
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

GENERATIVE BAYESIAN OPTIMIZATION:
GENERATIVE MODELS AS ACQUISITION FUNCTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a general strategy for turning generative models into candidate solu-
tion samplers for batch Bayesian optimization (BO). The use of generative models
for BO enables large batch scaling as generative sampling, optimization of non-
continuous design spaces, and high-dimensional and combinatorial design. In-
spired by the success of direct preference optimization (DPO), we show that one
can train a generative model with noisy, simple utility values directly computed
from observations to then form proposal distributions whose densities are propor-
tional to the expected utility, i.e., BO’s acquisition function values. Furthermore,
this approach is generalizable beyond preference-based feedback to general types
of reward signals and loss functions. This perspective avoids the construction
of surrogate (regression or classification) models, common in previous methods
that have used generative models for black-box optimization. Theoretically, we
show that the generative models within the BO process approximately follow a
sequence of distributions which asymptotically concentrate at the global optima
under certain conditions. We also demonstrate this effect through experiments on
challenging optimization problems involving large batches in high dimensions.

1 INTRODUCTION

Bayesian optimization (BO) has been a successful approach to solve complex black-box optimiza-
tion problems by making use of probabilistic surrogate models, such as a Gaussian processes (GPs)
(Rasmussen & Williams, 2006), and their uncertainty estimates (Shahriari et al., 2016; Garnett,
2023). BO methods have been particularly useful in areas such as hyper-parameter tuning for ma-
chine learning algorithms (Snoek et al., 2012), material design (Frazier & Wang, 2016), and robot
locomotion (Calandra et al., 2016). The core idea of BO is to apply a Bayesian decision-theoretic
framework to make optimal choices by maximizing an expected utility criterion, also known as an
acquisition function. The corresponding expectations are taken under a Bayesian posterior over the
underlying objective function. Thus, the Bayesian model provides a principled way to account for
the uncertainty inherent to the limited amount of data and the noisy observations.

In many applications such as simulated scenarios (Azimi et al., 2010), one is able to run multiple
evaluations of the objective function in parallel, even though the simulations themselves might be
expensive to run. Common BO approaches to these batch settings incrementally build a set of can-
didates by sampling “fantasy” observations from the probabilistic model and conditioning on them
before selecting the next candidate in the batch (Wilson et al., 2018). Although near-optimal batches
can be selected this way, this approach is not scalable to very large batches in high-dimensional
spaces, such as problems in protein design (Stanton et al., 2022; Gruver et al., 2023).

One of the most promising alternatives to batch BO has been to train a generative model as a proposal
distribution informed by the acquisition function and then sample a batch from the learned proposal
(Brookes et al., 2019; Stanton et al., 2022; Gruver et al., 2023; Steinberg et al., 2025). This approach
comes with several advantages. Firstly, given a trained generative model, sampling is usually inex-
pensive. Secondly, existing general-purpose generative models can be used and fine-tuned for the
optimization task at hand. Lastly, sampling avoids estimating the global optimum of an acquisition
function, which can be hard. However, existing generative approaches to black-box optimization
usually rely on fitting a surrogate (regression or classification) model first then training a generative
model on top of it (Stanton et al., 2022; Gruver et al., 2023; Steinberg et al., 2025). This two-stage

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

process compounds approximation errors from both models and can increase the computational cost
significantly when compared to having a single model.

In this paper we present a general framework for learning generative models for batch Bayesian
optimization tasks that requires a single model without the need for additional probabilistic regres-
sion or classification surrogates. Our approach for generative BO (GenBO) encodes general utility
functions into training objectives for generative models directly. We focus on two cases, one where
we train the model via a loss function for a reward model analogously to the direct preference opti-
mization (DPO) formulation for large language models (Rafailov et al., 2023), and the second one
where we train the generative model through divergence minimization, using utilities as part of sam-
ple weights. We present theoretical analyses on the convergence of approximations and empirical
results on practical applications involving high-dimensional combinatorial optimization problems.

2 BACKGROUND

We consider the problem of estimating the global optimum of an objective function f : X → R as:

x∗ ∈ argmax
x∈X

f(x) , (1)

where f is an expensive-to-evaluate black-box function, i.e., ∇xf is unavailable. We can only
observe f(x) via noisy evaluations y = f(x) + ϵ, where ϵ is assumed sub-Gaussian (Pisier, 2016).
We assume the objective f can be evaluated in parallel, and the algorithm is allowed to run up to
T ≥ 1 optimization rounds with a batch of B query locations Bt := {xt,i}Bi=1 ⊂ X per round.

BO with regression models. Typically BO assumes a Bayesian prior over f (Garnett, 2023),
often given by a Gaussian process (Rasmussen & Williams, 2006). Given a set of observations Dt,
corrupted by Gaussian noise ϵ ∼ N (0, σ2

ϵ), the Bayesian posterior distribution over f given the data
Dt is available in closed form as a GP with known mean and covariance functions (see Appendix A).
BO then uses the model’s posterior distribution to compute an acquisition function at(x) mapping
candidate points x ∈ X to their expected utility value E[u(y)|x,Dt], where the utility function u
intuitively encodes how useful it is to collect a new observation at x. Classical examples of expected
utilities include the probability of improvement at(x) := p(y ≥ τ |x,Dt) = E[I[y ≥ τ]|x,Dt] and
the expected improvement at(x) := E[max{y − τ, 0}|Dt]. The next candidate is then chosen as:

xt+1 ∈ argmax
x∈X

at(x) . (2)

Batch BO. This strategy can be extended to the batch setting in a variety of ways (Garnett, 2023,
§11.3). For instance, one can select the first batch point xt,1 by maximizing at as above, and then
select the next candidate as xt,2 ∈ argmaxx∈X E[u(y)|x,Dt ∪ {xt,1, ỹt,1}], where the expectation
is over both ỹt,1 ∼ p(y|xt,1,Dt) and y ∼ p(y|x,Dt ∪ {xt,1, ỹt,1}), and iterate over this process
until B candidates have been selected for parallel evaluation. Although near optimal, evaluating this
conditional expectation becomes quickly intractable as the batch size grows. Hence, one usually
resorts to Monte Carlo approximations (Wilson et al., 2018). Other BO strategies allow for efficient
optimization of the batch in parallel, such as information-theoretic acquisition functions (Takeno
et al., 2020; Teufel et al., 2024), or even asynchronously (Kandasamy et al., 2018). However, scal-
ing up to large batches in high-dimensional domains, especially involving combinatorial or mixed
discrete-continuous search spaces, remains challenging (González-Duque et al., 2024).

Active generation with classification models. Instead of relying on a Bayesian surrogate model
for f and then computing an acquisition function a on top of it, one can model a directly, which is
the main idea behind likelihood-free BO (Song et al., 2022). On this line, methods like variational
search distributions (VSD, Steinberg et al., 2025) and batch BORE (Oliveira et al., 2022) learn a
probabilistic classifier π(x) ≈ p(y ≥ τ) in the original space, X , based on improvement labels
z := I[y ≥ τ] and then generate batches by approximately sampling B candidates from p(x|y ≥ τ).
The classifier can be learned by, e.g., minimizing the cross-entropy loss:

Ln(π) := −
n∑

i=1

zi log π(xi) + (1− zi) log(1− π(xi)) . (3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Given a prior p0 over X and the classifier πt that minimizes Lnt
over the current nt := Bt data

points in Dt, we can now learn a generative model approximating p(x|y ≥ τ,Dt) as:
qt ∈ argmax

q
Ex∼q[log πt(x)]− DKL(q||p0) , (4)

which corresponds to an evidence lower bound treating πt(x) ≈ p(y ≥ τ |x,Dt) as a likelihood.

Direct preference optimization. The process above for learning qt can be likened to the typi-
cal fine-tuning of large language models (LLMs) via reinforcement learning with human feedback
(RLHF, Bai et al., 2022), which would normally involve training the LLM as an RL agent with a
reward model ρ. In practice, we do not directly observe rewards, but have access to user preferences.
Given a prompt’s context c, corresponding to the RL state, let x+,x− ∼ q(x|c) denote two answers
generated by an LLM q, with x+ denoting the answer preferred by the user, and x− the dispre-
ferred one. Having a dataset D+

n := {ci,x+
i ,x

−
i }ni=1, one can then learn a reward function ρ by

minimizing the negative log-likelihood under a preference model, such as Bradley & Terry (1952):
L+
n (ρ) := −E(c,x+,x−)∼D+

n
[log σ(ρ(c,x+)− ρ(c,x−))] . (5)

Having learned a reward model ρn, RLHF trains the LLM as to approximate an agent’s optimal
policy under ρn. Regularization based on the Kullback-Leibler (KL) divergence with respect to a
reference model qref is further added to improve stability. The optimal generative model then solves:

qn ∈ argmax
q

Ec∼D+
n ,x∼q(x|c)[ρn(c,x)]− βDKL(q||qref) . (6)

Direct preference optimization (DPO, Rafailov et al., 2023) removes the need for an explicit reward
model by viewing the LLM itself through the lens of a reward model. It is not hard to show that,
fixing a reward model ρ, the optimal solution to Equation 6 is given by:

q(x|c) = 1

ζρ(c)
qref(x|c) exp

(
1

β
ρ(c,x)

)
, (7)

where ζρ(c) :=
∑

x qref(x|c) exp(β−1ρ(c,x)) is the partition function at the given context c. Al-
though it is intractable to evaluate ζρ in practice, DPO uses the fact that, in the Bradley-Terry model,
the partition function-dependent terms cancel out. Note that the reward model ρ can be expressed in
terms of the optimal q as:

ρ(c,x) = β log

(
q(x|c)
qref(x|c)

)
+ β log ζρ(c) . (8)

Applying the substitution above to the preference-based loss (5), we get:

LDPO(q) = −E(c,x+,x−)∼D+
n

[
log σ

(
β log

(
q(x+|c)
qref(x+|c)

)
− β log

(
q(x−|c)
qref(x−|c)

))]
, (9)

which eliminates the partition function ζρ terms. Therefore, we can train the generative model q
directly with LDPO without the need for an intermediate reward model. Such simplification to a
single training loop cuts down the need for computational resources, eliminates a source of approx-
imation errors (from learning ρ), and brings in theoretical guarantees from Bradley-Terry models
(Shah et al., 2016; Bong & Rinaldo, 2022). The main question guiding our work is whether we
can apply a similar technique to simplify the training of (arbitrary, not necessarily LLM) generative
models for likelihood-free BO by removing the need for an intermediate surrogate model for f .

