85 83.69 83.56 84.58 82.79
TAP 20.10 42.87 64.80 72.21 78.69 82.14 84.01 84.12 83.14
NTGA 41.57 52.14 53.70 55.97 63.48 62.24 67.31 72.97 74.64
SEP 12.18 49.66 64.09 76.46 83.08 85.99 87.08 86.21 82.43
AR 53.53 69.36 79.61 84.66 86.53 87.24 87.64 86.74 83.35
SP 26.17 31.74 29.94 33.1 34.72 40.50 40.20 54.04 79.34
PIL (ours) 35.26 36.97 41.55 43.64 50.87 52.05 58.37 67.89 76.71

4.2.2 ADVERSARIAL TRAINING.

To further evaluate the robustness of PIL, we conduct adversarial training (PGD-7) with varying
perturbation budgets. As shown in Table 4, PIL consistently reduces test accuracy across all four
ϵ settings compared to the clean baseline. Results for other unlearnable methods are provided in
Appendix A.9. Although adversarial training is a strong countermeasure against nearly all unlearnable
examples (Tao et al., 2021), it is highly time-consuming. Since unlearnable examples inevitably
preserve visual features, there will always be ways for models to relearn from them. However,
forcing an adversary to pay such a large computational cost—while still failing to fully recover
accuracy—represents a practical victory for PIL, especially given its small time cost.

Table 4: Adversarial Training. CIFAR-10 test accuracy (%) under adversarial training with different
perturbation budgets ϵ. Closer to 10% is better.

Method ϵ = 2/255 ϵ = 4/255 ϵ = 8/255 ϵ = 16/255

Clean 88.31 86.41 80.59 60.15
PIL (ours) 78.15 83.36 79.25 58.23

4.3 TIME COMPARISON

Table 5 presents the time required to generate unlearnable examples for
various methods on the CIFAR-10 dataset. As shown, our PIL method
is highly efficient: even compared with surrogate-free methods, it is
only slightly slower than SP and CUDA∗, while being considerably
faster than other surrogate-based approaches such as EM, SEP, TAP,
and REM. Surrogate-free methods generally achieve higher speed be-
cause they avoid training and executing computationally intensive deep
neural networks as surrogates. However, as shown in Section 4.2.1, PIL
consistently outperforms SP and CUDA∗ when evaluated under various
data augmentation strategies, demonstrating that its efficiency does not
come at the expense of robustness. Overall, these results indicate that
PIL provides a practical and reliable approach for generating unlearn-
able examples, achieving both high efficiency and strong robustness
across different experimental settings.

Method Time (s)
Surrogate-based
PIL (ours) 40.53
EM 1.65k
SEP 26.78k
TAP 40.14k
REM 54.46k

Surrogate-free
SP 2.50
CUDA∗ 9.11
AR 15.23k

Table 5: Time comparison.

7



4.4 UNDERSTANDING PERTURBATION-DRIVEN LEARNING IN DNNS.

To investigate whether DNNs establish a clear correspondence between labels and perturbations, we
evaluate them under four data configurations: (1) clean training set, (2) shuffled unlearnable training
set Ds = {(xi + δj , yj)}ni=1, where each index j is randomly sampled from {1, . . . , n}, and (3)
shuffled unlearnable test set, where clean test images are added with randomly selected perturbations
from the training set. As shown in Table 6, models trained with some unlearnable methods, such
as EM, SP, NTGA, and AR, still achieve relatively high accuracy when evaluated on shuffled sets,
indicating that these models have learned to associate specific perturbations with corresponding
labels. Our method (PIL) also achieves the high accuracies of 96.60% on the shuffled training set and
96.36% on the shuffled test set, demonstrating a strong perturbation-label correspondence.

Table 6: Accuracies (%) of ResNet-18 models trained with different unlearnable examples tested on
clean, unshuffled and shuffled data.

Testing \Training EM REM TAP SP NTGA SEP AR PIL (ours)

Clean Train 23.87 20.02 19.90 23.93 31.33 10.69 11.13 22.42
Shuffled Train 44.41 17.71 17.19 94.10 88.96 27.12 99.52 96.60
Shuffled Test 44.26 17.97 17.21 93.64 88.49 26.71 99.52 96.36

5 PIL DO IMPROVE THE LINEARITY OF DNNS

In Section 3.2, we designed PIL with the explicit goal of forcing a deep neural network to learn a
simple linear mapping. This leads to a natural question: does this “perturbation-induced linearization”
actually occur in practice? More broadly, we hypothesize that inducing model linearity is a funda-
mental mechanism underlying the effectiveness of many unlearnable example methods, even those
not explicitly designed for it. By forcing a high-capacity DNN to behave more like a low-capacity
linear model, these perturbations effectively cripple its ability to learn complex, generalizable se-
mantic features. In this section, we provide strong empirical evidence to support this Linearization
Hypothesis.

A Proxy for Linearity. To quantify a model’s degree of linearity, we draw inspiration from adversarial
examples (Goodfellow et al., 2014). Goodfellow et al. demonstrated that the effectiveness of Fast
Gradient Sign Method (FGSM) stems from the locally linear behavior of DNNs in high-dimensional
space. A more linear model exhibits a flatter and more predictable local loss landscape, making it
more vulnerable to FGSM. Accordingly, we use the performance drop under FGSM attacks as a
proxy for linearity: a larger drop indicates stronger linear behavior.

PIL Induces Strong Linear Behavior. We first validate our hypothesis on PIL. We train ResNet-
18 models on datasets containing a mixture of clean and PIL-perturbed examples. As shown in
Table 7, the effect is striking. Even with only 10% of the data perturbed, the resulting model is
noticeably more vulnerable to FGSM attacks across all attack strengths compared to a model trained
on a similarly-sized clean subset. As the proportion of PIL-perturbed data increases, the model’s
performance under FGSM attack collapses dramatically, which confirms that PIL successfully induce
a more linear behavior in the trained DNN, as intended by our design.

Table 7: Test accuracy and accuracy drop (%) under FGSM attack at different perturbation proportions,
ResNet-18 models are trained with mixed clean and PIL perturbed data.

FGSM Step 10% 50% 90%
perturbed clean perturbed clean perturbed clean

0/255 92.33 (-0.0) 90.83 (-0.0) 89.73 (-0.0) 87.69 (-0.0) 74.81 (-0.0) 68.78 (-0.0)
1/255 61.93 (-30.4) 61.84 (-28.99) 45.33 (-44.4) 59.69 (-28.0) 19.6 (-55.21) 48.56 (-20.22)
2/255 38.13 (-54.2) 40.23 (-50.6) 22.13 (-67.6) 38.23 (-49.46) 7.24 (-67.57) 32.64 (-36.14)
4/255 17.39 (-74.94) 23.79 (-67.04) 9.11 (-80.62) 21.29 (-66.4) 3.05 (-71.76) 15.16 (-53.62)
8/255 7.95 (-84.38) 14.51 (-76.32) 5.84 (-83.89) 13.6 (-74.09) 2.61 (-72.2) 6.34 (-62.44)

A General Phenomenon Across Methods. To examine the generality of our hypothesis, we extend
the analysis to a variety of existing unlearnable example methods (Appendix A.16) and provide a

8



snapshot in the main text for readability (Table 8). We report the additional accuracy drop under
FGSM attacks when 50% of the training data is perturbed. The results are noteworthy: all tested
methods, regardless of design, tend to render models more vulnerable to FGSM, as indicated by the
fact that all elements in the table are greater than 0. This consistent trend suggests that inducing
linearity is not unique to PIL, but rather a common mechanism of unlearnable examples.

Table 8: Additional accuracy drop (%) caused by different unlearnable examples under various FGSM
attack steps at 50% perturbation.

Step EM REM TAP SP NTGA SEP AR PIL (ours)

1/255 13.37 17.48 25.44 14.26 17.50 9.60 25.15 16.40
2/255 13.95 21.15 24.51 16.27 21.10 11.48 18.39 18.14
4/255 9.08 21.92 13.24 12.20 16.00 7.94 7.12 14.22
8/255 4.65 18.76 1.38 7.67 10.50 1.20 3.04 9.80

This discovery offers a new perspective on what makes unlearnable examples effective. They appear to
simplify the function that a DNN learns, constraining it to a lower-capacity, more linear regime. This
insight explains why our linear-surrogate-based PIL method can achieve performance competitive
with, or even superior to, methods that rely on computationally expensive deep surrogate models.
While other methods may induce linearity as an indirect side effect of their complex optimization
schemes, PIL targets this mechanism directly.

Therefore, effective data protection may not necessarily require complex adversarial machinery.
Instead, directly inducing linearity offers a simpler and more efficient path. PIL provides a clear
demonstration of this principle, delivering a practical and robust solution.

6 PARTIAL PERTURBATION: WHY DOESN’T ACCURACY DROP
SIGNIFICANTLY?

In realistic scenarios, only a portion of the dataset may be perturbed. However, as shown in Figure 3,
increasing the proportion of training samples replaced by PIL-perturbed examples does not cause a
substantial drop in clean test accuracy. This naturally raises the question:

Why does the model still maintain high accuracy even when a large fraction of the data is perturbed?

This phenomenon is not unique to PIL. As reported by Liu et al. (2023), all existing methods exhibit
the same behavior. Due to space constraints, we provide supporting results in Appendix A.10.1,
Table 15.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Perturbation Proportion

0.5

0.6

0.7

0.8

0.9

C
le

an
 T

es
t A

cc
ur

ac
y

Mixed
Clean

Figure 3: Clean test accuracy on CIFAR-10
under partial perturbation setting.

A qualitative explanation, also noted in prior
work (Huang et al., 2021), is that models can already
achieve reasonably high accuracy with only a subset
of clean samples, while perturbed samples contribute
little to further improvement. This is confirmed by the
red curve in Figure 3, which corresponds to models
trained solely on clean data (resampled to maintain
the same dataset size). Even with only 40% clean
training data, the model achieves a clean test accuracy
of 88.56%, and adding the remaining 60% perturbed
samples provides negligible benefit.

