GENERATIVE BAYESIAN OPTIMIZATION: GENERATIVE MODELS AS ACQUISITION FUNCTIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

We present a general strategy for turning generative models into candidate solution samplers for batch Bayesian optimization (BO). The use of generative models for BO enables large batch scaling as generative sampling, optimization of noncontinuous design spaces, and high-dimensional and combinatorial design. Inspired by the success of direct preference optimization (DPO), we show that one can train a generative model with noisy, simple utility values directly computed from observations to then form proposal distributions whose densities are proportional to the expected utility, i.e., BO's acquisition function values. Furthermore, this approach is generalizable beyond preference-based feedback to general types of reward signals and loss functions. This perspective avoids the construction of surrogate (regression or classification) models, common in previous methods that have used generative models for black-box optimization. Theoretically, we show that the generative models within the BO process approximately follow a sequence of distributions which asymptotically concentrate at the global optima under certain conditions. We also demonstrate this effect through experiments on challenging optimization problems involving large batches in high dimensions.

1 Introduction

Bayesian optimization (BO) has been a successful approach to solve complex black-box optimization problems by making use of probabilistic surrogate models, such as a Gaussian processes (GPs) (Rasmussen & Williams, 2006), and their uncertainty estimates (Shahriari et al., 2016; Garnett, 2023). BO methods have been particularly useful in areas such as hyper-parameter tuning for machine learning algorithms (Snoek et al., 2012), material design (Frazier & Wang, 2016), and robot locomotion (Calandra et al., 2016). The core idea of BO is to apply a Bayesian decision-theoretic framework to make optimal choices by maximizing an expected utility criterion, also known as an acquisition function. The corresponding expectations are taken under a Bayesian posterior over the underlying objective function. Thus, the Bayesian model provides a principled way to account for the uncertainty inherent to the limited amount of data and the noisy observations.

In many applications such as simulated scenarios (Azimi et al., 2010), one is able to run multiple evaluations of the objective function in parallel, even though the simulations themselves might be expensive to run. Most common BO approaches to these batch settings incrementally build a set of candidates by sampling "fantasy" observations from the probabilistic model and conditioning on them before selecting the next candidate in the batch (Wilson et al., 2018). Although near-optimal batches can be selected this way, this approach is not scalable to very large batches in high-dimensional spaces, such as problems in protein design (Stanton et al., 2022; Gruver et al., 2023).

One of the most promising alternatives to batch BO has been to train a generative model as a proposal distribution informed by the acquisition function and then sample a batch from the learned proposal (Brookes et al., 2019; Stanton et al., 2022; Gruver et al., 2023; Steinberg et al., 2025). This approach comes with several advantages. Firstly, given a trained generative model, sampling is usually inexpensive. Secondly, existing general-purpose generative models can be used and fine-tuned for the optimization task at hand. Lastly, sampling avoids estimating the global optimum of an acquisition function, which can be hard. However, existing generative approaches to black-box optimization usually rely on fitting a surrogate (regression or classification) model first then training a generative

model on top of it (Stanton et al., 2022; Gruver et al., 2023; Steinberg et al., 2025). This two-stage process compounds approximation errors from both models and can increase the computational cost significantly when compared to having a single model.

In this paper we present a general framework for learning generative models for batch Bayesian optimization tasks that requires a single model without the need for additional probabilistic regression or classification surrogates. Our approach encodes general utility functions into training objectives for generative models directly. We focus on two cases, one where we train the model via a loss function for a reward model analogously to the direct preference optimization (DPO) formulation for large language models (Rafailov et al., 2023), and the second one where we train the generative model through traditional divergence minimization, using utilities as part of sample weights. We present theoretical analyses of algorithmic convergence and performance and empirical results on practical applications involving high-dimensional combinatorial optimization problems.

2 Background

We consider the problem of estimating the global optimum of an objective function $f: \mathcal{X} \to \mathbb{R}$ as:

$$\mathbf{x}^* \in \operatorname*{argmax} f(\mathbf{x}) .$$
 (1)

The algorithm is restricted to a budget of $T \geq 1$ optimization rounds, where it chooses query locations $\mathbf{x}_t \in \mathcal{X}$ to evaluate the objective function f. Observations are usually noisy $y_t = f(\mathbf{x}_t) + \epsilon_t$, where ϵ_t is often assumed Gaussian or sub-Gaussian. Besides sequential decisions where a single \mathbf{x}_t is chosen per round, batch versions of BO take advantage of parallel function evaluations by selecting a batch of query points $\mathcal{B}_t := \{\mathbf{x}_{t,i}\}_{i=1}^B \subset \mathcal{X}$ per round. However, to simplify our presentation and avoid notation clutter, we will consider the single-point sequential setting to present the background and the initial derivation of our framework, later extending it to the batch setting.

BO with regression models. Assume a Gaussian process prior $f \sim \mathcal{GP}(0, k)$. Then, given a set of observations $\mathcal{D}_t := \{\mathbf{x}_i, y_i\}_{i=1}^t$, with Gaussian noise $\epsilon \sim \mathcal{N}(0, \sigma_\epsilon^2)$, the posterior $f|\mathcal{D}_t \sim \mathcal{GP}(\hat{f}_t, k_t)$ is available in closed form with mean and covariance function given by:

$$\hat{f}_t(\mathbf{x}) := \mathbf{k}_t(\mathbf{x})^\mathsf{T} (\mathbf{K}_t + \sigma_\epsilon^2 \mathbf{I})^{-1} \mathbf{y}_t$$
 (2)

$$k_t(\mathbf{x}, \mathbf{x}') := k(\mathbf{x}, \mathbf{x}') - \mathbf{k}_t(\mathbf{x})^\mathsf{T} (\mathbf{K}_t + \sigma_{\epsilon}^2 \mathbf{I})^{-1} \mathbf{k}_t(\mathbf{x}')$$
(3)

where $\mathbf{k}_t(\mathbf{x}) := [k(\mathbf{x}, \mathbf{x}_i)]_{i=1}^t \in \mathbb{R}^t$, $\mathbf{K}_t := [k(\mathbf{x}_i, \mathbf{x}_j)]_{i,j=1}^t \in \mathbb{R}^{t \times t}$, $\mathbf{y}_t := [y_i]_{i=1}^t \in \mathbb{R}^t$, for $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$. Having learned a model for f, one can compute an acquisition function $a_t(\mathbf{x})$ mapping candidate points $\mathbf{x} \in \mathcal{X}$ to their expected utility $\mathbb{E}[u(y)|\mathbf{x}, \mathcal{D}_t]$, where the utility intuitively encodes how useful it is to collect an observation at \mathbf{x} . Classical examples of expected utility functions include the probability of improvement $a(\mathbf{x}) = p(y \geq \tau | \mathbf{x}) = \mathbb{E}[\mathbb{I}[y \geq \tau] | \mathbf{x}]$ and the expected improvement $a(\mathbf{x}) = \mathbb{E}[\max\{y - \tau, 0\}]$. The next candidate is then chosen as:

$$\mathbf{x}_{t+1} \in \operatorname*{argmax} a_t(\mathbf{x}) \,.$$
 (4)

Batch BO. When multiple evaluations can be executed in parallel, batch BO approaches become more appropriate. In this case, one selects a batch of candidates $\mathcal{B}_{t+1} = \{\mathbf{x}_{t+1,i}\}_{i=1}^B \subset \mathcal{X}$ and runs multiple evaluations of the objective in parallel to collect a corresponding batch of observations. The difficulty there lies in ensuring the chosen batch of candidates is diverse enough (i.e., not having all candidates collapsed at the maximum of the acquisition function), while still ensuring optimality. To do so, batch BO methods often rely on a sequential greedy selection scheme and approximations thereof (Wilson et al., 2018; Garnett, 2023). Usually, the first batch point is selected by maximizing the acquisition function, then an observation is simulated by sampling from the surrogate model (e.g., a GP), which is used to condition the model as if it was an actual observation, and the process is repeated with the conditioned model until the given number B of batch elements is selected. This process ensures a level of optimality to the chosen batch, but it is not easily scalable when very large batches are needed due to the cost of computing the simulated model updates. In contrast, one can train a generative model to produce samples guided by the GP surrogate in adaptive Bayesian quadrature (Kanagawa & Hennig, 2019) frameworks. For instance, f can represent a log-likelihood

or log-joint probability that depends on an expensive-to-evaluate computer model or real experimental process. We can then formulate an evidence lower bound with the GP surrogate model and train a generative model with it (Acerbi, 2020; Oliveira et al., 2021). Alternatively, in latent-space BO methods for high-dimensional problems (Gómez-Bombarelli et al., 2018; Stanton et al., 2022; Gruver et al., 2023), one learns a probabilistic representation of a (usually lower-dimensional) manifold of the data jointly with f, and performs BO in that space, projecting query points back to the original space at evaluation time. This technique has led to numerous BO methods for high-dimensional optimization (Gómez-Bombarelli et al., 2018; Gruver et al., 2023; González-Duque et al., 2024).

Active generation with classification models. Besides other approaches based on latent spaces, methods like variational search distributions (VSD, Steinberg et al., 2025) and batch BORE (Oliveira et al., 2022) learn a probabilistic classifier based on improvement labels and then match a generative model to the implied posterior. Namely, let $z_t := \mathbb{I}[y_t > \tau]$, where τ is, e.g., the best observation so far or a (empirical) quantile of the marginal distribution of observations. We then learn a classification model π for $p(z|\mathbf{x})$ by minimizing a loss given by a proper scoring rule. For example, given the available data \mathcal{D}_{t-1} , the cross-entropy loss consists of:

$$\ell_t[\pi] := -\sum_{i=1}^{t-1} z_i \log \pi(\mathbf{x}_i) + (1 - z_i) \log(1 - \pi(\mathbf{x}_i))$$
 (5)

Given a prior p_0 over \mathcal{X} and π_t as the minimizer of ℓ_t , we can now learn a generative model as:

$$q_t \in \operatorname*{argmax}_{q} \mathbb{E}_{\mathbf{x} \sim q}[\log \pi_t(\mathbf{x})] - \mathbb{D}_{\mathrm{KL}}(q||p_0),$$
 (6)

which corresponds to an evidence lower bound treating $\pi_t(\mathbf{x}) \approx p(y > \tau | \mathbf{x}, \mathcal{D}_{t-1})$, so that the optimal variational distribution is $q_t(\mathbf{x}) \approx p(\mathbf{x}|y > \tau, \mathcal{D}_{t-1})$.