3 A GENERAL RECIPE FOR GENERATIVE BAYESIAN OPTIMIZATION

As seen in Section 2, using generative models for BO typically involves training a regression or
classification model as an intermediate step to then train the candidate generator. The use of an
intermediate model demands additional computational resources and brings in further sources of
approximation errors which may hinder performance. Hence, we propose a framework to train the
generative model directly from (noisy) observation values. The main idea is to train the model to
approximate a target distribution proportional to BO’s acquisition function and then use the learned
generative model as a proposal for the next query locations. There are different approaches to do
so, some of which have been previously explored in the literature, for specific acquisition functions,
such as the probability of improvement (Brookes et al., 2019; Steinberg et al., 2025) and upper
confidence bound (Yun et al., 2025). However, we here focus on a general recipe to turn a generative
model into a density following any acquisition function that can be expressed as an expected utility.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Utility functions. Consider a likelihood-free BO setting (Song et al., 2022), where we aim to
directly learn an acquisition function at : X → R at every BO round t ∈ {1, . . . , T} based on
available data. If our acquisition function takes the form of an expected utility:

at(x) = E[ut(x)|Dt−1], (10)

we can estimate it from noisy samples {xi, ut,i}t−1
i=1 , where E[ut,i|Dt−1] = E[ut(xi)|Dt−1]. For

example, we have:

1. Probability of improvement (PI): ut,i = I[yi ≥ τt];

2. Expected improvement (EI): ut,i = max(yi − τt, 0);

3. Simple regret (SR): ut,i = yi;

given a threshold τt for improvement-based utilities, e.g., τt := maxi<t yi or a quantile of the em-
pirical marginal observations distribution (Tiao et al., 2021). A comprehensive summary of typical
utility functions for BO can be found in Wilson et al. (2018). The ones listed above, however, we
can write directly as a function of the observations. We also use a soft-plus version of EI (sEI) in
our experiments, which remains positive at a low value when y = τ .

BO with generative models. As an example, consider the case of PI where a(x) = E[I[y ≥
τ]] = p(y ≥ τ |x), which has been previously applied to train generative models for black-box
optimization via surrogates (Steinberg et al., 2025). Given a sampler for the conditional distribution
p(x|y ≥ τ), by Bayes rule, we recover the original PI as:

a(x) = p(y ≥ τ |x) = p(x|y ≥ τ)p(y ≥ τ)

p0(x)
∝ p(x|y ≥ τ)

p0(x)
. (11)

As the prior p0 is usually known, and it can even be set as uninformative p0(x) ∝ 1, we see that
learning a generative model to approximate the posterior above is equivalent to learning a prob-
abilistic classifier for the improvement event y ≥ τ . Moreover, if we only have a probabilistic
classifier approximating p(y ≥ τ |x), we still need to select candidate points via optimization over
the classification probabilities landscape, which can be highly non-convex presenting several local
optima, recalling that in the usual BO setting we choose xt+1 as the (global) maximizer of the acqui-
sition function a. In contrast, a generative model provides us with a direct way to sample candidates
x ∼ p(x|y ≥ τ) which will by default concentrate at the highest density regions, and consequently
highest utility, according to the model. Finally, note that this same reasoning can be extended to any
other non-negative expected utility function by training the generative model to approximate:

p∗t (x) ∝ p0(x)at(x) , (12)

or similarly p∗t (x) ∝ p0(x) exp at(x), which allows for utilities that might take negative values.

Overview. Let Q ⊂ P(X) be a learnable family of probability distributions over a given domain
X . We consider general loss functions of the form:

Lt(q) := λtRt(q) +

nt∑
i=1

ℓi(q) , (13)

where ℓi are individual losses over points xi ∈ X or pairs of points xi,1,xi,2 ∈ X and their
corresponding utility values, λt ≥ 0 is an optional regularization factor, and Rt : Q → [0,∞) is a
complexity penalty function. The algorithm then proceeds by learning a proposal distribution as:

qt ∈ argmin
q∈Q

Lt(q) . (14)

A batch Bt+1 := {xt+1,i}Bi=1 is sampled from the learned proposal qt. We evaluate the utilities
ut+1(yt+1,i) with the collected observations yt,i ∼ p(y|xt+1,i), for i ∈ {1, . . . , B}, and repeat the
cycle up to a given number of iterations T ∈ N. This process is summarized in Algorithm 1 in the
appendix. In the following, we describe approaches to formulate general loss functions for learn-
ing acquisition functions and how to ensure that the sequence of batches {Bt}∞t=1 asymptotically
concentrates at the optimum x∗.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

3.1 PREFERENCE-BASED LEARNING

We aim to apply a similar reparameterization trick to the one in DPO to simplify generative BO
methods. Note that, for a general classification loss, such as the one in Equation 3, it is not possible
to eliminate the partition function resulting from a DPO-like reparameterization without resorting
to approximations, which might change the learned model. Hence, we need a pairwise-contrastive
training objective.

Preference loss. To apply a preference-based loss, we can train a model to predict preferential di-
rections of the acquisition function. Assume we have a datasetDu

n := {xi, ui}ni=1 with n evaluations
of a given utility function u : R → R. We may reorganize the data into pairs of inputs and corre-
sponding utility values {xi,1,xi,2, ui,1, ui,2}n/2i=1, where ui,j := u(yi,j), for j ∈ {1, 2}, and train a
generative model q using the Bradley-Terry preference loss from DPO with, for i ∈ {1, . . . , n/2}:

ℓPL
i (q,∆ui) := − log σ

(
β sign(∆ui)

(
log

(
q(xi,1)

p0(xi,1)

)
− log

(
q(xi,2)

p0(xi,2)

)))
, (15)

where ∆ui := ui,1 − ui,2, as in the DPO formulation, β > 0 is a (optional) temperature parameter
and the prior p0 can be given by a reference model, either pre-trained or derived from expert knowl-
edge about feasible solutions to the optimization problem (1). Similar to Rafailov et al. (2023), the
learned generative model is seeking to approximate:

p∗u(x) :=
1

ζu
p0(x) exp

(
1

β
E[u(y)|x]

)
, (16)

where ζu is the normalization factor.

Robust preference loss. As shown in Chowdhury et al. (2024), the original DPO loss is not robust
to preference noise. As in BO, one usually only observes noisy evaluations of the objective function,
utility values directly derived from the observation values will also be noisy and correspondingly the
sign of their differences as well. Namely, assume there is a small pflip ∈ (0, 1/2) probability of the
preference directions being flipped w.r.t. the sign of the true expected utility:

P [sign(ui,1 − ui,2) = sign(E[ui,2|xi,2]− E[ui,1|xi,1])] = pflip . (17)

Chowdhury et al. (2024) showed that the original DPO preference loss is biased in this noisy case,
and proposed a robust version of the DPO loss to address this issue as:

ℓrPL
i (q,∆ui) :=

(1− pflip)ℓPL(q,∆ui)− pflipℓ
PL
i (q,−∆ui)

1− 2pflip
, (18)

which yields the robust preference loss (rPL): LrPL
n (q) :=

∑n
i=1 ℓ

rPL
i (q,∆ui). It follows that the

loss function above is unbiased and robust to observation noise.

3.2 DIVERGENCE-BASED LEARNING

A disadvantage of DPO-based losses when applied to BO is that they only take the signs of the pair-
wise utility differences into account, discarding the remaining information contained in the magni-
tude of the utilities. A simpler approach is to train the generative model q to match p∗u directly.

Forward KL. If we formulate the target distribution as p∗u ∝ p0(x)a(x), the forward Kullback-
Leibler (KL) divergence of the proposal w.r.t. the target is given by:

DKL(p
∗
u||q) = Ex∼p∗

u
[log p∗u(x)− log q(x)] . (19)

As we do not have samples from p∗u, at each iteration t the algorithm generates samples from the
current best approximation Bt := {xt,i}Bi=1 ∼ qt. An unbiased training objective can then be
formulated as:

ℓfKL
i (q) = − p0(xi)

qi−1(xi)
u(yi) log q(xi) , (20)

which we write in a condensed form to avoid notation clutter with qi = q⌊i/B⌋ and n corresponding
to the total number of observations up to a given round. The objective above is unbiased and its

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

global optimum can be shown to converge to p∗u by an application of standard results from the
adaptive importance sampling literature (Delyon & Portier, 2018). A simpler version of this training
objective was derived for CbAS (Brookes et al., 2019) using only the last batch for training, which
would allow for convergence as the batch size goes to infinity B →∞. Furthermore, as we will see
in our analysis, convergence to p∗u is not sufficient to ensure convergence to the global optima of the
objective function f .

Balanced forward KL. As utilities like those of PI and EI can evaluate to 0 at the points where
y < τ was observed, with τ corresponding to an improvement threshold, every point below the
threshold will not be penalized by the loss function. As a result, the model may keep high probability
densities in regions of low utility. To prevent this, we may use an alternative formulation of the
forward KL which comes from the definition of Bregman divergences with the convex function
u 7→ u log u, yielding a loss:

ℓbfKL
i (q) = − p0(xi)

qi−1(xi)
u(yi) log q(xi) +

q(xi)

qi−1(xi)
. (21)

We defer the details of the derivation to the appendix. Although the additional q(x) only contributes
to a constant term when integrated over, for finite-sample approximations, it contributes to a soft
penalty on points where we observed u(y) = 0.

3.3 GENERALIZATIONS

In general, we can extend the above framework to use proper scoring rule S : P(X) × X → R
(Gneiting & Raftery, 2007) other than the log loss. We can then learn q approximating p∗u by
minimizing:

LS
n(q) = −

n∑
i=1

p0(xi)

qi−1(xi)
u(yi)S(q,xi) . (22)

Although we leave the exploration of this formulation for future work, it is readily extensible to
other types of generative models which may not have densities available in closed form, such as
diffusion and flow matching (Lipman et al., 2024), which still provide flexible probabilistic models.

4 THEORETICAL ANALYSIS

In this section, we present a theoretical analysis of the algorithm’s approximation of the utility-
based target distribution and its performance in regards to the global optimization problem (1). We
consider parametric generative models qθ with a given parameter space θ ∈ Θ ⊂ RM . For the
purpose of our analysis, we will assume that models can be described as qθ(x) = exp gθ(x), which
is always possible whenever densities are strictly positive qθ(x) > 0. To accommodate for both the
pairwise preference-based losses and the point-based divergence approximations, we introduce the
following notation for the loss function:

Ln(gθ) = R̄n(gθ) +

n∑
i=1

ℓ(mi(gθ), zi) , (23)

where mi(gθ) corresponds to the model evaluation at data point i with, e.g., mi(gθ) := log qθ(xi)
for KL, and mi(θ) := log qθ(xi,1) − log qθ(xi,2) for preference-based losses, and zi encodes the
dependence on utility values with zi := u(yi) for KL and zi := sign(ui,1 − ui,2) for DPO losses.
We set R̄n as an extended regularizer R̄n(g) := λnRn(g) +

λ̄n

2 (
∫
X exp g(x) dµ(x) − 1)2, where

µ corresponds to the underlying base measure on the domain X (i.e., the counting measure for
discrete domains or the Lebesgue measure for Euclidean spaces). Note that the additional term is
always zero for the generative models, as

∫
X exp gθ(x) dµ(x) =

∫
X qθ(x) dµ(x) = 1, but including

it here facilitates our analysis to operate with any unconstrained g : X → R.