Our quantitative experiments further support this per-
spective. As shown in Appendix A.10.2, Figure 4,
adding 90% new perturbed images (45k samples) yields an improvement equivalent to adding fewer
than 10% new clean images (5k samples). Therefore, PIL effectively prevents DNNs from learning
useful features from perturbed data.

However, PIL—like all existing methods—cannot prevent models from learning from the remaining
clean samples. To better understand why unlearnable examples fail to stop this, we make the following
Assumption 1, which is intuitive and can be empirically verified in Appendix A.4.1, Table 10:

9



Assumption 1. Let Dc and Du denote the clean and perturbed subsets of the training set, and fθ
denotes a model with parameter θ. For all θ encountered during training:

E(x,y)∈Dc
[∇θℓ(fθ(x), y)] ⊥ E(x,y)∈Du

[∇θℓ(fθ(x), y)] .

Theorem 1. Let θ be the model parameters, and let α be the fraction of perturbed training data.
Denote Lc(θ) and Lu(θ) as the average loss on the clean data Dc and the perturbed data Du,
respectively. For a learning rate η, the change in the clean data loss after one gradient descent step
is given by:

Lc(θt+1)− Lc(θt) = −η∇θLc(θt) · [α∇θLu(θt) + (1− α)∇θLc(θt)] . (9)

Under Assumption 1 (Gradient Orthogonality), i.e.,∇θLc(θt) · ∇θLu(θt) = 0, the update simplifies
to:

Lc(θt+1)− Lc(θt) = −η(1− α)∥∇θLc(θt)∥2.

The detailed analysis is in Appendix A.3.

Theorem 1 shows that unlearnable examples do not interfere with learning from clean data. In other
words, they neither help nor hinder the learning process on clean samples. This decoupling can be
explained by the observed gradient orthogonality between perturbed and clean samples. Since their
gradients lie in nearly orthogonal directions, the perturbations do not alter the optimization for clean
examples. Consequently, the model’s generalization capability on clean data remains dependent on
the actual clean samples available during training.

As the name suggests, unlearnable examples are designed to prevent the model learning useful
features from the protected samples, but they do not inherently interfere with learning from clean
ones. As illustrated in Fig. 3, the red and blue curves are closely intertwined, only plunging together
when the perturbation ratio exceeds 80%. This pattern indicates that the sharp drop is not due to
unlearnable examples suddenly becoming effective, but rather because the remaining clean samples
in the dataset have become insufficient to sustain high model accuracy at that critical point. Thus,
while partial perturbation does not cause the sharp accuracy drop seen under full perturbation, this
outcome is an expected property of unlearnable examples.

Beyond the analyses presented in this section, we conducted additional experiments to further probe
how PIL shapes models trained on PIL-perturbed data. (i) When only a single class is perturbed,
the accuracy degradation is concentrated on that class, while the accuracy on other classes remains
largely stable (Appendix A.11, Fig. 5). (ii) PIL generally enlarges the singular value spectrum of the
input–output Jacobian, indicating amplified sensitivity along more directions (Appendix A.11, Fig. 6).
(iii) The parameter gradients of samples within the same class become more similar after training on
PIL-perturbed data, as evidenced by increased intra-class cosine similarity (Appendix A.4.2, Table 11).
These complementary observations are consistent with the decoupling view: PIL suppresses learnable
signal in the protected subset without disrupting learning from clean data, while also reshaping local
geometry and class-specific behavior in a manner aligned with our main findings.

7 CONCLUSION

In this work, we propose Perturbation-Induced Linearity (PIL), a method that enables the generation
of unlearnable examples using only linear models, offering a simple yet effective approach with
low computational cost. Through extensive experiments, we demonstrate that PIL remains effective
under various data augmentation strategies and adversarial training. Beyond empirical evaluation,
we provide the first theoretical analysis of the limitation of unlearnable examples under partial
perturbation settings. More importantly, we reveal a fundamental insight: unlearnable perturbations
induce stronger linear behavior in deep models, thereby impairing their ability to learn meaningful
representations. We believe this insight opens new directions for designing stronger data protection
mechanisms.

REFERENCES

Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In Proceedings of the
European conference on computer vision (ECCV), pp. 456–473, 2018.

10



Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector machines.
arXiv preprint arXiv:1206.6389, 2012.

Abeba Birhane and Vinay Uday Prabhu. Large image datasets: A pyrrhic win for computer vision?
In 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1536–1546.
IEEE, 2021.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
ieee symposium on security and privacy (sp), pp. 39–57. Ieee, 2017.

Sizhe Chen, Geng Yuan, Xinwen Cheng, Yifan Gong, Minghai Qin, Yanzhi Wang, and Xiaolin
Huang. Self-ensemble protection: Training checkpoints are good data protectors. arXiv preprint
arXiv:2211.12005, 2022.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In International conference on machine learning, pp. 2206–2216.
PMLR, 2020.

Ji Feng, Qi-Zhi Cai, and Zhi-Hua Zhou. Learning to confuse: Generating training time adversarial
data with auto-encoder. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Liam Fowl, Micah Goldblum, Ping-yeh Chiang, Jonas Geiping, Wojciech Czaja, and Tom Goldstein.
Adversarial examples make strong poisons. Advances in Neural Information Processing Systems,
34:30339–30351, 2021.

Shaopeng Fu, Fengxiang He, Yang Liu, Li Shen, and Dacheng Tao. Robust unlearnable examples:
Protecting data against adversarial learning. arXiv preprint arXiv:2203.14533, 2022.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias
Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature Machine
Intelligence, 2(11):665–673, 2020.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Thushari Hapuarachchi, Jing Lin, Kaiqi Xiong, Mohamed Rahouti, and Gitte Ost. Nonlinear
transformations against unlearnable datasets. arXiv preprint arXiv:2406.02883, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, James Bailey, and Yisen Wang. Unlearnable
examples: Making personal data unexploitable. arXiv preprint arXiv:2101.04898, 2021.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

Wan Jiang, Yunfeng Diao, He Wang, Jianxin Sun, Meng Wang, and Richang Hong. Unlearnable
examples give a false sense of security: Piercing through unexploitable data with learnable
examples. In Proceedings of the 31st ACM International Conference on Multimedia, pp. 8910–
8921, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
In Artificial intelligence safety and security, pp. 99–112. Chapman and Hall/CRC, 2018.

11



Zhuoran Liu, Zhengyu Zhao, and Martha Larson. Image shortcut squeezing: Countering perturbative
availability poisons with compression. In International conference on machine learning, pp.
22473–22487. PMLR, 2023.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, pp. 4. Granada, 2011.

Timothy Niven and Hung-Yu Kao. Probing neural network comprehension of natural language
arguments. arXiv preprint arXiv:1907.07355, 2019.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:211–252, 2015.

Vinu Sankar Sadasivan, Mahdi Soltanolkotabi, and Soheil Feizi. Cuda: Convolution-based unlearn-
able datasets. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3862–3871, 2023.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Pedro Sandoval-Segura, Vasu Singla, Jonas Geiping, Micah Goldblum, Tom Goldstein, and David Ja-
cobs. Autoregressive perturbations for data poisoning. Advances in Neural Information Processing
Systems, 35:27374–27386, 2022.

Pedro Sandoval-Segura, Vasu Singla, Jonas Geiping, Micah Goldblum, and Tom Goldstein. What
can we learn from unlearnable datasets? Advances in Neural Information Processing Systems, 36:
75372–75391, 2023.

Juncheng Shen, Xiaolei Zhu, and De Ma. Tensorclog: An imperceptible poisoning attack on deep
neural network applications. IEEE Access, 7:41498–41506, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Lue Tao, Lei Feng, Jinfeng Yi, Sheng-Jun Huang, and Songcan Chen. Better safe than sorry: Pre-
venting delusive adversaries with adversarial training. Advances in Neural Information Processing
Systems, 34:16209–16225, 2021.

Dirren van Vlijmen, Alex Kolmus, Zhuoran Liu, Zhengyu Zhao, and Martha Larson. Generative
poisoning using random discriminators. arXiv preprint arXiv:2211.01086, 2022.

Derui Wang, Minhui Xue, Bo Li, Seyit Camtepe, and Liming Zhu. Provably unlearnable data
examples. arXiv preprint arXiv:2405.03316, 2024.

Shutong Wu, Sizhe Chen, Cihang Xie, and Xiaolin Huang. One-pixel shortcut: On the learning
preference of deep neural networks. arXiv preprint arXiv:2205.12141, 2022.

Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, and Tie-Yan Liu. Availability attacks create shortcuts.
In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 2367–2376, 2022.

Chia-Hung Yuan and Shan-Hung Wu. Neural tangent generalization attacks. In International
Conference on Machine Learning, pp. 12230–12240. PMLR, 2021.

12



Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng Gao, Kevin Duh, and Benjamin Van Durme.
Record: Bridging the gap between human and machine commonsense reading comprehension.
arXiv preprint arXiv:1810.12885, 2018.

Yifan Zhu, Lijia Yu, and Xiao-Shan Gao. Detection and defense of unlearnable examples. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 17211–17219, 2024.

A APPENDIX

A.1 EVALUATION CRITERIA FOR UNLEARNABILITY

There is currently no unified evaluation criterion for "unlearnability." Existing studies adopt different
perspectives, which can be broadly categorized into two groups, as summarized in Table 9. We note
that the Minimal Accuracy criterion may not fully capture the learning behavior of models, because
low accuracy does not necessarily mean that no features have been acquired. For example, in (Chen
et al., 2022), the model maps one class to another during prediction.