Direct preference optimization. Large language models are typically fine tuned via reinforcement learning with human feedback (RLHF). This process involves training an LLM as a RL agent with a reward model. In practice, we do not directly observe rewards, but have access to user preferences. Given a prompt context c, let $\mathbf{x}^+, \mathbf{x}^- \sim q(\mathbf{x}|c)$ denote two answers generated by an LLM q, with \mathbf{x}^+ denoting the answer preferred by the user, and \mathbf{x}^- the dispreferred one. Given a dataset of user preferences $\mathcal{D}_n^+ := \{c_i, \mathbf{x}_i^+, \mathbf{x}_i^-\}_{i=1}^n$, one can then learn a reward model ρ by minimizing the negative log-likelihood under a Bradley-Terry preference model:

$$\ell_n^+[\rho] := -\mathbb{E}_{(c, \mathbf{x}^+, \mathbf{x}^-) \sim \mathcal{D}_n^+}[\log \sigma(\rho(c, \mathbf{x}^+) - \rho(c, \mathbf{x}^-))] \tag{7}$$

Having learned a reward model ρ_n , RLHF trains the LLM as an agent. A KL-regularized objective reduces the risk of the optimized model deviating too much from a reference model $q_{\rm ref}$ given by a pre-trained LLM. The optimal generative model solves:

$$q_n \in \operatorname*{argmax}_{c \sim \mathcal{D}_n^+, \mathbf{x} \sim q(\mathbf{x}|c)} [\rho_n(c, \mathbf{x})] - \tau \mathbb{D}_{\mathrm{KL}}(q || q_{\mathrm{ref}})$$
(8)

Direct preference optimization (DPO, Rafailov et al., 2023) removes the need for an explicit reward model by viewing the LLM itself through the lens of a reward model. It is not hard to show that, fixing a reward model ρ , the optimal solution to Equation 8 is given by:

$$q(\mathbf{x}|c) = \frac{1}{\zeta_{\rho}(c)} q_{\text{ref}}(\mathbf{x}|c) \exp\left(\frac{1}{\tau} \rho(c, \mathbf{x})\right), \qquad (9)$$

where $\zeta_{\rho}(c) := \sum_{\mathbf{x}} q_{\text{ref}}(\mathbf{x}|c) \exp(\tau^{-1}\rho(c,\mathbf{x}))$ is the partition function at the given context c. Although it would be intractable to evaluate ζ_{ρ} in practice, DPO uses the fact that, in the Bradley-Terry model, the partition function-dependent terms cancel out. Note that the reward model can be expressed in terms of q as:

$$\rho(c, \mathbf{x}) = \tau \log \left(\frac{q(\mathbf{x}|c)}{q_{\text{ref}}(\mathbf{x}|c)} \right) + \tau \log \zeta_{\rho}(c).$$
 (10)

Applying the substitution above to the preference-based loss (7), we get:

$$\ell_{\text{DPO}}[q] = -\mathbb{E}_{(c, \mathbf{x}^+, \mathbf{x}^-) \sim \mathcal{D}_n^+} \left[\log \sigma \left(\tau \log \left(\frac{q(\mathbf{x}^+|c)}{q_{\text{ref}}(\mathbf{x}^+|c)} \right) - \tau \log \left(\frac{q(\mathbf{x}^-|c)}{q_{\text{ref}}(\mathbf{x}^-|c)} \right) \right) \right], \quad (11)$$

which eliminates the partition function ζ_{ρ} . Therefore, we can train the generative model q directly with ℓ_{DPO} without the need for an intermediate reward model. Such simplification to a single training loop cuts down the need for computational resources, eliminates a source of approximation errors (from learning ρ), and brings in theoretical guarantees from Bradley-Terry models (Shah et al., 2016; Bong & Rinaldo, 2022). The main question guiding this work is whether we can apply a similar technique to simplify the training of (arbitrary) generative models for BO by removing the need for an intermediate classification or regression model.

Other related work. There has been recent progress in adapting diffusion models for black-box optimization tasks, often done by learning a model that can be conditioned on observation values, learned from a dataset of evaluations (Krishnamoorthy et al., 2023). Other approaches involve guiding the diffusion process by a given utility function derived from a regression model (Gruver et al., 2023; Yun et al., 2025). Note, however, that such methodologies are specific to diffusion, whereas we focus on a general approach that can be applied to virtually any type of generative model.

3 A GENERAL RECIPE FOR GENERATIVE BAYESIAN OPTIMIZATION

As seen in Section 2, using generative models for BO typically involves training a regression or classification model as an intermediate step to then train the candidate generator. The use of an intermediate model demands additional computational resources and brings in further sources of approximation errors which may hinder performance. Hence, we propose a framework to train the generative model directly from (noisy) observation values. The main idea is to train the model to approximate a target distribution proportional to BO's acquisition function and then use the learned generative model as a proposal for the next query locations. There are different approaches to do so, some of which have been previously explored in the literature, for specific acquisition functions, such as the probability of improvement (Brookes et al., 2019; Steinberg et al., 2025) and upper confidence bound (Yun et al., 2025). However, we here focus on a general recipe to turn a generative model into a density following *any* acquisition function that can be expressed as an expected utility.

Utility functions. Consider a likelihood-free BO setting (Song et al., 2022), where we aim to directly learn an acquisition function $a_t: \mathcal{X} \to \mathbb{R}$ at every BO round $t \in \{1, \dots, T\}$ based on available data. If our acquisition function takes the form of an expected utility:

$$a_t(\mathbf{x}) = \mathbb{E}[u_t(\mathbf{x})|\mathcal{D}_{t-1}],\tag{12}$$

we can estimate it from noisy samples $\{\mathbf{x}_i, u_{t,i}\}_{i=1}^{t-1}$, where $\mathbb{E}[u_{t,i}|\mathcal{D}_{t-1}] = \mathbb{E}[u_t(\mathbf{x}_i)|\mathcal{D}_{t-1}]$. For example, we have:

- 1. Probability of improvement (PI): $u_{t,i} = \mathbb{I}[y_i \geq \tau_t];$
- 2. Expected improvement (EI): $u_{t,i} = \max(y_i \tau_t, 0)$;
- 3. Simple regret (SR): $u_{t,i} = y_i$;

given a threshold τ_t for improvement-based utilities, e.g., $\tau_t := \max_{i < t} y_i$ or a quantile of the empirical marginal observations distribution (Tiao et al., 2021). A comprehensive summary of typical utility functions for BO can be found in Wilson et al. (2018). The ones listed above, however, we can write directly as a function of the observations. We also use a soft-plus version of EI (sEI) in our experiments, which remains positive at a low value when $y = \tau$.

BO with generative models. As an example, consider the case of PI where $a(\mathbf{x}) = \mathbb{E}[\mathbb{I}[y \ge \tau]] = p(y \ge \tau | \mathbf{x})$, which has been previously applied to train generative models for black-box optimization via surrogates (Steinberg et al., 2025). Given a sampler for the conditional distribution $p(\mathbf{x}|y \ge \tau)$, by Bayes rule, we recover the original PI as:

$$a(\mathbf{x}) = p(y \ge \tau | \mathbf{x}) = \frac{p(\mathbf{x} | y \ge \tau)p(y \ge \tau)}{p_0(\mathbf{x})} \propto \frac{p(\mathbf{x} | y \ge \tau)}{p_0(\mathbf{x})}.$$
 (13)

As the prior p_0 is usually known, and it can even be set as uninformative $p_0(\mathbf{x}) \propto 1$, we see that learning a generative model to approximate the posterior above is equivalent to learning a probabilistic classifier for the improvement event $y \geq \tau$. Moreover, if we only have a probabilistic

classifier approximating $p(y \ge \tau | \mathbf{x})$, we still need to select candidate points via optimization over the classification probabilities landscape, which can be highly non-convex presenting several local optima, recalling that in the usual BO setting we choose \mathbf{x}_{t+1} as the (global) maximizer of the acquisition function a. In contrast, a generative model provides us with a direct way to sample candidates $\mathbf{x} \sim p(\mathbf{x}|y \ge \tau)$ which will by default concentrate at the highest density regions, and consequently highest utility, according to the model. Finally, note that this same reasoning can be extended to any other non-negative expected utility function by training the generative model to approximate:

$$p_t^*(\mathbf{x}) \propto p(\mathbf{x})a_t(\mathbf{x}),$$
 (14)

or similarly $p_t^*(\mathbf{x}) \propto p_0(\mathbf{x}) \exp a_t(\mathbf{x})$, which allows for utilities that might take negative values.

Overview. Let $Q \subset \mathcal{P}(\mathcal{X})$ be a learnable family of probability distributions over a given domain \mathcal{X} . We consider general loss functions of the form:

$$L_t(q) := \lambda_t R_t(q) + \sum_{i=1}^{n_t} \ell_i(q),$$
 (15)

where ℓ_i are individual losses over points $\mathbf{x}_i \in \mathcal{X}$ or pairs of points $\mathbf{x}_{i,1}, \mathbf{x}_{i,2} \in \mathcal{X}$ and their corresponding utility values, $\lambda_t \geq 0$ is an optional regularization factor, and $R_t : \mathcal{Q} \to [0, \infty)$ is a complexity penalty function. The algorithm then proceeds by learning a proposal distribution as:

$$q_t \in \operatorname*{argmin}_{q \in \mathcal{Q}} L_t(q) \,. \tag{16}$$

A batch $\mathcal{B}_{t+1} := \{\mathbf{x}_{t+1,i}\}_{i=1}^B$ is sampled from the learned proposal q_t . We evaluate the utilities $u_{t+1}(y_{t+1,i})$ with the collected observations $y_{t,i} \sim p(y|\mathbf{x}_{t+1,i})$, for $i \in \{1,\ldots,B\}$, and repeat the cycle up to a given number of iterations $T \in \mathbb{N}$. In the following, we describe approaches to formulate general loss functions for learning acquisition functions and how to ensure that the sequence of batches $\{\mathcal{B}_t\}_{t=1}^\infty$ asymptotically

3.1 Preference-based learning

We aim to apply a similar reparameterization trick to the one in DPO to simplify generative BO methods. Note that, for a general classification loss, such as the one in Equation 5, it is not possible to eliminate the partition function resulting from a DPO-like reparameterization without resorting to approximations, which might change the learned model. Hence, we need a pairwise-contrastive objective.