Regularity assumptions. We make a few mild regularity assumptions about the problem setting
and the model. Firstly, for the analysis, we assume that both the models gθ lie in a reproducing kernel
Hilbert space (RKHS)Hk shared with the true log density g∗, which is such that p∗u(x) = exp g∗(x).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

The domain X is assumed to be a compact metric space with main results specialized for the finite
discrete setting, i.e., |X | <∞. The model qθ(x) is continuously twice differentiable with respect to
the parameters θ ∈ Θ with bounded second-order derivatives. The individual losses ℓ : R×R→ R
are strictly convex and twice differentiable w.r.t. their first argument. In addition, we assume that,
at the target g∗ the individual loss ℓ(mi(g∗), zi) is conditionally sub-Gaussian (Boucheron et al.,
2013; Chowdhury & Gopalan, 2017) w.r.t. the data-generating process, basically meaning that the
probability distribution of each loss has zero mean and light tails. We also assume that the regularizer
Rn : Q → [0,∞) is strongly convex and twice differentiable. We defer the formal assumptions and
their discussion to the appendix.

Lemma 1. Let Assumption A1, A2 and A3 be satisfied. Then, for any g ∈ Hk, the following holds:

1

2
∥g − gn∥2Hn

≤ Ln(g)− Ln(gn) ≤
1

2
∥∇Ln(g)∥2H−1

n
, (24)

where Hn : Hk → Hk is an operator-valued lower bound on the Hessian of the loss Ln:

∀g ∈ Hk, ∇2Ln(g) ⪰ Hn := λI + αℓ

n∑
i=1

mi ⊗mi , (25)

where ϕ(x) := k(·,x), for x ∈ X .

Remark 1. The result in Lemma 1 automatically ensures that the loss functional Ln is strongly
convex, as ∇2Ln(g) ⪰ Hn ⪰ λI ≻ 0, for all g ∈ Hk, and therefore has a unique minimizer at gn.
The same, however, cannot be implied about Ln(gθ) over Θ based solely on this result, since the
mapping θ 7→ g(·, θ) might be non-linear.

Corollary 1. Consider the setting in Lemma 1, and assume that there is θ∗ ∈ Θ such that gθ∗ = g∗.
Then, given any δ ∈ (0, 1), the following holds with probability at least 1− δ:

∀n ∈ N, |⟨m, g∗⟩k − ⟨m, gθn⟩k| ≤ 2βn(δ)∥m∥H−1
n
∀m ∈ Hk,

where βn(δ) := λ−1/2∥∇R̄n(g∗)∥k + σℓ

√
2α−1

ℓ log(det(I+ αℓλ−1MT
nMn)1/2/δ), and Mn :=

[m1, . . . ,mn].

The result above is a direct consequence of Theorem 1 in the appendix, and it shows that the approx-
imation error for the optimal parameter θn concentrates similarly to that of a kernel method, even
though we do not require the model to be a kernel machine. In addition, the term ∥m∥H−1

n
is asso-

ciated with the predictive variance of a Gaussian process model, which can be shown to converge to
zero whenever infx∈X qθ(x) ≥ bq > 0, for all θ ∈ Θ (see Lemma 4 in the appendix).

Optimality. Corollary 1 and the latter allows us to establish that the model converges to the tar-
get g∗ associated with the target distribution p∗u for a given utility function u. However, conver-
gence to the target distribution alone does not ensure optimality of the samples x ∼ qt. The latter
is possible by applying results from reward-weighted regression, which shows that training a pro-
posal to maximize Ey∼p(y|x),x∼qt−1

[u(y) log q(x)] yields a sequence of increasing expected rewards
E[u(yt)] ≤ E[u(yt+1)] ≤ . . . (Štrupl et al., 2022, Thm. 4.1). If the maximizer of the sequence of
expected utilities converges to the maximizer of the objective function f , then the generative BO
proposals will concentrate at the true optimum x∗. Therefore, for KL-based loss functions, one may
drop the proposal densities in the importance sampling weights 1/qi−1(xi) to promote this posterior
concentration phenomenon, as corroborated by our experimental findings, which generally did not
include importance weights. This same concentration of the learned target distribution should also
occur with the preference-based loss functions due to the absence of importance-sampling weights.

5 RELATED WORK

Using generative models for online-optimization is becoming an increasingly popular method for
optimization in discrete, mixed discrete-continuous or high dimensional design spaces where clas-
sical BO is limited. The following discusses other works applying generative models to BO settings
and contrasts them with the reward-model-free active generation framework we propose.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Latent-space BO. In latent-space BO (LSBO) methods for high-dimensional problems (Gómez-
Bombarelli et al., 2018; Stanton et al., 2022; Gruver et al., 2023), one learns a probabilistic represen-
tation of a (usually lower-dimensional) manifold of the data jointly with f , and performs BO in that
space, projecting query points back to the original space at evaluation time. This technique has led
to numerous BO methods for high-dimensional and discrete-space optimization (Gómez-Bombarelli
et al., 2018; Gruver et al., 2023; González-Duque et al., 2024). Learning this latent-space can, how-
ever, cause complications. LSBO can suffer poor sample efficiency if the latent-space is learned
from the initial training set and then fixed (Tripp et al., 2020). Or poor performance can arise from
reconstruction errors between the latent and observation space (Lee et al., 2025). GenBO and other
methods like VSD do not suffer from these issues as all inference is done in the observation space.
Despite recent advances in the field (Chu et al., 2024; Lee et al., 2025; Moss et al., 2025), to our
knowledge, LaMBO-2 remains state-of-the-art in LSBO for long sequences, like proteins.

Diffusion for BBO. There has been recent progress in adapting denoising diffusion models to
black-box optimization (BBO) tasks, often by learning a model that can be conditioned on observa-
tion values, given a dataset of evaluations (Krishnamoorthy et al., 2023). Other approaches involve
guiding the diffusion process by a given utility function derived from a regression model (Gruver
et al., 2023; Yun et al., 2025). Note, however, that such methodologies are specific to diffusion,
whereas we focus on a general approach that can be applied to arbitrary generative models.

LLMs and BO. Recent work has begun to integrate large language models (LLMs) into BO
pipelines, primarily to inject prior knowledge, improve cold-start performance, or offload certain
design decisions to a learned policy. Several studies use LLMs as contextual priors over the design
space: for example, guiding initialization or proposal generation by leveraging natural-language do-
main knowledge (Liu et al., 2024), or selecting acquisition functions adaptively via an LLM-driven
controller (Aglietti et al., 2025). Other work treats BO as a test-time search tool that an LLM can
call to refine or validate its own proposals during inference (Agarwal et al., 2025). Most relevant
to our setting is a recent reward-model-free approach for protein engineering (Chen et al., 2025),
which uses LLM preference modeling, akin to DPO, to steer search without an explicit surrogate.
This shares the reward-model-free philosophy of GenBO, but differs fundamentally in relying on a
general-purpose LLM, whereas GenBO provides a framework for task-specific generative black-box
optimization problems with no language interface or pretrained reward structure.

6 EXPERIMENTS

We evaluate several variants of generative BO (GenBO) on a number of challenging sequence op-
timization tasks against popular and strong baselines, including CbAS (Brookes et al., 2019), VSD
(Steinberg et al., 2025), and LaMBO-2 (Gruver et al., 2023), besides trivial baselines, random mu-
tations and a genetic algorithm (GA) implemented in POLI (González-Duque et al., 2024). As per-
formance measures, we assess the simple regret, rt := f(x∗)−maxi≤nt

f(xi), and the cumulative
maximum, maxi≤nt

f(xi), where nt := Bt is the number of function evaluations up to round t. In
legend boxes, algorithms are sorted in descending order of final average regret. Shaded areas cor-
respond to ±1 standard deviation across five different random seeds. Appendix D presents further
details about experiment settings and ablations. Table 4 and 5 summarize final results.

6.1 TEXT OPTIMIZATION

As a first experiment, we wish to optimize a short sequence (5 letters) to minimize the edit distance
to the sequence ALOHA, which is implemented as a POLI black-box (González-Duque et al., 2024).
Here X = VM where V is the English alphabet, and M is sequence length. Even though this
sequence is relatively short, still |X | = |V|M > 11.8 million elements. We increase the difficulty
by only allowing |D0| = 64 where the minimum edit distance is 4, B = 8, and T = 10. We
compare GenBO to the classifier guided VSD (Steinberg et al., 2025) and CbAS (Brookes et al.,
2019), and to a simple greedy baseline that applies (3) random mutations to its best candidates per-
round (González-Duque et al., 2024). For GenBO, VSD and CbAS we use a simple mean-field
(independent) categorical proposal distribution, q, and a uniform prior, p0. VSD and CbAS use a
simple embedding and 1-hidden layer MLP classifier for estimating PI. We also varied the threshold
τ annealing schedule. Architectural details and other experimental specifics are given in Section D.1.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Results are summarized in Figure 1a. We can see that the random baseline is not able to make much
headway and CbAS under-performs due to its limited use of data (last batch only) in retraining.
For this experiment, GenBO with the robust preference loss (rPL) and EI-based utilities showed
the quickest improvements, whereas PI is able to reach the exact optimum at the end, with VSD
eventually also achieving good performance. In Figure 5 (appendix), we present an ablation study
on the threshold τt annealing scheme we used to balance the exploration-exploitation trade-off for
GenBO and PI-based baselines (VSD and CbAS). The plots reveal that this problem generally favors
a more exploitative approach by concentrating on higher quantiles of the observations marginal
distribution. GenBO was, however, relatively less sensitive to the choice of annealing scheme, as
long as the final percentile was set anywhere above 90%, whereas VSD required a generally sharper
rise to above the 95% quantile towards the end of the optimization process, favoring original settings
suggested by Steinberg et al. (2025). We also find that in this problem the use of a pre-trained
informative prior p0 may not bring significant performance advantage, as GenBO variants with no
prior (i.e., p0 ∝ 1) performed best. Lastly, we also highlight significant improvements in run time
for GenBO, making it on average 3 times faster than VSD (see Table 6 in the appendix) for not
needing to fit an intermediate surrogate model.