We prefer the Random Guessing criterion; more specifically, we define unlearnability as preventing
the model from extracting useful features from the protected data, rather than deliberately degrading
its performance. Specifically:

• If all training samples are protected, the model should behave as if trained on random
guesses, i.e., no effective learning occurs.

• If 30% of the samples are clean and 70% are protected, the model should perform as though
it was trained only on the 30% clean samples, meaning that the protected data does not
contribute to learning.

Table 9: Evaluation Criteria for Unlearnability in Prior Work

Category Brief Criterion Representative Works
Random Guessing Models’ test accuracy

closer to random guess-
ing is better

Huang et al. (2021), Yu et al. (2022)
Fu et al. (2022), Wu et al. (2022)

Minimal Accuracy Minimizes models’ test
accuracy as low as pos-
sible

Fowl et al. (2021), Yuan & Wu (2021),
Sandoval-Segura et al. (2022), Chen
et al. (2022), Feng et al. (2019),
Sandoval-Segura et al. (2023), Shen
et al. (2019), van Vlijmen et al. (2022)

A.2 FUNCTION DEFINITIONS

We briefly define the key functions used in our formulation:

• Cross-entropy loss. Denoted as LCE(p,y), where p = softmax(z) is the predicted probability
vector and y = onehot(y) is the ground-truth label. This loss measures dissimilarity between
predicted and true distributions:

LCE(p,y) = −
K∑
i=1

yi log pi (10)

• KL divergence. The Kullback–Leibler divergence LKL(p, q) quantifies how the distribution p
diverges from reference distribution q:

LKL(p, q) =

K∑
i=1

pi log
pi
qi

(11)

13



A.3 THEORETICAL ANALYSIS ON THE PROPERTY OF PARTIAL PERTURBATION IN
UNLEARNABLE ATTACKS

Problem Setup. Let the training set D contain n samples, with a fraction α (0 < α < 1) of them
perturbed by an unlearnable example methods, and the remaining (1 − α)n samples left clean.
Denote:

• Clean sample loss: Lc(θ) =
1

(1−α)n

∑
(xi,y)∈Dc

ℓ(fθ(xi), y),

• Perturbed sample loss: Lu(θ) =
1
αn

∑
(xi,y)∈Du

ℓ(fθ(xi + δi), y)

where Dc and Du represent the sets of clean and perturbed samples respectively, and θ denotes the
model parameters.

Total Gradient Decomposition. The overall training loss is a weighted sum of the two losses:

L(θ) = αLu(θ) + (1− α)Lc(θ), (12)

so the total gradient becomes:

∇θL(θ) = α∇θLu(θ) + (1− α)∇θLc(θ). (13)

Parameter Update and Learning Signal. Using gradient descent with learning rate η, the update
rule is:

θt+1 = θt − η∇θL(θ). (14)

The change in loss on the clean data subset is (assuming η is sufficiently small):

∆Lc = Lc(θt+1)− Lc(θt)

= ∇θLc(θt) · (θt+1 − θt).
(15)

Substituting the update rule (Eq. 14),

∆Lc = −η∇θLc(θt) · ∇θL(θt)

= −η[α∇θLc(θt) · ∇θLu(θt) + (1− α)∇θLc(θt) · ∇θLc(θt)].
(16)

Thus,
Lc(θt+1)− Lc(θt) = −η∇θLc(θt) · [α∇θLu(θt) + (1− α)∇θLc(θt)] . (17)

Then, under Assumption 1, the expected gradients of the clean and perturbed subsets are orthogonal,
so the update reduces to

Lc(θt+1)− Lc(θt) = −η(1− α)∥∇θLc(θt)∥2. (18)

Conclusion. The update on the clean loss behaves as if gradient descent were performed solely on
clean samples, with the learning rate scaled by a factor of (1− α).

A.4 GRADIENT ANALYSIS BETWEEN UNLEARNABLE AND CLEAN SAMPLES

A.4.1 EMPIRICAL VERIFICATION OF GRADIENT ORTHOGONALITY

Intuitively, if we want a deep neural network to fail to learn meaningful features, the gradients
produced by the perturbed samples should be approximately orthogonal to those from the clean
samples.

To justify Assumption 1, we empirically examine the alignment between gradients produced by clean
and perturbed samples. Concretely, given a clean image-label pair (x, y) and its perturbed counterpart
(x+ δ, y), we define the gradients of the training loss with respect to model parameters as

gclean = ∇θℓ(fθ(x), y), gpert = ∇θℓ(fθ(x+ δ), y).

14



In practice, we compute gradient similarity at the batch level. Given a mini-batch B = {(xj , yj)}mj=1,
we define the averaged gradients as

ḡclean =
1

m

m∑
j=1

∇θℓ(fθ(xj), yj), ḡpert =
1

m

m∑
j=1

∇θℓ(fθ(xj + δj), yj).

The cosine similarity is then computed as

cos(ḡclean, ḡpert) =
⟨ḡclean, ḡpert⟩
∥ḡclean∥ · ∥ḡpert∥

.

We evaluate multiple unlearnable example methods on CIFAR-10 with ResNet-18. As shown in
Table 10, across all methods the gradients of perturbed samples are nearly orthogonal to those of
clean samples, within only 10 epochs of training on unlearnable datasets.

Our experimental results align with the intuition that the gradients produced by the perturbed
samples should be approximately orthogonal to those from the clean samples. Moreover, the Gradient
Orthogonality Assumption provides a reasonable and empirically validated foundation for Theorem 1.

Table 10: Average cosine similarity between the batch-averaged gradients of clean samples (ḡc) and
protected samples (ḡu). The similarity for each batch is computed as cos(ḡclean, ḡpert) =

⟨ḡclean,ḡpert⟩
∥ḡclean∥·∥ḡpert∥ ,

and then averaged over an epoch.

Epoch EM REM TAP SP NTGA SEP AR PIL (ours)

0 (Init) 0.649 0.694 0.623 0.695 0.669 0.630 0.725 0.634
1 -0.117 0.997 1.000 0.205 0.991 1.000 1.000 0.561
2 -0.000 0.869 0.999 -0.090 0.425 0.999 1.000 0.276
3 0.234 -0.193 0.936 0.066 0.607 0.845 0.999 0.030
4 0.125 0.053 0.055 -0.014 0.226 0.740 0.971 0.120
5 0.040 0.348 0.395 0.002 -0.075 0.330 0.341 0.054
6 -0.044 -0.115 0.274 -0.066 -0.025 0.484 0.471 0.066
7 -0.056 -0.069 -0.166 -0.074 0.051 -0.228 0.440 -0.043
8 -0.001 -0.021 0.113 -0.083 -0.019 0.113 0.381 -0.086
9 0.002 -0.002 -0.002 -0.090 -0.050 -0.039 0.193 -0.084

10 -0.001 0.006 -0.017 -0.093 -0.062 -0.047 -0.039 -0.082

A.4.2 INTRA-CLASS GRADIENT SIMILARITY ANALYSIS

In the previous subsection, we discussed that the overall gradients between clean and perturbed
samples are nearly orthogonal. Here, we further investigate how unlearnable examples affect the
gradients of samples within the same class: do they make the gradients more similar or more diverse?

Table 11 summarizes the average cosine similarity between per-sample loss gradients with respect
to model parameters for all sample pairs within each class, computed using the clean training set
on models trained either on clean data or on unlearnable datasets. For the clean model, intra-class
gradient similarity is relatively low (typically in the interval [0.1, 0.2]), indicating that gradients of
samples within the same class retain substantial diversity.

In contrast, models trained on perturbed datasets consistently exhibit higher intra-class gradient
similarity, commonly in the interval [0.3, 0.7]. This demonstrates that unlearnable perturbations
interfere with the training process, causing the trained model to produce more aligned gradients for
samples of the same class. Higher intra-class gradient similarity reflects a collapse in the gradient
directions across samples, which implies that the model captures less diverse information from
individual samples. These results provide quantitative evidence that unlearnable examples hinder the
learning of diverse features, effectively reducing the model’s ability to represent intra-class variation.

A.5 DETAILED EXPERIMENTAL SETTING FOR PIL

We initialize perturbations {δi}ni=1 from a uniform distribution Uniform(−ϵ, ϵ) with budget ϵ =
8/255. Updates use step size α = 8/2550, and the balancing factor λ = 0.9 to balance the objectives

15



Table 11: Intra-class gradient cosine similarity for each method across CIFAR-10 classes.

Method 0 1 2 3 4 5 6 7 8 9

Clean 0.121 0.181 0.107 0.163 0.099 0.147 0.156 0.162 0.187 0.199

EM 0.266 0.273 0.283 0.303 0.350 0.305 0.406 0.335 0.348 0.325
REM 0.320 0.528 0.345 0.393 0.365 0.381 0.510 0.472 0.568 0.477
TAP 0.349 0.533 0.335 0.377 0.349 0.316 0.397 0.372 0.291 0.397
SP 0.432 0.413 0.368 0.418 0.332 0.387 0.393 0.370 0.461 0.477
NTGA 0.356 0.281 0.287 0.373 0.283 0.286 0.334 0.389 0.303 0.331
SEP 0.371 0.473 0.358 0.486 0.286 0.602 0.389 0.466 0.445 0.415
AR 0.727 0.612 0.716 0.611 0.701 0.728 0.713 0.727 0.688 0.554
PIL (ours) 0.431 0.396 0.356 0.386 0.332 0.400 0.307 0.336 0.387 0.328

in Eq. 3 and Eq. 4. The linear model flin(·;w) is optimized for M = 30 iterations, with perturbations
updated for N = 30 steps, using a cosine annealing learning rate schedule. For SVHN, CIFAR-10,
and CIFAR-100, we use an initial learning rate η = 0.003 and momentum 0.9. For the ImageNet
Subset, we use η = 0.03, weight decay 1× 10−4, momentum 0.9, and apply gradient clipping with
threshold 1.0.