Preference loss. To apply a preference-based loss, we can train a model to predict preferential directions of the acquisition function. Assume we have a dataset $\mathcal{D}_n^u := \{\mathbf{x}_i, u_i\}_{i=1}^n$ with n evaluations of a given utility function $u : \mathbb{R} \to \mathbb{R}$. We may reorganize the data into pairs of inputs and corresponding utility values $\{\mathbf{x}_{i,1}, \mathbf{x}_{i,2}, u_{i,1}, u_{i,2}\}_{i=1}^{n/2}$, where $u_{i,j} := u(y_{i,j})$, for $j \in \{1, 2\}$, and train a generative model q using the Bradley-Terry preference loss from DPO with, for $i \in \{1, \ldots, n/2\}$:

$$\ell_i^{\text{PL}}(q, \Delta u_i) := -\log \sigma \left(\tau \operatorname{sign}(\Delta u_i) \left(\log \left(\frac{q(\mathbf{x}_{i,1})}{p_0(\mathbf{x}_{i,1})}\right) - \log \left(\frac{q(\mathbf{x}_{i,2})}{p_0(\mathbf{x}_{i,2})}\right)\right)\right), \quad (17)$$

where $\Delta u_i := u_{i,1} - u_{i,2}$, as in the DPO formulation, $\tau > 0$ is a (optional) temperature parameter and the prior p_0 can be given by a reference model, either pre-trained or derived from expert knowledge about feasible solutions to the optimization problem (1). Similar to Rafailov et al. (2023), the learned generative model is seeking to approximate:

$$p_u^*(\mathbf{x}) := \frac{1}{\zeta_u} p_0(\mathbf{x}) \exp\left(\frac{1}{\tau} \mathbb{E}[u(y)|\mathbf{x}]\right), \tag{18}$$

where ζ_u is the normalization factor.

Robust preference loss. As shown in Chowdhury et al. (2024), the original DPO loss is not robust to preference noise. As in BO, one usually only observes noisy evaluations of the objective function, utility values directly derived from the observation values will also be noisy and correspondingly the

sign of their differences as well. Namely, assume there is a small $p_{\text{flip}} \in (0, 1/2)$ probability of the preference directions being flipped w.r.t. the sign of the true expected utility:

$$\mathbb{P}\left[\text{sign}(u_{i,1} - u_{i,2}) = \text{sign}(\mathbb{E}[u_{i,2}|\mathbf{x}_{i,2}] - \mathbb{E}[u_{i,1}|\mathbf{x}_{i,1}])\right] = p_{\text{flip}}.$$
(19)

Chowdhury et al. (2024) showed that the original DPO preference loss is biased in this noisy case, and proposed a robust version of the DPO loss to address this issue as:

$$\ell_i^{\text{rPL}}(q, \Delta u_i) := \frac{(1 - p_{\text{flip}})\ell_{\text{PL}}(q, \Delta u_i) - p_{\text{flip}}\ell_i^{\text{PL}}(q, -\Delta u_i)}{1 - 2p_{\text{flip}}},$$
(20)

which yields the robust preference loss (rPL): $L_n^{\mathrm{rPL}}(q) := \sum_{i=1}^n \ell_i^{\mathrm{rPL}}(q, \Delta u_i)$. It follows that the loss function above is unbiased and robust to observation noise.

3.2 DIVERGENCE-BASED LEARNING

A disadvantage of DPO-based losses when applied to BO is that they only take the signs of the pairwise utility differences into account, discarding the remaining information contained in the magnitude of the utilities. A simpler approach is to train the generative model q to match p_u^* directly.

Forward KL. If we formulate the target distribution as $p_u^* \propto p_0(\mathbf{x})a(\mathbf{x})$, the forward Kullback-Leibler (KL) divergence of the proposal w.r.t. the target is given by:

$$\mathbb{D}_{\mathrm{KL}}(p_u^*||q) = \mathbb{E}_{\mathbf{x} \sim p_u^*}[\log p_u^*(\mathbf{x}) - \log q(\mathbf{x})]. \tag{21}$$

As we do not have samples from p_u^* , at each iteration t the algorithm generates samples from the current best approximation $\mathcal{B}_t := \{\mathbf{x}_{t,i}\}_{i=1}^B \sim q_t$. An unbiased training objective can then be formulated as:

$$\ell_i^{\text{fKL}}(q) = -\frac{p_0(\mathbf{x}_i)}{q_{i-1}(\mathbf{x}_i)} u(y_i) \log q(\mathbf{x}_i), \qquad (22)$$

which we write in a condensed form to avoid notation clutter with $q_i = q_{\lfloor i/B \rfloor}$ and n corresponding to the total number of observations up to a given round. The objective above is unbiased and its global optimum can be shown to converge to p_u^* by an application of standard results from the adaptive importance sampling literature (Delyon & Portier, 2018). A simpler version of this training objective was derived for CbAS (Brookes et al., 2019) using only the last batch for training, which would allow for convergence as the batch size goes to infinity $B \to \infty$. Furthermore, as we will see in our analysis, convergence to p_u^* is not sufficient to ensure convergence to the global optima of the objective function f.

Balanced forward KL. As utilities like those of PI and EI can evaluate to 0 at the points where $y < \tau$ was observed, with τ corresponding to an improvement threshold, every point below the threshold will not be penalized by the loss function. As a result, the model may keep high probability densities in regions of low utility. To prevent this, we may use an alternative formulation of the forward KL which comes from the definition of Bregman divergences with the convex function $u \mapsto u \log u$, yielding a loss:

$$\ell_i^{\text{fKL}}(q) = -\frac{p_0(\mathbf{x}_i)}{q_{i-1}(\mathbf{x}_i)} u(y_i) \log q(\mathbf{x}_i) + \frac{q(\mathbf{x}_i)}{q_{i-1}(\mathbf{x}_i)}.$$
 (23)

We defer the details of the derivation to the appendix. Although the additional $q(\mathbf{x})$ only contributes to a constant term when integrated over, for finite-sample approximations, it contributes to a soft penalty on points where we observed u(y) = 0.

3.3 GENERALIZATIONS

In general, we can extend the above framework to use proper scoring rule $S: \mathcal{P}(\mathcal{X}) \times \mathcal{X} \to \mathbb{R}$ (Gneiting & Raftery, 2007) other than the log loss. We can then learn q approximating p_u^* by minimizing:

$$L_n^S(q) = -\sum_{i=1}^n \frac{p_0(\mathbf{x}_i)}{q_{i-1}(\mathbf{x}_i)} u(y_i) S(q, \mathbf{x}_i).$$
 (24)

Although we leave the exploration of this formulation for future work, it is readily extensible to other types of generative models which may not have densities available in closed form, such as diffusion and flow matching (Lipman et al., 2024), which still provide flexible probabilistic models.

4 THEORETICAL ANALYSIS

In this section, we present a theoretical analysis of the algorithm's approximation of the utility-based target distribution and its performance in regards to the global optimization problem (1). We consider parametric generative models q_{θ} with a given parameter space $\theta \in \Theta \subset \mathbb{R}^{M}$. For the purpose of our analysis, we will assume that models can be described as $q_{\theta}(\mathbf{x}) = \exp g_{\theta}(\mathbf{x})$, which is always possible whenever densities are strictly positive $q_{\theta}(\mathbf{x}) > 0$. To accommodate for both the pairwise preference-based losses and the point-based divergence approximations, we introduce the following notation for the loss function:

$$L_n(g_\theta) = \bar{R}_n(g_\theta) + \sum_{i=1}^n \ell(m_i(g_\theta), z_i),$$
 (25)

where $m_i(g_\theta)$ corresponds to the model evaluation at data point i with, e.g., $m_i(g_\theta) := \log q_\theta(\mathbf{x}_i)$ for KL, and $m_i(\theta) := \log q_\theta(\mathbf{x}_{i,1}) - \log q_\theta(\mathbf{x}_{i,2})$ for preference-based losses, and z_i encodes the dependence on utility values with $z_i := u(y_i)$ for KL and $z_i := \mathrm{sign}(u_{i,1} - u_{i,2})$ for DPO losses. We set \bar{R}_n as an extended regularizer $\bar{R}_n(g) := \lambda_n R_n(g) + \frac{\bar{\lambda}_n}{2} (\int_{\mathcal{X}} \exp g(\mathbf{x}) \, \mathrm{d}\mu(\mathbf{x}) - 1)^2$, where μ corresponds to the underlying base measure on the domain \mathcal{X} (i.e., the counting measure for discrete domains or the Lebesgue measure for Euclidean spaces). Note that the additional term is always zero for the generative models, as $\int_{\mathcal{X}} \exp g_\theta(\mathbf{x}) \, \mathrm{d}\mu(\mathbf{x}) = \int_{\mathcal{X}} q_\theta(\mathbf{x}) \, \mathrm{d}\mu(\mathbf{x}) = 1$, but including it here facilitates our analysis to operate with any unconstrained $g: \mathcal{X} \to \mathbb{R}$.

Regularity assumptions. We make a few mild regularity assumptions about the problem setting and the model. Firstly, for the analysis, we assume that both the models g_{θ} lie in a reproducing kernel Hilbert space (RKHS) \mathcal{H}_k shared with the true log density g_* , which is such that $p_u^*(\mathbf{x}) = \exp g_*(\mathbf{x})$. The domain \mathcal{X} is assumed to be a compact metric space with main results specialized for the finite discrete setting, i.e., $|\mathcal{X}| < \infty$. The model $q_{\theta}(\mathbf{x})$ is continuously twice differentiable with respect to the parameters $\theta \in \Theta$ with bounded second-order derivatives. The individual losses $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ are strictly convex and twice differentiable w.r.t. their first argument. In addition, we assume that, at the target g_* the individual loss $\ell(m_i(g_*), z_i)$ is conditionally sub-Gaussian (Boucheron et al., 2013; Chowdhury & Gopalan, 2017) w.r.t. the data-generating process, basically meaning that the probability distribution of each loss has zero mean and light tails. We also assume that the regularizer $R_n : \mathcal{Q} \to [0, \infty)$ is strongly convex and twice differentiable. We defer the formal assumptions and their discussion to the appendix.

Lemma 1. Let Assumption A1, A2 and A3 be satisfied. Then, for any $g \in \mathcal{H}_k$, the following holds:

$$\frac{1}{2} \|g - g_n\|_{H_n}^2 \le L_n(g) - L_n(g_n) \le \frac{1}{2} \|\nabla L_n(g)\|_{H_n^{-1}}^2, \tag{26}$$

where $H_n: \mathcal{H}_k \to \mathcal{H}_k$ is an operator-valued lower bound on the Hessian of the loss L_n :

$$\forall g \in \mathcal{H}_k, \quad \nabla^2 L_n(g) \succeq H_n := \lambda I + \alpha_\ell \sum_{i=1}^n m_i \otimes m_i \,, \tag{27}$$

where $\phi(\mathbf{x}) := k(\cdot, \mathbf{x})$, for $\mathbf{x} \in \mathcal{X}$.