(a) ALOHA (b) Stability (c) SASA

Figure 1: Performance of baseline black box optimizers and GenBO variants on the (a) ALOHA, (b)
stability, and (c) solvent accessible surface area optimization problems.

(a) M = 15 (b) M = 32 (c) M = 64

Figure 2: Simple regret of the baseline black box optimizers and the GenBO variants on the Ehrlich
closed-form test function protein design task for varying sequence lengths, M .

6.2 PROTEIN DESIGN

We now consider three protein sequence design tasks where |V| = 20 and we have varying M .
We again use VSD, CbAS and random mutation as baselines, and add to them the guided diffusion
based LaMBO-2 (Gruver et al., 2023). GenBO, VSD and CbAS all share the same generative
backbone, which is the causal transformer used in Steinberg et al. (2025); VSD and CbAS also use
the same CNN-classifier guide used in that work. We present additional architectural information,
and additional experimental details in Section D.2. We use the black-box implementations in POLI
for these tasks, and POLI-BASELINES implementations of the random and LaMBO-2 baselines.

The first task we consider is optimization of the Ehrlich functions introduced by Stanton et al.
(2024). These are challenging biologically inspired parametric closed-form functions that explicitly

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

simulate nonlinear (epistatic) effects of sequence on outcome. The outcomes are y ∈ {−1} ∪ [0, 1]
where −1 is reserved for infeasible sequences. We use the same protocol as in Steinberg et al.
(2025), where we optimize sequences of length M = {15, 32, 64} all with motif lengths of 4,
and |D0| = 128, T = 32 and B = 128. The results are summarized in Figure 2. We again see that
GenBO variants are able to outperform or match the performance of baselines, with KL-based losses
yielding the best performance. In higher dimensions with the longest sequence setting, the benefits
of the balanced forward KL loss, with its density minimization effect in areas of lower utility, are
more evident. In addition, we note that exponential regularization, corresponding to assuming an
exponential dot-product kernel for the RKHS feature space of the model (see Remark 2), allowed for
the best performance in higher dimensions. Lastly, in Figure 6 (appendix), we present an ablation
study on the batch size setting B, showing monotonic improvements, especially for large B ≥ 32.

(a) Stability (b) SASA

Figure 3: Batch diversity scores per round on the FoldX protein optimization tasks.

For our final set of experiments we present two real protein optimization tasks. These experiments
have been adapted from Stanton et al. (2022) where the aims are to maximize the stability and solvent
accessible surface (SASA) of the proteins, respectively. The black-box is the FoldX molecular
simulation software (Schymkowitz et al., 2005), and is wrapped by POLI (González-Duque et al.,
2024). We chose the mRouge red fluorescent protein (M = 228) as the base protein for the tasks.
Both tasks were given T = 20 rounds, a batch size of B = 64, and an initial training set of
|D0| = 88 as a subset from Stanton et al. (2022). Results are summarized in Figure 1b for stability
and Figure 1c for SASA. All variants of GenBO find the stability task challenging, along with the
LaMBO-2 and random baselines. CbAS and especially VSD are better able to stabilize this protein.
As shown by diversity scores in Figure 3a, which we measure by averaging the Levenshtein distance
across the batch in the same way as Steinberg et al. (2025), algorithmic baselines with the lowest
diversity yielded top performance, indicating that pure exploitation from around the starting dataset
led to the highest outcomes. However, most variants of GenBO far outperform the baselines on the
SASA task, and much more rapidly. We believe this task favors extrapolation away from the prior,
due to the high performance of GenBO variants with uninformative prior. In contrast to the stability,
the diversity scores show that increasing exploration led to better outcomes for SASA (Figure 3b).

7 CONCLUSION

This work introduces Generative Bayesian Optimization (GenBO), a unifying framework that turns
any generative model into a sampler whose density tracks BO acquisition functions. We have shown
that loss functions over generative models, such as DPO and KL divergences, can be applied to
directly learn samplers for batch BO. By eliminating intermediate regression or classification surro-
gates, GenBO reduces approximation error, simplifies the pipeline to learning just a single generative
model, and scales naturally to large batches and high-dimensional or combinatorial design spaces.
Theoretical results show convergence to the target distribution, and experiments on text optimization
and protein design tasks demonstrate competitive performance with more complex surrogate-guided
baselines. A few challenges remain. For some variants, GenBO requires choosing and fixing the
prior before optimization, and its performance depends on sensible settings of utility and temperature
parameters, whose theory could be further explored. Another avenue is the adaptation to acquisition
strategies not expressible as expected utilities, such as Thompson sampling and upper confidence
bound. Despite these caveats, GenBO’s minimal moving parts and principled acquisition-driven
training mark a simpler and more scalable alternative to multi-stage guided generation methods.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Yasin Abbasi-Yadkori. Online Learning for Linearly Parametrized Control Problems. PhD, Univer-
sity of Alberta, 2012.

Dhruv Agarwal, Manoj Ghuhan Arivazhagan, Rajarshi Das, Sandesh Swamy, Sopan Khosla, and
Rashmi Gangadharaiah. Searching for optimal solutions with LLMs via bayesian optimization.
In The Thirteenth International Conference on Learning Representations, 2025.

Virginia Aglietti, Ira Ktena, Jessica Schrouff, Eleni Sgouritsa, Francisco Ruiz, Alan Malek, Alexis
Bellot, and Silvia Chiappa. FunBO: Discovering acquisition functions for bayesian optimization
with funsearch. In Forty-second International Conference on Machine Learning, 2025.

Javad Azimi, Alan Fern, and Xiaoli Z. Fern. Batch bayesian optimization via simulation matching.
In Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural
Information Processing Systems 2010 (NIPS 2010), 2010.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario
Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan.
Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback.
arXiv e-prints, art. arXiv:2204.05862, April 2022. doi: 10.48550/arXiv.2204.05862.

Heejong Bong and Alessandro Rinaldo. Generalized results for the existence and consistency of the
MLE in the Bradley-Terry-Luce model. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 2160–
2177. PMLR, 2022.

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A Nonasymp-
totic Theory of Independence. Oxford University Press, 2013.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

David Brookes, Hahnbeom Park, and Jennifer Listgarten. Conditioning by adaptive sampling for
robust design. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 773–782, Long Beach, CA, USA, 2019. PMLR.

Roberto Calandra, André Seyfarth, Jan Peters, and Marc Peter Deisenroth. Bayesian optimiza-
tion for learning gaits under uncertainty. Annals of Mathematics and Artificial Intelligence, 76
(1):5–23, 2016. doi: 10.1007/s10472-015-9463-9. URL https://doi.org/10.1007/
s10472-015-9463-9.

Angelica Chen, Samuel Don Stanton, Frances Ding, Robert G Alberstein, Andrew Martin Watkins,
Richard Bonneau, Vladimir Gligorijevic, Kyunghyun Cho, and Nathan C. Frey. Generalists vs.
specialists: Evaluating LLMs on highly-constrained biophysical sequence optimization tasks. In
Aarti Singh, Maryam Fazel, Daniel Hsu, Simon Lacoste-Julien, Felix Berkenkamp, Tegan Ma-
haraj, Kiri Wagstaff, and Jerry Zhu (eds.), Proceedings of the 42nd International Conference on
Machine Learning, volume 267 of Proceedings of Machine Learning Research, pp. 9029–9072.
PMLR, 13–19 Jul 2025.

Sayak Ray Chowdhury and Aditya Gopalan. On Kernelized Multi-armed Bandits. In Proceedings
of the 34th International Conference on Machine Learning (ICML), Sydney, Australia, 2017.

Sayak Ray Chowdhury, Anush Kini, and Nagarajan Natarajan. Provably robust DPO: Aligning
language models with noisy feedback. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller,
Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the
41st International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 42258–42274. PMLR, 2024.

11

https://doi.org/10.1007/s10472-015-9463-9
https://doi.org/10.1007/s10472-015-9463-9

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Jaewon Chu, Jinyoung Park, Seunghun Lee, and Hyunwoo J. Kim. Inversion-based latent bayesian
optimization. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=TrN5TcWY87.

Zhongxiang Dai, Yao Shu, Bryan Kian Hsiang Low, and Patrick Jaillet. Sample-then-optimize
batch neural Thompson sampling. In 36th Conference on Neural Information Processing Systems
(NeurIPS 2022), New Orleans, LA, USA, 2022.

Bernard Delyon and François Portier. Asymptotic optimality of adaptive importance sampling. In
S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi, and R Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 31, Montréal, Canada, 2018. Curran
Associates, Inc.

Audrey Durand, Odalric-Ambrym Maillard, and Joelle Pineau. Streaming kernel regression with
provably adaptive mean, variance, and regularization. Journal of Machine Learning Research, 19
(1):650–683, 2018.

Peter I. Frazier and Jialei Wang. Bayesian Optimization for Materials Design, pp. 45–75.
Springer International Publishing, Cham, 2016. ISBN 978-3-319-23871-5. doi: 10.1007/
978-3-319-23871-5 3. URL https://doi.org/10.1007/978-3-319-23871-5_3.

Roman Garnett. Bayesian Optimization. Cambridge University Press, 2023. URL https://
bayesoptbook.com/.

Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association, 102(477):359–378, 2007.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS Central Science, 4(2):268–276, 2018. doi:
10.1021/acscentsci.7b00572.

Miguel González-Duque, Richard Michael, Simon Bartels, Yevgen Zainchkovskyy, Søren Hauberg,
and Wouter Boomsma. A survey and benchmark of high-dimensional Bayesian optimization of
discrete sequences. In The 38th Conference on Neural Information Processing Systems (NeurIPS)
Datasets and Benchmarks Track, Vancouver, Canada, 2024.

Miguel González-Duque, Simon Bartels, and Richard Michael. Poli: a libary of discrete sequence
objectives, 2024. URL https://github.com/MachineLearningLifeScience/
poli.

Nate Gruver, Samuel Stanton, Nathan Frey, Tim G.J. Rudner, Isidro Hotzel, Julien Lafrance-
Vanasse, Arvind Rajpal, Kyunghyun Cho, and Andrew Gordon Wilson. Protein design with
guided discrete diffusion. In Advances in Neural Information Processing Systems, volume 36,
New Orleans, LA, USA, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pp. 1026–1034, 2015.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: convergence and gen-
eralization in neural networks. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, NIPS’18, pp. 8580–8589, Red Hook, NY, USA, 2018. Curran
Associates Inc.

Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabas Poczos. Asyn-
chronous parallel Bayesian optimisation via Thompson sampling. In Proceedings of the 21st
International Conference on Artificial Intelligence and Statistics (AISTATS), Lanzarote, Spain,
2018.

12

https://openreview.net/forum?id=TrN5TcWY87
https://doi.org/10.1007/978-3-319-23871-5_3
https://bayesoptbook.com/
https://bayesoptbook.com/
https://github.com/MachineLearningLifeScience/poli
https://github.com/MachineLearningLifeScience/poli

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Diffusion models for black-
box optimization. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 17842–17857.
PMLR, 2023.

Seunghun Lee, Jinyoung Park, Jaewon Chu, Minseo Yoon, and Hyunwoo J. Kim. Latent bayesian
optimization via autoregressive normalizing flows. In The Thirteenth International Conference
on Learning Representations, 2025.

Yucen Lily Li, Tim G. J. Rudner, and Andrew Gordon Wilson. A study of Bayesian neural network
surrogates for Bayesian optimization. In 2024 International Conference on Learning Represen-
tations (ICLR), Vienna, Austria, 2024. OpenReview.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky T. Q.
Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. arXiv
e-prints, 2024.

Tennison Liu, Nicolás Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language models
to enhance bayesian optimization. In The Twelfth International Conference on Learning Repre-
sentations, 2024.

Henry Moss, Sebastian W. Ober, and Tom Diethe. Return of the latent space COWBOYS: Re-
thinking the use of VAEs for bayesian optimisation of structured spaces. In Forty-second Interna-
tional Conference on Machine Learning, 2025. URL https://openreview.net/forum?
id=U354tbTjav.

Rafael Oliveira, Lionel Ott, and Fabio Ramos. No-regret approximate inference via Bayesian opti-
misation. In 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021), 2021.

Rafael Oliveira, Louis Tiao, and Fabio T. Ramos. Batch bayesian optimisation via density-ratio
estimation with guarantees. Advances in Neural Information Processing Systems, 35:29816–
29829, 2022.

Mary Phuong and Marcus Hutter. Formal algorithms for transformers. arXiv preprint
arXiv:2207.09238, 2022.

Gilles Pisier. Subgaussian sequences in probability and Fourier analysis. Graduate Journal of
Mathematics, 1:59–78, 2016.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
In Advances in neural information processing systems, volume 36, pp. 53728–53741, 2023.

Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning. The
MIT Press, Cambridge, MA, 2006.

Saburou Saitoh and Yoshihiro Sawano. Theory of Reproducing Kernels and Applications. Springer,
2016.

Joost Schymkowitz, Jesper Borg, Francois Stricher, Robby Nys, Frederic Rousseau, and Luis Ser-
rano. The foldx web server: an online force field. Nucleic Acids Research, 33:W382–W388, July
2005. ISSN 0305-1048. doi: 10.1093/nar/gki387.

Nihar B. Shah, Sivaraman Balakrishnan, Joseph Bradley, Abhay Parekh, Kannan Ramchandran,
and Martin J. Wainwright. Estimation from pairwise comparisons: Sharp minimax bounds with
topology dependence. Journal of Machine Learning Research, 17, 2016.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando De Freitas. Taking the
human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2016.

13

https://openreview.net/forum?id=U354tbTjav
https://openreview.net/forum?id=U354tbTjav

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine
learning algorithms. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (eds.),
Advances in Neural Information Processing Systems 25, pp. 2951–2959. Curran Associates, Inc.,
2012.

Jiaming Song, Lantao Yu, Willie Neiswanger, and Stefano Ermon. A general recipe for likelihood-
free Bayesian optimization. In Proceedings of the 39th International Conference on Machine
Learning (ICML), Baltimore, Maryland, USA, 2022. PMLR 162.

Samuel Stanton, Wesley Maddox, Nate Gruver, Phillip Maffettone, Emily Delaney, Peyton Green-
side, and Andrew Gordon Wilson. Accelerating Bayesian optimization for biological sequence
design with denoising autoencoders. In International Conference on Machine Learning, pp.
20459–20478. PMLR, 2022.

Samuel Stanton, Robert Alberstein, Nathan Frey, Andrew Watkins, and Kyunghyun Cho.
Closed-form test functions for biophysical sequence optimization algorithms. arXiv preprint
arXiv:2407.00236, 2024.

Daniel M. Steinberg, Rafael Oliveira, Cheng Soon Ong, and Edwin V. Bonilla. Variational search
distributions. In The Thirteenth International Conference on Learning Representations, Singa-
pore, 2025.

Ingo Steinwart and Andreas Christmann. Kernels and reproducing kernel Hilbert spaces. In Support
Vector Machines, chapter 4, pp. 110–163. Springer, New York, NY, 2008.

Miroslav Štrupl, Francesco Faccio, Dylan R Ashley, Rupesh Kumar Srivastava, and Jürgen Schmid-
huber. Reward-weighted regression converges to a global optimum. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 8361–8369, 2022.

Shion Takeno, Hitoshi Fukuoka, Yuhki Tsukada, Toshiyuki Koyama, Motoki Shiga, Ichiro Takeuchi,
and Masayuki Karasuyama. Multi-fidelity Bayesian optimization with max-value entropy search
and its parallelization. In 37th International Conference on Machine Learning (ICML 2020),
volume 119 of Proceedings of Machine Learning Research, pp. 9276–9287. PMLR, 2020.

Felix Teufel, Carsten Stahlhut, and Jesper Ferkinghoff-Borg. Batched energy-entropy acquisition for
Bayesian optimization. In 38th Conference on Neural Information Processing Systems (NeurIPS
2024), Vancouver, Canada, 2024.

Louis C. Tiao, Aaron Klein, Matthias Seeger, Edwin V. Bonilla, Cedric Archambeau, and Fabio
Ramos. BORE: Bayesian optimization by density-ratio estimation. In Proceedings of the 38th
International Conference on Machine Learning (ICML). PMLR, 2021.

Austin Tripp, Erik Daxberger, and José Miguel Hernández-Lobato. Sample-efficient optimization
in the latent space of deep generative models via weighted retraining. Advances in Neural Infor-
mation Processing Systems, 33:11259–11272, 2020.

James T. Wilson, Frank Hutter, and Marc Peter Deisenroth. Maximizing acquisition functions for
Bayesian optimization. In 32nd Conference on Neural Information Processing Systems (NeurIPS
2018), Montréal, Canada, 2018.

Taeyoung Yun, Kiyoung Om, Jaewoo Lee, Sujin Yun, and Jinkyoo Park. Posterior Inference
with Diffusion Models for High-dimensional Black-box Optimization. In Forty-second Inter-
national Conference on Machine Learning (ICML), Vancouver, Canada, 2025. URL https:
//openreview.net/forum?id=EXds2NBOoq.

14

https://openreview.net/forum?id=EXds2NBOoq
https://openreview.net/forum?id=EXds2NBOoq

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A GAUSSIAN PROCESSES FOR BO

Assume a Gaussian process prior over f , e.g., f ∼ GP(0, k), where k : X × X → R is a positive-
definite kernel (Rasmussen & Williams, 2006). Then, given a set of observationsDn := {xi, yi}ni=1,
corrupted by Gaussian noise ϵ ∼ N (0, σ2

ϵ), the posterior f |Dn ∼ GP(f̂n, kn) is available in closed
form with mean and covariance function given by:

f̂n(x) := kn(x)
T(Kn + σ2

ϵ I)
−1yn (26)

kn(x,x
′) := k(x,x′)− kn(x)

T(Kn + σ2
ϵ I)

−1kn(x
′) (27)

σ2
n(x) := kn(x,x), (28)

where kn(x) := [k(x,xi)]
n
i=1 ∈ Rn, Kn := [k(xi,xj)]

n
i,j=1 ∈ Rn×n, yn := [yi]

n
i=1 ∈ Rn, for

x,x′ ∈ X . With these closed-form expressions, GP models allow BO algorithms to quantify uncer-
tainty and assess expected utilities of their decisions. However, note that, due to matrix inversions,
exact GP inference incurs a computational cost ofO(n3). Hence, one often has to resort to low-rank
approximations to make GP predictions tractable in cases involving large amounts of data, such as
batch evaluations with large batch size. Alternatively, one may completely discard the GP models
and use other surrogates, such as neural networks, and there has been an increasing literature on how
to reliably quantify uncertainty for BO when using these models (Li et al., 2024).

B THE GENBO ALGORITHM

Algorithm 1: GenBO
Input: Domain X , initial data D0

for t ∈ {1, . . . , T} do
qt ∈ argminq∈Q Lt−1(q) // Fit proposal distribution

Bt
i.i.d.∼ qt // Sample batch

yt,i ← f(xt,i) + ϵt,i, for i ∈ {1, . . . , B} // Collect observations
Dt = Dt−1 ∪ {xt,i, yt,i}Bi=1 // Update data

C LEARNING PARAMETRIC MODELS WITH RKHS CONVEX LOSSES

In this section, we consider the general problem of learning a function g∗ with a parametric model
g : X ×Θ→ R, where the parameter space Θ is an arbitrary finite-dimensional vector space. Most
existing results in the Bayesian optimization and bandits literature for learning these models from
inherently dependent data are only valid for linear models or kernel machines. As we will consider
arbitrary generative models, we need to derive convergence results applicable to a wider class mod-
els, accommodating popular modern frameworks. To do so, we will not assume identifiability, so
that it is not necessary that some θ∗ ∈ Θ exists such that g∗ = g(·; θ∗). Instead, we will replace iden-
tifiability with a much milder assumption that g∗ lies in a reproducing kernel Hilbert space (RKHS)
large enough to also contain the models, as described next.
Assumption A1. The true function g∗ : X → R is a member of a reproducing kernel Hilbert
space Hk, associated with a positive-semidefinite kernel k : X × X → R, which is bounded
supx∈X k(x,x) ≤ b2k for a given bk > 0. In addition, we assume that the models can also be found
as elements of the same RKHS, i.e., {g(·; θ) | θ ∈ Θ} ⊂ Hk.

