
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GENERATIVE BAYESIAN OPTIMIZATION: GENERATIVE MODELS AS ACQUISITION FUNCTIONS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 We present a general strategy for turning generative models into candidate solution
012 samplers for batch Bayesian optimization (BO). The use of generative models
013 for BO enables large batch scaling as generative sampling, optimization of non-
014 continuous design spaces, and high-dimensional and combinatorial design. In-
015 spired by the success of direct preference optimization (DPO), we show that one
016 can train a generative model with noisy, simple utility values directly computed
017 from observations to then form proposal distributions whose densities are propor-
018 tional to the expected utility, i.e., BO’s acquisition function values. Furthermore,
019 this approach is generalizable beyond preference-based feedback to general types
020 of reward signals and loss functions. This perspective avoids the construction
021 of surrogate (regression or classification) models, common in previous methods
022 that have used generative models for black-box optimization. Theoretically, we
023 show that the generative models within the BO process approximately follow a
024 sequence of distributions which asymptotically concentrate at the global optima
025 under certain conditions. We also demonstrate this effect through experiments on
026 challenging optimization problems involving large batches in high dimensions.

1 INTRODUCTION

030 Bayesian optimization (BO) has been a successful approach to solve complex black-box optimiza-
031 tion problems by making use of probabilistic surrogate models, such as a Gaussian processes (GPs)
032 ([Rasmussen & Williams, 2006](#)), and their uncertainty estimates ([Shahriari et al., 2016](#); [Garnett,](#)
033 [2023](#)). BO methods have been particularly useful in areas such as hyper-parameter tuning for
034 machine learning algorithms ([Snoek et al., 2012](#)), material design ([Frazier & Wang, 2016](#)), and robot
035 locomotion ([Calandra et al., 2016](#)). The core idea of BO is to apply a Bayesian decision-theoretic
036 framework to make optimal choices by maximizing an expected utility criterion, also known as an
037 acquisition function. The corresponding expectations are taken under a Bayesian posterior over the
038 underlying objective function. Thus, the Bayesian model provides a principled way to account for
039 the uncertainty inherent to the limited amount of data and the noisy observations.

040 In many applications such as simulated scenarios ([Azimi et al., 2010](#)), one is able to run multiple
041 evaluations of the objective function in parallel, even though the simulations themselves might be
042 expensive to run. Common BO approaches to these batch settings incrementally build a set of can-
043 didates by sampling “fantasy” observations from the probabilistic model and conditioning on them
044 before selecting the next candidate in the batch ([Wilson et al., 2018](#)). Although near-optimal batches
045 can be selected this way, this approach is not scalable to very large batches in high-dimensional
spaces, such as problems in protein design ([Stanton et al., 2022](#); [Gruver et al., 2023](#)).

046 One of the most promising alternatives to batch BO has been to train a generative model as a proposal
047 distribution informed by the acquisition function and then sample a batch from the learned proposal
048 ([Brookes et al., 2019](#); [Stanton et al., 2022](#); [Gruver et al., 2023](#); [Steinberg et al., 2025](#)). This approach
049 comes with several advantages. Firstly, given a trained generative model, sampling is usually inex-
050 pensive. Secondly, existing general-purpose generative models can be used and fine-tuned for the
051 optimization task at hand. Lastly, sampling avoids estimating the global optimum of an acquisition
052 function, which can be hard. However, existing generative approaches to black-box optimization
053 usually rely on fitting a surrogate (regression or classification) model first then training a generative
model on top of it ([Stanton et al., 2022](#); [Gruver et al., 2023](#); [Steinberg et al., 2025](#)). This two-stage

054 process compounds approximation errors from both models and can increase the computational cost
 055 significantly when compared to having a single model.
 056

057 In this paper we present a general framework for learning generative models for batch Bayesian
 058 optimization tasks that requires a single model without the need for additional probabilistic regres-
 059 sion or classification surrogates. Our approach for generative BO (GenBO) encodes general utility
 060 functions into training objectives for generative models directly. We focus on two cases, one where
 061 we train the model via a loss function for a reward model analogously to the direct preference opti-
 062 mization (DPO) formulation for large language models (Rafailov et al., 2023), and the second one
 063 where we train the generative model through divergence minimization, using utilities as part of sam-
 064 ple weights. We present theoretical analyses on the convergence of approximations and empirical
 065 results on practical applications involving high-dimensional combinatorial optimization problems.
 066

066 2 BACKGROUND

068 We consider the problem of estimating the global optimum of an objective function $f : \mathcal{X} \rightarrow \mathbb{R}$ as:
 069

$$070 \quad \mathbf{x}^* \in \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}), \quad (1)$$

072 where f is an expensive-to-evaluate black-box function, i.e., $\nabla_{\mathbf{x}} f$ is unavailable. We can only
 073 observe $f(\mathbf{x})$ via noisy evaluations $y = f(\mathbf{x}) + \epsilon$, where ϵ is assumed sub-Gaussian (Pisier, 2016).
 074 We assume the objective f can be evaluated in parallel, and the algorithm is allowed to run up to
 075 $T \geq 1$ optimization rounds with a batch of B query locations $\mathcal{B}_t := \{\mathbf{x}_{t,i}\}_{i=1}^B \subset \mathcal{X}$ per round.
 076

077 **BO with regression models.** Typically BO assumes a Bayesian prior over f (Garnett, 2023),
 078 often given by a Gaussian process (Rasmussen & Williams, 2006). Given a set of observations \mathcal{D}_t ,
 079 corrupted by Gaussian noise $\epsilon \sim \mathcal{N}(0, \sigma_\epsilon^2)$, the Bayesian posterior distribution over f given the data
 080 \mathcal{D}_t is available in closed form as a GP with known mean and covariance functions (see Appendix A).
 081 BO then uses the model's posterior distribution to compute an acquisition function $a_t(\mathbf{x})$ mapping
 082 candidate points $\mathbf{x} \in \mathcal{X}$ to their expected utility value $\mathbb{E}[u(y)|\mathbf{x}, \mathcal{D}_t]$, where the utility function u
 083 intuitively encodes how useful it is to collect a new observation at \mathbf{x} . Classical examples of expected
 084 utilities include the probability of improvement $a_t(\mathbf{x}) := p(y \geq \tau|\mathbf{x}, \mathcal{D}_t) = \mathbb{E}[\mathbb{I}[y \geq \tau]|\mathbf{x}, \mathcal{D}_t]$ and
 085 the expected improvement $a_t(\mathbf{x}) := \mathbb{E}[\max\{y - \tau, 0\}|\mathcal{D}_t]$. The next candidate is then chosen as:
 086

$$086 \quad \mathbf{x}_{t+1} \in \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} a_t(\mathbf{x}). \quad (2)$$

088 **Batch BO.** This strategy can be extended to the batch setting in a variety of ways (Garnett, 2023,
 089 §11.3). For instance, one can select the first batch point $\mathbf{x}_{t,1}$ by maximizing a_t as above, and then
 090 select the next candidate as $\mathbf{x}_{t,2} \in \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \mathbb{E}[u(y)|\mathbf{x}, \mathcal{D}_t \cup \{\mathbf{x}_{t,1}, \tilde{y}_{t,1}\}]$, where the expectation
 091 is over both $\tilde{y}_{t,1} \sim p(y|\mathbf{x}_{t,1}, \mathcal{D}_t)$ and $y \sim p(y|\mathbf{x}, \mathcal{D}_t \cup \{\mathbf{x}_{t,1}, \tilde{y}_{t,1}\})$, and iterate over this process
 092 until B candidates have been selected for parallel evaluation. Although near optimal, evaluating this
 093 conditional expectation becomes quickly intractable as the batch size grows. Hence, one usually
 094 resorts to Monte Carlo approximations (Wilson et al., 2018). Other BO strategies allow for efficient
 095 optimization of the batch in parallel, such as information-theoretic acquisition functions (Takeno
 096 et al., 2020; Teufel et al., 2024), or even asynchronously (Kandasamy et al., 2018). However, scal-
 097 ing up to large batches in high-dimensional domains, especially involving combinatorial or mixed
 098 discrete-continuous search spaces, remains challenging (González-Duque et al., 2024).
 099

100 **Active generation with classification models.** Instead of relying on a Bayesian surrogate model
 101 for f and then computing an acquisition function a on top of it, one can model a directly, which is
 102 the main idea behind likelihood-free BO (Song et al., 2022). On this line, methods like variational
 103 search distributions (VSD, Steinberg et al., 2025) and batch BORE (Oliveira et al., 2022) learn a
 104 probabilistic classifier $\pi(\mathbf{x}) \approx p(y \geq \tau)$ in the original space, \mathcal{X} , based on improvement labels
 105 $z := \mathbb{I}[y \geq \tau]$ and then generate batches by approximately sampling B candidates from $p(\mathbf{x}|y \geq \tau)$.
 106 The classifier can be learned by, e.g., minimizing the cross-entropy loss:
 107

$$107 \quad L_n(\pi) := - \sum_{i=1}^n z_i \log \pi(\mathbf{x}_i) + (1 - z_i) \log(1 - \pi(\mathbf{x}_i)). \quad (3)$$

108 Given a prior p_0 over \mathcal{X} and the classifier π_t that minimizes L_{n_t} over the current $n_t := Bt$ data
 109 points in \mathcal{D}_t , we can now learn a generative model approximating $p(\mathbf{x}|y \geq \tau, \mathcal{D}_t)$ as:
 110

$$q_t \in \operatorname{argmax}_q \mathbb{E}_{\mathbf{x} \sim q} [\log \pi_t(\mathbf{x})] - \mathbb{D}_{\text{KL}}(q||p_0), \quad (4)$$

112 which corresponds to an evidence lower bound treating $\pi_t(\mathbf{x}) \approx p(y \geq \tau | \mathbf{x}, \mathcal{D}_t)$ as a likelihood.
 113

114 **Direct preference optimization.** The process above for learning q_t can be likened to the typi-
 115 cal fine-tuning of large language models (LLMs) via reinforcement learning with human feedback
 116 (RLHF, Bai et al., 2022), which would normally involve training the LLM as an RL agent with a
 117 reward model ρ . In practice, we do not directly observe rewards, but have access to user preferences.
 118 Given a prompt’s context c , corresponding to the RL state, let $\mathbf{x}^+, \mathbf{x}^- \sim q(\mathbf{x}|c)$ denote two answers
 119 generated by an LLM q , with \mathbf{x}^+ denoting the answer preferred by the user, and \mathbf{x}^- the dispre-
 120 ferred one. Having a dataset $\mathcal{D}_n^+ := \{c_i, \mathbf{x}_i^+, \mathbf{x}_i^-\}_{i=1}^n$, one can then learn a reward function ρ by
 121 minimizing the negative log-likelihood under a preference model, such as Bradley & Terry (1952):
 122

$$L_n^+(\rho) := -\mathbb{E}_{(c, \mathbf{x}^+, \mathbf{x}^-) \sim \mathcal{D}_n^+} [\log \sigma(\rho(c, \mathbf{x}^+) - \rho(c, \mathbf{x}^-))]. \quad (5)$$

123 Having learned a reward model ρ_n , RLHF trains the LLM as to approximate an agent’s optimal
 124 policy under ρ_n . Regularization based on the Kullback-Leibler (KL) divergence with respect to a
 125 reference model q_{ref} is further added to improve stability. The optimal generative model then solves:
 126

$$q_n \in \operatorname{argmax}_q \mathbb{E}_{c \sim \mathcal{D}_n^+, \mathbf{x} \sim q(\mathbf{x}|c)} [\rho_n(c, \mathbf{x})] - \beta \mathbb{D}_{\text{KL}}(q||q_{\text{ref}}). \quad (6)$$

127 Direct preference optimization (DPO, Rafailov et al., 2023) removes the need for an explicit reward
 128 model by viewing the LLM itself through the lens of a reward model. It is not hard to show that,
 129 fixing a reward model ρ , the optimal solution to Equation 6 is given by:
 130

$$q(\mathbf{x}|c) = \frac{1}{\zeta_\rho(c)} q_{\text{ref}}(\mathbf{x}|c) \exp\left(\frac{1}{\beta} \rho(c, \mathbf{x})\right), \quad (7)$$

131 where $\zeta_\rho(c) := \sum_{\mathbf{x}} q_{\text{ref}}(\mathbf{x}|c) \exp(\beta^{-1} \rho(c, \mathbf{x}))$ is the partition function at the given context c . Al-
 132 though it is intractable to evaluate ζ_ρ in practice, DPO uses the fact that, in the Bradley-Terry model,
 133 the partition function-dependent terms cancel out. Note that the reward model ρ can be expressed in
 134 terms of the optimal q as:
 135

$$\rho(c, \mathbf{x}) = \beta \log\left(\frac{q(\mathbf{x}|c)}{q_{\text{ref}}(\mathbf{x}|c)}\right) + \beta \log \zeta_\rho(c). \quad (8)$$

136 Applying the substitution above to the preference-based loss (5), we get:
 137

$$L_{\text{DPO}}(q) = -\mathbb{E}_{(c, \mathbf{x}^+, \mathbf{x}^-) \sim \mathcal{D}_n^+} \left[\log \sigma \left(\beta \log \left(\frac{q(\mathbf{x}^+|c)}{q_{\text{ref}}(\mathbf{x}^+|c)} \right) - \beta \log \left(\frac{q(\mathbf{x}^-|c)}{q_{\text{ref}}(\mathbf{x}^-|c)} \right) \right) \right], \quad (9)$$