Remark 1. The result in Lemma 1 automatically ensures that the loss functional L_n is strongly convex, as $\nabla^2 L_n(g) \succeq H_n \succeq \lambda I \succ 0$, for all $g \in \mathcal{H}_k$, and therefore has a unique minimizer at g_n . The same, however, cannot be implied about $L_n(g_\theta)$ over Θ based solely on this result, since the mapping $\theta \mapsto g(\cdot, \theta)$ might be non-linear.

Corollary 1. Consider the setting in Lemma 1, and assume that there is $\theta_* \in \Theta$ such that $g_{\theta_*} = g_*$. Then, given any $\delta \in (0,1)$, the following holds with probability at least $1-\delta$:

$$\forall n \in \mathbb{N}, \quad |\langle m, g_* \rangle_k - \langle m, g_{\theta_n} \rangle_k| \le 2\beta_n(\delta) ||m||_{H_n^{-1}} \, \forall m \in \mathcal{H}_k,$$

where
$$\beta_n(\delta) := \lambda^{-1/2} \|\nabla \bar{R}_n(g_*)\|_k + \sigma_\ell \sqrt{2\alpha_\ell^{-1} \log(\det(\mathbf{I} + \alpha_\ell \lambda^{-1} M_n^\mathsf{T} M_n)^{1/2}/\delta)}$$
, and $M_n := [m_1, \dots, m_n]$.

The result above is a direct consequence of Theorem 1 in the appendix, and it shows that the approximation error for the optimal parameter θ_n concentrates similarly to that of a kernel method, even though we do not require the model to be a kernel machine. In addition, the term $\|m\|_{H_n^{-1}}$ is associated with the predictive variance of a Gaussian process model, which can be shown to converge to zero whenever $\inf_{\mathbf{x} \in \mathcal{X}} q_{\theta}(\mathbf{x}) \geq b_q > 0$, for all $\theta \in \Theta$ (see Lemma 4 in the appendix).

Optimality. Corollary 1 and the latter allows us to establish that the model converges to the target g_* associated with the target distribution p_u^* for a given utility function u. However, convergence to the target distribution alone does not ensure optimality of the samples $\mathbf{x} \sim q_t$. The latter is possible by applying results from reward-weighted regression, which shows that training a proposal to maximize $\mathbb{E}_{y \sim (y|\mathbf{x}), \mathbf{x} \sim q_{t-1}}[u(y)\log q(\mathbf{x})]$ yields a sequence of increasing expected rewards $\mathbb{E}[u(y_t)] \leq \mathbb{E}[u(y_{t+1})] \leq \dots$ (Štrupl et al., 2022, Thm. 4.1). Hence, if the maximizer of the sequence of expected utilities converges to the maximizer of the objective function f, the generative BO proposals will concentrate at the true optimum \mathbf{x}_* .

5 EXPERIMENTS

We evaluate the different variants of generative BO (GenBO) on a number of challenging sequence optimization tasks against popular and strong baselines.

5.1 TEXT OPTIMIZATION

For this experiment wish to optimize a short sequence (5 letters) to minimize the edit distance to the sequence ALOHA — which is implemented as a POLI black-box (González-Duque et al., 2024). Here $\mathcal{X} = \mathcal{V}^M$ where \mathcal{V} is the English alphabet, and M is sequence length. Even though this sequence is relatively short, still $|\mathcal{X}| = |\mathcal{V}|^M > 11.8$ million elements. We increase the difficulty by only allowing $|\mathcal{D}_0| = 64$ where the minimum edit distance is 4, B = 8, and T = 10. We compare GenBO to the classifier guided VSD (Steinberg et al., 2025) and CbAS (Brookes et al., 2019), and to a simple greedy baseline that applies (3) random mutations to its best candidates perround (González-Duque et al., 2024). For GenBO, VSD and CbAS we use a simple mean-field (independent) categorical proposal distribution, q, and a uniform prior, p_0 . VSD and CbAS use a simple embedding and 1-hidden layer MLP classifier for estimating PI. Architectural details and other experimental specifics are given in Section C.1. Results are summarized in Figure 1a where we can see that random baseline is not able to make much headway and CbAS under-performs because GenBO with the robust preference loss and the EI utility is the best performing variant, and initially outperforms VSD – but VSD eventually closes the gap.

Figure 1: Simple regret of the baseline black box optimizers and the GenBO variants on the (a) ALOHA, (b) stability, and (c) solvent accessible surface area optimization problems.

5.2 PROTEIN DESIGN

We now consider three protein sequence design tasks where $|\mathcal{V}|=20$ and we have varying M. We again use VSD, CbAS and random mutation as baselines, and add to them the guided diffusion based LaMBO-2 (Gruver et al., 2023). GenBO, VSD and CbAS all share the same generative backbone, which is the causal transformer used in Steinberg et al. (2025); VSD and CbAS also use the same CNN-classifier guide used in that work. We present additional architectural information, and additional experimental details in Section C.2. We use the black-box implementations in POLI for these tasks, and POLI-BASELINES implementations of the random and LaMBO-2 baselines.

The first task we consider is optimization of the Ehrlich functions introduced by Stanton et al. (2024). These are challenging biologically inspired parametric closed-form that explicitly simulate nonlinear

(epistatic) effects of sequence on outcome. The outcomes are $y \in \{-1\} \cup [0,1]$ where -1 is reserved for infeasible sequences. We use the same protocol as in Steinberg et al. (2025), where we optimize sequences of length $M = \{15, 32, 64\}$ all with motif lengths of 4, and $|\mathcal{D}_0| = 128$, T = 32 and B = 128. The results are summarized in Figure 2.

Figure 2: Simple regret of the baseline black box optimizers and the GenBO variants on the Ehrlich closed-form test function protein design task for varying sequence lengths, M.

For our final set of experiments we present two real protein optimization tasks. These experiments have been adapted from Stanton et al. (2022) where the aims are to maximize the stability and solvent accessible surface (SASA) of the proteins respectively. The black-box is the FoldX molecular simulation software (Schymkowitz et al., 2005), and is wrapped by POLI (González-Duque et al., 2024). We chose the M. rouge red fluorescent protein (M=228) as the base protein for the tasks. Both tasks were given T=20 rounds, a batch size of B=64, and an initial training set of $|\mathcal{D}_0|=88$ as a subset from Stanton et al. (2022). Results are summarized in Figure 1b for stability and Figure 1c for SASA. All variants of GenBO find the stability task challenging, along with the LaMBO-2 and random baselines. CbAS and especially VSD are better able to stabilize this protein. However, most variants of GenBO far outperform the baselines on the SASA task, and much more rapidly. We believe this is because this task favors extrapolation away from the prior, and the GenBO variants with no prior performed best.

6 Conclusion

This work introduces Generative Bayesian Optimization (GenBO), a unifying framework that turns any generative model into a sampler whose density tracks Bayesian-optimization acquisition functions or preference losses. By eliminating intermediate regression or classification surrogates, GenBO reduces approximation error, simplifies the pipeline to learning just a single generative model, and scales naturally to large batches and high-dimensional or combinatorial design spaces. Theoretical results show convergence to the global optimum, and experiments on sequence and protein design tasks demonstrate competitive performance with more complex surrogate-guided baselines. A few challenges remain. For some variants, GenBO requires choosing and fixing the prior before optimization, and its performance depends on sensible settings of utility and temperature parameters. Despite these caveats, GenBO's minimal moving parts and principled acquisition-driven training mark a simpler and more scalable alternative to multi-stage guided generation methods.

REFERENCES

Yasin Abbasi-Yadkori. Online Learning for Linearly Parametrized Control Problems. PhD, University of Alberta, 2012.

Luigi Acerbi. Variational Bayesian Monte Carlo with noisy likelihoods. In H Larochelle, M Ranzato, R Hadsell, M F Balcan, and H Lin (eds.), 34th Conference on Neural Information Processing Systems (NeurIPS 2020), volume 33, pp. 8211–8222. Curran Associates, Inc., 2020.

Javad Azimi, Alan Fern, and Xiaoli Z. Fern. Batch bayesian optimization via simulation matching. In *Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010 (NIPS 2010)*, 2010.

Heejong Bong and Alessandro Rinaldo. Generalized results for the existence and consistency of the MLE in the Bradley-Terry-Luce model. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 2160–2177. PMLR, 2022.

- Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. *Concentration inequalities: A Nonasymptotic Theory of Independence*. Oxford University Press, 2013.
- David Brookes, Hahnbeom Park, and Jennifer Listgarten. Conditioning by adaptive sampling for robust design. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pp. 773–782, Long Beach, CA, USA, 2019. PMLR.
- Roberto Calandra, André Seyfarth, Jan Peters, and Marc Peter Deisenroth. Bayesian optimization for learning gaits under uncertainty. *Annals of Mathematics and Artificial Intelligence*, 76 (1):5–23, 2016. doi: 10.1007/s10472-015-9463-9. URL https://doi.org/10.1007/s10472-015-9463-9.
- Sayak Ray Chowdhury and Aditya Gopalan. On Kernelized Multi-armed Bandits. In *Proceedings* of the 34th International Conference on Machine Learning (ICML), Sydney, Australia, 2017.
- Sayak Ray Chowdhury, Anush Kini, Nagarajan Natarajan, Sayak Ray Chowdhury, Anush Kini, and Nagarajan Natarajan. Provably Robust DPO: Aligning Language Models with Noisy Feedback. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp. 42258–42274. PMLR, 2024.
- Bernard Delyon and François Portier. Asymptotic optimality of adaptive importance sampling. In S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi, and R Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31, Montréal, Canada, 2018. Curran Associates, Inc.
- Audrey Durand, Odalric-Ambrym Maillard, and Joelle Pineau. Streaming kernel regression with provably adaptive mean, variance, and regularization. *Journal of Machine Learning Research*, 19 (1):650–683, 2018.
- Peter I. Frazier and Jialei Wang. *Bayesian Optimization for Materials Design*, pp. 45–75. Springer International Publishing, Cham, 2016. ISBN 978-3-319-23871-5. doi: 10.1007/978-3-319-23871-5_3. URL https://doi.org/10.1007/978-3-319-23871-5_3.
- Roman Garnett. *Bayesian Optimization*. Cambridge University Press, 2023. URL https://bayesoptbook.com/.
- Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation. *Journal of the American Statistical Association*, 102(477):359–378, 2007.
- Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous representation of molecules. *ACS Central Science*, 4(2):268–276, 2018. doi: 10.1021/acscentsci.7b00572.
- Miguel González-Duque, Richard Michael, Simon Bartels, Yevgen Zainchkovskyy, Søren Hauberg, and Wouter Boomsma. A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences. In *The 38th Conference on Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track*, Vancouver, Canada, 2024.
- Miguel González-Duque, Simon Bartels, and Richard Michael. Poli: a libary of discrete sequence objectives, 2024. URL https://github.com/MachineLearningLifeScience/poli.