A.6 DETAILS OF BASELINE METHODS

• Error-Minimizing (EM) (Huang et al., 2021): EM generates unlearnable examples by minimizing
the classification error of perturbed images using a surrogate deep neural network. The optimization
alternates between updating the perturbations and training the surrogate model. We use the official
implementation provided by the authors.3

• Robust Error-Minimizing (REM) (Fu et al., 2022): REM replaces the normally-trained surrogate
in EM with an adversarially-trained model, making the attacks more robust against adversarial
training. We use the official implementation provided by the authors.4

• Targeted Adversarial Poisoning (TAP) (Fowl et al., 2021): TAP uses a fixed, pretrained surrogate
model and minimizes the classification loss with respect to target labels rather than the original
labels. We use the official implementation provided by the authors.5

• Synthetic Perturbations (SP) (Yu et al., 2022): SP generates perturbations by sampling linearly
separable Gaussian samples, which are then up-scaled to match the input image size. Perturbations
sampled from the same Gaussian distribution are assigned to the same class. We use the official
implementation provided by the authors.6

• Neural Tangent Generalization Attacks (NTGA) (Yuan & Wu, 2021): NTGA uses the neural
tangent kernel (Jacot et al., 2018) as the surrogate to model the training dynamics of a class of wide
DNNs and then leverages it to generate perturbations. We use the perturbed datasets provided by
the authors.7

• Self-Ensemble Protection (SEP) (Chen et al., 2022): SEP generates perturbations by ensem-
bling intermediate checkpoints obtained during training on the clean dataset. We use the official
implementation provided by the authors.8

• AutoRegressive poisoning (AR) (Sandoval-Segura et al., 2022): AR leverages an autoregressive
process to generate perturbations that are favored by CNNs during training. We use the official
implementation provided by the authors.9

• Convolution-based Unlearnable Datasets (CUDA) (Sadasivan et al., 2023): CUDA constructs
unlearnable examples by applying class-wise convolutions with randomly generated filters, encour-

3https://github.com/HanxunH/Unlearnable-Examples/
4https://github.com/fshp971/robust-unlearnable-examples/
5https://github.com/lhfowl/adversarial_poisons
6https://github.com/dayu11/Availability-Attacks-Create-Shortcuts/
7https://github.com/lionelmessi6410/ntga
8https://github.com/Sizhe-Chen/SEP
9https://github.com/psandovalsegura/autoregressive-poisoning

16

https://github.com/HanxunH/Unlearnable-Examples/
https://github.com/fshp971/robust-unlearnable-examples/
https://github.com/lhfowl/adversarial_poisons
https://github.com/dayu11/Availability-Attacks-Create-Shortcuts/
https://github.com/lionelmessi6410/ntga
https://github.com/Sizhe-Chen/SEP
https://github.com/psandovalsegura/autoregressive-poisoning


aging the model to associate filters with labels rather than to learn meaningful features from the
clean data. We use the official implementation released by the authors.10

A.7 EFFECT OF PRETRAINING ON PIL

We evaluate the performance of PIL with and without pretraining under various data augmentations.
The average test accuracy of models trained on the unlearnable dataset is reported in Table 12.

Table 12: Test accuracy (%) of models trained on PIL-protected datasets under different augmenta-
tions. Lower is better. PIL-pre means PIL with pretraining; PIL-np means PIL without pretraining.

Method None Basic Rotation Persp Gray ChShuf Cutout CutMix MixUp

PIL-np 15.94 13.24 27.99 23.70 24.39 34.13 10.90 12.72 29.36
PIL-pre 14.70 12.87 18.15 19.30 17.01 10.88 14.62 10.79 11.05

PIL without pretraining still effectively degrades model performance, especially under strong augmen-
tations such as Cutout and CutMix. However, pretraining leads to significantly stronger protection,
particularly for augmentations like Rotation, ChannelShuffle, and MixUp. These results demonstrate
that while pretraining is not strictly necessary for PIL, it provides benefits in scenarios with heavy
data augmentation.

A.8 ADDITIONAL DATA AUGMENTATIONS RESULTS FOR SECTION 4.2.1

In this section, we report the results of the original CUDA method as a supplement to the main text.
It is important to note that the original version of CUDA relaxes the imperceptibility constraint: on
CIFAR-10, its average per-pixel perturbation reaches approximately 21.87/255, which is substantially
larger than the perturbation budgets used by other baselines (typically L∞ = 8/255).

For a fair comparison, we include only the clipped variant of CUDA (denoted as CUDA∗), which is
constrained to the standard L∞ = 8/255 budget, in the main tables. The original CUDA is shown
here solely for completeness. As reported in Table 13, once the perturbation is clipped to 8/255, the
protection effect of CUDA∗ becomes noticeably weaker.

Table 13: Clean test accuracies (%) on CIFAR-10 for different unlearnable examples under various
data augmentation strategies. Closer to 10% is better. Gray background indicates top-2 methods.

Method None Basic Rotation Persp GrayScale ChShuf Cutout CutMix MixUp

Clean 83.93 91.45 92.05 93.38 88.84 91.99 92.71 93.49 93.87

EM 21.43 24.82 28.67 29.77 89.15 57.64 23.47 29.39 48.26
REM 21.36 23.24 22.71 26.16 69.35 64.37 17.82 24.46 24.91
TAP 35.90 19.11 21.18 21.47 19.38 13.56 15.09 11.64 20.30
SP 16.06 23.92 23.67 25.28 82.79 73.04 23.74 21.11 26.41
NTGA 27.60 30.22 29.45 31.42 70.55 56.21 25.86 15.80 17.34
CUDA 10.35 24.74 29.53 30.70 23.74 25.72 21.62 23.95 23.54
CUDA∗ 65.47 87.45 89.49 88.54 80.86 80.82 85.8 81.34 89.05
SEP 28.43 8.94 19.68 23.70 9.61 9.80 9.74 12.02 10.48
AR 16.89 17.57 11.31 13.40 38.38 14.25 10.57 14.05 15.87
PIL (ours) 14.70 12.87 18.15 19.30 17.01 10.88 14.62 10.79 11.05
Note: CUDA∗ uses the perturbation budget (ϵ = 8/255), whereas CUDA uses its original larger budget.

A.9 ADDITIONAL ADVERSARIAL TRAINING RESULTS FOR SECTION 4.2.2

As shown in Table 14, REM exhibits strong resistance under adversarial training with smaller pertur-
bation budgets (e.g., ϵ ≤ 4/255). However, under large perturbation budgets, PIL outperforms REM.
Apart from REM, all other methods demonstrate relatively similar performance under adversarial
training. We believe that the performance of our PIL method can be further enhanced by introducing

10https://github.com/vinusankars/Convolution-based-Unlearnability

17

https://github.com/vinusankars/Convolution-based-Unlearnability


mechanisms similar to REM, which generates perturbations jointly with adversarial training. We
leave the exploration of this direction for future work.

All adversarial training experiments were conducted using PGD-7 with an attack step size of ϵ/4 for
each perturbation budget.

Table 14: Adversarial Training. CIFAR-10 test accuracy (%) under adversarial training with
different perturbation budgets ϵ. Closer to 10% is better.

Method ϵ = 2/255 ϵ = 4/255 ϵ = 8/255 ϵ = 16/255

Clean 88.31 86.41 80.59 60.15

EM 87.04 85.91 80.21 62.53
REM 29.01 42.84 82.67 62.88
TAP 80.56 83.93 77.77 60.01
SP 69.65 84.70 79.79 59.65
NTGA 79.46 82.52 77.53 57.68
SEP 80.63 74.34 72.17 63.22
AR 71.07 73.11 71.72 64.29
PIL (ours) 78.15 83.36 79.25 58.23

A.10 ADDITIONAL RESULTS FOR SECTION 6

A.10.1 PARTIAL PERTURBATION FOR OTHER METHODS

In this section, we conduct a detailed study on how various unlearnable examples perform when only
a portion of the training data is perturbed. As shown in Table 15, the clean test accuracy consistently
drops as the perturbation portion increases. However, even when up to 90% of the training data is
perturbed, the degradation in accuracy still falls short compared to the fully perturbed setting.

We provide a detailed analysis of this phenomenon for our PIL method in Section 6, where we explore
potential reasons for its limited effectiveness under partial perturbation. These insights may also be
applicable to other methods.

Table 15: Clean test accuracy (%) on CIFAR-10 for different unlearnable example generation methods
when only a portion of the training set is perturbed.

Method 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

EM 92.70 91.95 88.72 89.41 89.45 87.07 82.99 82.15 70.37
REM 91.89 91.99 91.76 89.14 89.03 83.13 86.93 79.80 74.86
TAP 91.55 91.41 88.81 91.03 89.79 88.19 87.35 83.92 80.40
SP 92.66 91.88 92.33 89.43 88.74 85.88 85.80 81.62 74.30
NTGA 91.48 91.83 91.44 89.88 89.61 89.10 85.00 81.13 71.49
SEP 91.53 91.18 91.05 90.99 90.01 89.25 86.99 85.70 82.47
AR 92.96 91.91 92.37 91.13 90.62 87.80 87.39 84.96 79.55
PIL (ours) 92.95 91.18 91.20 90.11 89.34 89.71 83.72 82.26 76.97

A.10.2 PERTURBED DATA CONTRIBUTES LITTLE ACCURACY INCREASE

As qualitatively discussed in Section 6, perturbed samples contribute very little to the accuracy
improvement of models. Here, we provide a quantitative analysis to support this observation.

As shown in Figure 4, we investigate how the model trained on a mix of η portion clean and 1− η
portion perturbed data compares to models trained on only clean data. Specifically, we estimate
how much additional clean data would be needed to achieve the same accuracy as that provided by
the perturbed portion. The results show that across all settings where η ∈ {0.1, 0.2, . . . , 0.8}, the
accuracy benefit contributed by the 1− η portion of perturbed data is equivalent to using no more
than an additional 20% of clean data. This result clearly indicates that the perturbations introduced by
PIL effectively hinder the model from learning meaningful representations from the perturbed data.