138 which eliminates the partition function ζ_ρ terms. Therefore, we can train the generative model q
 139 directly with L_{DPO} without the need for an intermediate reward model. Such simplification to a
 140 single training loop cuts down the need for computational resources, eliminates a source of approx-
 141 imation errors (from learning ρ), and brings in theoretical guarantees from Bradley-Terry models
 142 (Shah et al., 2016; Bong & Rinaldo, 2022). The main question guiding our work is whether we
 143 can apply a similar technique to simplify the training of (arbitrary, not necessarily LLM) generative
 144 models for likelihood-free BO by removing the need for an intermediate surrogate model for f .
 145

146 3 A GENERAL RECIPE FOR GENERATIVE BAYESIAN OPTIMIZATION

147 As seen in Section 2, using generative models for BO typically involves training a regression or
 148 classification model as an intermediate step to then train the candidate generator. The use of an
 149 intermediate model demands additional computational resources and brings in further sources of
 150 approximation errors which may hinder performance. Hence, we propose a framework to train the
 151 generative model directly from (noisy) observation values. The main idea is to train the model to
 152 approximate a target distribution proportional to BO’s acquisition function and then use the learned
 153 generative model as a proposal for the next query locations. There are different approaches to do
 154 so, some of which have been previously explored in the literature, for specific acquisition functions,
 155 such as the probability of improvement (Brookes et al., 2019; Steinberg et al., 2025) and upper
 156 confidence bound (Yun et al., 2025). However, we here focus on a general recipe to turn a generative
 157 model into a density following *any* acquisition function that can be expressed as an expected utility.
 158

162 **Utility functions.** Consider a likelihood-free BO setting (Song et al., 2022), where we aim to
163 directly learn an acquisition function $a_t : \mathcal{X} \rightarrow \mathbb{R}$ at every BO round $t \in \{1, \dots, T\}$ based on
164 available data. If our acquisition function takes the form of an expected utility:

$$165 \quad a_t(\mathbf{x}) = \mathbb{E}[u_t(\mathbf{x})|\mathcal{D}_{t-1}], \quad (10)$$

167 we can estimate it from noisy samples $\{\mathbf{x}_i, u_{t,i}\}_{i=1}^{t-1}$, where $\mathbb{E}[u_{t,i}|\mathcal{D}_{t-1}] = \mathbb{E}[u_t(\mathbf{x}_i)|\mathcal{D}_{t-1}]$. For
168 example, we have:

- 170 1. Probability of improvement (PI): $u_{t,i} = \mathbb{I}[y_i \geq \tau_t]$;
- 171 2. Expected improvement (EI): $u_{t,i} = \max(y_i - \tau_t, 0)$;
- 172 3. Simple regret (SR): $u_{t,i} = y_i$;

174 given a threshold τ_t for improvement-based utilities, e.g., $\tau_t := \max_{i < t} y_i$ or a quantile of the empirical
175 marginal observations distribution (Tiao et al., 2021). A comprehensive summary of typical
176 utility functions for BO can be found in Wilson et al. (2018). The ones listed above, however, we
177 can write directly as a function of the observations. We also use a soft-plus version of EI (sEI) in
178 our experiments, which remains positive at a low value when $y = \tau$.

180 **BO with generative models.** As an example, consider the case of PI where $a(\mathbf{x}) = \mathbb{E}[\mathbb{I}[y \geq
181 \tau]] = p(y \geq \tau|\mathbf{x})$, which has been previously applied to train generative models for black-box
182 optimization via surrogates (Steinberg et al., 2025). Given a sampler for the conditional distribution
183 $p(\mathbf{x}|y \geq \tau)$, by Bayes rule, we recover the original PI as:

$$184 \quad a(\mathbf{x}) = p(y \geq \tau|\mathbf{x}) = \frac{p(\mathbf{x}|y \geq \tau)p(y \geq \tau)}{p_0(\mathbf{x})} \propto \frac{p(\mathbf{x}|y \geq \tau)}{p_0(\mathbf{x})}. \quad (11)$$

187 As the prior p_0 is usually known, and it can even be set as uninformative $p_0(\mathbf{x}) \propto 1$, we see that
188 learning a generative model to approximate the posterior above is equivalent to learning a prob-
189 abilistic classifier for the improvement event $y \geq \tau$. Moreover, if we only have a probabilistic
190 classifier approximating $p(y \geq \tau|\mathbf{x})$, we still need to select candidate points via optimization over
191 the classification probabilities landscape, which can be highly non-convex presenting several local
192 optima, recalling that in the usual BO setting we choose \mathbf{x}_{t+1} as the (global) maximizer of the acqui-
193 sition function a . In contrast, a generative model provides us with a direct way to sample candidates
194 $\mathbf{x} \sim p(\mathbf{x}|y \geq \tau)$ which will by default concentrate at the highest density regions, and consequently
195 highest utility, according to the model. Finally, note that this same reasoning can be extended to any
196 other non-negative expected utility function by training the generative model to approximate:

$$197 \quad p_t^*(\mathbf{x}) \propto p_0(\mathbf{x})a_t(\mathbf{x}), \quad (12)$$

198 or similarly $p_t^*(\mathbf{x}) \propto p_0(\mathbf{x}) \exp a_t(\mathbf{x})$, which allows for utilities that might take negative values.

200 **Overview.** Let $\mathcal{Q} \subset \mathcal{P}(\mathcal{X})$ be a learnable family of probability distributions over a given domain
201 \mathcal{X} . We consider general loss functions of the form:

$$203 \quad L_t(q) := \lambda_t R_t(q) + \sum_{i=1}^{n_t} \ell_i(q), \quad (13)$$

205 where ℓ_i are individual losses over points $\mathbf{x}_i \in \mathcal{X}$ or pairs of points $\mathbf{x}_{i,1}, \mathbf{x}_{i,2} \in \mathcal{X}$ and their
206 corresponding utility values, $\lambda_t \geq 0$ is an optional regularization factor, and $R_t : \mathcal{Q} \rightarrow [0, \infty)$ is a
207 complexity penalty function. The algorithm then proceeds by learning a proposal distribution as:

$$209 \quad q_t \in \operatorname{argmin}_{q \in \mathcal{Q}} L_t(q). \quad (14)$$

211 A batch $\mathcal{B}_{t+1} := \{\mathbf{x}_{t+1,i}\}_{i=1}^B$ is sampled from the learned proposal q_t . We evaluate the utilities
212 $u_{t+1}(y_{t+1,i})$ with the collected observations $y_{t,i} \sim p(y|\mathbf{x}_{t+1,i})$, for $i \in \{1, \dots, B\}$, and repeat the
213 cycle up to a given number of iterations $T \in \mathbb{N}$. This process is summarized in [Algorithm 1](#) in the
214 appendix. In the following, we describe approaches to formulate general loss functions for learning
215 acquisition functions and how to ensure that the sequence of batches $\{\mathcal{B}_t\}_{t=1}^\infty$ asymptotically
216 concentrates at the optimum \mathbf{x}^* .

216 3.1 PREFERENCE-BASED LEARNING
217

218 We aim to apply a similar reparameterization trick to the one in DPO to simplify generative BO
219 methods. Note that, for a general classification loss, such as the one in [Equation 3](#), it is not possible
220 to eliminate the partition function resulting from a DPO-like reparameterization without resorting
221 to approximations, which might change the learned model. Hence, we need a pairwise-contrastive
222 training objective.

223 **Preference loss.** To apply a preference-based loss, we can train a model to predict preferential
224 directions of the acquisition function. Assume we have a dataset $\mathcal{D}_n^u := \{\mathbf{x}_i, u_i\}_{i=1}^n$ with n evaluations
225 of a given utility function $u : \mathbb{R} \rightarrow \mathbb{R}$. We may reorganize the data into pairs of inputs and corre-
226 sponding utility values $\{\mathbf{x}_{i,1}, \mathbf{x}_{i,2}, u_{i,1}, u_{i,2}\}_{i=1}^{n/2}$, where $u_{i,j} := u(y_{i,j})$, for $j \in \{1, 2\}$, and train a
227 generative model q using the Bradley-Terry preference loss from DPO with, for $i \in \{1, \dots, n/2\}$:

228
$$\ell_i^{\text{PL}}(q, \Delta u_i) := -\log \sigma \left(\beta \text{sign}(\Delta u_i) \left(\log \left(\frac{q(\mathbf{x}_{i,1})}{p_0(\mathbf{x}_{i,1})} \right) - \log \left(\frac{q(\mathbf{x}_{i,2})}{p_0(\mathbf{x}_{i,2})} \right) \right) \right), \quad (15)$$

229 where $\Delta u_i := u_{i,1} - u_{i,2}$, as in the DPO formulation, $\beta > 0$ is a (optional) temperature parameter
230 and the prior p_0 can be given by a reference model, either pre-trained or derived from expert knowl-
231 edge about feasible solutions to the optimization problem (1). Similar to [Rafailov et al. \(2023\)](#), the
232 learned generative model is seeking to approximate:

233
$$p_u^*(\mathbf{x}) := \frac{1}{\zeta_u} p_0(\mathbf{x}) \exp \left(\frac{1}{\beta} \mathbb{E}[u(y)|\mathbf{x}] \right), \quad (16)$$

234 where ζ_u is the normalization factor.

235 **Robust preference loss.** As shown in [Chowdhury et al. \(2024\)](#), the original DPO loss is not robust
236 to preference noise. As in BO, one usually only observes noisy evaluations of the objective function,
237 utility values directly derived from the observation values will also be noisy and correspondingly the
238 sign of their differences as well. Namely, assume there is a small $p_{\text{flip}} \in (0, 1/2)$ probability of the
239 preference directions being flipped w.r.t. the sign of the true expected utility:

240
$$\mathbb{P}[\text{sign}(u_{i,1} - u_{i,2}) = \text{sign}(\mathbb{E}[u_{i,2}|\mathbf{x}_{i,2}] - \mathbb{E}[u_{i,1}|\mathbf{x}_{i,1}])] = p_{\text{flip}}. \quad (17)$$

241 [Chowdhury et al. \(2024\)](#) showed that the original DPO preference loss is biased in this noisy case,
242 and proposed a robust version of the DPO loss to address this issue as:

243
$$\ell_i^{\text{rPL}}(q, \Delta u_i) := \frac{(1 - p_{\text{flip}})\ell_i^{\text{PL}}(q, \Delta u_i) - p_{\text{flip}}\ell_i^{\text{PL}}(q, -\Delta u_i)}{1 - 2p_{\text{flip}}}, \quad (18)$$

244 which yields the robust preference loss (rPL): $L_n^{\text{rPL}}(q) := \sum_{i=1}^n \ell_i^{\text{rPL}}(q, \Delta u_i)$. It follows that the
245 loss function above is unbiased and robust to observation noise.

246 3.2 DIVERGENCE-BASED LEARNING
247

248 A disadvantage of DPO-based losses when applied to BO is that they only take the signs of the pair-
249 wise utility differences into account, discarding the remaining information contained in the magni-
250 tude of the utilities. A simpler approach is to train the generative model q to match p_u^* directly.

251 **Forward KL.** If we formulate the target distribution as $p_u^* \propto p_0(\mathbf{x})a(\mathbf{x})$, the forward Kullback-
252 Leibler (KL) divergence of the proposal w.r.t. the target is given by:

253
$$\mathbb{D}_{\text{KL}}(p_u^* || q) = \mathbb{E}_{\mathbf{x} \sim p_u^*} [\log p_u^*(\mathbf{x}) - \log q(\mathbf{x})]. \quad (19)$$

254 As we do not have samples from p_u^* , at each iteration t the algorithm generates samples from the
255 current best approximation $\mathcal{B}_t := \{\mathbf{x}_{t,i}\}_{i=1}^B \sim q_t$. An unbiased training objective can then be
256 formulated as:

257
$$\ell_i^{\text{fKL}}(q) = -\frac{p_0(\mathbf{x}_i)}{q_{i-1}(\mathbf{x}_i)} u(y_i) \log q(\mathbf{x}_i), \quad (20)$$

258 which we write in a condensed form to avoid notation clutter with $q_i = q_{[i/B]}$ and n corresponding
259 to the total number of observations up to a given round. The objective above is unbiased and its

global optimum can be shown to converge to p_u^* by an application of standard results from the adaptive importance sampling literature (Delyon & Portier, 2018). A simpler version of this training objective was derived for CbAS (Brookes et al., 2019) using only the last batch for training, which would allow for convergence as the batch size goes to infinity $B \rightarrow \infty$. Furthermore, as we will see in our analysis, convergence to p_u^* is not sufficient to ensure convergence to the global optima of the objective function f .

Balanced forward KL. As utilities like those of PI and EI can evaluate to 0 at the points where $y < \tau$ was observed, with τ corresponding to an improvement threshold, every point below the threshold will not be penalized by the loss function. As a result, the model may keep high probability densities in regions of low utility. To prevent this, we may use an alternative formulation of the forward KL which comes from the definition of Bregman divergences with the convex function $u \mapsto u \log u$, yielding a loss:

$$\ell_i^{\text{bfKL}}(q) = -\frac{p_0(\mathbf{x}_i)}{q_{i-1}(\mathbf{x}_i)} u(y_i) \log q(\mathbf{x}_i) + \frac{q(\mathbf{x}_i)}{q_{i-1}(\mathbf{x}_i)}. \quad (21)$$

We defer the details of the derivation to the appendix. Although the additional $q(\mathbf{x})$ only contributes to a constant term when integrated over, for finite-sample approximations, it contributes to a soft penalty on points where we observed $u(y) = 0$.