Nate Gruver, Samuel Stanton, Nathan Frey, Tim G.J. Rudner, Isidro Hotzel, Julien Lafrance-Vanasse, Arvind Rajpal, Kyunghyun Cho, and Andrew Gordon Wilson. Protein design with guided discrete diffusion. In *Advances in Neural Information Processing Systems*, volume 36, New Orleans, LA, USA, 2023.

- Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: convergence and generalization in neural networks. In *Proceedings of the 32nd International Conference on Neural Information Processing Systems*, NIPS'18, pp. 8580–8589, Red Hook, NY, USA, 2018. Curran Associates Inc.
- Motonobu Kanagawa and Philipp Hennig. Convergence guarantees for adaptive Bayesian quadrature methods. In *33rd Conference on Neural Information Processing Systems* (*NeurIPS 2019*), Vancouver, Canada, 2019.
- Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Diffusion models for blackbox optimization. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 17842–17857. PMLR, 2023.
- Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky T. Q. Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. *arXiv e-prints*, 2024.
- Rafael Oliveira, Lionel Ott, and Fabio Ramos. No-regret approximate inference via Bayesian optimisation. In 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021), 2021.
- Rafael Oliveira, Louis Tiao, and Fabio T. Ramos. Batch bayesian optimisation via density-ratio estimation with guarantees. *Advances in Neural Information Processing Systems*, 35:29816–29829, 2022.
- Mary Phuong and Marcus Hutter. Formal algorithms for transformers. *arXiv preprint* arXiv:2207.09238, 2022.
- Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. In *Advances in neural information processing systems*, volume 36, pp. 53728–53741, 2023.
- Carl E. Rasmussen and Christopher K. I. Williams. *Gaussian Processes for Machine Learning*. The MIT Press, Cambridge, MA, 2006.
- Saburou Saitoh and Yoshihiro Sawano. *Theory of Reproducing Kernels and Applications*. Springer, 2016.
- Joost Schymkowitz, Jesper Borg, Francois Stricher, Robby Nys, Frederic Rousseau, and Luis Serrano. The foldx web server: an online force field. *Nucleic Acids Research*, 33:W382–W388, July 2005. ISSN 0305-1048. doi: 10.1093/nar/gki387.
- Nihar B. Shah, Sivaraman Balakrishnan, Joseph Bradley, Abhay Parekh, Kannan Ramchandran, and Martin J. Wainwright. Estimation from pairwise comparisons: Sharp minimax bounds with topology dependence. *Journal of Machine Learning Research*, 17, 2016.
- Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando De Freitas. Taking the human out of the loop: A review of Bayesian optimization. *Proceedings of the IEEE*, 104(1): 148–175, 2016.
- Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine learning algorithms. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (eds.), *Advances in Neural Information Processing Systems* 25, pp. 2951–2959. Curran Associates, Inc., 2012.
 - Jiaming Song, Lantao Yu, Willie Neiswanger, and Stefano Ermon. A general recipe for likelihood-free Bayesian optimization. In *Proceedings of the 39th International Conference on Machine Learning (ICML)*, Baltimore, Maryland, USA, 2022. PMLR 162.

Samuel Stanton, Wesley Maddox, Nate Gruver, Phillip Maffettone, Emily Delaney, Peyton Greenside, and Andrew Gordon Wilson. Accelerating Bayesian optimization for biological sequence design with denoising autoencoders. In *International Conference on Machine Learning*, pp. 20459–20478. PMLR, 2022.

Samuel Stanton, Robert Alberstein, Nathan Frey, Andrew Watkins, and Kyunghyun Cho. Closed-form test functions for biophysical sequence optimization algorithms. arXiv preprint arXiv:2407.00236, 2024.

- Daniel M. Steinberg, Rafael Oliveira, Cheng Soon Ong, and Edwin V. Bonilla. Variational search distributions. In *The Thirteenth International Conference on Learning Representations*, Singapore, 2025.
- Ingo Steinwart and Andreas Christmann. Kernels and reproducing kernel Hilbert spaces. In *Support Vector Machines*, chapter 4, pp. 110–163. Springer, New York, NY, 2008.
- Miroslav Štrupl, Francesco Faccio, Dylan R Ashley, Rupesh Kumar Srivastava, and Jürgen Schmidhuber. Reward-weighted regression converges to a global optimum. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp. 8361–8369, 2022.
- Louis C. Tiao, Aaron Klein, Matthias Seeger, Edwin V. Bonilla, Cedric Archambeau, and Fabio Ramos. BORE: Bayesian optimization by density-ratio estimation. In *Proceedings of the 38th International Conference on Machine Learning (ICML)*. PMLR, 2021.
- James T. Wilson, Frank Hutter, and Marc Peter Deisenroth. Maximizing acquisition functions for Bayesian optimization. In 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada, 2018.
- Taeyoung Yun, Kiyoung Om, Jaewoo Lee, Sujin Yun, and Jinkyoo Park. Posterior Inference with Diffusion Models for High-dimensional Black-box Optimization. In *Forty-second International Conference on Machine Learning (ICML)*, Vancouver, Canada, 2025. URL https://openreview.net/forum?id=EXds2NBOoq.

A APPENDIX

B LEARNING PARAMETRIC MODELS WITH RKHS CONVEX LOSSES

In this section, we consider the general problem of learning a function g_* with a parametric model $g:\mathcal{X}\times\Theta\to\mathbb{R}$, where the parameter space Θ is an arbitrary finite-dimensional vector space. Most existing results in the Bayesian optimization and bandits literature for learning these models from inherently dependent data are only valid for linear models or kernel machines. As we will consider arbitrary generative models, we need to derive convergence results applicable to a wider class models, accommodating popular modern frameworks. To do so, we will not assume identifiability, so that it is not necessary that some $\theta_*\in\Theta$ exists such that $g_*=g(\cdot;\theta_*)$. Instead, we will replace identifiability with a much milder assumption that g_* lies in a reproducing kernel Hilbert space (RKHS) large enough to also contain the models, as described next.

Assumption A1. The true function $g_*: \mathcal{X} \to \mathbb{R}$ is a member of a reproducing kernel Hilbert space \mathcal{H}_k , associated with a positive-semidefinite kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, which is bounded $\sup_{\mathbf{x} \in \mathcal{X}} k(\mathbf{x}, \mathbf{x}) \leq b_k^2$ for a given $b_k > 0$. In addition, we assume that the models can also be found as elements of the same RKHS, i.e., $\{g(\cdot; \theta) \mid \theta \in \Theta\} \subset \mathcal{H}_k$.

The assumption above allows us to consider functions g_* which cannot be perfectly approximated by the model, though which yet live in the same underlying Hilbert space \mathcal{H}_k . The reproducing kernel assumption is also mild, as it simply means that function evaluations are continuous (i.e., well behaved), which can usually not be guaranteed in other types of Hilbert spaces, such as, e.g., \mathcal{L}_2 -spaces. In fact, every Hilbert space of functions where evaluation functionals are continuous is an RKHS by definition (Steinwart & Christmann, 2008, Def. 4.18). Lastly, we note that we can always find a RKHS that contains the models, such as the minimal construction below.

Assumption A2 (Regularization). The regularizer $\bar{R}_n : \mathcal{H}_k \to \mathbb{R}$ is λ -strongly convex, twice differentiable, and has η_0 -smooth gradients.

Common choices of regularization scheme, such as the squared norm $||g||_k^2$, suffice the assumptions above. Strong convexity does not require a function to be twice differentiable, but such assumption can greatly simplify the analysis and it is common in modern deep learning frameworks.

Assumption A3 (Loss). For any $y \in \mathbb{R}$, the point loss $\ell_y := \ell(y, \cdot) : \mathbb{R} \to \mathbb{R}$ is α_ℓ -strongly convex, twice differentiable, and has η_ℓ -smooth first-order derivatives. In addition, given any $m \in \mathcal{H}_k$, we assume the first-order derivative $\dot{\ell}_y(m(g_*))$ is conditionally σ_ℓ -sub-Gaussian when $y \sim p(y|m(g_*))$.

Note that most loss functions in the deep learning literature satisfy the assumptions above, including the squared error and the cross entropy loss. The original Bradley-Terry model in the DPO paper (Rafailov et al., 2023) is not strongly convex, whereas its robust version (Chowdhury et al., 2024), which accounts for preference noise, can be shown to satisfy strong convexity and smoothness.

Lemma 2. Let $g: \mathcal{X} \times \Theta \to \mathbb{R}$ represent a class of models parameterized by $\theta \in \Theta$. Assume that $g(\mathbf{x}; \cdot) \in \mathcal{H}_{\Theta}$, for all $\mathbf{x} \in \mathcal{X}$, where \mathcal{H}_{Θ} is a reproducing kernel Hilbert space associated with a positive-definite kernel $k_{\Theta}: \Theta \times \Theta \to \mathbb{R}$. It then follows that:

$$\mathcal{H}_g := \{ h : \mathcal{X} \to \mathbb{R} \mid \exists w \in \mathcal{H}_{\Theta} : h(\mathbf{x}) = \langle w, g(\mathbf{x}, \cdot) \rangle_{\mathcal{H}_{\Theta}}, \forall \mathbf{x} \in \mathcal{X} \}$$
 (28)

equipped with the norm:

$$||h||_{\mathcal{H}_q} := \inf\{||w||_{\mathcal{H}_{\Theta}} : w \in \mathcal{H}_{\Theta}, h(\mathbf{x}) = \langle w, g(\mathbf{x}, \cdot) \rangle_{\mathcal{H}_{\Theta}}, \forall \mathbf{x} \in \mathcal{X}\}$$
(29)

constitutes the unique RKHS for which $k_g:(\mathbf{x},\mathbf{x}')\mapsto \langle g(\mathbf{x},\cdot),g(\mathbf{x}',\cdot)\rangle_{\mathcal{H}_{\Theta}}$ is the reproducing kernel.