18



0.2 0.4 0.6 0.8 1.0
Proportion

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Clean
PIL @ 0.10
Intersection

(a) η = 0.1

0.2 0.4 0.6 0.8 1.0
Proportion

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Clean
PIL @ 0.20
Intersection

(b) η = 0.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Proportion

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Clean
PIL @ 0.30
Intersection

(c) η = 0.3

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Proportion

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Clean
PIL @ 0.40
Intersection

(d) η = 0.4

0.5 0.6 0.7 0.8 0.9 1.0
Proportion

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Clean
PIL @ 0.50
Intersection

(e) η = 0.5

0.6 0.7 0.8 0.9 1.0
Proportion

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Clean
PIL @ 0.60
Intersection

(f) η = 0.6

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Proportion

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Clean
PIL @ 0.70
Intersection

(g) η = 0.7

0.80 0.85 0.90 0.95 1.00
Proportion

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Clean
PIL @ 0.80
Intersection

(h) η = 0.8
Figure 4: Accuracy curves with varying initial clean ratios (η). The star marker indicates the
intersection point where the Clean curve crosses the PIL baseline. The x-axis (proportion) represents
the total fraction of clean training data used relative to the entire dataset. (a)-(f) demonstrate the
progressive impact of increasing η from 0.1 to 0.8.

19



A.11 PERTURBATION PREVENTS SEMANTIC LEARNING

In this section, we provide further experimental evidence that unlearnable perturbations prevent
models from acquiring meaningful semantic features.

Figures 5a and 5b show the model’s behavior when all classes in the training set are perturbed. In this
setting, the model exhibits high uncertainty across all test samples, as indicated by elevated entropy
values, and tends to misclassify them into a few dominant categories such as "Car", "Bird", and
"Truck". The corresponding confusion matrix confirms this collapse in classification diversity.

In contrast, Figures 5c and 5d display results when only the "Bird" class is perturbed. Here, the model
maintains low prediction entropy and high accuracy for the unperturbed classes, but fails to learn
useful representations for the "Bird" class, showing high entropy and almost random predictions for
those samples.

These findings support our hypothesis: unlearnable perturbations effectively block learning of
semantic information for perturbed classes, without significantly affecting the learning of clean ones.

Plane Car Bird Cat
Deer Dog Frog

Horse Ship
Truck

Class

0.0

0.5

1.0

1.5

2.0

2.5

Av
g.

 E
nt

ro
py

 (b
its

)

Clean
Perturbed

(a) All Classes Perturbed

Plane Car Bird Cat Deer Dog FrogHorseShip Truck
Predicted Labels

Plane

Car

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck
Tr

ue
 L

ab
el

s

51 184 252 103 0 43 3 2 19 343

6 453 90 12 0 41 5 4 8 381

17 117 596 56 3 55 41 11 3 101

12 165 481 57 5 88 22 17 0 153

16 132 459 66 30 109 32 52 3 101

10 124 528 49 2 138 18 21 3 107

20 175 377 43 14 50 143 24 1 153

10 202 327 23 5 164 7 136 7 119

53 152 223 92 3 84 2 3 56 332

12 245 146 26 1 34 3 11 8 514
0

100

200

300

400

500

(b) All Classes Perturbed

Plane Car
Bird Cat

Deer Dog Frog
Horse Ship

Truck

Class

0.0

0.1

0.2

0.3

0.4

0.5

Av
g.

 E
nt

ro
py

 (b
its

)

Clean
Perturbed

(c) Class "Bird" Perturbed

Plane Car Bird Cat Deer Dog FrogHorseShip Truck
Predicted Labels

Plane

Car

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Tr
ue

 L
ab

el
s

948 3 0 6 8 1 2 4 22 6

6 962 0 0 0 0 2 0 5 25

213 5 23 209 188 128 172 42 11 9

15 0 0 837 27 82 21 8 5 5

7 2 0 19 936 13 13 9 1 0

3 1 0 78 22 879 6 8 2 1

4 1 3 23 9 5 948 3 2 2

8 0 0 11 21 13 0 945 0 2

23 5 0 2 1 0 2 2 956 9

5 30 0 5 1 0 2 0 10 947
0

200

400

600

800

(d) Class "Bird" Perturbed
Figure 5: Effect of perturbations on prediction uncertainty and class confusion. Subfigures (a) and (c)
show entropy of predictions on the clean test set, where higher values indicate greater uncertainty.
Subfigures (b) and (d) present the corresponding confusion matrices.

To further understand the effect of PIL on the model’s behavior, we also measured the Jacobian
singular value spectra.

We computed the Jacobian singular value spectra on the clean CIFAR-10 test set for two ResNet-18
models: one trained on the clean CIFAR-10 training set, and the other trained on the PIL-perturbed
CIFAR-10 training set. For each of the 10,000 test images, we calculated the singular values of the
Jacobian (sorted in descending order), and then averaged the resulting singular value spectra across
all test samples (Figure 6).

We observe that the singular values increase across almost all modes after applying PIL. In particular,
the largest singular value rises from 69.03 to 72.76, and the smallest from 0.334 to 0.799. This
overall elevation indicates that the model’s output is more sensitive to input perturbations along
multiple directions, suggesting that PIL increases the uncertainty in class selection and distributes the
sensitivity more evenly across the input space.

20



1 2 3 4 5 6 7 8 9 10
Singular Value Index

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

M
ag

ni
tu

de

PIL
Clean

Figure 6: Average Jacobian singular value spectra on the CIFAR-10 test set for ResNet-18 models
trained on clean and PIL-perturbed training data.

A.12 PARAMETER SELECTION

We sweep the balancing factor λ and evaluate PIL with various data augmentation, including two
ablation cases at λ = 0 and λ = 1. When λ ∈ (0, 1), both Eq. 3 and Eq. 4 are jointly optimized,
whereas λ = 0 and λ = 1 correspond to using only Eq. 3 or only Eq. 4, respectively. As shown in
Table 16, PIL consistently achieves low test accuracy across a broad interval of λ ∈ [0.3, 0.9], indi-
cating that the method is not sensitive to this hyperparameter. Notably, the most stable performance
across all augmentation settings appears in λ = 0.9, where the perturbed datasets consistently reduce
accuracy to below 20%.

The ablation settings further clarify the contribution of each loss component. When λ = 1 (removing
Eq. 3), PIL still provides strong protection, although the performance is slightly less stable across
augmentations compared to the best mixed settings (λ = 0.9). In contrast, when λ = 0 (removing
Eq. 4), PIL exhibits almost no protective effect, which aligns with our expectation that Eq. 4 is the
primary driver of unlearnability.

We now discuss the role of Eq. 3 in more detail. During the design of our method, we noted that even
a purely linear classifier can achieve around 40% accuracy on CIFAR-10. Motivated by this, Eq. 3
was introduced to suppress the true features that a linear model would otherwise rely on, ensuring that
models trained on the PIL-generated unlearnable dataset focus primarily on the perturbation–label
correspondence rather than meaningful class information. In practice, as shown in Table 16, jointly
using both loss terms leads to stronger and more stable protection across diverse settings. Especially
our final choice, λ = 0.9, provides both strong and stable performance.

Table 16: CIFAR-10 test accuracy (%) of PIL with varying balancing factor λ under different
augmentation strategies. Closer to 10% is better.

Augs 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

None 82.97 31.30 13.16 7.20 7.64 10.60 13.98 14.96 11.75 17.08 18.76
Basic 90.71 83.99 56.72 38.57 28.46 26.13 20.68 21.78 27.16 15.98 13.12
Rotation 88.56 78.69 53.11 35.45 24.40 17.38 21.43 17.79 22.53 17.41 20.10
Cutout 92.54 79.09 52.46 28.26 23.82 17.64 13.10 18.25 22.94 12.34 21.58
CutMix 92.20 78.66 32.05 27.41 17.59 14.19 14.61 12.62 13.21 11.68 11.56
Mixup 90.22 85.00 57.66 25.62 21.90 16.24 12.97 10.98 11.75 14.51 13.70

We further investigate the effect of λ on CIFAR-100 in Table 17. The overall trend closely mirrors our
observations on CIFAR-10: PIL remains effective across a broad interval of λ ∈ [0.3, 0.9], indicating
that the method is not sensitive to this hyperparameter. Similar to the CIFAR-10 ablations, When
λ = 1 (removing Eq. 3), PIL still provides strong protection, although the performance is slightly less
stable across augmentations compared to the best mixed settings (λ = 0.9). Eq. 3 plays an auxiliary
but beneficial role in stabilizing the protection effect.

21



In particular, λ = 0.9 yields the most reliable performance across different augmentations. As shown
in Table 17, for every augmentation setting, the test accuracy remains below 2.5%, further supporting
our choice of λ = 0.9 as it achieves consistently strong and stable protection on CIFAR-100 as well.

Table 17: CIFAR-100 test accuracy (%) of PIL with varying balancing factor λ under different
augmentation strategies. Closer to 1% is better.

Augs 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

None 56.37 31.90 6.39 4.13 1.73 3.02 2.89 3.95 3.51 2.43 2.89
Basic 69.66 67.45 33.13 5.46 2.73 2.47 2.94 2.61 1.06 1.66 1.69
Rotation 67.19 61.23 11.51 4.41 2.39 2.33 1.54 1.56 1.18 1.06 1.17
Cutout 69.89 61.97 16.95 4.21 2.31 2.22 1.69 1.24 1.13 1.94 1.59
CutMix 73.25 61.15 11.34 3.61 2.78 1.97 2.54 2.28 1.27 1.11 2.25
Mixup 69.53 60.74 17.74 6.35 5.01 3.64 2.11 1.54 1.69 1.61 1.02

A.13 VISUALIZATION

Figures 7–16 visualize the perturbations and corresponding perturbed datasets produced by PIL, EM,
REM, TAP, SP, NTGA, SEP, AR, CUDA, and CUDA∗ respectively.