3.3 GENERALIZATIONS

In general, we can extend the above framework to use proper scoring rule $S : \mathcal{P}(\mathcal{X}) \times \mathcal{X} \rightarrow \mathbb{R}$ (Gneiting & Raftery, 2007) other than the log loss. We can then learn q approximating p_u^* by minimizing:

$$L_n^S(q) = -\sum_{i=1}^n \frac{p_0(\mathbf{x}_i)}{q_{i-1}(\mathbf{x}_i)} u(y_i) S(q, \mathbf{x}_i). \quad (22)$$

Although we leave the exploration of this formulation for future work, it is readily extensible to other types of generative models which may not have densities available in closed form, such as diffusion and flow matching (Lipman et al., 2024), which still provide flexible probabilistic models.

4 THEORETICAL ANALYSIS

In this section, we present a theoretical analysis of the algorithm’s approximation of the utility-based target distribution and its performance in regards to the global optimization problem (1). We consider parametric generative models q_θ with a given parameter space $\theta \in \Theta \subset \mathbb{R}^M$. For the purpose of our analysis, we will assume that models can be described as $q_\theta(\mathbf{x}) = \exp g_\theta(\mathbf{x})$, which is always possible whenever densities are strictly positive $q_\theta(\mathbf{x}) > 0$. To accommodate for both the pairwise preference-based losses and the point-based divergence approximations, we introduce the following notation for the loss function:

$$L_n(g_\theta) = \bar{R}_n(g_\theta) + \sum_{i=1}^n \ell(m_i(g_\theta), z_i), \quad (23)$$

where $m_i(g_\theta)$ corresponds to the model evaluation at data point i with, e.g., $m_i(g_\theta) := \log q_\theta(\mathbf{x}_i)$ for KL, and $m_i(\theta) := \log q_\theta(\mathbf{x}_{i,1}) - \log q_\theta(\mathbf{x}_{i,2})$ for preference-based losses, and z_i encodes the dependence on utility values with $z_i := u(y_i)$ for KL and $z_i := \text{sign}(u_{i,1} - u_{i,2})$ for DPO losses. We set \bar{R}_n as an extended regularizer $\bar{R}_n(g) := \lambda_n R_n(g) + \frac{\bar{\lambda}_n}{2} (\int_{\mathcal{X}} \exp g(\mathbf{x}) d\mu(\mathbf{x}) - 1)^2$, where μ corresponds to the underlying base measure on the domain \mathcal{X} (i.e., the counting measure for discrete domains or the Lebesgue measure for Euclidean spaces). Note that the additional term is always zero for the generative models, as $\int_{\mathcal{X}} \exp g_\theta(\mathbf{x}) d\mu(\mathbf{x}) = \int_{\mathcal{X}} q_\theta(\mathbf{x}) d\mu(\mathbf{x}) = 1$, but including it here facilitates our analysis to operate with any unconstrained $g : \mathcal{X} \rightarrow \mathbb{R}$.

Regularity assumptions. We make a few mild regularity assumptions about the problem setting and the model. Firstly, for the analysis, we assume that both the models g_θ lie in a reproducing kernel Hilbert space (RKHS) \mathcal{H}_k shared with the true log density g_* , which is such that $p_u^*(\mathbf{x}) = \exp g_*(\mathbf{x})$.

The domain \mathcal{X} is assumed to be a compact metric space with main results specialized for the finite discrete setting, i.e., $|\mathcal{X}| < \infty$. The model $q_\theta(\mathbf{x})$ is continuously twice differentiable with respect to the parameters $\theta \in \Theta$ with bounded second-order derivatives. The individual losses $\ell : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ are strictly convex and twice differentiable w.r.t. their first argument. In addition, we assume that, at the target g_* the individual loss $\ell(m_i(g_*), z_i)$ is conditionally sub-Gaussian (Boucheron et al., 2013; Chowdhury & Gopalan, 2017) w.r.t. the data-generating process, basically meaning that the probability distribution of each loss has zero mean and light tails. We also assume that the regularizer $R_n : \mathcal{Q} \rightarrow [0, \infty)$ is strongly convex and twice differentiable. We defer the formal assumptions and their discussion to the appendix.

Lemma 1. *Let Assumption A1, A2 and A3 be satisfied. Then, for any $g \in \mathcal{H}_k$, the following holds:*

$$\frac{1}{2} \|g - g_n\|_{H_n}^2 \leq L_n(g) - L_n(g_n) \leq \frac{1}{2} \|\nabla L_n(g)\|_{H_n^{-1}}^2, \quad (24)$$

where $H_n : \mathcal{H}_k \rightarrow \mathcal{H}_k$ is an operator-valued lower bound on the Hessian of the loss L_n :

$$\forall g \in \mathcal{H}_k, \quad \nabla^2 L_n(g) \succeq H_n := \lambda I + \alpha_\ell \sum_{i=1}^n m_i \otimes m_i, \quad (25)$$

where $\phi(\mathbf{x}) := k(\cdot, \mathbf{x})$, for $\mathbf{x} \in \mathcal{X}$.

Remark 1. The result in Lemma 1 automatically ensures that the loss functional L_n is strongly convex, as $\nabla^2 L_n(g) \succeq H_n \succeq \lambda I \succ 0$, for all $g \in \mathcal{H}_k$, and therefore has a unique minimizer at g_n . The same, however, cannot be implied about $L_n(g_\theta)$ over Θ based solely on this result, since the mapping $\theta \mapsto g(\cdot, \theta)$ might be non-linear.

Corollary 1. *Consider the setting in Lemma 1, and assume that there is $\theta_* \in \Theta$ such that $g_{\theta_*} = g_*$. Then, given any $\delta \in (0, 1)$, the following holds with probability at least $1 - \delta$:*

$$\forall n \in \mathbb{N}, \quad |\langle m, g_* \rangle_k - \langle m, g_{\theta_n} \rangle_k| \leq 2\beta_n(\delta) \|m\|_{H_n^{-1}} \quad \forall m \in \mathcal{H}_k,$$

where $\beta_n(\delta) := \lambda^{-1/2} \|\nabla \bar{R}_n(g_*)\|_k + \sigma_\ell \sqrt{2\alpha_\ell^{-1} \log(\det(\mathbf{I} + \alpha_\ell \lambda^{-1} M_n^\top M_n)^{1/2} / \delta)}$, and $M_n := [m_1, \dots, m_n]$.

The result above is a direct consequence of Theorem 1 in the appendix, and it shows that the approximation error for the optimal parameter θ_n concentrates similarly to that of a kernel method, even though we do not require the model to be a kernel machine. In addition, the term $\|m\|_{H_n^{-1}}$ is associated with the predictive variance of a Gaussian process model, which can be shown to converge to zero whenever $\inf_{\mathbf{x} \in \mathcal{X}} q_\theta(\mathbf{x}) \geq b_q > 0$, for all $\theta \in \Theta$ (see Lemma 4 in the appendix).

Optimality. Corollary 1 and the latter allows us to establish that the model converges to the target g_* associated with the target distribution p_u^* for a given utility function u . However, convergence to the target distribution alone does not ensure optimality of the samples $\mathbf{x} \sim q_t$. The latter is possible by applying results from reward-weighted regression, which shows that training a proposal to maximize $\mathbb{E}_{y \sim p(y|\mathbf{x}), \mathbf{x} \sim q_{t-1}} [u(y) \log q(\mathbf{x})]$ yields a sequence of increasing expected rewards $\mathbb{E}[u(y_t)] \leq \mathbb{E}[u(y_{t+1})] \leq \dots$ (Štrupl et al., 2022, Thm. 4.1). If the maximizer of the sequence of expected utilities converges to the maximizer of the objective function f , then the generative BO proposals will concentrate at the true optimum \mathbf{x}_* . Therefore, for KL-based loss functions, one may drop the proposal densities in the importance sampling weights $1/q_{i-1}(\mathbf{x}_i)$ to promote this posterior concentration phenomenon, as corroborated by our experimental findings, which generally did not include importance weights. This same concentration of the learned target distribution should also occur with the preference-based loss functions due to the absence of importance-sampling weights.

5 RELATED WORK

Using generative models for online-optimization is becoming an increasingly popular method for optimization in discrete, mixed discrete-continuous or high dimensional design spaces where classical BO is limited. The following discusses other works applying generative models to BO settings and contrasts them with the reward-model-free active generation framework we propose.

378 **Latent-space BO.** In latent-space BO (LSBO) methods for high-dimensional problems (Gómez-
379 Bombarelli et al., 2018; Stanton et al., 2022; Gruver et al., 2023), one learns a probabilistic represen-
380 tation of a (usually lower-dimensional) manifold of the data jointly with f , and performs BO in that
381 space, projecting query points back to the original space at evaluation time. This technique has led
382 to numerous BO methods for high-dimensional and discrete-space optimization (Gómez-Bombarelli
383 et al., 2018; Gruver et al., 2023; González-Duque et al., 2024). Learning this latent-space can, how-
384 ever, cause complications. LSBO can suffer poor sample efficiency if the latent-space is learned
385 from the initial training set and then fixed (Tripp et al., 2020). Or poor performance can arise from
386 reconstruction errors between the latent and observation space (Lee et al., 2025). GenBO and other
387 methods like VSD do not suffer from these issues as all inference is done in the observation space.
388 Despite recent advances in the field (Chu et al., 2024; Lee et al., 2025; Moss et al., 2025), to our
389 knowledge, LaMBO-2 remains state-of-the-art in LSBO for *long* sequences, like proteins.
390

391 **Diffusion for BBO.** There has been recent progress in adapting denoising diffusion models to
392 black-box optimization (BBO) tasks, often by learning a model that can be conditioned on observa-
393 tion values, given a dataset of evaluations (Krishnamoorthy et al., 2023). Other approaches involve
394 guiding the diffusion process by a given utility function derived from a regression model (Gruver
395 et al., 2023; Yun et al., 2025). Note, however, that such methodologies are specific to diffusion,
396 whereas we focus on a general approach that can be applied to arbitrary generative models.
397

398 **LLMs and BO.** Recent work has begun to integrate large language models (LLMs) into BO
399 pipelines, primarily to inject prior knowledge, improve cold-start performance, or offload certain
400 design decisions to a learned policy. Several studies use LLMs as contextual priors over the design
401 space: for example, guiding initialization or proposal generation by leveraging natural-language do-
402 main knowledge (Liu et al., 2024), or selecting acquisition functions adaptively via an LLM-driven
403 controller (Aglietti et al., 2025). Other work treats BO as a test-time search tool that an LLM can
404 call to refine or validate its own proposals during inference (Agarwal et al., 2025). Most relevant
405 to our setting is a recent reward-model-free approach for protein engineering (Chen et al., 2025),
406 which uses LLM preference modeling, akin to DPO, to steer search without an explicit surrogate.
407 This shares the reward-model-free philosophy of GenBO, but differs fundamentally in relying on a
408 general-purpose LLM, whereas GenBO provides a framework for task-specific generative black-box
409 optimization problems with no language interface or pretrained reward structure.
410

411 6 EXPERIMENTS

412 We evaluate several variants of generative BO (GenBO) on a number of challenging sequence op-
413 timization tasks against popular and strong baselines, including CbAS (Brookes et al., 2019), VSD
414 (Steinberg et al., 2025), and LaMBO-2 (Gruver et al., 2023), besides trivial baselines, random mu-
415 tations and a genetic algorithm (GA) implemented in POLI (González-Duque et al., 2024). As per-
416 formance measures, we assess the simple regret, $r_t := f(\mathbf{x}^*) - \max_{i \leq n_t} f(\mathbf{x}_i)$, and the cumulative
417 maximum, $\max_{i \leq n_t} f(\mathbf{x}_i)$, where $n_t := Bt$ is the number of function evaluations up to round t . In
418 legend boxes, algorithms are sorted in descending order of final average regret. Shaded areas cor-
419 respond to ± 1 standard deviation across five different random seeds. Appendix D presents further
420 details about experiment settings and ablations. Table 4 and 5 summarize final results.
421

422 6.1 TEXT OPTIMIZATION

423 As a first experiment, we wish to optimize a short sequence (5 letters) to minimize the edit distance
424 to the sequence ALOHA, which is implemented as a POLI black-box (González-Duque et al., 2024).
425 Here $\mathcal{X} = \mathcal{V}^M$ where \mathcal{V} is the English alphabet, and M is sequence length. Even though this
426 sequence is relatively short, still $|\mathcal{X}| = |\mathcal{V}|^M > 11.8$ million elements. We increase the difficulty
427 by only allowing $|\mathcal{D}_0| = 64$ where the minimum edit distance is 4, $B = 8$, and $T = 10$. We
428 compare GenBO to the classifier guided VSD (Steinberg et al., 2025) and CbAS (Brookes et al.,
429 2019), and to a simple greedy baseline that applies (3) random mutations to its best candidates per-
430 round (González-Duque et al., 2024). For GenBO, VSD and CbAS we use a simple mean-field
431 (independent) categorical proposal distribution, q , and a uniform prior, p_0 . VSD and CbAS use a
432 simple embedding and 1-hidden layer MLP classifier for estimating PI. We also varied the threshold
433 τ annealing schedule. Architectural details and other experimental specifics are given in Section D.1.
434

432 Results are summarized in Figure 1a. We can see that the random baseline is not able to make much
 433 headway and CbAS under-performs due to its limited use of data (last batch only) in retraining.
 434 For this experiment, GenBO with the robust preference loss (rPL) and EI-based utilities showed
 435 the quickest improvements, whereas PI is able to reach the exact optimum at the end, with VSD
 436 eventually also achieving good performance. In Figure 5 (appendix), we present an ablation study
 437 on the threshold τ_t annealing scheme we used to balance the exploration-exploitation trade-off for
 438 GenBO and PI-based baselines (VSD and CbAS). The plots reveal that this problem generally favors
 439 a more exploitative approach by concentrating on higher quantiles of the observations marginal
 440 distribution. GenBO was, however, relatively less sensitive to the choice of annealing scheme, as
 441 long as the final percentile was set anywhere above 90%, whereas VSD required a generally sharper
 442 rise to above the 95% quantile towards the end of the optimization process, favoring original settings
 443 suggested by Steinberg et al. (2025). We also find that in this problem the use of a pre-trained
 444 informative prior p_0 may not bring significant performance advantage, as GenBO variants with no
 445 prior (i.e., $p_0 \propto 1$) performed best. Lastly, we also highlight significant improvements in run time
 446 for GenBO, making it on average 3 times faster than VSD (see Table 6 in the appendix) for not
 447 needing to fit an intermediate surrogate model.