Proof. This is a direct application of classic RKHS results (e.g., Steinwart & Christmann, 2008, Thm. 4.21) where we are treating $\phi : \mathbf{x} \mapsto g(\mathbf{x}, \cdot)$ as a feature map mapping into an existing Hilbert space \mathcal{H}_{Θ} and taking advantage of its structure to define a new one.

Remark 2. The RKHS \mathcal{H}_g described above has the special property that for any $\theta \in \Theta$, the RKHS norm of the model is given by:

$$||g(\cdot,\theta)||_{\mathcal{H}_q}^2 = k_{\Theta}(\theta,\theta), \qquad (30)$$

since $\langle k_{\Theta}(\cdot,\theta),g(\mathbf{x},\cdot)\rangle_{\mathcal{H}_{\Theta}}=g(\mathbf{x},\theta)$ for all $\mathbf{x}\in\mathcal{X}$, and $k_{\Theta}(\cdot,\theta)$ is the unique representation of the evaluation functional at θ in the RKHS \mathcal{H}_{Θ} . The rest follows from the definition in Equation 29. Hence, each choice of k_{Θ} gives us a potential RKHS norm regularizer.

Remark 3. If the RKHS in Lemma 2 is insufficiently small to contain the function g_* of interest, we can always combine two RKHS to produce a third one containing all elements of the two. Namely, if $g_* \in \mathcal{H}_* \neq \mathcal{H}_g$ with kernel $k_* : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, we can define $k := k_* + k_g$, so that $\mathcal{H}_k := \mathcal{H}_* \oplus \mathcal{H}_g$ is also a RKHS (Steinwart & Christmann, 2008; Saitoh & Sawano, 2016).

Now consider we have access to observation data of the form $\mathcal{D}_n := \{m_i, y_i\}_{i=1}^n$, where $y_i \sim p(y|m_i(g_*))$, and $m_i : \mathcal{H}_k \to \mathbb{R}$ represents a bounded linear observation functional, e.g., $m_i(g_*) = m_i(g_*)$, or $m_i(g_*) = g_*(\mathbf{x}_{i,1}) - g_*(\mathbf{x}_{i,2})$, etc., for $i \in \{1, \dots, n\}$, which follow the true (unknown) function $g_* : \mathcal{X} \to \mathbb{R}$. The data are not i.i.d., and each m_t is the result of an algorithmic decision based on the currently available dataset \mathcal{D}_{t-1} and a model $g(\cdot, \theta_t)$ learned from it. The model is learned by minimizing a loss function:

$$L_n(g_\theta) := \bar{R}_n(g_\theta) + \sum_{i=1}^n \ell(y_i, m_i(g_*)),$$
 (31)

where $\bar{R}_n:\mathcal{H}_k\to\mathbb{R}_+$ is a regularization term, and $\ell:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ encodes the data dependency. Despite the definition of a regularization term over \mathcal{H}_k , following Remark 2, we can use any positive-definite kernel $k_\Theta:\Theta\times\Theta\to\mathbb{R}$ compatible with Lemma 2 to set \bar{R}_n such that:

$$\bar{R}_n(g_\theta) = \lambda \|g_\theta\|_{\mathcal{H}_q}^2 = \lambda k_\Theta(\theta, \theta). \tag{32}$$

In this case, a quadratic regularization term $\|\theta\|_2^2$ corresponds to the choice of a linear kernel, i.e., $k_{\Theta}(\theta, \theta') = \theta \cdot \theta'$, which might appear quite restrictive, as it assumes that our models are linear

functions of the parameters. However, note that, for overparameterized neural networks, at the infinite-width limit the model is actually linear in the parameters (Jacot et al., 2018). If we want to be more parsimonious, alternatively, we can choose k_{Θ} as a universal kernel, such as the squared-exponential, yet preferably not translation invariant, so that $k_{\Theta}(\theta,\theta)$ is not a constant. One kernel satisfying such assumption would be the exponential dot-product kernel $k_{\Theta}(\theta,\theta') := \exp(\theta \cdot \theta')$, which is universal for continuous functions over compact subsets of Θ . Nevertheless, we do not impose restrictions on the form of the regularization term \bar{R}_n , except for the one below, which is followed by our assumptions on the loss.

Definition 1 (Strong convexity). A differentiable function $f: \mathcal{H} \to \mathbb{R}$ on a Hilbert space \mathcal{H} is α -strongly convex, for $\alpha > 0$, if:

$$\forall h, h', \quad f(h) \ge f(h') + \langle \nabla f(h'), h - h' \rangle + \frac{\alpha}{2} \|h - h'\|_{\mathcal{H}}^2.$$

Definition 2 (Smoothness). A function $f: \mathcal{H} \to \mathcal{Y}$ between Hilbert spaces \mathcal{H} and \mathcal{Y} is η -smooth if:

$$\forall h, h', \quad \|f(h) - f(h')\|_{\mathcal{Y}} \le \eta \|h - h'\|_{\mathcal{H}}.$$
 (33)

Definition 3 (Sub-Gaussianity). A real-valued random variable ϵ is said to be σ_{ϵ} -sub-Gaussian if:

$$\forall s \in \mathbb{R}, \quad \mathbb{E}[\exp(s\epsilon)] \le \exp\left(\frac{s^2 \sigma_{\epsilon}^2}{2}\right).$$
 (34)

In addition, a real-valued stochastic process $\{\epsilon_t\}_{t=1}^{\infty}$ adapted to a filtration $\{\mathfrak{F}_t\}_{t=0}^{\infty}$ is conditionally σ_{ϵ}^2 -sub-Gaussian if the following almost surely holds:

$$\forall s \in \mathbb{R}, \quad \mathbb{E}[\exp(s\epsilon_t) \mid \mathfrak{F}_{t-1}] \le \exp\left(\frac{s^2\sigma_{\epsilon}^2}{2}\right).$$
 (35)

We can now analyze the approximation error with respect to g_* for the following estimators:¹

$$\theta_n \in \operatorname*{argmin}_{\theta \in \Theta} L_n(g_\theta) \tag{36}$$

$$g_n \in \operatorname*{argmin}_{g \in \mathcal{H}_k} L_n(g)$$
. (37)

The first one gives us the best parametric approximation g_{θ_n} based on the data and is what our algorithm will use. The second estimator corresponds to the non-parametric approximation, which we will use as a tool for our analysis, and not assume as a component of the algorithm. The assumptions above allow us to bound distances between these estimators and the true g_* as a function of the loss and gradient values.

Proof of Lemma 1. We note that the Hessian of the losses can be lower bounded by:

$$\forall g \in \mathcal{H}_{k}, \qquad \nabla_{g}^{2}\ell(y, m(g)) = \ddot{\ell}_{y}(m(g))\nabla_{g}m(g) \otimes \nabla_{g}m(g) + \dot{\ell}_{y}(m(g))\nabla_{g}^{2}m(g)$$

$$= \ddot{\ell}_{y}(m(g))m \otimes m$$

$$\succeq \alpha_{\ell}m \otimes m, \qquad \forall y \in \mathbb{R}, \, \forall \mathbf{x} \in \mathcal{X},$$
(38)

where we applied the fact that $\nabla_g m(g) = \nabla_g \langle g, m \rangle_k = m$, and the second derivatives ℓ_y of the loss function $\ell(y,\cdot)$ have a positive lower bound due to the strong convexity assumption (A3). Combining with Assumption A2, we get:

$$\forall g \in \mathcal{H}_k, \qquad \nabla_g^2 L_n(g) \succeq \lambda I + \alpha_\ell \sum_{i=1}^n m_i \otimes m_i =: H_n.$$
 (39)

Now applying a first order Taylor expansion to L_n at any $g \in \mathcal{H}_k$, the error term is controlled by the Hessian ∇_g^2 at an intermediate point $\bar{g} \in \mathcal{H}_k$, which is uniformly lower bounded by H_n . Expanding L_n around g_n , we then have that:

$$\forall g \in \mathcal{H}_k, \quad L_n(g) - L_n(g_n) = \langle \nabla L_n(g_n), g - g_n \rangle + \frac{1}{2} \|g - g_n\|_{\nabla^2 L_n(\bar{g}_n)}^2$$

$$\geq \frac{1}{2} \|g - g_n\|_{H_n}^2,$$
(40)

¹We are implicitly assuming that such global optima exist. This is true for the optimization in \mathcal{H}_k , as we will show, but not always guaranteed for the optimization over Θ .

where $\bar{g}_n = sg_n + (1-s)g$, for some $s \in [0,1]$, and we applied the Hessian inequality (39) and the fact that $\nabla L_n(g_n) = 0$, as g_n is a minimizer. Hence, the lower bound (26) follows. Conversely, by expanding L_n around any g and evaluating at g_n , we have:

$$\forall g \in \mathcal{H}_k, \quad L_n(g_n) = L_n(g) + \langle \nabla L_n(g), g_n - g \rangle + \frac{1}{2} \|g_n - g\|_{\nabla^2 L_n(\bar{g}'_n)}^2$$
 (41)

Rearranging the terms yields:

$$\forall g \in \mathcal{H}_{k}, \quad L_{n}(g) - L_{n}(g_{n}) = \langle \nabla L_{n}(g), g - g_{n} \rangle - \frac{1}{2} \|g - g_{n}\|_{\nabla^{2}L_{n}(\bar{g}'_{n})}^{2}$$

$$\leq \sup_{\tilde{g} \in \mathcal{H}_{k}} \langle \nabla L_{n}(g), \tilde{g} \rangle - \frac{1}{2} \|\tilde{g}\|_{\nabla^{2}L_{n}(\bar{g}'_{n})}^{2}$$

$$\leq \sup_{\tilde{g} \in \mathcal{H}_{k}} \langle \nabla L_{n}(g), \tilde{g} \rangle - \frac{1}{2} \|\tilde{g}\|_{H_{n}}^{2},$$

$$(42)$$

whose right-hand side is strongly concave and has a unique maximizer at:

$$\tilde{g} = H_n^{-1} \nabla L_n(g) \,. \tag{43}$$

Replacing this result into the previous equation finally leads us to the upper bound in Lemma 1. \Box

Lemma 1 allows us to control the approximation error by means of the functional gradients of L_n , without the need to know an explicit form for the optimal solution g_n . We can now proceed to derive our error bound, which will make use of the following result from the online learning literature.