A brief comparison of perceptual differences is provided in Table 18. Except for CUDA, which
intentionally uses a much larger perturbation budget and consequently produces more noticeable
deviations, all other methods exhibit strong imperceptibility. In general, perturbations with PSNR
above 30 dB and SSIM above 0.95 are widely regarded as indicators of high-quality images, and
nearly all methods fall well within this range.

Table 18: PSNR and SSIM of different unlearnable example methods.

Metric EM REM TAP SP NTGA SEP AR CUDA∗ CUDA PIL (ours)

PSNR 31.9 32.5 31.7 32.6 30.2 32.0 35.0 31.3 18.8 30.2
SSIM 0.97 0.95 0.95 0.98 0.98 0.95 0.98 0.98 0.80 0.95

Figure 7: Samples from PIL constructed CIFAR-10 unlearnable datasets. We visualize clean
images, normalized perturbations and perturbed images (top to bottom).

22



Figure 8: Samples from EM constructed CIFAR-10 unlearnable datasets. We visualize clean
images, normalized perturbations and perturbed images (top to bottom).

Figure 9: Samples from REM constructed CIFAR-10 unlearnable datasets. We visualize clean
images, normalized perturbations and perturbed images (top to bottom).

Figure 10: Samples from TAP constructed CIFAR-10 unlearnable datasets. We visualize clean
images, normalized perturbations and perturbed images (top to bottom).

Figure 11: Samples from SP constructed CIFAR-10 unlearnable datasets. We visualize clean
images, normalized perturbations and perturbed images (top to bottom).

23



Figure 12: Samples from NTGA constructed CIFAR-10 unlearnable datasets. We visualize clean
images, normalized perturbations and perturbed images (top to bottom).

Figure 13: Samples from SEP constructed CIFAR-10 unlearnable datasets. We visualize clean
images, normalized perturbations and perturbed images (top to bottom).

Figure 14: Samples from AR constructed CIFAR-10 unlearnable datasets. We visualize clean
images, normalized perturbations and perturbed images (top to bottom).

Figure 15: Samples from CUDA constructed CIFAR-10 unlearnable datasets. We visualize clean
images, normalized perturbations and perturbed images (top to bottom).

24



Figure 16: Samples from CUDA∗ (ϵ = 8/255) constructed CIFAR-10 unlearnable datasets. We
visualize clean images, normalized perturbations and perturbed images (top to bottom).

A.14 EXPERIMENTAL COMPUTING RESOURCES

All experiments were conducted on the following hardware configuration:

• GPU: NVIDIA RTX A6000 (Memory: 49140MiB)
• CPU: AMD EPYC 7543 32-Core Processor @ 3.7 GHz

A.15 USE OF LARGE LANGUAGE MODELS

Large Language Models were only used to assist with writing refinement and polishing.

A.16 MORE DISCUSSION OF SECTION 5

As shown in Tables 19–26, we extend our linearity analysis to several existing unlearnable attack
methods, including EM, REM, TAP, SP, NTGA, SEP, and AR. Notably, despite their different designs
and objectives, all these methods substantially increase the vulnerability of victim models to FGSM
attack, particularly when the perturbation rate reaches 30%. This consistent pattern suggests these
methods induce stronger linear behavior in victim models—an effect remarkably similar to our
observations in PIL.

This observation is particularly notable because, unlike PIL, these methods do not explicitly aim to
make the perturbed datasets linearly separable. Nevertheless, the fact that they all lead to enhanced
linearity suggests that this effect may be a fundamental property of unlearnable perturbations. That
is, unlearnable attacks may impair learning by implicitly constraining the model to rely on simpler,
more linear decision boundaries—thereby limiting its ability to capture meaningful or high-level
representations. We leave further exploration of this potential mechanism to future work.

25



Table 19: Test accuracy and accuracy drop (%) under FGSM attack at different perturbation propor-
tions, ResNet-18 models are trained with mixed clean and PIL perturbed data.

FGSM Step 10% 20% 30%
perturbed clean perturbed clean perturbed clean

0/255 92.33 (-0.0) 90.83 (-0.0) 91.7 (-0.0) 91.47 (-0.0) 91.97 (-0.0) 90.87 (-0.0)
1/255 61.93 (-30.4) 61.84 (-28.99) 59.63 (-32.07) 61.64 (-29.83) 49.96 (-42.01) 60.82 (-30.05)
2/255 38.13 (-54.2) 40.23 (-50.6) 36.35 (-55.35) 37.85 (-53.62) 26.03 (-65.94) 37.71 (-53.16)
4/255 17.39 (-74.94) 23.79 (-67.04) 17.68 (-74.02) 18.45 (-73.02) 11.75 (-80.22) 18.75 (-72.12)
8/255 7.95 (-84.38) 14.51 (-76.32) 9.54 (-82.16) 9.98 (-81.49) 9.61 (-82.36) 11.32 (-79.55)

FGSM Step 40% 50% 60%
perturbed clean perturbed clean perturbed clean

0/255 91.25 (-0.0) 90.38 (-0.0) 89.73 (-0.0) 87.69 (-0.0) 88.43 (-0.0) 84.21 (-0.0)
1/255 49.41 (-41.84) 59.31 (-31.07) 45.33 (-44.4) 59.69 (-28.0) 44.8 (-43.63) 58.75 (-25.46)
2/255 24.56 (-66.69) 35.91 (-54.47) 22.13 (-67.6) 38.23 (-49.46) 22.6 (-65.83) 37.24 (-46.97)
4/255 9.59 (-81.66) 16.85 (-73.53) 9.11 (-80.62) 21.29 (-66.4) 8.47 (-79.96) 19.03 (-65.18)
8/255 5.47 (-85.78) 9.25 (-81.13) 5.84 (-83.89) 13.6 (-74.09) 5.26 (-83.17) 10.6 (-73.61)

FGSM Step 70% 80% 90%
perturbed clean perturbed clean perturbed clean

0/255 87.18 (-0.0) 84.45 (-0.0) 83.1 (-0.0) 80.04 (-0.0) 74.81 (-0.0) 68.78 (-0.0)
1/255 33.38 (-53.8) 60.7 (-23.75) 31.02 (-52.08) 54.82 (-25.22) 19.6 (-55.21) 48.56 (-20.22)
2/255 15.29 (-71.89) 39.63 (-44.82) 13.49 (-69.61) 35.1 (-44.94) 7.24 (-67.57) 32.64 (-36.14)
4/255 8.52 (-78.66) 19.08 (-65.37) 5.37 (-77.73) 16.96 (-63.08) 3.05 (-71.76) 15.16 (-53.62)
8/255 7.48 (-79.7) 8.42 (-76.03) 5.77 (-77.33) 7.66 (-72.38) 2.61 (-72.2) 6.34 (-62.44)

Table 20: Test accuracy and accuracy drop (%) under FGSM attack at different perturbation propor-
tions, ResNet-18 models are trained with mixed clean and EM perturbed data.

FGSM Step 10% 20% 30%
perturbed clean perturbed clean perturbed clean

0/255 92.7 (-0.0) 91.98 (-0.0) 91.95 (-0.0) 90.75 (-0.0) 88.72 (-0.0) 89.84 (-0.0)
1/255 60.68 (-32.02) 64.03 (-27.95) 60.21 (-31.74) 62.15 (-28.6) 57.04 (-31.68) 63.28 (-26.56)
2/255 37.33 (-55.37) 40.85 (-51.13) 36.32 (-55.63) 39.01 (-51.74) 34.71 (-54.01) 42.14 (-47.7)
4/255 19.16 (-73.54) 19.57 (-72.41) 17.97 (-73.98) 19.7 (-71.05) 17.09 (-71.63) 22.7 (-67.14)
8/255 10.88 (-81.82) 9.59 (-82.39) 9.56 (-82.39) 11.32 (-79.43) 9.43 (-79.29) 13.08 (-76.76)

FGSM Step 40% 50% 60%
perturbed clean perturbed clean perturbed clean

0/255 89.41 (-0.0) 88.74 (-0.0) 89.45 (-0.0) 88.59 (-0.0) 87.07 (-0.0) 83.95 (-0.0)
1/255 49.56 (-39.85) 60.28 (-28.46) 49.18 (-40.27) 61.69 (-26.9) 40.95 (-46.12) 59.62 (-24.33)
2/255 28.13 (-61.28) 38.38 (-50.36) 26.99 (-62.46) 40.08 (-48.51) 23.19 (-63.88) 40.61 (-43.34)
4/255 14.11 (-75.3) 21.65 (-67.09) 13.55 (-75.9) 21.77 (-66.82) 13.45 (-73.62) 20.88 (-63.07)
8/255 10.06 (-79.35) 13.3 (-75.44) 9.15 (-80.3) 12.94 (-75.65) 10.74 (-76.33) 11.15 (-72.8)

FGSM Step 70% 80% 90%
perturbed clean perturbed clean perturbed clean

0/255 82.99 (-0.0) 85.25 (-0.0) 82.15 (-0.0) 79.22 (-0.0) 70.37 (-0.0) 69.36 (-0.0)
1/255 37.41 (-45.58) 59.09 (-26.16) 30.79 (-51.36) 55.67 (-23.55) 17.46 (-52.91) 48.49 (-20.87)
2/255 21.76 (-61.23) 37.79 (-47.46) 17.51 (-64.64) 36.19 (-43.03) 10.98 (-59.39) 32.08 (-37.28)
4/255 14.01 (-68.98) 19.07 (-66.18) 12.10 (-70.05) 17.08 (-62.14) 10.47 (-59.90) 15.54 (-53.82)
8/255 10.60 (-72.39) 9.97 (-75.28) 9.99 (-72.16) 7.90 (-71.32) 9.99 (-60.38) 6.76 (-62.60)

26



Table 21: Test accuracy and accuracy drop (%) under FGSM attack at different perturbation propor-
tions, ResNet-18 models are trained with mixed clean and REM perturbed data.