The assumption above allows us to consider functions g∗ which cannot be perfectly approximated
by the model, though which yet live in the same underlying Hilbert space Hk. The reproducing
kernel assumption is also mild, as it simply means that function evaluations are continuous (i.e.,
well behaved), which can usually not be guaranteed in other types of Hilbert spaces, such as, e.g.,
L2-spaces. In fact, every Hilbert space of functions where evaluation functionals are continuous is
an RKHS by definition (Steinwart & Christmann, 2008, Def. 4.18). Lastly, we note that we can
always find a RKHS that contains the models, such as the minimal construction below.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Lemma 2. Let g : X × Θ → R represent a class of models parameterized by θ ∈ Θ. Assume that
g(x; ·) ∈ HΘ, for all x ∈ X , where HΘ is a reproducing kernel Hilbert space associated with a
positive-definite kernel kΘ : Θ×Θ→ R. It then follows that:

Hg := {h : X → R | ∃w ∈ HΘ : h(x) = ⟨w, g(x, ·)⟩HΘ
,∀x ∈ X} (29)

equipped with the norm:

∥h∥Hg
:= inf{∥w∥HΘ

: w ∈ HΘ, h(x) = ⟨w, g(x, ·)⟩HΘ
,∀x ∈ X} (30)

constitutes the unique RKHS for which kg : (x,x′) 7→ ⟨g(x, ·), g(x′, ·)⟩HΘ is the reproducing
kernel.

Proof. This is a direct application of classic RKHS results (e.g., Steinwart & Christmann, 2008,
Thm. 4.21) where we are treating ϕ : x 7→ g(x, ·) as a feature map mapping into an existing Hilbert
spaceHΘ and taking advantage of its structure to define a new one.

Remark 2. The RKHS Hg described above has the special property that for any θ ∈ Θ, the RKHS
norm of the model is given by:

∥g(·, θ)∥2Hg
= kΘ(θ, θ) , (31)

since ⟨kΘ(·, θ), g(x, ·)⟩HΘ
= g(x, θ) for all x ∈ X , and kΘ(·, θ) is the unique representation of the

evaluation functional at θ in the RKHS HΘ. The rest follows from the definition in Equation 30.
Hence, each choice of kΘ gives us a potential RKHS norm regularizer.
Remark 3. If the RKHS in Lemma 2 is insufficiently small to contain the function g∗ of interest, we
can always combine two RKHS to produce a third one containing all elements of the two. Namely,
if g∗ ∈ H∗ ̸= Hg with kernel k∗ : X ×X → R, we can define k := k∗+kg , so thatHk := H∗⊕Hg

is also a RKHS (Steinwart & Christmann, 2008; Saitoh & Sawano, 2016).
Definition 1 (Strong convexity). A differentiable function f : H → R on a Hilbert space H is
α-strongly convex, for α > 0, if:

∀h, h′, f(h) ≥ f(h′) + ⟨∇f(h′), h− h′⟩+ α

2
∥h− h′∥2H .

Definition 2 (Smoothness). A function f : H → Y between Hilbert spacesH and Y is η-smooth if:

∀h, h′, ∥f(h)− f(h′)∥Y ≤ η∥h− h′∥H . (32)

Definition 3 (Sub-Gaussianity). A real-valued random variable ϵ is said to be σϵ-sub-Gaussian if:

∀s ∈ R, E[exp(sϵ)] ≤ exp

(
s2σ2

ϵ

2

)
. (33)

In addition, a real-valued stochastic process {ϵt}∞t=1 adapted to a filtration {Ft}∞t=0 is conditionally
σ2
ϵ -sub-Gaussian if the following almost surely holds:

∀s ∈ R, E[exp(sϵt) | Ft−1] ≤ exp

(
s2σ2

ϵ

2

)
, ∀t ∈ N . (34)

Assumption A2 (Regularization). The regularizer R̄n : Hk → R is λ-strongly convex, twice differ-
entiable, and has η0-smooth gradients.

Common choices of regularization scheme, such as the squared norm ∥g∥2k, suffice the assumptions
above. Strong convexity does not require a function to be twice differentiable, but such assumption
can greatly simplify the analysis and it is common in modern deep learning frameworks.
Assumption A3 (Loss). For any y ∈ R, the point loss ℓy := ℓ(·, y) : R → R is αℓ-strongly
convex, twice differentiable, and has ηℓ-smooth first-order derivatives. In addition, given any m ∈
Hk, we assume the first-order derivative ℓ̇y(m(g∗)) is conditionally σℓ-sub-Gaussian when y ∼
p(y|m(g∗)).

Note that most loss functions in the deep learning literature satisfy the assumptions above, including
the squared error and the cross entropy loss. The original Bradley-Terry model in the DPO paper
(Rafailov et al., 2023) is not strongly convex, whereas its robust version (Chowdhury et al., 2024),
which accounts for preference noise, can be shown to satisfy strong convexity and smoothness.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Now consider we have access to observation data of the form Dn := {mi, yi}ni=1, where yi ∼
p(y|mi(g∗)), and mi : Hk → R represents a bounded linear observation functional, e.g., mi(g∗) =
mi(g∗), or mi(g∗) = g∗(xi,1)− g∗(xi,2), etc., for i ∈ {1, . . . , n}, which follow the true (unknown)
function g∗ : X → R. The data are not i.i.d., and each mt is the result of an algorithmic decision
based on the currently available dataset Dt−1 and a model g(·, θt) learned from it. The model is
learned by minimizing a loss function:

Ln(gθ) := R̄n(gθ) +

n∑
i=1

ℓ(mi(g∗), yi) , (35)

where R̄n : Hk → R+ is a regularization term, and ℓ : R × R → R encodes the data dependency.
Despite the definition of a regularization term overHk, following Remark 2, we can use any positive-
definite kernel kΘ : Θ×Θ→ R compatible with Lemma 2 to set R̄n such that:

R̄n(gθ) = λ∥gθ∥2Hg
= λkΘ(θ, θ) . (36)

In this case, a quadratic regularization term ∥θ∥22 corresponds to the choice of a linear kernel, i.e.,
kΘ(θ, θ

′) = θ · θ′, which might appear quite restrictive, as it assumes that our models are linear
functions of the parameters. However, note that, for overparameterized neural networks, at the
infinite-width limit the model is actually linear in the parameters (Jacot et al., 2018). If we want to
be more parsimonious, alternatively, we can choose kΘ as a universal kernel, such as the squared-
exponential, yet preferably not translation invariant, so that kΘ(θ, θ) is not a constant. One kernel
satisfying such assumption would be the exponential dot-product kernel kΘ(θ, θ′) := exp(θ · θ′),
which is universal for continuous functions over compact subsets of Θ. Nevertheless, we do not
impose restrictions on the form of the regularization term R̄n, except for the one below, which is
followed by our assumptions on the loss.

We can now analyze the approximation error with respect to g∗ for the following estimators:1

θn ∈ argmin
θ∈Θ

Ln(gθ) (37)

gn ∈ argmin
g∈Hk

Ln(g) . (38)

The first one gives us the best parametric approximation gθn based on the data and is what our algo-
rithm will use. The second estimator corresponds to the non-parametric approximation, which we
will use as a tool for our analysis, and not assume as a component of the algorithm. The assumptions
above allow us to bound distances between these estimators and the true g∗ as a function of the loss
and gradient values.
Lemma 1. Let Assumption A1, A2 and A3 be satisfied. Then, for any g ∈ Hk, the following holds:

1

2
∥g − gn∥2Hn

≤ Ln(g)− Ln(gn) ≤
1

2
∥∇Ln(g)∥2H−1

n
, (24)

where Hn : Hk → Hk is an operator-valued lower bound on the Hessian of the loss Ln:

∀g ∈ Hk, ∇2Ln(g) ⪰ Hn := λI + αℓ

n∑
i=1

mi ⊗mi , (25)

where ϕ(x) := k(·,x), for x ∈ X .

Proof of Lemma 1. We note that the Hessian of the losses can be lower bounded by:

∀g ∈ Hk, ∇2
gℓ(m(g), y) = ℓ̈y(m(g))∇gm(g)⊗∇gm(g) + ℓ̇y(m(g))∇2

gm(g)

= ℓ̈y(m(g))m⊗m

⪰ αℓm⊗m, ∀y ∈ R, ∀x ∈ X ,

(39)

where we applied the fact that ∇gm(g) = ∇g⟨g,m⟩k = m, and the second derivatives ℓ̈y of
the loss function ℓ(·, y) have a positive lower bound due to the strong convexity assumption (A3).
Combining with Assumption A2, we get:

∀g ∈ Hk, ∇2
gLn(g) ⪰ λI + αℓ

n∑
i=1

mi ⊗mi =: Hn . (40)

1We are implicitly assuming that such global optima exist. This is true for the optimization in Hk, as we
will show, but not always guaranteed for the optimization over Θ.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Now applying a first order Taylor expansion to Ln at any g ∈ Hk, the error term is controlled by the
Hessian∇2

g at an intermediate point ḡ ∈ Hk, which is uniformly lower bounded by Hn. Expanding
Ln around gn, we then have that:

∀g ∈ Hk, Ln(g)− Ln(gn) = ⟨∇Ln(gn), g − gn⟩+
1

2
∥g − gn∥2∇2Ln(ḡn)

≥ 1

2
∥g − gn∥2Hn

,

(41)

where ḡn = sgn + (1− s)g, for some s ∈ [0, 1], and we applied the Hessian inequality (40) and the
fact that ∇Ln(gn) = 0, as gn is a minimizer. Hence, the lower bound (24) follows. Conversely, by
expanding Ln around any g and evaluating at gn, we have:

∀g ∈ Hk, Ln(gn) = Ln(g) + ⟨∇Ln(g), gn − g⟩+ 1

2
∥gn − g∥2∇2Ln(ḡ′

n)
(42)

Rearranging the terms yields:

∀g ∈ Hk, Ln(g)− Ln(gn) = ⟨∇Ln(g), g − gn⟩ −
1

2
∥g − gn∥2∇2Ln(ḡ′

n)

≤ sup
g̃∈Hk

⟨∇Ln(g), g̃⟩ −
1

2
∥g̃∥2∇2Ln(ḡ′

n)

≤ sup
g̃∈Hk

⟨∇Ln(g), g̃⟩ −
1

2
∥g̃∥2Hn

,

(43)

whose right-hand side is strongly concave and has a unique maximizer at:

g̃ = H−1
n ∇Ln(g) . (44)

Replacing this result into the previous equation finally leads us to the upper bound in Lemma 1.

Lemma 1 allows us to control the approximation error by means of the functional gradients of Ln,
without the need to know an explicit form for the optimal solution gn. We can now proceed to derive
our error bound, which will make use of the following result from the online learning literature.