Lemma 3 (Abbasi-Yadkori, 2012, Cor. 3.6). Let $\{\mathfrak{F}_t\}_{t=0}^{\infty}$ be an increasing filtration, $\{\epsilon_t\}_{t=1}^{\infty}$ be a real-valued stochastic process, and $\{\phi_t\}_{t=1}^{\infty}$ be a stochastic process taking values in a separable real Hilbert space \mathcal{H} , with both processes adapted to the filtration. Assume that $\{\phi_t\}_{t=1}^{\infty}$ is predictable w.r.t. the filtration, i.e., ϕ_t is \mathfrak{F}_{t-1} -measurable, and that ϵ_t is conditionally σ_{ϵ}^2 -sub-Gaussian, for all $t \in \mathbb{N}$. Then, given any $\delta \in (0,1)$, with probability at least $1-\delta$,

$$\forall t \in \mathbb{N}, \quad \left\| \sum_{i=1}^t \epsilon_i \phi_i \right\|_{(V+\Phi_t \Phi_t^\mathsf{T})^{-1}}^2 \leq 2\sigma_\epsilon^2 \log \left(\frac{\det(\mathbf{I} + \Phi_t^\mathsf{T} V^{-1} \Phi_t)^{\frac{1}{2}}}{\delta} \right),$$

for any positive-definite operator $V \succ 0$ on \mathcal{H} , and where we set $\Phi_t := [\phi_1, \dots, \phi_t]$.

Theorem 1. Consider the setting in Lemma 1, and let $\xi_k := \inf_{\theta \in \Theta} ||g(\cdot, \theta) - g_*||_k$. Then, given any $\delta \in (0, 1)$, the following holds with probability at least $1 - \delta$:

$$\forall n \in \mathbb{N}, \quad |\langle m, g_* \rangle_k - \langle m, g_{\theta_n} \rangle_k| \leq ||m||_{H_n^{-1}} \left(2\beta_n(\delta) + \eta_0 \xi_k + b_k \eta_\ell \xi_k \sum_{i=1}^n ||m_i||_{H_n^{-1}} \right), \forall m \in \mathcal{H}_k,$$

where
$$\beta_n(\delta) := \lambda^{-1/2} \|\nabla \bar{R}_n(g_*)\|_k + \sigma_\ell \sqrt{2\alpha_\ell^{-1} \log(\det(\mathbf{I} + \alpha_\ell \lambda^{-1} M_n^{\mathsf{T}} M_n)^{1/2}/\delta)}$$
, and $M_n := [m_1, \dots, m_n]$.

Proof of Theorem 1. Fix any $m \in \mathcal{H}_k$ and $n \in \mathbb{N}$, the approximation error can then be expanded as:

$$\left| \langle m, g_* \rangle_k - \langle m, g_{\theta_n} \rangle_k \right| \le \left| \langle m, g_* \rangle_k - \langle m, g_n \rangle_k \right| + \left| \langle m, g_{\theta_n} \rangle_k - \langle m, g_n \rangle_k \right|. \tag{44}$$

By Lemma 1, for any $g \in \mathcal{H}_k$, we have that:

$$\begin{aligned} |\langle m, g_n \rangle_k - \langle m, g \rangle_k| &= |\langle m, g_n - g \rangle_k| \\ &= |\langle H_n^{-1/2} m, H_n^{1/2} (g_n - g) \rangle_k| \\ &\leq \|H_n^{-1/2} m\| \|H_n^{1/2} (g_n - g)\| \\ &= \|m\|_{H_n^{-1}} \|g_n - g\|_{H_n} \\ &\leq \|m\|_{H_n^{-1}} \|\nabla L_n(g)\|_{H_n^{-1}}, \end{aligned}$$

$$(45)$$

where the first inequality follows by Cauchy-Schwarz, and the last is due to Lemma 1. Expanding the gradient term, we have:

$$\|\nabla L_{n}(g)\|_{H_{n}^{-1}} = \left\|\nabla \bar{R}_{n}(g) + \sum_{i=1}^{n} \dot{\ell}_{y_{i}}(\langle m_{i}, g \rangle_{k}) m_{i}\right\|_{H_{n}^{-1}}$$

$$\leq \|\nabla \bar{R}_{n}(g)\|_{H_{n}^{-1}} + \left\|\sum_{i=1}^{n} \dot{\ell}_{y_{i}}(\langle m_{i}, g \rangle_{k}) m_{i}\right\|_{H_{n}^{-1}}$$

$$\leq \frac{1}{\sqrt{\lambda}} \|\nabla \bar{R}_{n}(g)\|_{k} + \left\|\sum_{i=1}^{n} \dot{\ell}_{y_{i}}(\langle m_{i}, g \rangle_{k}) m_{i}\right\|_{H_{n}^{-1}},$$
(46)

where we applied the triangle inequality to obtain the second line and the fact that $H_n \succ \lambda I$ implies $H_n^{-1} \prec \lambda^{-1}I$ led to the last line. For $g:=g_*$, we can then apply Lemma 3 to the noisy sum above by setting \mathfrak{F}_t as the σ -algebra generated by the random variables $\{m_i,y_i\}_{i=1}^t$ and m_{t+1} , $\epsilon_t:=\alpha_\ell^{-1/2}\dot{\ell}_{y_t}(\langle g_*,m_t\rangle_k)$ and $\phi_t:=\alpha_\ell^{1/2}m_t$, for all $t\in\mathbb{N}$, which leads us to:

$$\left\| \sum_{i=1}^{n} \dot{\ell}_{y_i} (\langle m_i, g_* \rangle_k) m_i \right\|_{H_n^{-1}}^2 \le \frac{2\sigma_\ell^2}{\alpha_\ell} \log \left(\frac{\det(\mathbf{I} + \alpha_\ell \lambda^{-1} M_n^\mathsf{T} M_n)^{\frac{1}{2}}}{\delta} \right)$$
(47)

which holds uniformly over all $n \in \mathbb{N}$ with probability at least $1 - \delta$. Hence, it follows that:

$$\forall n \in \mathbb{N}, \quad \|\nabla L_n(g_*)\|_{H_n^{-1}} \le \frac{1}{\sqrt{\lambda}} \|\nabla \bar{R}_n(g_*)\|_k + \left\| \sum_{i=1}^n \dot{\ell}_{y_i}(\langle m_i, g_* \rangle_k) m_i \right\|_{H_n^{-1}} \le \beta_n(\delta), \quad (48)$$

with probability at least $1 - \delta$, where we set:

$$\beta_n(\delta) := \frac{1}{\sqrt{\lambda}} \|\nabla \bar{R}_n(g_*)\|_k + \sigma_\ell \sqrt{\frac{2}{\alpha_\ell} \log\left(\frac{\det(\mathbf{I} + \alpha_\ell \lambda^{-1} \mathbf{K}_n)^{\frac{1}{2}}}{\delta}\right)}.$$
 (49)

Therefore, the pointwise approximation error of the RKHS-optimal estimator g_n is bounded as:

$$\forall n \in \mathbb{N}, \quad |\langle m, g_n \rangle_k - \langle m, g_* \rangle_k| \le \beta_n(\delta) ||m||_{H_n^{-1}}, \quad \forall \mathbf{x} \in \mathcal{X},$$
 (50)

with probability at least $1 - \delta$, with $\mathbf{K}_n := M_n^\mathsf{T} M_n = [k(\mathbf{x}_i, \mathbf{x}_i)]_{i,i=1}^n$.

For the remaining term, we have that:

$$|\langle m, g_{\theta_n} \rangle_k - \langle m, g_n \rangle_k| \le ||m||_{H_n^{-1}} ||g_{\theta_n} - g_n||_{H_n} \le ||m||_{H_n^{-1}} \sqrt{2(L_n(g_{\theta_n}) - L_n(g_n))},$$
(51)

which follows from Lemma 1. We can bound the loss difference via the gap term ξ_k if we can relate it to g_{θ_n} , though note that it is not guaranteed that the infimum is achieved by any particular $\theta \in \Theta$. From the definition of the infimum, however, it is a simple consequence that:

$$\forall \Delta > 0, \quad \exists \theta_{\Delta} \in \Theta : \qquad \|g_{\theta_{\Delta}} - g_*\|_k \le \xi_k + \Delta. \tag{52}$$

Therefore, as θ_n minimizes L_n over all Θ , picking some $\Delta > 0$, we have that any θ_Δ satisfying the condition above leads us to:

$$L_{n}(g_{\theta_{n}}) - L_{n}(g_{n}) \leq L_{n}(g_{\theta_{\Delta}}) - L_{n}(g_{n})$$

$$\leq \frac{1}{2} \|\nabla L_{n}(g_{\theta_{\Delta}})\|_{H_{n}^{-1}}^{2}$$

$$\leq \frac{1}{2} \left(\|\nabla \bar{R}_{n}(g_{\theta_{\Delta}})\|_{k} + \left\| \sum_{i=1}^{n} \dot{\ell}_{y_{i}}(\langle m_{i}, g_{\theta_{\Delta}} \rangle_{k}) m_{i} \right\|_{H_{n}^{-1}} \right)^{2},$$
(53)

where we applied Lemma 1 to derive the second line and Equation 46 for the third line. Now each term above can be bounded in terms of the approximation gap $\xi_k + \Delta$. Firstly, given the smoothness

of the regularization gradients (Assumption A2), observe that:

$$\|\nabla \bar{R}_{n}(g_{\theta_{\Delta}})\|_{k} = \|\nabla \bar{R}_{n}(g_{*}) + \nabla \bar{R}_{n}(g_{\theta_{\Delta}}) - \nabla \bar{R}_{n}(g_{*})\|_{k}$$

$$\leq \|\nabla \bar{R}_{n}(g_{*})\|_{k} + \|\nabla \bar{R}_{n}(g_{\theta_{\Delta}}) - \nabla \bar{R}_{n}(g_{*})\|_{k}$$

$$\leq \|\nabla \bar{R}_{n}(g_{*})\|_{k} + \eta_{0}\|g_{\theta_{\Delta}} - g_{*}\|_{k}$$

$$\leq \|\nabla \bar{R}_{n}(g_{*})\|_{k} + \eta_{0}(\xi_{k} + \Delta),$$
(54)

where we applied the triangle inequality and the definition of smoothness (cf. Definition 2). Secondly, for the sum term, by smoothness of the loss derivatives (Assumption A3), we have that:

$$\forall i \in \{1, \dots, n\}, \quad \dot{\ell}_{y_i}(\langle m_i, g_{\theta_{\Delta}} \rangle_k) = \dot{\ell}_{y_i}(\langle m_i, g_* \rangle_k) + \dot{\ell}_{y_i}(\langle m_i, g_{\theta_{\Delta}} \rangle_k) - \dot{\ell}_{y_i}(\langle m_i, g_* \rangle_k)$$

$$\leq \dot{\ell}_{y_i}(\langle m_i, g_* \rangle_k) + \eta_{\ell}|\langle m_i, g_{\theta_{\Delta}} \rangle_k - \langle m_i, g_* \rangle_k|$$