458 Figure 1: Performance of baseline black box optimizers and GenBO variants on the (a) ALOHA, (b)
 459 stability, and (c) solvent accessible surface area optimization problems.
 460

472 Figure 2: Simple regret of the baseline black box optimizers and the GenBO variants on the Ehrlich
 473 closed-form test function protein design task for varying sequence lengths, M .
 474

476 6.2 PROTEIN DESIGN

478 We now consider three protein sequence design tasks where $|\mathcal{V}| = 20$ and we have varying M .
 479 We again use VSD, CbAS and random mutation as baselines, and add to them the guided diffusion
 480 based LaMBO-2 (Gruver et al., 2023). GenBO, VSD and CbAS all share the same generative
 481 backbone, which is the causal transformer used in Steinberg et al. (2025); VSD and CbAS also use
 482 the same CNN-classifier guide used in that work. We present additional architectural information,
 483 and additional experimental details in Section D.2. We use the black-box implementations in POLI
 484 for these tasks, and POLI-BASELINES implementations of the random and LaMBO-2 baselines.
 485

The first task we consider is optimization of the Ehrlich functions introduced by Stanton et al. (2024). These are challenging biologically inspired parametric closed-form functions that explicitly

simulate nonlinear (epistatic) effects of sequence on outcome. The outcomes are $y \in \{-1\} \cup [0, 1]$ where -1 is reserved for infeasible sequences. We use the same protocol as in [Steinberg et al. \(2025\)](#), where we optimize sequences of length $M = \{15, 32, 64\}$ all with motif lengths of 4, and $|\mathcal{D}_0| = 128$, $T = 32$ and $B = 128$. The results are summarized in [Figure 2](#). We again see that GenBO variants are able to outperform or match the performance of baselines, with KL-based losses yielding the best performance. In higher dimensions with the longest sequence setting, the benefits of the balanced forward KL loss, with its density minimization effect in areas of lower utility, are more evident. In addition, we note that exponential regularization, corresponding to assuming an exponential dot-product kernel for the RKHS feature space of the model (see [Remark 2](#)), allowed for the best performance in higher dimensions. Lastly, in [Figure 6](#) (appendix), we present an ablation study on the batch size setting B , showing monotonic improvements, especially for large $B \geq 32$.

Figure 3: Batch diversity scores per round on the FoldX protein optimization tasks.

For our final set of experiments we present two real protein optimization tasks. These experiments have been adapted from [Stanton et al. \(2022\)](#) where the aims are to maximize the stability and solvent accessible surface (SASA) of the proteins, respectively. The black-box is the FoldX molecular simulation software ([Schymkowitz et al., 2005](#)), and is wrapped by POLI ([González-Duque et al., 2024](#)). We chose the mRouge red fluorescent protein ($M = 228$) as the base protein for the tasks. Both tasks were given $T = 20$ rounds, a batch size of $B = 64$, and an initial training set of $|\mathcal{D}_0| = 88$ as a subset from [Stanton et al. \(2022\)](#). Results are summarized in [Figure 1b](#) for stability and [Figure 1c](#) for SASA. All variants of GenBO find the stability task challenging, along with the LaMBO-2 and random baselines. CbAS and especially VSD are better able to stabilize this protein. As shown by diversity scores in [Figure 3a](#), which we measure by averaging the Levenshtein distance across the batch in the same way as [Steinberg et al. \(2025\)](#), algorithmic baselines with the lowest diversity yielded top performance, indicating that pure exploitation from around the starting dataset led to the highest outcomes. However, most variants of GenBO far outperform the baselines on the SASA task, and much more rapidly. We believe this task favors extrapolation away from the prior, due to the high performance of GenBO variants with uninformative prior. In contrast to the stability, the diversity scores show that increasing exploration led to better outcomes for SASA ([Figure 3b](#)).

7 CONCLUSION

This work introduces Generative Bayesian Optimization (GenBO), a unifying framework that turns any generative model into a sampler whose density tracks BO acquisition functions. We have shown that loss functions over generative models, such as DPO and KL divergences, can be applied to directly learn samplers for batch BO. By eliminating intermediate regression or classification surrogates, GenBO reduces approximation error, simplifies the pipeline to learning just a single generative model, and scales naturally to large batches and high-dimensional or combinatorial design spaces. Theoretical results show convergence to the target distribution, and experiments on text optimization and protein design tasks demonstrate competitive performance with more complex surrogate-guided baselines. A few challenges remain. For some variants, GenBO requires choosing and fixing the prior before optimization, and its performance depends on sensible settings of utility and temperature parameters, whose theory could be further explored. Another avenue is the adaptation to acquisition strategies not expressible as expected utilities, such as Thompson sampling and upper confidence bound. Despite these caveats, GenBO’s minimal moving parts and principled acquisition-driven training mark a simpler and more scalable alternative to multi-stage guided generation methods.

540 REFERENCES
541

542 Yasin Abbasi-Yadkori. *Online Learning for Linearly Parametrized Control Problems*. PhD, University
543 of Alberta, 2012.

544 Dhruv Agarwal, Manoj Ghuvazhagan, Rajarshi Das, Sandesh Swamy, Sopan Khosla, and
545 Rashmi Gangadharaiyah. Searching for optimal solutions with LLMs via bayesian optimization.
546 In *The Thirteenth International Conference on Learning Representations*, 2025.

547 Virginia Aglietti, Ira Ktena, Jessica Schrouff, Eleni Sgouritsa, Francisco Ruiz, Alan Malek, Alexis
548 Bellot, and Silvia Chiappa. FunBO: Discovering acquisition functions for bayesian optimization
549 with funsearch. In *Forty-second International Conference on Machine Learning*, 2025.

550 Javad Azimi, Alan Fern, and Xiaoli Z. Fern. Batch bayesian optimization via simulation matching.
551 In *Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural
552 Information Processing Systems 2010 (NIPS 2010)*, 2010.

553 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
554 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
555 Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
556 Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario
557 Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan.
558 Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback.
559 *arXiv e-prints*, art. arXiv:2204.05862, April 2022. doi: 10.48550/arXiv.2204.05862.

560 Heejong Bong and Alessandro Rinaldo. Generalized results for the existence and consistency of the
561 MLE in the Bradley-Terry-Luce model. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
562 Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference
563 on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 2160–
564 2177. PMLR, 2022.

565 Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. *Concentration inequalities: A Nonasym-
566 totic Theory of Independence*. Oxford University Press, 2013.

567 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
568 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

569 David Brookes, Hahnbeom Park, and Jennifer Listgarten. Conditioning by adaptive sampling for
570 robust design. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th
571 International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning
572 Research*, pp. 773–782, Long Beach, CA, USA, 2019. PMLR.

573 Roberto Calandra, André Seyfarth, Jan Peters, and Marc Peter Deisenroth. Bayesian optimiza-
574 tion for learning gaits under uncertainty. *Annals of Mathematics and Artificial Intelligence*, 76
575 (1):5–23, 2016. doi: 10.1007/s10472-015-9463-9. URL <https://doi.org/10.1007/s10472-015-9463-9>.

576 Angelica Chen, Samuel Don Stanton, Frances Ding, Robert G Alberstein, Andrew Martin Watkins,
577 Richard Bonneau, Vladimir Gligorijevic, Kyunghyun Cho, and Nathan C. Frey. Generalists vs.
578 specialists: Evaluating LLMs on highly-constrained biophysical sequence optimization tasks. In
579 Aarti Singh, Maryam Fazel, Daniel Hsu, Simon Lacoste-Julien, Felix Berkenkamp, Tegan Ma-
580 haraj, Kiri Wagstaff, and Jerry Zhu (eds.), *Proceedings of the 42nd International Conference on
581 Machine Learning*, volume 267 of *Proceedings of Machine Learning Research*, pp. 9029–9072.
582 PMLR, 13–19 Jul 2025.

583 Sayak Ray Chowdhury and Aditya Gopalan. On Kernelized Multi-armed Bandits. In *Proceedings
584 of the 34th International Conference on Machine Learning (ICML)*, Sydney, Australia, 2017.

585 Sayak Ray Chowdhury, Anush Kini, and Nagarajan Natarajan. Provably robust DPO: Aligning
586 language models with noisy feedback. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller,
587 Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the
588 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine
589 Learning Research*, pp. 42258–42274. PMLR, 2024.

594 Jaewon Chu, Jinyoung Park, Seunghun Lee, and Hyunwoo J. Kim. Inversion-based latent bayesian
595 optimization. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*,
596 2024. URL <https://openreview.net/forum?id=TrN5TcWY87>.

597

598 Zhongxiang Dai, Yao Shu, Bryan Kian Hsiang Low, and Patrick Jaillet. Sample-then-optimize
599 batch neural Thompson sampling. In *36th Conference on Neural Information Processing Systems*
600 (*NeurIPS 2022*), New Orleans, LA, USA, 2022.

601

602 Bernard Delyon and François Portier. Asymptotic optimality of adaptive importance sampling. In
603 S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi, and R Garnett (eds.), *Ad-*
604 *vances in Neural Information Processing Systems*, volume 31, Montréal, Canada, 2018. Curran
605 Associates, Inc.

606

607 Audrey Durand, Odalric-Ambrym Maillard, and Joelle Pineau. Streaming kernel regression with
608 provably adaptive mean, variance, and regularization. *Journal of Machine Learning Research*, 19
609 (1):650–683, 2018.

610

611 Peter I. Frazier and Jialei Wang. *Bayesian Optimization for Materials Design*, pp. 45–75.
612 Springer International Publishing, Cham, 2016. ISBN 978-3-319-23871-5. doi: 10.1007/
613 978-3-319-23871-5_3. URL https://doi.org/10.1007/978-3-319-23871-5_3.

614

615 Roman Garnett. *Bayesian Optimization*. Cambridge University Press, 2023. URL <https://bayesoptbook.com/>.

616

617 Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
618 *Journal of the American Statistical Association*, 102(477):359–378, 2007.

619

620 Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
621 Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
622 Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven
623 continuous representation of molecules. *ACS Central Science*, 4(2):268–276, 2018. doi:
10.1021/acscentsci.7b00572.

624

625 Miguel González-Duque, Richard Michael, Simon Bartels, Yevgen Zainchkovskyy, Søren Hauberg,
626 and Wouter Boomsma. A survey and benchmark of high-dimensional Bayesian optimization of
627 discrete sequences. In *The 38th Conference on Neural Information Processing Systems (NeurIPS)*
628 *Datasets and Benchmarks Track*, Vancouver, Canada, 2024.

629

630 Miguel González-Duque, Simon Bartels, and Richard Michael. Poli: a libary of discrete sequence
631 objectives, 2024. URL <https://github.com/MachineLearningLifeScience/poli>.

632

633 Nate Gruver, Samuel Stanton, Nathan Frey, Tim G.J. Rudner, Isidro Hotzel, Julien Lafrance-
634 Vanasse, Arvind Rajpal, Kyunghyun Cho, and Andrew Gordon Wilson. Protein design with
635 guided discrete diffusion. In *Advances in Neural Information Processing Systems*, volume 36,
636 New Orleans, LA, USA, 2023.

637

638 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
639 human-level performance on ImageNet classification. In *Proceedings of the IEEE International
Conference on Computer Vision (ICCV)*, pp. 1026–1034, 2015.

640

641 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: convergence and gen-
642 eralization in neural networks. In *Proceedings of the 32nd International Conference on Neural
643 Information Processing Systems*, NIPS’18, pp. 8580–8589, Red Hook, NY, USA, 2018. Curran
644 Associates Inc.

645

646 Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabas Poczos. Asyn-
647 chronous parallel Bayesian optimisation via Thompson sampling. In *Proceedings of the 21st
648 International Conference on Artificial Intelligence and Statistics (AISTATS)*, Lanzarote, Spain,
649 2018.

648 Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Diffusion models for black-
649 box optimization. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
650 Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on
651 Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 17842–17857.
652 PMLR, 2023.

653 Seunghun Lee, Jinyoung Park, Jaewon Chu, Minseo Yoon, and Hyunwoo J. Kim. Latent bayesian
654 optimization via autoregressive normalizing flows. In *The Thirteenth International Conference
655 on Learning Representations*, 2025.

656 Yucen Lily Li, Tim G. J. Rudner, and Andrew Gordon Wilson. A study of Bayesian neural network
657 surrogates for Bayesian optimization. In *2024 International Conference on Learning Repres-
658 entations (ICLR)*, Vienna, Austria, 2024. OpenReview.

659 Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky T. Q.
660 Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. *arXiv
661 e-prints*, 2024.

662 Tennison Liu, Nicolás Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language models
663 to enhance bayesian optimization. In *The Twelfth International Conference on Learning Repre-
664 sentations*, 2024.

665 Henry Moss, Sebastian W. Ober, and Tom Diethe. Return of the latent space COWBOYS: Re-
666 thinking the use of VAEs for bayesian optimisation of structured spaces. In *Forty-second Interna-
667 tional Conference on Machine Learning*, 2025. URL [https://openreview.net/forum?
668 id=U354tbTjav](https://openreview.net/forum?id=U354tbTjav).