Lemma 3 (Abbasi-Yadkori, 2012, Cor. 3.6). Let {Ft}∞t=0 be an increasing filtration, {ϵt}∞t=1 be a
real-valued stochastic process, and {ϕt}∞t=1 be a stochastic process taking values in a separable real
Hilbert space H, with both processes adapted to the filtration. Assume that {ϕt}∞t=1 is predictable
w.r.t. the filtration, i.e., ϕt is Ft−1-measurable, and that ϵt is conditionally σ2

ϵ -sub-Gaussian, for all
t ∈ N. Then, given any δ ∈ (0, 1), with probability at least 1− δ,

∀t ∈ N,

∥∥∥∥∥
t∑

i=1

ϵiϕi

∥∥∥∥∥
2

(V+ΦtΦT
t)

−1

≤ 2σ2
ϵ log

(
det(I+ΦT

t V
−1Φt)

1
2

δ

)
,

for any positive-definite operator V ≻ 0 onH, and where we set Φt := [ϕ1, . . . , ϕt].

Theorem 1. Consider the setting in Lemma 1, and let ξk := infθ∈Θ∥g(·, θ) − g∗∥k. Then, given
any δ ∈ (0, 1), the following holds with probability at least 1− δ:

∀n ∈ N, |⟨m, g∗⟩k−⟨m, gθn⟩k| ≤ ∥m∥H−1
n

(
2βn(δ) + η0ξk + bkηℓξk

n∑
i=1

∥mi∥H−1
n

)
,∀m ∈ Hk,

where βn(δ) := λ−1/2∥∇R̄n(g∗)∥k + σℓ

√
2α−1

ℓ log(det(I+ αℓλ−1MT
nMn)1/2/δ), and Mn :=

[m1, . . . ,mn].

Proof of Theorem 1. Fix any m ∈ Hk and n ∈ N, the approximation error can then be expanded as:

|⟨m, g∗⟩k − ⟨m, gθn⟩k| ≤ |⟨m, g∗⟩k − ⟨m, gn⟩k|+ |⟨m, gθn⟩k − ⟨m, gn⟩k| . (45)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

By Lemma 1, for any g ∈ Hk, we have that:
|⟨m, gn⟩k − ⟨m, g⟩k| = |⟨m, gn − g⟩k|

= |⟨H−1/2
n m,H1/2

n (gn − g)⟩k|
≤ ∥H−1/2

n m∥∥H1/2
n (gn − g)∥

= ∥m∥H−1
n
∥gn − g∥Hn

≤ ∥m∥H−1
n
∥∇Ln(g)∥H−1

n
,

(46)

where the first inequality follows by Cauchy-Schwarz, and the last is due to Lemma 1. Expanding
the gradient term, we have:

∥∇Ln(g)∥H−1
n

=

∥∥∥∥∥∇R̄n(g) +

n∑
i=1

ℓ̇yi
(⟨mi, g⟩k)mi

∥∥∥∥∥
H−1

n

≤ ∥∇R̄n(g)∥H−1
n

+

∥∥∥∥∥
n∑

i=1

ℓ̇yi(⟨mi, g⟩k)mi

∥∥∥∥∥
H−1

n

≤ 1√
λ
∥∇R̄n(g)∥k +

∥∥∥∥∥
n∑

i=1

ℓ̇yi(⟨mi, g⟩k)mi

∥∥∥∥∥
H−1

n

,

(47)

where we applied the triangle inequality to obtain the second line and the fact that Hn ≻ λI implies
H−1

n ≺ λ−1I led to the last line. For g := g∗, we can then apply Lemma 3 to the noisy sum
above by setting Ft as the σ-algebra generated by the random variables {mi, yi}ti=1 and mt+1,
ϵt := α

−1/2
ℓ ℓ̇yt

(⟨g∗,mt⟩k) and ϕt := α
1/2
ℓ mt, for all t ∈ N, which leads us to:∥∥∥∥∥

n∑
i=1

ℓ̇yi
(⟨mi, g∗⟩k)mi

∥∥∥∥∥
2

H−1
n

≤ 2σ2
ℓ

αℓ
log

(
det(I+ αℓλ

−1MT
nMn)

1
2

δ

)
(48)

which holds uniformly over all n ∈ N with probability at least 1− δ. Hence, it follows that:

∀n ∈ N, ∥∇Ln(g∗)∥H−1
n
≤ 1√

λ
∥∇R̄n(g∗)∥k +

∥∥∥∥∥
n∑

i=1

ℓ̇yi
(⟨mi, g∗⟩k)mi

∥∥∥∥∥
H−1

n

≤ βn(δ), (49)

with probability at least 1− δ, where we set:

βn(δ) :=
1√
λ
∥∇R̄n(g∗)∥k + σℓ

√√√√ 2

αℓ
log

(
det(I+ αℓλ−1Kn)

1
2

δ

)
. (50)

Therefore, the pointwise approximation error of the RKHS-optimal estimator gn is bounded as:
∀n ∈ N, |⟨m, gn⟩k − ⟨m, g∗⟩k| ≤ βn(δ)∥m∥H−1

n
, ∀x ∈ X , (51)

with probability at least 1− δ, with Kn := MT
nMn = [k(xi,xj)]

n
i,j=1.

For the remaining term, we have that:
|⟨m, gθn⟩k − ⟨m, gn⟩k| ≤ ∥m∥H−1

n
∥gθn − gn∥Hn

≤ ∥m∥H−1
n

√
2(Ln(gθn)− Ln(gn)) ,

(52)

which follows from Lemma 1. We can bound the loss difference via the gap term ξk if we can relate
it to gθn , though note that it is not guaranteed that the infimum is achieved by any particular θ ∈ Θ.
From the definition of the infimum, however, it is a simple consequence that:

∀∆ > 0, ∃θ∆ ∈ Θ : ∥gθ∆ − g∗∥k ≤ ξk +∆ . (53)
Therefore, as θn minimizes Ln over all Θ, picking some ∆ > 0, we have that any θ∆ satisfying the
condition above leads us to:

Ln(gθn)− Ln(gn) ≤ Ln(gθ∆)− Ln(gn)

≤ 1

2
∥∇Ln(gθ∆)∥2H−1

n

≤ 1

2

∥∇R̄n(gθ∆)∥k +

∥∥∥∥∥
n∑

i=1

ℓ̇yi
(⟨mi, gθ∆⟩k)mi

∥∥∥∥∥
H−1

n

2

,

(54)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

where we applied Lemma 1 to derive the second line and Equation 47 for the third line. Now each
term above can be bounded in terms of the approximation gap ξk+∆. Firstly, given the smoothness
of the regularization gradients (Assumption A2), observe that:

∥∇R̄n(gθ∆)∥k = ∥∇R̄n(g∗) +∇R̄n(gθ∆)−∇R̄n(g∗)∥k
≤ ∥∇R̄n(g∗)∥k + ∥∇R̄n(gθ∆)−∇R̄n(g∗)∥k
≤ ∥∇R̄n(g∗)∥k + η0∥gθ∆ − g∗∥k
≤ ∥∇R̄n(g∗)∥k + η0(ξk +∆) ,

(55)

where we applied the triangle inequality and the definition of smoothness (cf. Definition 2). Sec-
ondly, for the sum term, by smoothness of the loss derivatives (Assumption A3), we have that:

∀i ∈ {1, . . . , n}, ℓ̇yi(⟨mi, gθ∆⟩k) = ℓ̇yi(⟨mi, g∗⟩k) + ℓ̇yi
(⟨mi, gθ∆⟩k)− ℓ̇yi

(⟨mi, g∗⟩k)
≤ ℓ̇yi

(⟨mi, g∗⟩k) + ηℓ|⟨mi, gθ∆⟩k − ⟨mi, g∗⟩k|
= ℓ̇yi(⟨mi, g∗⟩k) + ηℓ|⟨mi, gθ∆ − g∗⟩k|
≤ ℓ̇yi

(⟨mi, g∗⟩k) + ηℓ∥mi∥k∥gθ∆ − g∗∥k
≤ ℓ̇yi(⟨mi, g∗⟩k) + ηℓbk(ξk +∆),

(56)

where the first inequality follows by smoothness, the second is due to Cauchy-Schwarz, and the last
follows by the definition of θ∆ and the boundedness of the kernel (cf. Assumption A1). Hence, the
sum is bounded as:∥∥∥∥∥

n∑
i=1

ℓ̇yi
(⟨mi, gθ∆⟩k)mi

∥∥∥∥∥
H−1

n

≤

∥∥∥∥∥
n∑

i=1

(ℓ̇yi
(⟨mi, g∗⟩k) + bkηℓ(ξk +∆))mi

∥∥∥∥∥
H−1

n

≤

∥∥∥∥∥
n∑

i=1

(ℓ̇yi
(⟨mi, g∗⟩k)mi

∥∥∥∥∥
H−1

n

+ bkηℓ(ξk +∆)

∥∥∥∥∥
n∑

i=1

mi

∥∥∥∥∥
H−1

n

≤

∥∥∥∥∥
n∑

i=1

(ℓ̇yi(⟨mi, g∗⟩k)mi

∥∥∥∥∥
H−1

n

+ bkηℓ(ξk +∆)

n∑
i=1

∥mi∥H−1
n

.

(57)

Substituting the upper bounds in equations 55 and 57 into Equation 54 and applying the concentra-
tion inequality in Equation 49 yields:

∥∇Ln(gθ∆)∥H−1
n
≤ 1√

λ
∥∇R̄n(g∗)∥k + η0(ξk +∆) +

∥∥∥∥∥
n∑

i=1

(ℓ̇yi
(⟨mi, g∗⟩k)mi

∥∥∥∥∥
H−1

n

+ bkηℓ(ξk +∆)

n∑
i=1

∥mi∥H−1
n

≤ βn(δ) + η0(ξk +∆) + bkηℓ(ξk +∆)

n∑
i=1

∥mi∥H−1
n

,

(58)

which holds with the same probability as Equation 49. Lastly, as the gradient bound above is valid
for any ∆ > 0, we can take the limit as ∆→ 0 and substitute the result back into Equation 52 to get
the model approximation error bound:

|⟨m, gθn⟩k − ⟨m, gn⟩k| ≤ ∥m∥H−1
n

(
βn(δ) + η0ξk + bkηℓξk

n∑
i=1

∥mi∥H−1
n

)
, ∀x ∈ X , (59)

which also holds uniformly over all n ∈ N with probability at least 1 − δ. Combining Equation 59
and 51 leads to the final result, which concludes the proof.

Despite the model being potentially non-linear and the loss not being required to be least-squares,
Theorem 1 shows that we recover the same kind of RKHS-based error bound found in the kernelized

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

bandits literature (Chowdhury & Gopalan, 2017; Durand et al., 2018; Oliveira et al., 2021), up to an
approximation gap ξk w.r.t. the true function g∗. If identifiability holds, we have ξk = 0, and we
recover the usual bounds (Durand et al., 2018).2 Alternatively, in the case of neural networks, we
can increase the width of the network over time (making sure the model scales up with the data is
not uncommon in deep learning approaches), which would then lead to the model covering a whole
RKHS, determined by the NTK (Jacot et al., 2018). In general, for a rich enough model class, one
may expect ξk to be small.