FGSM Step 10% 20% 30%
perturbed clean perturbed clean perturbed clean

0/255 91.89 (-0.0) 91.48 (-0.0) 91.99 (-0.0) 90.39 (-0.0) 91.76 (-0.0) 90.31 (-0.0)
1/255 61.25 (-30.64) 62.4 (-29.08) 51.75 (-40.24) 64.96 (-25.43) 48.75 (-43.01) 61.69 (-28.62)
2/255 37.64 (-54.25) 40.27 (-51.21) 27.37 (-64.62) 41.93 (-48.46) 24.47 (-67.29) 38.75 (-51.56)
4/255 17.27 (-74.62) 22.34 (-69.14) 10.79 (-81.2) 21.24 (-69.15) 8.15 (-83.61) 19.28 (-71.03)
8/255 8.63 (-83.26) 12.66 (-78.82) 4.48 (-87.51) 11.01 (-79.38) 2.65 (-89.11) 10.59 (-79.72)

FGSM Step 40% 50% 60%
perturbed clean perturbed clean perturbed clean

0/255 89.14 (-0.0) 89.9 (-0.0) 89.03 (-0.0) 81.87 (-0.0) 83.13 (-0.0) 85.78 (-0.0)
1/255 53.77 (-35.37) 62.56 (-27.34) 47.01 (-42.02) 57.33 (-24.54) 40.94 (-42.19) 63.13 (-22.65)
2/255 29.18 (-59.96) 39.64 (-50.26) 24.33 (-64.7) 38.32 (-43.55) 19.68 (-63.45) 42.69 (-43.09)
4/255 9.15 (-79.99) 19.37 (-70.53) 6.98 (-82.05) 21.74 (-60.13) 6.08 (-77.05) 21.83 (-63.95)
8/255 3.04 (-86.1) 9.73 (-80.17) 1.58 (-87.45) 13.18 (-68.69) 3.15 (-79.98) 10.67 (-75.11)

FGSM Step 70% 80% 90%
perturbed clean perturbed clean perturbed clean

0/255 86.93 (-0.0) 85.21 (-0.0) 79.80 (-0.0) 81.30 (-0.0) 74.86 (-0.0) 70.05 (-0.0)
1/255 40.54 (-46.39) 61.73 (-23.48) 33.97 (-45.83) 57.23 (-24.07) 24.05 (-50.81) 49.57 (-20.48)
2/255 18.96 (-67.97) 40.93 (-44.28) 14.79 (-65.01) 36.64 (-44.66) 8.25 (-66.61) 32.49 (-37.56)
4/255 4.04 (-82.89) 20.05 (-65.16) 3.26 (-76.54) 17.02 (-64.28) 1.43 (-73.43) 13.99 (-56.06)
8/255 0.92 (-86.01) 8.75 (-76.46) 1.10 (-78.70) 7.52 (-73.78) 0.64 (-74.22) 4.89 (-65.16)

Table 22: Test accuracy and accuracy drop (%) under FGSM attack at different perturbation propor-
tions, ResNet-18 models are trained with mixed clean and TAP perturbed data.

FGSM Step 10% 20% 30%
perturbed clean perturbed clean perturbed clean

0/255 91.55 (-0.0) 91.98 (-0.0) 91.41 (-0.0) 91.25 (-0.0) 88.81 (-0.0) 90.68 (-0.0)
1/255 63.31 (-28.24) 64.64 (-27.34) 57.59 (-33.82) 63.54 (-27.71) 60.78 (-28.03) 62.58 (-28.1)
2/255 41.61 (-49.94) 40.99 (-50.99) 33.43 (-57.98) 39.92 (-51.33) 38.49 (-50.32) 39.63 (-51.05)
4/255 24.07 (-67.48) 20.31 (-71.67) 17.07 (-74.34) 19.9 (-71.35) 20.81 (-68.0) 20.45 (-70.23)
8/255 16.37 (-75.18) 9.87 (-82.11) 11.98 (-79.43) 10.5 (-80.75) 12.04 (-76.77) 10.7 (-79.98)

FGSM Step 40% 50% 60%
perturbed clean perturbed clean perturbed clean

0/255 91.03 (-0.0) 88.92 (-0.0) 89.79 (-0.0) 88.12 (-0.0) 88.19 (-0.0) 87.69 (-0.0)
1/255 46.64 (-44.39) 64.77 (-24.15) 41.16 (-48.63) 64.93 (-23.19) 42.28 (-45.91) 59.22 (-28.47)
2/255 26.2 (-64.83) 42.19 (-46.73) 20.49 (-69.3) 43.33 (-44.79) 23.12 (-65.07) 37.0 (-50.69)
4/255 16.5 (-74.53) 20.59 (-68.33) 10.66 (-79.13) 22.23 (-65.89) 14.65 (-73.54) 18.41 (-69.28)
8/255 14.1 (-76.93) 9.37 (-79.55) 10.73 (-79.06) 10.44 (-77.68) 14.7 (-73.49) 10.42 (-77.27)

FGSM Step 70% 80% 90%
perturbed clean perturbed clean perturbed clean

0/255 87.35 (-0.0) 81.77 (-0.0) 83.92 (-0.0) 80.49 (-0.0) 80.4 (-0.0) 71.08 (-0.0)
1/255 40.92 (-46.43) 56.38 (-25.39) 32.7 (-51.22) 57.45 (-23.04) 27.93 (-52.47) 50.61 (-20.47)
2/255 21.43 (-65.92) 36.29 (-45.48) 16.29 (-67.63) 37.07 (-43.42) 12.39 (-68.01) 33.84 (-37.24)
4/255 10.2 (-77.15) 18.25 (-63.52) 11.39 (-72.53) 17.63 (-62.86) 6.5 (-73.9) 14.9 (-56.18)
8/255 10.82 (-76.53) 9.48 (-72.29) 13.86 (-70.06) 7.01 (-73.48) 8.38 (-72.02) 5.41 (-65.67)

27



Table 23: Test accuracy and accuracy drop (%) under FGSM attack at different perturbation propor-
tions, ResNet-18 models are trained with mixed clean and SP perturbed data.

FGSM Step 10% 20% 30%
perturbed clean perturbed clean perturbed clean

0/255 92.66 (-0.0) 91.16 (-0.0) 91.88 (-0.0) 91.78 (-0.0) 92.33 (-0.0) 89.82 (-0.0)
1/255 58.9 (-33.76) 63.42 (-27.74) 63.76 (-28.12) 60.59 (-31.19) 54.87 (-37.46) 64.16 (-25.66)
2/255 35.84 (-56.82) 41.17 (-49.99) 39.9 (-51.98) 36.8 (-54.98) 30.98 (-61.35) 42.48 (-47.34)
4/255 18.53 (-74.13) 21.44 (-69.72) 18.47 (-73.41) 18.17 (-73.61) 13.09 (-79.24) 21.27 (-68.55)
8/255 11.91 (-80.75) 12.18 (-78.98) 7.58 (-84.3) 9.69 (-82.09) 5.87 (-86.46) 10.37 (-79.45)

FGSM Step 40% 50% 60%
perturbed clean perturbed clean perturbed clean

0/255 89.43 (-0.0) 89.43 (-0.0) 88.74 (-0.0) 87.99 (-0.0) 85.88 (-0.0) 84.50 (-0.0)
1/255 56.00 (-33.43) 62.35 (-27.08) 50.91 (-37.83) 64.42 (-23.57) 48.31 (-37.57) 60.41 (-24.09)
2/255 30.29 (-59.14) 39.99 (-49.44) 27.20 (-61.54) 42.72 (-45.27) 24.29 (-61.59) 39.60 (-44.90)
4/255 10.16 (-79.27) 21.21 (-68.22) 10.28 (-78.46) 21.73 (-66.26) 8.43 (-77.45) 20.24 (-64.26)
8/255 3.90 (-85.53) 11.18 (-78.25) 3.97 (-84.77) 10.89 (-77.10) 3.59 (-82.29) 9.88 (-74.62)

FGSM Step 70% 80% 90%
perturbed clean perturbed clean perturbed clean

0/255 85.80 (-0.0) 82.36 (-0.0) 81.62 (-0.0) 78.96 (-0.0) 74.30 (-0.0) 71.12 (-0.0)
1/255 42.79 (-43.01) 58.12 (-24.24) 34.20 (-47.42) 55.18 (-23.78) 25.37 (-48.93) 51.03 (-20.09)
2/255 20.00 (-65.80) 37.61 (-44.75) 14.87 (-66.75) 35.31 (-43.65) 7.88 (-66.42) 34.42 (-36.70)
4/255 6.01 (-79.79) 19.37 (-62.99) 5.50 (-76.12) 16.74 (-62.22) 2.48 (-71.82) 15.52 (-55.60)
8/255 2.57 (-83.23) 10.08 (-72.28) 3.37 (-78.25) 8.00 (-70.96) 2.18 (-72.12) 5.30 (-65.82)

Table 24: Test accuracy and accuracy drop (%) under FGSM attack at different perturbation propor-
tions, ResNet-18 models are trained with mixed clean and NTGA perturbed data.