669 Rafael Oliveira, Lionel Ott, and Fabio Ramos. No-regret approximate inference via Bayesian opti-
670 misation. In *37th Conference on Uncertainty in Artificial Intelligence (UAI 2021)*, 2021.

671 Rafael Oliveira, Louis Tiao, and Fabio T. Ramos. Batch bayesian optimisation via density-ratio
672 estimation with guarantees. *Advances in Neural Information Processing Systems*, 35:29816–
673 29829, 2022.

674 Mary Phuong and Marcus Hutter. Formal algorithms for transformers. *arXiv preprint
675 arXiv:2207.09238*, 2022.

676 Gilles Pisier. Subgaussian sequences in probability and Fourier analysis. *Graduate Journal of
677 Mathematics*, 1:59–78, 2016.

678 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and
679 Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
680 In *Advances in neural information processing systems*, volume 36, pp. 53728–53741, 2023.

681 Carl E. Rasmussen and Christopher K. I. Williams. *Gaussian Processes for Machine Learning*. The
682 MIT Press, Cambridge, MA, 2006.

683 Saburou Saitoh and Yoshihiro Sawano. *Theory of Reproducing Kernels and Applications*. Springer,
684 2016.

685 Joost Schymkowitz, Jesper Borg, Francois Stricher, Robby Nys, Frederic Rousseau, and Luis Ser-
686 rano. The foldx web server: an online force field. *Nucleic Acids Research*, 33:W382–W388, July
687 2005. ISSN 0305-1048. doi: 10.1093/nar/gki387.

688 Nihar B. Shah, Sivaraman Balakrishnan, Joseph Bradley, Abhay Parekh, Kannan Ramchandran,
689 and Martin J. Wainwright. Estimation from pairwise comparisons: Sharp minimax bounds with
690 topology dependence. *Journal of Machine Learning Research*, 17, 2016.

691 Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando De Freitas. Taking the
692 human out of the loop: A review of Bayesian optimization. *Proceedings of the IEEE*, 104(1):
693 148–175, 2016.

702 Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine
703 learning algorithms. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (eds.),
704 *Advances in Neural Information Processing Systems 25*, pp. 2951–2959. Curran Associates, Inc.,
705 2012.

706 Jiaming Song, Lantao Yu, Willie Neiswanger, and Stefano Ermon. A general recipe for likelihood-
707 free Bayesian optimization. In *Proceedings of the 39th International Conference on Machine
708 Learning (ICML)*, Baltimore, Maryland, USA, 2022. PMLR 162.

709

710 Samuel Stanton, Wesley Maddox, Nate Gruver, Phillip Maffettone, Emily Delaney, Peyton Green-
711 side, and Andrew Gordon Wilson. Accelerating Bayesian optimization for biological sequence
712 design with denoising autoencoders. In *International Conference on Machine Learning*, pp.
713 20459–20478. PMLR, 2022.

714 Samuel Stanton, Robert Alberstein, Nathan Frey, Andrew Watkins, and Kyunghyun Cho.
715 Closed-form test functions for biophysical sequence optimization algorithms. *arXiv preprint
716 arXiv:2407.00236*, 2024.

717

718 Daniel M. Steinberg, Rafael Oliveira, Cheng Soon Ong, and Edwin V. Bonilla. Variational search
719 distributions. In *The Thirteenth International Conference on Learning Representations*, Singa-
720 pore, 2025.

721 Ingo Steinwart and Andreas Christmann. Kernels and reproducing kernel Hilbert spaces. In *Support
722 Vector Machines*, chapter 4, pp. 110–163. Springer, New York, NY, 2008.

723

724 Miroslav Štrupl, Francesco Faccio, Dylan R Ashley, Rupesh Kumar Srivastava, and Jürgen Schmid-
725 huber. Reward-weighted regression converges to a global optimum. In *Proceedings of the AAAI
726 Conference on Artificial Intelligence*, volume 36, pp. 8361–8369, 2022.

727 Shion Takeno, Hitoshi Fukuoka, Yuhki Tsukada, Toshiyuki Koyama, Motoki Shiga, Ichiro Takeuchi,
728 and Masayuki Karasuyama. Multi-fidelity Bayesian optimization with max-value entropy search
729 and its parallelization. In *37th International Conference on Machine Learning (ICML 2020)*,
730 volume 119 of *Proceedings of Machine Learning Research*, pp. 9276–9287. PMLR, 2020.

731

732 Felix Teufel, Carsten Stahlhut, and Jesper Ferkinghoff-Borg. Batched energy-entropy acquisition for
733 Bayesian optimization. In *38th Conference on Neural Information Processing Systems (NeurIPS
734 2024)*, Vancouver, Canada, 2024.

735

736 Louis C. Tiao, Aaron Klein, Matthias Seeger, Edwin V. Bonilla, Cedric Archambeau, and Fabio
737 Ramos. BORE: Bayesian optimization by density-ratio estimation. In *Proceedings of the 38th
738 International Conference on Machine Learning (ICML)*. PMLR, 2021.

739

740 Austin Tripp, Erik Daxberger, and José Miguel Hernández-Lobato. Sample-efficient optimization
741 in the latent space of deep generative models via weighted retraining. *Advances in Neural Infor-
742 mation Processing Systems*, 33:11259–11272, 2020.

743

744 James T. Wilson, Frank Hutter, and Marc Peter Deisenroth. Maximizing acquisition functions for
745 Bayesian optimization. In *32nd Conference on Neural Information Processing Systems (NeurIPS
746 2018)*, Montréal, Canada, 2018.

747

748 Taeyoung Yun, Kiyoung Om, Jaewoo Lee, Sujin Yun, and Jinkyoo Park. Posterior Inference
749 with Diffusion Models for High-dimensional Black-box Optimization. In *Forty-second Inter-
750 national Conference on Machine Learning (ICML)*, Vancouver, Canada, 2025. URL <https://openreview.net/forum?id=EXds2NB0oq>.

751

752

753

754

755

756

A GAUSSIAN PROCESSES FOR BO

757

758 Assume a Gaussian process prior over f , e.g., $f \sim \mathcal{GP}(0, k)$, where $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a positive-
759 definite kernel (Rasmussen & Williams, 2006). Then, given a set of observations $\mathcal{D}_n := \{\mathbf{x}_i, y_i\}_{i=1}^n$,
760 corrupted by Gaussian noise $\epsilon \sim \mathcal{N}(0, \sigma_\epsilon^2)$, the posterior $f|\mathcal{D}_n \sim \mathcal{GP}(\hat{f}_n, k_n)$ is available in closed
761 form with mean and covariance function given by:
762

763
$$\hat{f}_n(\mathbf{x}) := \mathbf{k}_n(\mathbf{x})^\top (\mathbf{K}_n + \sigma_\epsilon^2 \mathbf{I})^{-1} \mathbf{y}_n \quad (26)$$
764

765
$$k_n(\mathbf{x}, \mathbf{x}') := k(\mathbf{x}, \mathbf{x}') - \mathbf{k}_n(\mathbf{x})^\top (\mathbf{K}_n + \sigma_\epsilon^2 \mathbf{I})^{-1} \mathbf{k}_n(\mathbf{x}') \quad (27)$$
766

767
$$\sigma_n^2(\mathbf{x}) := k_n(\mathbf{x}, \mathbf{x}), \quad (28)$$
768

769 where $\mathbf{k}_n(\mathbf{x}) := [k(\mathbf{x}, \mathbf{x}_i)]_{i=1}^n \in \mathbb{R}^n$, $\mathbf{K}_n := [k(\mathbf{x}_i, \mathbf{x}_j)]_{i,j=1}^n \in \mathbb{R}^{n \times n}$, $\mathbf{y}_n := [y_i]_{i=1}^n \in \mathbb{R}^n$, for
770 $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$. With these closed-form expressions, GP models allow BO algorithms to quantify uncer-
771 tainty and assess expected utilities of their decisions. However, note that, due to matrix inversions,
772 exact GP inference incurs a computational cost of $\mathcal{O}(n^3)$. Hence, one often has to resort to low-rank
773 approximations to make GP predictions tractable in cases involving large amounts of data, such as
774 batch evaluations with large batch size. Alternatively, one may completely discard the GP models
775 and use other surrogates, such as neural networks, and there has been an increasing literature on how
776 to reliably quantify uncertainty for BO when using these models (Li et al., 2024).
777

778

B THE GENBO ALGORITHM

779

780

Algorithm 1: GenBO

781

Input: Domain \mathcal{X} , initial data \mathcal{D}_0
for $t \in \{1, \dots, T\}$ **do**
782 $q_t \in \operatorname{argmin}_{q \in \mathcal{Q}} L_{t-1}(q)$ // Fit proposal distribution
783 $\mathcal{B}_t \stackrel{i.i.d.}{\sim} q_t$ // Sample batch
784 $y_{t,i} \leftarrow f(\mathbf{x}_{t,i}) + \epsilon_{t,i}$, for $i \in \{1, \dots, B\}$ // Collect observations
785 $\mathcal{D}_t = \mathcal{D}_{t-1} \cup \{\mathbf{x}_{t,i}, y_{t,i}\}_{i=1}^B$ // Update data
786

787

788

C LEARNING PARAMETRIC MODELS WITH RKHS CONVEX LOSSES

789

790 In this section, we consider the general problem of learning a function g_* with a parametric model
791 $g : \mathcal{X} \times \Theta \rightarrow \mathbb{R}$, where the parameter space Θ is an arbitrary finite-dimensional vector space. Most
792 existing results in the Bayesian optimization and bandits literature for learning these models from
793 inherently dependent data are only valid for linear models or kernel machines. As we will consider
794 arbitrary generative models, we need to derive convergence results applicable to a wider class mod-
795 els, accommodating popular modern frameworks. To do so, we will not assume identifiability, so
796 that it is not necessary that some $\theta_* \in \Theta$ exists such that $g_* = g(\cdot; \theta_*)$. Instead, we will replace iden-
797 tifiability with a much milder assumption that g_* lies in a reproducing kernel Hilbert space (RKHS)
798 large enough to also contain the models, as described next.
799

800 **Assumption A1.** *The true function $g_* : \mathcal{X} \rightarrow \mathbb{R}$ is a member of a reproducing kernel Hilbert
801 space \mathcal{H}_k , associated with a positive-semidefinite kernel $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, which is bounded
802 $\sup_{\mathbf{x} \in \mathcal{X}} k(\mathbf{x}, \mathbf{x}) \leq b_k^2$ for a given $b_k > 0$. In addition, we assume that the models can also be found
803 as elements of the same RKHS, i.e., $\{g(\cdot; \theta) \mid \theta \in \Theta\} \subset \mathcal{H}_k$.*

804 The assumption above allows us to consider functions g_* which cannot be perfectly approximated
805 by the model, though which yet live in the same underlying Hilbert space \mathcal{H}_k . The reproducing
806 kernel assumption is also mild, as it simply means that function evaluations are continuous (i.e.,
807 well behaved), which can usually not be guaranteed in other types of Hilbert spaces, such as, e.g.,
808 \mathcal{L}_2 -spaces. In fact, every Hilbert space of functions where evaluation functionals are continuous is
809 an RKHS by definition (Steinwart & Christmann, 2008, Def. 4.18). Lastly, we note that we can
810 always find a RKHS that contains the models, such as the minimal construction below.

810 **Lemma 2.** Let $g : \mathcal{X} \times \Theta \rightarrow \mathbb{R}$ represent a class of models parameterized by $\theta \in \Theta$. Assume that
 811 $g(\mathbf{x}; \cdot) \in \mathcal{H}_\Theta$, for all $\mathbf{x} \in \mathcal{X}$, where \mathcal{H}_Θ is a reproducing kernel Hilbert space associated with a
 812 positive-definite kernel $k_\Theta : \Theta \times \Theta \rightarrow \mathbb{R}$. It then follows that:

813
$$\mathcal{H}_g := \{h : \mathcal{X} \rightarrow \mathbb{R} \mid \exists w \in \mathcal{H}_\Theta : h(\mathbf{x}) = \langle w, g(\mathbf{x}, \cdot) \rangle_{\mathcal{H}_\Theta}, \forall \mathbf{x} \in \mathcal{X}\} \quad (29)$$

814 equipped with the norm:

815
$$\|h\|_{\mathcal{H}_g} := \inf\{\|w\|_{\mathcal{H}_\Theta} : w \in \mathcal{H}_\Theta, h(\mathbf{x}) = \langle w, g(\mathbf{x}, \cdot) \rangle_{\mathcal{H}_\Theta}, \forall \mathbf{x} \in \mathcal{X}\} \quad (30)$$

816 constitutes the unique RKHS for which $k_g : (\mathbf{x}, \mathbf{x}') \mapsto \langle g(\mathbf{x}, \cdot), g(\mathbf{x}', \cdot) \rangle_{\mathcal{H}_\Theta}$ is the reproducing
 817 kernel.

818 *Proof.* This is a direct application of classic RKHS results (e.g., Steinwart & Christmann, 2008,
 819 Thm. 4.21) where we are treating $\phi : \mathbf{x} \mapsto g(\mathbf{x}, \cdot)$ as a feature map mapping into an existing Hilbert
 820 space \mathcal{H}_Θ and taking advantage of its structure to define a new one. \square

821 **Remark 2.** The RKHS \mathcal{H}_g described above has the special property that for any $\theta \in \Theta$, the RKHS
 822 norm of the model is given by:

823
$$\|g(\cdot, \theta)\|_{\mathcal{H}_g}^2 = k_\Theta(\theta, \theta), \quad (31)$$

824 since $\langle k_\Theta(\cdot, \theta), g(\mathbf{x}, \cdot) \rangle_{\mathcal{H}_\Theta} = g(\mathbf{x}, \theta)$ for all $\mathbf{x} \in \mathcal{X}$, and $k_\Theta(\cdot, \theta)$ is the unique representation of the
 825 evaluation functional at θ in the RKHS \mathcal{H}_Θ . The rest follows from the definition in Equation 30.
 826 Hence, each choice of k_Θ gives us a potential RKHS norm regularizer.