$$= \dot{\ell}_{y_i}(\langle m_i, g_* \rangle_k) + \eta_{\ell}|\langle m_i, g_{\theta_{\Delta}} - g_* \rangle_k|$$

$$\leq \dot{\ell}_{y_i}(\langle m_i, g_* \rangle_k) + \eta_{\ell}|m_i||_k||g_{\theta_{\Delta}} - g_*||_k$$

$$\leq \dot{\ell}_{y_i}(\langle m_i, g_* \rangle_k) + \eta_{\ell}b_k(\xi_k + \Delta),$$
(55)

where the first inequality follows by smoothness, the second is due to Cauchy-Schwarz, and the last follows by the definition of θ_{Δ} and the boundedness of the kernel (cf. Assumption A1). Hence, the sum is bounded as:

$$\left\| \sum_{i=1}^{n} \dot{\ell}_{y_{i}}(\langle m_{i}, g_{\theta_{\Delta}} \rangle_{k}) m_{i} \right\|_{H_{n}^{-1}} \leq \left\| \sum_{i=1}^{n} (\dot{\ell}_{y_{i}}(\langle m_{i}, g_{*} \rangle_{k}) + b_{k} \eta_{\ell}(\xi_{k} + \Delta)) m_{i} \right\|_{H_{n}^{-1}}$$

$$\leq \left\| \sum_{i=1}^{n} (\dot{\ell}_{y_{i}}(\langle m_{i}, g_{*} \rangle_{k}) m_{i} \right\|_{H_{n}^{-1}} + b_{k} \eta_{\ell}(\xi_{k} + \Delta) \left\| \sum_{i=1}^{n} m_{i} \right\|_{H_{n}^{-1}}$$

$$\leq \left\| \sum_{i=1}^{n} (\dot{\ell}_{y_{i}}(\langle m_{i}, g_{*} \rangle_{k}) m_{i} \right\|_{H_{n}^{-1}} + b_{k} \eta_{\ell}(\xi_{k} + \Delta) \sum_{i=1}^{n} \|m_{i}\|_{H_{n}^{-1}}.$$
(56)

Substituting the upper bounds in equations 54 and 56 into Equation 53 and applying the concentration inequality in Equation 48 yields:

$$\|\nabla L_{n}(g_{\theta_{\Delta}})\|_{H_{n}^{-1}} \leq \frac{1}{\sqrt{\lambda}} \|\nabla \bar{R}_{n}(g_{*})\|_{k} + \eta_{0}(\xi_{k} + \Delta) + \left\| \sum_{i=1}^{n} (\dot{\ell}_{y_{i}}(\langle m_{i}, g_{*} \rangle_{k}) m_{i} \right\|_{H_{n}^{-1}} + b_{k} \eta_{\ell}(\xi_{k} + \Delta) \sum_{i=1}^{n} \|m_{i}\|_{H_{n}^{-1}}$$

$$\leq \beta_{n}(\delta) + \eta_{0}(\xi_{k} + \Delta) + b_{k} \eta_{\ell}(\xi_{k} + \Delta) \sum_{i=1}^{n} \|m_{i}\|_{H_{n}^{-1}},$$
(57)

which holds with the same probability as Equation 48. Lastly, as the gradient bound above is valid for any $\Delta>0$, we can take the limit as $\Delta\to 0$ and substitute the result back into Equation 51 to get the model approximation error bound:

$$|\langle m, g_{\theta_n} \rangle_k - \langle m, g_n \rangle_k| \le ||m||_{H_n^{-1}} \left(\beta_n(\delta) + \eta_0 \xi_k + b_k \eta_\ell \xi_k \sum_{i=1}^n ||m_i||_{H_n^{-1}} \right), \quad \forall \mathbf{x} \in \mathcal{X}, \quad (58)$$

which also holds uniformly over all $n \in \mathbb{N}$ with probability at least $1 - \delta$. Combining Equation 58 and 50 leads to the final result, which concludes the proof.

Note that, despite the model being potentially non-linear and the loss not being required to be least-squares, Theorem 1 shows that we recover the same kind of RKHS-based error bound found in the kernelized bandits literature (Chowdhury & Gopalan, 2017; Durand et al., 2018; Oliveira et al., 2021), up to an approximation gap ξ_k w.r.t. the true function g_* . If the identifiability holds, we

have $\xi_k \to 0$ and we recover the original bounds.² Alternatively, in the case of neural networks, we can increase the width of the network over time (making sure the model scales up with the data is not uncommon in deep learning approaches), which would then lead to the model covering a whole RKHS, determined by the NTK (Jacot et al., 2018). In general, for a rich enough model class, one may expect ξ_k to be small. We also have the following auxiliary result from VSD.

Lemma 4 (GP variance upper bound (Steinberg et al., 2025, Lem. E.5)). Let $\{\mathbf{x}_n\}_{n\geq 1}$ be a sequence of \mathcal{X} -valued random variables adapted to the filtration $\{\mathfrak{F}_n\}_{n\geq 1}$. For a given $\mathbf{x}\in\mathcal{X}$, assume that the following holds:

$$\exists T_* \in \mathbb{N} : \quad \forall T \ge T_*, \quad \sum_{n=1}^T \mathbb{P}\left[\mathbf{x}_n = \mathbf{x} \mid \mathfrak{F}_{n-1}\right] \ge b_T > 0, \tag{59}$$

for a some sequence of lower bounds $\{b_n\}_{n\in\mathbb{N}}$. Then, for a bounded kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ m given observations at $\{\mathbf{x}_i\}_{i=1}^n$, the following holds with probability 1:

$$\sigma_n^2(\mathbf{x}) \in \mathcal{O}(b_n^{-1}). \tag{60}$$

In addition, if $b_n \to \infty$, then $\lim_{n\to\infty} b_n \sigma_n^2(\mathbf{x}) \le \sigma_{\epsilon}^2$.

C ADDITIONAL EXPERIMENTAL DETAIL

C.1 TEXT OPTIMIZATION

We use the same annealing threshold scheme for setting τ_t as Steinberg et al. (2025, Eqn. 20), where we set η such that when begin at $p_0 = 0.5$ we end at $p_T = 0.99$. For the proposal distribution, we found these short sequences we best generated by the simple mean-field categorical model,

$$q(\mathbf{x}|\phi) = \prod_{m=1}^{M} \text{Categ}(x_m|\text{softmax}(\phi_m))$$
 (61)

where $x_m \in \mathcal{V}$ and $\phi_m \in \mathbb{R}^{|\mathcal{V}|}$, and we directly optimise ϕ . VSD and CbAS use the simple MLP classifier guide in Figure 3.

C.2 PROTEIN DESIGN

We use the same threshold function and setting for all of the protein design experiments as in Section C.1. However, these tasks require a more sophisticated generative model that can capture local and global relationships that relate to protein's 3D structure. For this we use the auto-regressive (causal) transformer architecture also used in Steinberg et al. (2025),

$$q(\mathbf{x}|\phi) = \operatorname{Categ}(x_1|\operatorname{softmax}(\phi_1)) \prod_{m=2}^{M} q(x_m|x_{1:m-1}, \phi_{1:m}) \quad \text{where,}$$

$$q(x_m|x_{1:m-1}, \phi_{1:m}) = \operatorname{Categ}(x_m|\operatorname{DTransformer}(x_{1:m-1}, \phi_{1:m})). \tag{62}$$

See for the latter see Phuong & Hutter (2022, Algorithm 10 & Algorithm 14) for maximum likelihood training and sampling implementation details respectively. We give the architectural configuration for the transformers in each task in Table 1, and the classifier CNN used by VSD and CbAS is in Figure 3.

We use the following Ehrlich function configurations:

- M=15: motif length = 4, no. motifs = 2, quantization = 4
- M=32: motif length = 4, no. motifs = 2, quantization = 4
- M=64: motif length = 4, no. motifs = 8, quantization = 4

²If we further assume that the model can represent any $g \in \mathcal{H}_k$, the factor of 2 multiplying β_n will also disappear, as the extra β_n arises from a bound over $|g_{\theta_n} - g_n|$, which would vanish.

```
972
973
           Sequential(
                                                 Sequential (
974
                Embedding(
                                                     Embedding(
                    num_embeddings=A,
975
                                                          num_embeddings=A,
                    embedding_dim=16
                                                          embedding_dim=E
976
                                                     ),
977
                Dropout (p=0.1),
                                                     Dropout (p=0.2),
978
                Flatten(),
                                                     Convld(
979
                LeakyReLU(),
                                                          in_channels=E,
980
                Linear(
                                                          out_channels=C,
                    in_features=16 * M,
                                                          kernel_size=Kc,
981
                    out_features=64
982
                ),
                                                     LeakyReLU(),
983
                LeakyReLU(),
                                                     MaxPool1d(
984
                Linear(
                                                          kernel_size=Kx,
                    in_features=64,
985
                                                          stride=Sx,
                    out_features=1
                                                     ),
986
                                                     Convld(
                ),
987
                                                          in_channels=C,
988
                                                          out_channels=C,
989
                                                          kernel_size=Kc,
                                                     ),
990
                                                     LeakyReLU(),
991
                                                     MaxPool1d(
992
                                                          kernel_size=Kx,
993
                                                          stride=Sx,
994
                                                     ),
995
                                                     Flatten(),
                                                     LazyLinear(
996
                                                          out_features=H
997
998
                                                     LeakyReLU(),
999
                                                     Linear(
1000
                                                          in_features=H,
                                                          out_features=1
1001
                                                     ),
1002
                                                 )
1003
                     (a) MLP architecture
                                                           (b) CNN architecture
1004
```

1005

102210231024

1025

Figure 3: Classifier architectures used for VSD and CbAS in the experiments using PyTorch syntax. $A = |\mathcal{V}|, M = M$, and we give all other parameters in Table 2 if not directly indicated.

Configuration	Stability	SASA	Ehrlich 15	Ehrlich 32	Ehrlich 64
Layers	2	2	2	2	2
Feedforward network	256	256	32	64	128
Attention heads	4	4	1	2	3
Embedding size	64	64	10	20	30

Table 1: Transformer backbone configuration.

Configuration	Stability	SASA	Ehrlich 15	Ehrlich 32	Ehrlich 64
E	16	16	10	10	10
С	96	96	16	16	16
Kc	7	7	4	7	7
Kx	5	5	2	2	2
Sx	4	4	2	2	2
Н	192	192	128	128	128

Table 2: CNN guide configuration for VSD and CbAS