Regarding the term resembling a pointwise predictive variance, by an application of Woodbury’s
identity, we have that:

∥m∥2
H−1

n
= mT(λI + αℓMnM

T
n)

−1m

= mT(λ−1I − λ−2Mn(α
−1
ℓ I+ λ−1MT

nMn)
−1MT

n)m

= λ−1mT(I −Mn(λα
−1
ℓ I+MT

nMn)
−1MT

n)m

= λ−1(∥m∥2k −mTMn(λα
−1
ℓ I+MT

nMn)
−1MT

nm) ,

(60)

If observations correspond to pointwise evaluations m := k(·,x) and mi := k(·,xi), for x ∈ X and
{xi}ni=1 ⊂ X , we end up with:

∥m∥2
H−1

n
= ∥k(·,x)∥2

H−1
n

= λ−1(k(x,x)− kn(x)
T(λα−1

ℓ I+Kn)
−1kn(x))

= λ−1σ2
n(x) ,

(61)

which corresponds to a scaled version of the posterior predictive variance σ2
n(x) := kn(x,x) of a

GP model (cf. Equation 27). We also have the following auxiliary result from VSD.

Lemma 4 (GP variance upper bound (Steinberg et al., 2025, Lem. E.5)). Let {xn}n≥1 be a sequence
of X -valued random variables adapted to the filtration {Fn}n≥1. For a given x ∈ X , assume that
the following holds:

∃T∗ ∈ N : ∀T ≥ T∗,

T∑
n=1

P [xn = x | Fn−1] ≥ bT > 0 , (62)

for a some sequence of lower bounds {bn}n∈N. Then, for a bounded kernel k : X × X → R given
observations at {xi}ni=1, the following holds with probability 1:

σ2
n(x) ∈ O(b−1

n). (63)

In addition, if bn →∞, then limn→∞ bnσ
2
n(x) ≤ σ2

ϵ .

D ADDITIONAL EXPERIMENTAL DETAIL

D.1 TEXT OPTIMIZATION

We use the same annealing threshold scheme for setting τt as Steinberg et al. (2025, Eqn. 20), where
we set η such that when begin at p0 = 0.5 we end at pT = 0.99. For the proposal distribution, we
found these short sequences we best generated by the simple mean-field categorical model,

q(x|ϕ) =
M∏

m=1

Categ(xm|softmax(ϕm)) (64)

where xm ∈ V and ϕm ∈ R|V|, and we directly optimize ϕ. VSD and CbAS use the simple MLP
classifier guide in Figure 4.

2If we further assume that the model can represent any g ∈ Hk, the factor of 2 multiplying βn would also
disappear, as the extra βn arises from a bound over ∥gθn − gn∥, which would vanish.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Sequential(
Embedding(

num_embeddings=A,
embedding_dim=16

),
Dropout(p=0.1),
Flatten(),
LeakyReLU(),
Linear(

in_features=16 * M,
out_features=64

),
LeakyReLU(),
Linear(

in_features=64,
out_features=1

),
)

(a) MLP architecture

Sequential(
Embedding(

num_embeddings=A,
embedding_dim=E

),
Dropout(p=0.2),
Conv1d(

in_channels=E,
out_channels=C,
kernel_size=Kc,

),
LeakyReLU(),
MaxPool1d(

kernel_size=Kx,
stride=Sx,

),
Conv1d(

in_channels=C,
out_channels=C,
kernel_size=Kc,

),
LeakyReLU(),
MaxPool1d(

kernel_size=Kx,
stride=Sx,

),
Flatten(),
LazyLinear(

out_features=H
),
LeakyReLU(),
Linear(

in_features=H,
out_features=1

),
)

(b) CNN architecture

Figure 4: Classifier architectures used for VSD and CbAS in the experiments using PyTorch syntax.
A = |V|, M = M , and we give all other parameters in Table 2 if not directly indicated.

D.2 PROTEIN DESIGN

We use the same threshold function and setting for all of the protein design experiments as in Sec-
tion D.1. However, these tasks require a more sophisticated generative model that can capture local
and global relationships that relate to protein’s 3D structure. For this we use the auto-regressive
(causal) transformer architecture also used in Steinberg et al. (2025),

q(x|ϕ) = Categ(x1|softmax(ϕ1))

M∏
m=2

q(xm|x1:m−1, ϕ1:m) where,

q(xm|x1:m−1, ϕ1:m) = Categ(xm|DTransformer(x1:m−1, ϕ1:m)). (65)

See for the latter see Phuong & Hutter (2022, Algorithm 10 & Algorithm 14) for maximum likeli-
hood training and sampling implementation details respectively. We give the architectural configu-
ration for the transformers in each task in Table 1, and the classifier CNN used by VSD and CbAS
is in Figure 4.

We use the following Ehrlich function configurations:

M = 15: motif length = 4, no. motifs = 2, quantization = 4
M = 32: motif length = 4, no. motifs = 2, quantization = 4

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Configuration Stability SASA Ehrlich 15 Ehrlich 32 Ehrlich 64
Layers 2 2 2 2 2

Feedforward network 256 256 32 64 128
Attention heads 4 4 1 2 3
Embedding size 64 64 10 20 30

Table 1: Transformer backbone configuration.

Configuration Stability SASA Ehrlich 15 Ehrlich 32 Ehrlich 64
E 16 16 10 10 10
C 96 96 16 16 16
Kc 7 7 4 7 7
Kx 5 5 2 2 2
Sx 4 4 2 2 2
H 192 192 128 128 128

Table 2: CNN guide configuration for VSD and CbAS

M = 64: motif length = 4, no. motifs = 8, quantization = 4

D.3 GENBO SETTINGS

Acronym Meaning
EI Expected Improvement
PI Probability of Improvement
sEI Soft Expected Improvement, i.e., softplus(y − τ)
SR Simple Regret (utility function)
fKL Forward KL loss
bfKL Balanced forward KL loss
rPL Robust preference loss
MF Mean-field categorical proposal model
Tfm Transformer proposal model
fr More frequent regularization (change in λn schedule rate)
r0p10 Base regularization factor set to λ0 := 0.1
exp Exponential regularizer, i.e., Rn(θ) := λn exp∥θ − θ0∥22
np No (informative) prior, i.e., p0(x) ∝ 1
p Pre-trained prior, learned from initial (randomly initialized) data D0

lg Importance weights
lr0p10 Learning rate setting for training the generative model (e.g., 0.1 in this case)
pcmin0p50 Minimum percentile for threshold τt annealing schedule (e.g., 50% in this case)
pcmax0p90 Maximum percentile for threshold τt annealing schedule (e.g., 90% in this case)

Table 3: GenBO experiment settings acronyms

Table 3 presents our settings for the different GenBO variants across experiments. The settings
for our proposal models followed VSD’s configurations. Our regularization scheme penalized the
Euclidean distance between the model’s parameters and their random initialization (He et al., 2015)
with Rn(θ) := λn∥θ − θ0∥22, using an annealed regularization factor λn := 1

nλ0 log
2 n, similar to

Dai et al. (2022), which ensures enough exploration, while still λn → 0 as n → ∞, allowing for
convergence to the optimal θ∗. For threshold-based utilities, we mainly set the quantile threshold τt
to follow an annealing schedule ranging from the 50% (i.e., the median) to the 99% percentile of the
observations marginal distribution for both GenBO and VSD, where the percentile γt corresponding

the quantile is updated as γt := γη
t−1, where η :=

(
log γT

log γ0

) 1
T−1 ∈ (0, 1).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

ALOHA Ehrlich-15 Ehrlich-32 Ehrlich-64

Random mut. 3.80 ± 0.40
LaMBO-2 0.19 ± 0.17 0.36 ± 0.15 0.95 ± 0.02
CbAS 2.20 ± 0.40 0.57 ± 0.12 0.61 ± 0.10 0.98 ± 0.01
GA 0.45 ± 0.12 0.61 ± 0.10 0.98 ± 0.01
VSD 0.00 ± 0.00 0.19 ± 0.17 0.32 ± 0.09 0.97 ± 0.00
GenBO 0.20 ± 0.40 0.00 ± 0.00 0.28 ± 0.16 0.94 ± 0.02

Table 4: Final average regret (lower is better) for the best-performing variant of each method across
the ALOHA (text optimization) and Ehrlich benchmarks

FoldX (Stability) FoldX (SASA)

Random mut. 2.79 ± 0.22 12550.26 ± 56.34
LaMBO-2 3.19 ± 0.58 12456.10 ± 126.64
CbAS 3.65 ± 0.23 12376.65 ± 298.30
VSD 4.20 ± 0.42 12537.97 ± 186.35
GenBO 3.28 ± 0.35 13285.42 ± 221.60

Table 5: FoldX average maximum outcome for the best-performing variant of each method

D.4 RESULTS SUMMARY

Besides the plots in section 6, we summarize the final results in Table 4 and 5.

D.5 ABLATIONS

This section presents ablation studies. We vary the minimum and maximum percentile for the thresh-
old annealing settings of both GenBO (with PI utility) and VSD on the text optimization problem in
Figure 5. In Figure 6, we vary the batch size B for GenBO on the Ehrlich benchmark problem of
sequence length 32.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Method Average Runtime

CbAS 53.38 s ± 2.05 s
VSD 42.89 s ± 2.56 s
GenBO 14.88 s ± 0.26 s

Table 6: Summary of average run times with standard deviations on the ALOHA text optimization
problem.

(a) GenBO (b) VSD

Figure 5: Final average simple regret for GenBO and VSD as a function of the minimum and
maximum percentile in the annealing schedule.

Figure 6: Batch evaluation size B ablation on Ehrlich benchmark of length 32. The plot presents
the final average simple regret for each B setting, with error bars corresponding to ±1 standard
deviation. All variants were run for the same number of BO rounds as in the original experiment.

25

	Introduction
	Background
	A general recipe for generative Bayesian optimization
	Preference-based learning
	Divergence-based learning
	Generalizations

	Theoretical analysis
	Related work
	Experiments
	Text optimization
	Protein design

	Conclusion
	Gaussian processes for BO
	The GenBO algorithm
	Learning parametric models with RKHS convex losses
	Additional Experimental Detail
	Text optimization
	Protein design
	GenBO settings
	Results summary
	Ablations