827 **Remark 3.** If the RKHS in Lemma 2 is insufficiently small to contain the function g_* of interest, we
 828 can always combine two RKHS to produce a third one containing all elements of the two. Namely,
 829 if $g_* \in \mathcal{H}_* \neq \mathcal{H}_g$ with kernel $k_* : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, we can define $k := k_* + k_g$, so that $\mathcal{H}_k := \mathcal{H}_* \oplus \mathcal{H}_g$
 830 is also a RKHS (Steinwart & Christmann, 2008; Saitoh & Sawano, 2016).

831 **Definition 1** (Strong convexity). A differentiable function $f : \mathcal{H} \rightarrow \mathbb{R}$ on a Hilbert space \mathcal{H} is
 832 α -strongly convex, for $\alpha > 0$, if:

833
$$\forall h, h', \quad f(h) \geq f(h') + \langle \nabla f(h'), h - h' \rangle + \frac{\alpha}{2} \|h - h'\|_{\mathcal{H}}^2.$$

834 **Definition 2** (Smoothness). A function $f : \mathcal{H} \rightarrow \mathcal{Y}$ between Hilbert spaces \mathcal{H} and \mathcal{Y} is η -smooth if:

835
$$\forall h, h', \quad \|f(h) - f(h')\|_{\mathcal{Y}} \leq \eta \|h - h'\|_{\mathcal{H}}. \quad (32)$$

836 **Definition 3** (Sub-Gaussianity). A real-valued random variable ϵ is said to be σ_ϵ -sub-Gaussian if:

837
$$\forall s \in \mathbb{R}, \quad \mathbb{E}[\exp(s\epsilon)] \leq \exp\left(\frac{s^2\sigma_\epsilon^2}{2}\right). \quad (33)$$

838 In addition, a real-valued stochastic process $\{\epsilon_t\}_{t=1}^\infty$ adapted to a filtration $\{\mathfrak{F}_t\}_{t=0}^\infty$ is conditionally
 839 σ_ϵ^2 -sub-Gaussian if the following almost surely holds:

840
$$\forall s \in \mathbb{R}, \quad \mathbb{E}[\exp(s\epsilon_t) \mid \mathfrak{F}_{t-1}] \leq \exp\left(\frac{s^2\sigma_\epsilon^2}{2}\right), \quad \forall t \in \mathbb{N}. \quad (34)$$

841 **Assumption A2** (Regularization). The regularizer $\bar{R}_n : \mathcal{H}_k \rightarrow \mathbb{R}$ is λ -strongly convex, twice differentiable,
 842 and has η_0 -smooth gradients.

843 Common choices of regularization scheme, such as the squared norm $\|g\|_k^2$, suffice the assumptions
 844 above. Strong convexity does not require a function to be twice differentiable, but such assumption
 845 can greatly simplify the analysis and it is common in modern deep learning frameworks.

846 **Assumption A3** (Loss). For any $y \in \mathbb{R}$, the point loss $\ell_y := \ell(\cdot, y) : \mathbb{R} \rightarrow \mathbb{R}$ is α_ℓ -strongly
 847 convex, twice differentiable, and has η_ℓ -smooth first-order derivatives. In addition, given any $m \in$
 848 \mathcal{H}_k , we assume the first-order derivative $\dot{\ell}_y(m(g_*))$ is conditionally σ_ℓ -sub-Gaussian when $y \sim$
 849 $p(y|m(g_*)$).

850 Note that most loss functions in the deep learning literature satisfy the assumptions above, including
 851 the squared error and the cross entropy loss. The original Bradley-Terry model in the DPO paper
 852 (Rafailov et al., 2023) is not strongly convex, whereas its robust version (Chowdhury et al., 2024),
 853 which accounts for preference noise, can be shown to satisfy strong convexity and smoothness.

864 Now consider we have access to observation data of the form $\mathcal{D}_n := \{m_i, y_i\}_{i=1}^n$, where $y_i \sim$
 865 $p(y|m_i(g_*))$, and $m_i : \mathcal{H}_k \rightarrow \mathbb{R}$ represents a bounded linear observation functional, e.g., $m_i(g_*) =$
 866 $m_i(g_*)$, or $m_i(g_*) = g_*(\mathbf{x}_{i,1}) - g_*(\mathbf{x}_{i,2})$, etc., for $i \in \{1, \dots, n\}$, which follow the true (unknown)
 867 function $g_* : \mathcal{X} \rightarrow \mathbb{R}$. The data are not i.i.d., and each m_i is the result of an algorithmic decision
 868 based on the currently available dataset \mathcal{D}_{t-1} and a model $g(\cdot, \theta_t)$ learned from it. The model is
 869 learned by minimizing a loss function:

870
$$L_n(g_\theta) := \bar{R}_n(g_\theta) + \sum_{i=1}^n \ell(m_i(g_*), y_i), \quad (35)$$

871

872

873 where $\bar{R}_n : \mathcal{H}_k \rightarrow \mathbb{R}_+$ is a regularization term, and $\ell : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ encodes the data dependency.
 874 Despite the definition of a regularization term over \mathcal{H}_k , following [Remark 2](#), we can use any positive-
 875 definite kernel $k_\Theta : \Theta \times \Theta \rightarrow \mathbb{R}$ compatible with [Lemma 2](#) to set \bar{R}_n such that:

876
$$\bar{R}_n(g_\theta) = \lambda \|g_\theta\|_{\mathcal{H}_g}^2 = \lambda k_\Theta(\theta, \theta). \quad (36)$$

877

878 In this case, a quadratic regularization term $\|\theta\|_2^2$ corresponds to the choice of a linear kernel, i.e.,
 879 $k_\Theta(\theta, \theta') = \theta \cdot \theta'$, which might appear quite restrictive, as it assumes that our models are linear
 880 functions of the parameters. However, note that, for overparameterized neural networks, at the
 881 infinite-width limit the model is actually linear in the parameters ([Jacot et al., 2018](#)). If we want to
 882 be more parsimonious, alternatively, we can choose k_Θ as a universal kernel, such as the squared-
 883 exponential, yet preferably not translation invariant, so that $k_\Theta(\theta, \theta)$ is not a constant. One kernel
 884 satisfying such assumption would be the exponential dot-product kernel $k_\Theta(\theta, \theta') := \exp(\theta \cdot \theta')$,
 885 which is universal for continuous functions over compact subsets of Θ . Nevertheless, we do not
 886 impose restrictions on the form of the regularization term \bar{R}_n , except for the one below, which is
 887 followed by our assumptions on the loss.

888 We can now analyze the approximation error with respect to g_* for the following estimators:¹

889
$$\theta_n \in \operatorname{argmin}_{\theta \in \Theta} L_n(g_\theta) \quad (37)$$

890

891
$$g_n \in \operatorname{argmin}_{g \in \mathcal{H}_k} L_n(g). \quad (38)$$

892

893 The first one gives us the best parametric approximation g_{θ_n} based on the data and is what our algo-
 894 rithm will use. The second estimator corresponds to the non-parametric approximation, which we
 895 will use as a tool for our analysis, and not assume as a component of the algorithm. The assumptions
 896 above allow us to bound distances between these estimators and the true g_* as a function of the loss
 897 and gradient values.

898 **Lemma 1.** *Let [Assumption A1](#), [A2](#) and [A3](#) be satisfied. Then, for any $g \in \mathcal{H}_k$, the following holds:*

899

900
$$\frac{1}{2} \|g - g_n\|_{H_n}^2 \leq L_n(g) - L_n(g_n) \leq \frac{1}{2} \|\nabla L_n(g)\|_{H_n^{-1}}^2, \quad (24)$$

901

902 where $H_n : \mathcal{H}_k \rightarrow \mathcal{H}_k$ is an operator-valued lower bound on the Hessian of the loss L_n :

903

904
$$\forall g \in \mathcal{H}_k, \quad \nabla^2 L_n(g) \succeq H_n := \lambda I + \alpha_\ell \sum_{i=1}^n m_i \otimes m_i, \quad (25)$$

905

906 where $\phi(\mathbf{x}) := k(\cdot, \mathbf{x})$, for $\mathbf{x} \in \mathcal{X}$.

907

908 *Proof of [Lemma 1](#).* We note that the Hessian of the losses can be lower bounded by:

909

910
$$\begin{aligned} \forall g \in \mathcal{H}_k, \quad \nabla_g^2 \ell(m(g), y) &= \ddot{\ell}_y(m(g)) \nabla_g m(g) \otimes \nabla_g m(g) + \dot{\ell}_y(m(g)) \nabla_g^2 m(g) \\ &= \ddot{\ell}_y(m(g)) m \otimes m \\ &\succeq \alpha_\ell m \otimes m, \quad \forall y \in \mathbb{R}, \forall \mathbf{x} \in \mathcal{X}, \end{aligned} \quad (39)$$

911

912 where we applied the fact that $\nabla_g m(g) = \nabla_g \langle g, m \rangle_k = m$, and the second derivatives $\ddot{\ell}_y$ of
 913 the loss function $\ell(\cdot, y)$ have a positive lower bound due to the strong convexity assumption ([A3](#)).
 914 Combining with [Assumption A2](#), we get:

915
$$\forall g \in \mathcal{H}_k, \quad \nabla_g^2 L_n(g) \succeq \lambda I + \alpha_\ell \sum_{i=1}^n m_i \otimes m_i =: H_n. \quad (40)$$

916

917 ¹We are implicitly assuming that such global optima exist. This is true for the optimization in \mathcal{H}_k , as we
 918 will show, but not always guaranteed for the optimization over Θ .

Now applying a first order Taylor expansion to L_n at any $g \in \mathcal{H}_k$, the error term is controlled by the Hessian ∇_g^2 at an intermediate point $\bar{g} \in \mathcal{H}_k$, which is uniformly lower bounded by H_n . Expanding L_n around g_n , we then have that:

$$\begin{aligned} \forall g \in \mathcal{H}_k, \quad L_n(g) - L_n(g_n) &= \langle \nabla L_n(g_n), g - g_n \rangle + \frac{1}{2} \|g - g_n\|_{\nabla^2 L_n(\bar{g}_n)}^2 \\ &\geq \frac{1}{2} \|g - g_n\|_{H_n}^2, \end{aligned} \quad (41)$$

where $\bar{g}_n = sg_n + (1-s)g$, for some $s \in [0, 1]$, and we applied the Hessian inequality (40) and the fact that $\nabla L_n(g_n) = 0$, as g_n is a minimizer. Hence, the lower bound (24) follows. Conversely, by expanding L_n around any g and evaluating at g_n , we have:

$$\forall g \in \mathcal{H}_k, \quad L_n(g_n) = L_n(g) + \langle \nabla L_n(g), g_n - g \rangle + \frac{1}{2} \|g_n - g\|_{\nabla^2 L_n(\bar{g}'_n)}^2 \quad (42)$$

Rearranging the terms yields:

$$\begin{aligned} \forall g \in \mathcal{H}_k, \quad L_n(g) - L_n(g_n) &= \langle \nabla L_n(g), g - g_n \rangle - \frac{1}{2} \|g - g_n\|_{\nabla^2 L_n(\bar{g}'_n)}^2 \\ &\leq \sup_{\tilde{g} \in \mathcal{H}_k} \langle \nabla L_n(g), \tilde{g} \rangle - \frac{1}{2} \|\tilde{g}\|_{\nabla^2 L_n(\bar{g}'_n)}^2 \\ &\leq \sup_{\tilde{g} \in \mathcal{H}_k} \langle \nabla L_n(g), \tilde{g} \rangle - \frac{1}{2} \|\tilde{g}\|_{H_n}^2, \end{aligned} \quad (43)$$

whose right-hand side is strongly concave and has a unique maximizer at:

$$\tilde{g} = H_n^{-1} \nabla L_n(g). \quad (44)$$

Replacing this result into the previous equation finally leads us to the upper bound in Lemma 1. \square

Lemma 1 allows us to control the approximation error by means of the functional gradients of L_n , without the need to know an explicit form for the optimal solution g_n . We can now proceed to derive our error bound, which will make use of the following result from the online learning literature.

Lemma 3 (Abbasi-Yadkori, 2012, Cor. 3.6). *Let $\{\mathfrak{F}_t\}_{t=0}^\infty$ be an increasing filtration, $\{\epsilon_t\}_{t=1}^\infty$ be a real-valued stochastic process, and $\{\phi_t\}_{t=1}^\infty$ be a stochastic process taking values in a separable real Hilbert space \mathcal{H} , with both processes adapted to the filtration. Assume that $\{\phi_t\}_{t=1}^\infty$ is predictable w.r.t. the filtration, i.e., ϕ_t is \mathfrak{F}_{t-1} -measurable, and that ϵ_t is conditionally σ_ϵ^2 -sub-Gaussian, for all $t \in \mathbb{N}$. Then, given any $\delta \in (0, 1)$, with probability at least $1 - \delta$,*

$$\forall t \in \mathbb{N}, \quad \left\| \sum_{i=1}^t \epsilon_i \phi_i \right\|_{(V + \Phi_t \Phi_t^\top)^{-1}}^2 \leq 2\sigma_\epsilon^2 \log \left(\frac{\det(\mathbf{I} + \Phi_t^\top V^{-1} \Phi_t)^{\frac{1}{2}}}{\delta} \right),$$

for any positive-definite operator $V \succ 0$ on \mathcal{H} , and where we set $\Phi_t := [\phi_1, \dots, \phi_t]$.