FGSM Step 10% 20% 30%
perturbed clean perturbed clean perturbed clean

0/255 91.48 (-0.0) 91.96 (-0.0) 91.83 (-0.0) 90.71 (-0.0) 91.44 (-0.0) 89.61 (-0.0)
1/255 60.97 (-30.5) 60.71 (-31.2) 59.97 (-31.9) 62.45 (-28.3) 55.22 (-36.2) 60.93 (-28.7)
2/255 38.66 (-52.8) 35.99 (-56.0) 36.44 (-55.4) 40.56 (-50.1) 31.75 (-59.7) 39.20 (-50.4)
4/255 20.22 (-71.3) 17.40 (-74.6) 17.98 (-73.8) 21.59 (-69.1) 14.82 (-76.6) 23.08 (-66.5)
8/255 12.23 (-79.2) 8.92 (-83.0) 10.42 (-81.4) 11.94 (-78.8) 8.15 (-83.3) 14.50 (-75.1)

FGSM Step 40% 50% 60%
perturbed clean perturbed clean perturbed clean

0/255 89.88 (-0.0) 91.05 (-0.0) 89.61 (-0.0) 85.92 (-0.0) 89.10 (-0.0) 86.60 (-0.0)
1/255 52.60 (-37.3) 53.55 (-37.5) 48.98 (-40.6) 62.80 (-23.1) 41.87 (-47.2) 59.27 (-27.3)
2/255 27.72 (-62.2) 31.92 (-59.1) 24.94 (-64.7) 42.29 (-43.6) 18.35 (-70.8) 37.53 (-49.1)
4/255 9.71 (-80.2) 17.07 (-74.0) 9.96 (-79.6) 22.28 (-63.6) 6.29 (-82.8) 19.58 (-67.0)
8/255 4.12 (-85.8) 10.27 (-80.8) 4.90 (-84.7) 11.75 (-74.2) 2.93 (-86.2) 10.82 (-75.8)

FGSM Step 70% 80% 90%
perturbed clean perturbed clean perturbed clean

0/255 85.00 (-0.0) 80.00 (-0.0) 81.13 (-0.0) 80.53 (-0.0) 71.49 (-0.0) 70.04 (-0.0)
1/255 36.41 (-48.6) 54.38 (-25.6) 28.89 (-52.2) 55.84 (-24.7) 16.54 (-54.9) 50.12 (-19.9)
2/255 17.00 (-68.0) 35.16 (-44.8) 11.80 (-69.3) 36.58 (-43.9) 5.07 (-66.4) 34.15 (-35.9)
4/255 6.97 (-78.0) 19.08 (-60.9) 4.26 (-76.9) 18.92 (-61.6) 1.89 (-69.6) 16.47 (-53.6)
8/255 3.74 (-81.3) 11.41 (-68.6) 2.36 (-78.8) 10.94 (-69.6) 1.54 (-69.9) 6.99 (-63.1)

28



Table 25: Test accuracy and accuracy drop (%) under FGSM attack at different perturbation propor-
tions, ResNet-18 models are trained with mixed clean and SEP perturbed data.

FGSM Step 10% 20% 30%
perturbed clean perturbed clean perturbed clean

0/255 91.53 (-0.00) 92.1 (-0.00) 91.18 (-0.00) 90.44 (-0.00) 91.05 (-0.00) 88.65 (-0.00)
1/255 69.79 (-21.74) 62.38 (-29.72) 68.48 (-22.70) 63.25 (-27.19) 61.32 (-29.73) 65.0 (-23.65)
2/255 48.68 (-42.85) 37.58 (-54.52) 46.06 (-45.12) 41.26 (-49.18) 39.06 (-51.99) 43.53 (-45.12)
4/255 26.98 (-64.55) 17.34 (-74.76) 25.02 (-66.16) 21.16 (-69.28) 21.44 (-69.61) 22.4 (-66.25)
8/255 14.7 (-76.83) 9.36 (-82.74) 13.11 (-78.07) 11.37 (-79.07) 13.2 (-77.85) 9.17 (-79.48)

FGSM Step 40% 50% 60%
perturbed clean perturbed clean perturbed clean

0/255 90.99 (-0.00) 90.5 (-0.00) 90.01 (-0.00) 88.92 (-0.00) 89.25 (-0.00) 87.35 (-0.00)
1/255 55.79 (-35.20) 58.91 (-31.59) 51.25 (-38.76) 59.76 (-29.16) 44.16 (-45.09) 60.23 (-27.12)
2/255 31.77 (-59.22) 35.18 (-55.32) 27.8 (-62.21) 38.19 (-50.73) 23.96 (-65.29) 38.53 (-48.82)
4/255 14.04 (-76.95) 17.39 (-73.11) 12.48 (-77.53) 19.33 (-69.59) 12.5 (-76.75) 20.32 (-67.03)
8/255 9.34 (-81.65) 9.37 (-81.13) 11.15 (-78.86) 11.26 (-77.66) 12.44 (-76.81) 11.82 (-75.53)

FGSM Step 70% 80% 90%
perturbed clean perturbed clean perturbed clean

0/255 86.99 (-0.00) 86.04 (-0.00) 85.7 (-0.00) 79.49 (-0.00) 82.47 (-0.00) 77.96 (-0.00)
1/255 46.02 (-40.97) 61.69 (-24.35) 38.75 (-46.95) 55.84 (-23.65) 31.88 (-50.59) 53.07 (-24.89)
2/255 24.37 (-62.62) 39.41 (-46.63) 19.4 (-66.30) 35.67 (-43.82) 13.68 (-68.79) 31.79 (-46.17)
4/255 12.08 (-74.91) 18.8 (-67.24) 9.02 (-76.68) 16.13 (-63.36) 6.25 (-76.22) 13.3 (-64.66)
8/255 12.66 (-74.33) 7.41 (-78.63) 12.23 (-73.47) 7.08 (-72.41) 7.95 (-74.52) 4.74 (-73.22)

Table 26: Test accuracy and accuracy drop (%) under FGSM attack at different perturbation propor-
tions, ResNet-18 models are trained with mixed clean and AR perturbed data.

FGSM Step 10% 20% 30%
perturbed clean perturbed clean perturbed clean

0/255 92.96 (-0.00) 92.1 (-0.00) 91.91 (-0.00) 90.44 (-0.00) 92.37 (-0.00) 88.65 (-0.00)
1/255 57.59 (-35.37) 62.38 (-29.72) 65.49 (-26.42) 63.25 (-27.19) 48.18 (-44.19) 65.0 (-23.65)
2/255 33.49 (-59.47) 37.58 (-54.52) 42.05 (-49.86) 41.26 (-49.18) 26.09 (-66.28) 43.53 (-45.12)
4/255 16.91 (-76.05) 17.34 (-74.76) 20.4 (-71.51) 21.16 (-69.28) 14.84 (-77.53) 22.4 (-66.25)
8/255 10.9 (-82.06) 9.36 (-82.74) 10.26 (-81.65) 11.37 (-79.07) 10.28 (-82.09) 9.17 (-79.48)

FGSM Step 40% 50% 60%
perturbed clean perturbed clean perturbed clean

0/255 91.13 (-0.00) 90.5 (-0.00) 90.62 (-0.00) 88.92 (-0.00) 87.8 (-0.00) 87.35 (-0.00)
1/255 50.44 (-40.69) 58.91 (-31.59) 36.31 (-54.31) 59.76 (-29.16) 41.61 (-46.19) 60.23 (-27.12)
2/255 35.2 (-55.93) 35.18 (-55.32) 21.5 (-69.12) 38.19 (-50.73) 26.92 (-60.88) 38.53 (-48.82)
4/255 19.69 (-71.44) 17.39 (-73.11) 13.91 (-76.71) 19.33 (-69.59) 12.92 (-74.88) 20.32 (-67.03)
8/255 10.5 (-80.63) 9.37 (-81.13) 9.92 (-80.70) 11.26 (-77.66) 11.23 (-76.57) 11.82 (-75.53)

FGSM Step 70% 80% 90%
perturbed clean perturbed clean perturbed clean

0/255 87.39 (-0.00) 86.04 (-0.00) 84.96 (-0.00) 79.49 (-0.00) 79.55 (-0.00) 77.96 (-0.00)
1/255 40.39 (-47.00) 61.69 (-24.35) 28.43 (-56.53) 55.84 (-23.65) 15.39 (-64.16) 53.07 (-24.89)
2/255 22.92 (-64.47) 39.41 (-46.63) 19.35 (-65.61) 35.67 (-43.82) 10.67 (-68.88) 31.79 (-46.17)
4/255 17.61 (-69.78) 18.8 (-67.24) 13.27 (-71.69) 16.13 (-63.36) 10.04 (-69.51) 13.3 (-64.66)
8/255 9.97 (-77.42) 7.41 (-78.63) 11.05 (-73.91) 7.08 (-72.41) 9.32 (-70.23) 4.74 (-73.22)

29


	Introduction
	Related Work
	The Proposed Method
	Problem Statement
	Perturbation-Induced Linearization

	Experiments
	Effectiveness of PIL Method on Different Datasets and Models
	PIL Method Against Common Countermeasures
	Data Augmentations.
	Adversarial Training.

	Time Comparison
	Understanding Perturbation-Driven Learning in DNNs.

	PIL do Improve the Linearity of DNNs
	Partial Perturbation: Why Doesn't Accuracy Drop Significantly?
	Conclusion
	Appendix
	Evaluation Criteria for Unlearnability
	Function Definitions
	Theoretical analysis on the Property of Partial Perturbation in Unlearnable Attacks
	Gradient Analysis between Unlearnable and Clean Samples
	Empirical Verification of Gradient Orthogonality
	Intra-class Gradient Similarity Analysis

	Detailed Experimental Setting for PIL
	Details of Baseline Methods
	Effect of Pretraining on PIL
	Additional Data Augmentations Results for Section 4.2.1
	Additional Adversarial Training Results for Section 4.2.2
	Additional Results for Section 6
	Partial Perturbation for Other Methods
	Perturbed Data contributes little Accuracy Increase

	Perturbation Prevents Semantic Learning
	Parameter Selection
	Visualization
	Experimental computing resources
	Use of Large Language Models
	More Discussion of Section 5