Theorem 1. *Consider the setting in Lemma 1, and let $\xi_k := \inf_{\theta \in \Theta} \|g(\cdot, \theta) - g_*\|_k$. Then, given any $\delta \in (0, 1)$, the following holds with probability at least $1 - \delta$:*

$$\forall n \in \mathbb{N}, \quad |\langle m, g_* \rangle_k - \langle m, g_{\theta_n} \rangle_k| \leq \|m\|_{H_n^{-1}} \left(2\beta_n(\delta) + \eta_0 \xi_k + b_k \eta_\ell \xi_k \sum_{i=1}^n \|m_i\|_{H_n^{-1}} \right), \quad \forall m \in \mathcal{H}_k,$$

where $\beta_n(\delta) := \lambda^{-1/2} \|\nabla \bar{R}_n(g_*)\|_k + \sigma_\ell \sqrt{2\alpha_\ell^{-1} \log(\det(\mathbf{I} + \alpha_\ell \lambda^{-1} M_n^\top M_n)^{1/2} / \delta)}$, and $M_n := [m_1, \dots, m_n]$.

Proof of Theorem 1. Fix any $m \in \mathcal{H}_k$ and $n \in \mathbb{N}$, the approximation error can then be expanded as:

$$|\langle m, g_* \rangle_k - \langle m, g_{\theta_n} \rangle_k| \leq |\langle m, g_* \rangle_k - \langle m, g_n \rangle_k| + |\langle m, g_{\theta_n} \rangle_k - \langle m, g_n \rangle_k|. \quad (45)$$

972 By [Lemma 1](#), for any $g \in \mathcal{H}_k$, we have that:

$$\begin{aligned}
973 \quad & |\langle m, g_n \rangle_k - \langle m, g \rangle_k| = |\langle m, g_n - g \rangle_k| \\
974 \quad & = |\langle H_n^{-1/2}m, H_n^{1/2}(g_n - g) \rangle_k| \\
975 \quad & \leq \|H_n^{-1/2}m\| \|H_n^{1/2}(g_n - g)\| \\
976 \quad & = \|m\|_{H_n^{-1}} \|g_n - g\|_{H_n} \\
977 \quad & \leq \|m\|_{H_n^{-1}} \|\nabla L_n(g)\|_{H_n^{-1}}, \\
978 \\
979
\end{aligned} \tag{46}$$

980 where the first inequality follows by Cauchy-Schwarz, and the last is due to [Lemma 1](#). Expanding
981 the gradient term, we have:

$$\begin{aligned}
982 \quad & \|\nabla L_n(g)\|_{H_n^{-1}} = \left\| \nabla \bar{R}_n(g) + \sum_{i=1}^n \dot{\ell}_{y_i}(\langle m_i, g \rangle_k) m_i \right\|_{H_n^{-1}} \\
983 \\
984 \quad & \leq \|\nabla \bar{R}_n(g)\|_{H_n^{-1}} + \left\| \sum_{i=1}^n \dot{\ell}_{y_i}(\langle m_i, g \rangle_k) m_i \right\|_{H_n^{-1}} \\
985 \\
986 \quad & \leq \frac{1}{\sqrt{\lambda}} \|\nabla \bar{R}_n(g)\|_k + \left\| \sum_{i=1}^n \dot{\ell}_{y_i}(\langle m_i, g \rangle_k) m_i \right\|_{H_n^{-1}}, \\
987 \\
988 \\
989 \\
990
\end{aligned} \tag{47}$$

991 where we applied the triangle inequality to obtain the second line and the fact that $H_n \succ \lambda I$ implies
992 $H_n^{-1} \prec \lambda^{-1} I$ led to the last line. For $g := g_*$, we can then apply [Lemma 3](#) to the noisy sum
993 above by setting \mathfrak{F}_t as the σ -algebra generated by the random variables $\{m_i, y_i\}_{i=1}^t$ and m_{t+1} ,
994 $\epsilon_t := \alpha_\ell^{-1/2} \dot{\ell}_{y_t}(\langle g_*, m_t \rangle_k)$ and $\phi_t := \alpha_\ell^{1/2} m_t$, for all $t \in \mathbb{N}$, which leads us to:

$$\left\| \sum_{i=1}^n \dot{\ell}_{y_i}(\langle m_i, g_* \rangle_k) m_i \right\|_{H_n^{-1}}^2 \leq \frac{2\sigma_\ell^2}{\alpha_\ell} \log \left(\frac{\det(\mathbf{I} + \alpha_\ell \lambda^{-1} M_n^\top M_n)^{\frac{1}{2}}}{\delta} \right) \tag{48}$$

995 which holds uniformly over all $n \in \mathbb{N}$ with probability at least $1 - \delta$. Hence, it follows that:

$$\forall n \in \mathbb{N}, \quad \|\nabla L_n(g_*)\|_{H_n^{-1}} \leq \frac{1}{\sqrt{\lambda}} \|\nabla \bar{R}_n(g_*)\|_k + \left\| \sum_{i=1}^n \dot{\ell}_{y_i}(\langle m_i, g_* \rangle_k) m_i \right\|_{H_n^{-1}} \leq \beta_n(\delta), \tag{49}$$

1002 with probability at least $1 - \delta$, where we set:

$$\beta_n(\delta) := \frac{1}{\sqrt{\lambda}} \|\nabla \bar{R}_n(g_*)\|_k + \sigma_\ell \sqrt{\frac{2}{\alpha_\ell} \log \left(\frac{\det(\mathbf{I} + \alpha_\ell \lambda^{-1} \mathbf{K}_n)^{\frac{1}{2}}}{\delta} \right)}. \tag{50}$$

1003 Therefore, the pointwise approximation error of the RKHS-optimal estimator g_n is bounded as:

$$\forall n \in \mathbb{N}, \quad |\langle m, g_n \rangle_k - \langle m, g_* \rangle_k| \leq \beta_n(\delta) \|m\|_{H_n^{-1}}, \quad \forall \mathbf{x} \in \mathcal{X}, \tag{51}$$

1004 with probability at least $1 - \delta$, with $\mathbf{K}_n := M_n^\top M_n = [k(\mathbf{x}_i, \mathbf{x}_j)]_{i,j=1}^n$.

1005 For the remaining term, we have that:

$$\begin{aligned}
1006 \quad & |\langle m, g_{\theta_n} \rangle_k - \langle m, g_n \rangle_k| \leq \|m\|_{H_n^{-1}} \|g_{\theta_n} - g_n\|_{H_n} \\
1007 \quad & \leq \|m\|_{H_n^{-1}} \sqrt{2(L_n(g_{\theta_n}) - L_n(g_n))}, \\
1008
\end{aligned} \tag{52}$$

1009 which follows from [Lemma 1](#). We can bound the loss difference via the gap term ξ_k if we can relate
1010 it to g_{θ_n} , though note that it is not guaranteed that the infimum is achieved by any particular $\theta \in \Theta$.
1011 From the definition of the infimum, however, it is a simple consequence that:

$$\forall \Delta > 0, \quad \exists \theta_\Delta \in \Theta : \quad \|g_{\theta_\Delta} - g_*\|_k \leq \xi_k + \Delta. \tag{53}$$

1012 Therefore, as θ_n minimizes L_n over all Θ , picking some $\Delta > 0$, we have that any θ_Δ satisfying the
1013 condition above leads us to:

$$\begin{aligned}
1014 \quad & L_n(g_{\theta_n}) - L_n(g_n) \leq L_n(g_{\theta_\Delta}) - L_n(g_n) \\
1015 \quad & \leq \frac{1}{2} \|\nabla L_n(g_{\theta_\Delta})\|_{H_n^{-1}}^2 \\
1016 \quad & \leq \frac{1}{2} \left(\|\nabla \bar{R}_n(g_{\theta_\Delta})\|_k + \left\| \sum_{i=1}^n \dot{\ell}_{y_i}(\langle m_i, g_{\theta_\Delta} \rangle_k) m_i \right\|_{H_n^{-1}} \right)^2, \\
1017 \\
1018 \\
1019 \\
1020 \\
1021 \\
1022 \\
1023 \\
1024 \\
1025
\end{aligned} \tag{54}$$

1026 where we applied [Lemma 1](#) to derive the second line and [Equation 47](#) for the third line. Now each
 1027 term above can be bounded in terms of the approximation gap $\xi_k + \Delta$. Firstly, given the smoothness
 1028 of the regularization gradients ([Assumption A2](#)), observe that:

$$\begin{aligned} 1029 \|\nabla \bar{R}_n(g_{\theta_\Delta})\|_k &= \|\nabla \bar{R}_n(g_*) + \nabla \bar{R}_n(g_{\theta_\Delta}) - \nabla \bar{R}_n(g_*)\|_k \\ 1030 &\leq \|\nabla \bar{R}_n(g_*)\|_k + \|\nabla \bar{R}_n(g_{\theta_\Delta}) - \nabla \bar{R}_n(g_*)\|_k \\ 1031 &\leq \|\nabla \bar{R}_n(g_*)\|_k + \eta_0 \|g_{\theta_\Delta} - g_*\|_k \\ 1032 &\leq \|\nabla \bar{R}_n(g_*)\|_k + \eta_0 (\xi_k + \Delta), \\ 1033 \\ 1034 \end{aligned} \tag{55}$$

1035 where we applied the triangle inequality and the definition of smoothness (cf. [Definition 2](#)). Sec-
 1036 ondly, for the sum term, by smoothness of the loss derivatives ([Assumption A3](#)), we have that:

$$\begin{aligned} 1037 \forall i \in \{1, \dots, n\}, \quad \dot{\ell}_{y_i}(\langle m_i, g_{\theta_\Delta} \rangle_k) &= \dot{\ell}_{y_i}(\langle m_i, g_* \rangle_k) + \dot{\ell}_{y_i}(\langle m_i, g_{\theta_\Delta} \rangle_k) - \dot{\ell}_{y_i}(\langle m_i, g_* \rangle_k) \\ 1038 &\leq \dot{\ell}_{y_i}(\langle m_i, g_* \rangle_k) + \eta_\ell |\langle m_i, g_{\theta_\Delta} \rangle_k - \langle m_i, g_* \rangle_k| \\ 1039 &= \dot{\ell}_{y_i}(\langle m_i, g_* \rangle_k) + \eta_\ell |\langle m_i, g_{\theta_\Delta} - g_* \rangle_k| \\ 1040 &\leq \dot{\ell}_{y_i}(\langle m_i, g_* \rangle_k) + \eta_\ell \|m_i\|_k \|g_{\theta_\Delta} - g_*\|_k \\ 1041 &\leq \dot{\ell}_{y_i}(\langle m_i, g_* \rangle_k) + \eta_\ell b_k (\xi_k + \Delta), \\ 1042 \\ 1043 \end{aligned} \tag{56}$$

1044 where the first inequality follows by smoothness, the second is due to Cauchy-Schwarz, and the last
 1045 follows by the definition of θ_Δ and the boundedness of the kernel (cf. [Assumption A1](#)). Hence, the
 1046 sum is bounded as:

$$\begin{aligned} 1047 \left\| \sum_{i=1}^n \dot{\ell}_{y_i}(\langle m_i, g_{\theta_\Delta} \rangle_k) m_i \right\|_{H_n^{-1}} &\leq \left\| \sum_{i=1}^n (\dot{\ell}_{y_i}(\langle m_i, g_* \rangle_k) + b_k \eta_\ell (\xi_k + \Delta)) m_i \right\|_{H_n^{-1}} \\ 1048 &\leq \left\| \sum_{i=1}^n (\dot{\ell}_{y_i}(\langle m_i, g_* \rangle_k) m_i) \right\|_{H_n^{-1}} + b_k \eta_\ell (\xi_k + \Delta) \left\| \sum_{i=1}^n m_i \right\|_{H_n^{-1}} \\ 1049 &\leq \left\| \sum_{i=1}^n (\dot{\ell}_{y_i}(\langle m_i, g_* \rangle_k) m_i) \right\|_{H_n^{-1}} + b_k \eta_\ell (\xi_k + \Delta) \sum_{i=1}^n \|m_i\|_{H_n^{-1}}. \\ 1050 \\ 1051 \end{aligned} \tag{57}$$

1052 Substituting the upper bounds in equations 55 and 57 into [Equation 54](#) and applying the concentra-
 1053 tion inequality in [Equation 49](#) yields:

$$\begin{aligned} 1054 \|\nabla L_n(g_{\theta_\Delta})\|_{H_n^{-1}} &\leq \frac{1}{\sqrt{\lambda}} \|\nabla \bar{R}_n(g_*)\|_k + \eta_0 (\xi_k + \Delta) + \left\| \sum_{i=1}^n (\dot{\ell}_{y_i}(\langle m_i, g_* \rangle_k) m_i) \right\|_{H_n^{-1}} \\ 1055 &\quad + b_k \eta_\ell (\xi_k + \Delta) \sum_{i=1}^n \|m_i\|_{H_n^{-1}} \\ 1056 &\leq \beta_n(\delta) + \eta_0 (\xi_k + \Delta) + b_k \eta_\ell (\xi_k + \Delta) \sum_{i=1}^n \|m_i\|_{H_n^{-1}}, \\ 1057 \end{aligned} \tag{58}$$

1058 which holds with the same probability as [Equation 49](#). Lastly, as the gradient bound above is valid
 1059 for any $\Delta > 0$, we can take the limit as $\Delta \rightarrow 0$ and substitute the result back into [Equation 52](#) to get
 1060 the model approximation error bound:

$$1061 |\langle m, g_{\theta_n} \rangle_k - \langle m, g_n \rangle_k| \leq \|m\|_{H_n^{-1}} \left(\beta_n(\delta) + \eta_0 \xi_k + b_k \eta_\ell \xi_k \sum_{i=1}^n \|m_i\|_{H_n^{-1}} \right), \quad \forall \mathbf{x} \in \mathcal{X}, \tag{59}$$

1062 which also holds uniformly over all $n \in \mathbb{N}$ with probability at least $1 - \delta$. Combining [Equation 59](#)
 1063 and 51 leads to the final result, which concludes the proof. \square

1064 Despite the model being potentially non-linear and the loss not being required to be least-squares,
 1065 [Theorem 1](#) shows that we recover the same kind of RKHS-based error bound found in the kernelized

bandits literature (Chowdhury & Gopalan, 2017; Durand et al., 2018; Oliveira et al., 2021), up to an approximation gap ξ_k w.r.t. the true function g_* . If identifiability holds, we have $\xi_k = 0$, and we recover the usual bounds (Durand et al., 2018).² Alternatively, in the case of neural networks, we can increase the width of the network over time (making sure the model scales up with the data is not uncommon in deep learning approaches), which would then lead to the model covering a whole RKHS, determined by the NTK (Jacot et al., 2018). In general, for a rich enough model class, one may expect ξ_k to be small.

Regarding the term resembling a pointwise predictive variance, by an application of Woodbury's identity, we have that:

$$\begin{aligned} \|m\|_{H_n^{-1}}^2 &= m^\top (\lambda I + \alpha_\ell M_n M_n^\top)^{-1} m \\ &= m^\top (\lambda^{-1} I - \lambda^{-2} M_n (\alpha_\ell^{-1} \mathbf{I} + \lambda^{-1} M_n^\top M_n)^{-1} M_n^\top) m \\ &= \lambda^{-1} m^\top (I - M_n (\lambda \alpha_\ell^{-1} \mathbf{I} + M_n^\top M_n)^{-1} M_n^\top) m \\ &= \lambda^{-1} (\|m\|_k^2 - m^\top M_n (\lambda \alpha_\ell^{-1} \mathbf{I} + M_n^\top M_n)^{-1} M_n^\top m), \end{aligned} \quad (60)$$

If observations correspond to pointwise evaluations $m := k(\cdot, \mathbf{x})$ and $m_i := k(\cdot, \mathbf{x}_i)$, for $\mathbf{x} \in \mathcal{X}$ and $\{\mathbf{x}_i\}_{i=1}^n \subset \mathcal{X}$, we end up with:

$$\begin{aligned} \|m\|_{H_n^{-1}}^2 &= \|k(\cdot, \mathbf{x})\|_{H_n^{-1}}^2 \\ &= \lambda^{-1} (k(\mathbf{x}, \mathbf{x}) - \mathbf{k}_n(\mathbf{x})^\top (\lambda \alpha_\ell^{-1} \mathbf{I} + \mathbf{K}_n)^{-1} \mathbf{k}_n(\mathbf{x})) \\ &= \lambda^{-1} \sigma_n^2(\mathbf{x}), \end{aligned} \quad (61)$$

which corresponds to a scaled version of the posterior predictive variance $\sigma_n^2(\mathbf{x}) := k_n(\mathbf{x}, \mathbf{x})$ of a GP model (cf. Equation 27). We also have the following auxiliary result from VSD.

Lemma 4 (GP variance upper bound (Steinberg et al., 2025, Lem. E.5)). *Let $\{\mathbf{x}_n\}_{n \geq 1}$ be a sequence of \mathcal{X} -valued random variables adapted to the filtration $\{\mathfrak{F}_n\}_{n \geq 1}$. For a given $\mathbf{x} \in \mathcal{X}$, assume that the following holds:*

$$\exists T_* \in \mathbb{N} : \quad \forall T \geq T_*, \quad \sum_{n=1}^T \mathbb{P}[\mathbf{x}_n = \mathbf{x} \mid \mathfrak{F}_{n-1}] \geq b_T > 0, \quad (62)$$

for a some sequence of lower bounds $\{b_n\}_{n \in \mathbb{N}}$. Then, for a bounded kernel $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ given observations at $\{\mathbf{x}_i\}_{i=1}^n$, the following holds with probability 1:

$$\sigma_n^2(\mathbf{x}) \in \mathcal{O}(b_n^{-1}). \quad (63)$$

In addition, if $b_n \rightarrow \infty$, then $\lim_{n \rightarrow \infty} b_n \sigma_n^2(\mathbf{x}) \leq \sigma_\epsilon^2$.

D ADDITIONAL EXPERIMENTAL DETAIL

D.1 TEXT OPTIMIZATION

We use the same annealing threshold scheme for setting τ_t as Steinberg et al. (2025, Eqn. 20), where we set η such that when begin at $p_0 = 0.5$ we end at $p_T = 0.99$. For the proposal distribution, we found these short sequences we best generated by the simple mean-field categorical model,

$$q(\mathbf{x}|\phi) = \prod_{m=1}^M \text{Categ}(x_m | \text{softmax}(\phi_m)) \quad (64)$$

where $x_m \in \mathcal{V}$ and $\phi_m \in \mathbb{R}^{|\mathcal{V}|}$, and we directly optimize ϕ . VSD and CbAS use the simple MLP classifier guide in Figure 4.

²If we further assume that the model can represent any $g \in \mathcal{H}_k$, the factor of 2 multiplying β_n would also disappear, as the extra β_n arises from a bound over $\|g_{\theta_n} - g_n\|$, which would vanish.

```

1134     Sequential(
1135         Embedding(
1136             num_embeddings=A,
1137             embedding_dim=16
1138         ),
1139         Dropout(p=0.1),
1140         Flatten(),
1141         LeakyReLU(),
1142         Linear(
1143             in_features=16 * M,
1144             out_features=64
1145         ),
1146         LeakyReLU(),
1147         Linear(
1148             in_features=64,
1149             out_features=1
1150         ),
1151     ),
1152     ),
1153     ),
1154     ),
1155     ),
1156     ),
1157     ),
1158     ),
1159     ),
1160     ),
1161     ),
1162     ),
1163     ),
1164     )
1165     (a) MLP architecture
1166
1167     Sequential(
1168         Embedding(
1169             num_embeddings=A,
1170             embedding_dim=E
1171         ),
1172         Dropout(p=0.2),
1173         Conv1d(
1174             in_channels=E,
1175             out_channels=C,
1176             kernel_size=Kc,
1177         ),
1178         LeakyReLU(),
1179         MaxPool1d(
1180             kernel_size=Kx,
1181             stride=Sx,
1182         ),
1183         Conv1d(
1184             in_channels=C,
1185             out_channels=C,
1186             kernel_size=Kc,
1187         ),
1188         LeakyReLU(),
1189         MaxPool1d(
1190             kernel_size=Kx,
1191             stride=Sx,
1192         ),
1193         Flatten(),
1194         LazyLinear(
1195             out_features=H
1196         ),
1197         LeakyReLU(),
1198         Linear(
1199             in_features=H,
1200             out_features=1
1201         ),
1202     ),
1203     )
1204     (b) CNN architecture

```

Figure 4: Classifier architectures used for VSD and CbAS in the experiments using PyTorch syntax. $A = |\mathcal{V}|$, $M = M$, and we give all other parameters in [Table 2](#) if not directly indicated.

D.2 PROTEIN DESIGN

We use the same threshold function and setting for all of the protein design experiments as in [Section D.1](#). However, these tasks require a more sophisticated generative model that can capture local and global relationships that relate to protein’s 3D structure. For this we use the auto-regressive (causal) transformer architecture also used in [Steinberg et al. \(2025\)](#),

$$q(\mathbf{x}|\phi) = \text{Categ}(x_1|\text{softmax}(\phi_1)) \prod_{m=2}^M q(x_m|x_{1:m-1}, \phi_{1:m}) \quad \text{where,}$$

$$q(x_m|x_{1:m-1}, \phi_{1:m}) = \text{Categ}(x_m|\text{DTransformer}(x_{1:m-1}, \phi_{1:m})). \quad (65)$$

See for the latter see [Phuong & Hutter \(2022, Algorithm 10 & Algorithm 14\)](#) for maximum likelihood training and sampling implementation details respectively. We give the architectural configuration for the transformers in each task in [Table 1](#), and the classifier CNN used by VSD and CbAS is in [Figure 4](#).

We use the following Ehrlich function configurations:

$M = 15$: motif length = 4, no. motifs = 2, quantization = 4

$M = 32$: motif length = 4, no. motifs = 2, quantization = 4

Configuration	Stability	SASA	Ehrlich 15	Ehrlich 32	Ehrlich 64
Layers	2	2	2	2	2
Feedforward network	256	256	32	64	128
Attention heads	4	4	1	2	3
Embedding size	64	64	10	20	30

Table 1: Transformer backbone configuration.

Configuration	Stability	SASA	Ehrlich 15	Ehrlich 32	Ehrlich 64
E	16	16	10	10	10
C	96	96	16	16	16
Kc	7	7	4	7	7
Kx	5	5	2	2	2
Sx	4	4	2	2	2
H	192	192	128	128	128

Table 2: CNN guide configuration for VSD and CbAS

$M = 64$: motif length = 4, no. motifs = 8, quantization = 4

D.3 GENBO SETTINGS

Acronym	Meaning
EI	Expected Improvement
PI	Probability of Improvement
sEI	Soft Expected Improvement, i.e., $\text{softplus}(y - \tau)$
SR	Simple Regret (utility function)
fKL	Forward KL loss
bfKL	Balanced forward KL loss
rPL	Robust preference loss
MF	Mean-field categorical proposal model
Tfm	Transformer proposal model
fr	More frequent regularization (change in λ_n schedule rate)
r0p10	Base regularization factor set to $\lambda_0 := 0.1$
exp	Exponential regularizer, i.e., $R_n(\theta) := \lambda_n \exp\ \theta - \theta_0\ _2^2$
np	No (informative) prior, i.e., $p_0(\mathbf{x}) \propto 1$
p	Pre-trained prior, learned from initial (randomly initialized) data \mathcal{D}_0
lg	Importance weights
lr0p10	Learning rate setting for training the generative model (e.g., 0.1 in this case)
pcmin0p50	Minimum percentile for threshold τ_t annealing schedule (e.g., 50% in this case)
pcmax0p90	Maximum percentile for threshold τ_t annealing schedule (e.g., 90% in this case)

Table 3: GenBO experiment settings acronyms

Table 3 presents our settings for the different GenBO variants across experiments. The settings for our proposal models followed VSD’s configurations. Our regularization scheme penalized the Euclidean distance between the model’s parameters and their random initialization (He et al., 2015) with $R_n(\theta) := \lambda_n \|\theta - \theta_0\|_2^2$, using an annealed regularization factor $\lambda_n := \frac{1}{n} \lambda_0 \log^2 n$, similar to Dai et al. (2022), which ensures enough exploration, while still $\lambda_n \rightarrow 0$ as $n \rightarrow \infty$, allowing for convergence to the optimal θ_* . For threshold-based utilities, we mainly set the quantile threshold τ_t to follow an annealing schedule ranging from the 50% (i.e., the median) to the 99% percentile of the observations marginal distribution for both GenBO and VSD, where the percentile γ_t corresponding to the quantile is updated as $\gamma_t := \gamma_{t-1}^\eta$, where $\eta := \left(\frac{\log \gamma_T}{\log \gamma_0}\right)^{\frac{1}{T-1}} \in (0, 1)$.

	ALOHA	Ehrlich-15	Ehrlich-32	Ehrlich-64
Random mut.	3.80 ± 0.40			
LaMBO-2		0.19 ± 0.17	0.36 ± 0.15	0.95 ± 0.02
CbAS	2.20 ± 0.40	0.57 ± 0.12	0.61 ± 0.10	0.98 ± 0.01
GA		0.45 ± 0.12	0.61 ± 0.10	0.98 ± 0.01
VSD	0.00 ± 0.00	0.19 ± 0.17	0.32 ± 0.09	0.97 ± 0.00
GenBO	0.20 ± 0.40	0.00 ± 0.00	0.28 ± 0.16	0.94 ± 0.02

Table 4: Final average regret (lower is better) for the best-performing variant of each method across the ALOHA (text optimization) and Ehrlich benchmarks

	FoldX (Stability)	FoldX (SASA)
Random mut.	2.79 ± 0.22	12550.26 ± 56.34
LaMBO-2	3.19 ± 0.58	12456.10 ± 126.64
CbAS	3.65 ± 0.23	12376.65 ± 298.30
VSD	4.20 ± 0.42	12537.97 ± 186.35
GenBO	3.28 ± 0.35	13285.42 ± 221.60

Table 5: FoldX average maximum outcome for the best-performing variant of each method

D.4 RESULTS SUMMARY

Besides the plots in [section 6](#), we summarize the final results in [Table 4](#) and [5](#).

D.5 ABLATIONS

This section presents ablation studies. We vary the minimum and maximum percentile for the threshold annealing settings of both GenBO (with PI utility) and VSD on the text optimization problem in [Figure 5](#). In [Figure 6](#), we vary the batch size B for GenBO on the Ehrlich benchmark problem of sequence length 32.

1296

1297

1298

1299

1300

	Method	Average Runtime
1301	CbAS	53.38 s \pm 2.05 s
1302	VSD	42.89 s \pm 2.56 s
1303	GenBO	14.88 s \pm 0.26 s

1304

1305 Table 6: Summary of average run times with standard deviations on the ALOHA text optimization
 1306 problem.

1307

1308

1309

1310

1311

1312

1313

1314

(a) GenBO

(b) VSD

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1345 Figure 5: Final average simple regret for GenBO and VSD as a function of the minimum and
 1346 maximum percentile in the annealing schedule.