
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENERALIZING STOCHASTIC SMOOTHING FOR
DIFFERENTIATION AND GRADIENT ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We deal with the problem of gradient estimation for stochastic differentiable relax-
ations of algorithms, operators, simulators, and other non-differentiable functions.
Stochastic smoothing conventionally perturbs the input of a non-differentiable
function with a differentiable density distribution with full support, smoothing it
and enabling gradient estimation. Our theory starts at first principles to derive
stochastic smoothing with reduced assumptions, without requiring a differentiable
density nor full support, and presenting a general framework for relaxation and
gradient estimation of non-differentiable black-box functions f : Rn → Rm. We
develop variance reduction for gradient estimation from 3 orthogonal perspectives.
Empirically, we benchmark 6 distributions and up to 24 variance reduction strate-
gies for differentiable sorting and ranking, differentiable shortest-paths on graphs,
differentiable rendering for pose estimation, as well as diff. cryo-ET simulations.

1 INTRODUCTION

The differentiation of algorithms, operators, and other non-differentiable functions has been a topic
of rapidly increasing interest in the machine learning community [1]–[7]. In particular, whenever we
want to integrate a non-differentiable operation (such as ranking) into a machine learning pipeline,
we need to relax it into a differentiable form in order to allow for backpropagation. To give a concrete
example, a body of recent work considered continuously relaxing the sorting and ranking operators
for tasks like learning-to-rank [5], [7]–[15]. These works can be categorized into either casting sorting
and ranking as a related problem (e.g., optimal transport [16]) and differentiably relaxing it (e.g., via
entropy-regularized OT [7]) or by considering a sorting algorithm and continuously relaxing it on the
level of individual operations or program statements [5], [11], [14], [15]. To give another example, in
the space of differentiable graph algorithms and clustering, popular directions either relax algorithms
on a statement level [5] or cast the algorithm as a convex optimization problem and differentiate the
solution of the optimization problem under perturbed parameterization [2], [3], [17].

Complementary to these directions of research, in this work, we consider algorithms, operators,
simulators, and other non-differentiable functions directly as black-box functions and differentiably
relax them via stochastic smoothing [18], i.e., via stochastic perturbations of the inputs and via
multiple function evaluation. This is challenging as, so far, gradient estimators came with large
variance and supported only a restrictive set of smoothing distributions. More concretely, for a
black-box function f : Rn → Rm, we consider the problem of estimating the derivative (or gradient)
of the relaxation

fϵ(x) = Eϵ∼µ

[
f(x+ ϵ)

]
=

∫
f(x+ ϵ)µ(ϵ) dϵ (1)

where ϵ is a sample from a probability distribution with an (absolutely) continuous density µ(ϵ). fϵ is
a differentiable function (regardless of differentiability properties of f itself, see Section 2 for details)
and its gradient is well defined. Under limiting restrictions on the probability distribution µ used for
smoothing, gradient estimators exist in the literature [2], [18]–[20].

The contribution of this work lies in providing more generalized gradient estimators (reducing
assumptions on µ, Lemma 3) that exhibit reduced variances (Sec. 2.2) for the application of differen-
tiably relaxing conventionally non-differentiable algorithms. Moreover, we enable smoothing with
and differentiation wrt. non-diagonal covariances (Thm. 7), characterize formal requirements for
f (Lem. 8+9), discriminate smoothing of algorithms and losses (Sec. 2.3), and provide a k-sample
median extension (Apx. C). The proposed approach is applicable for differentiation of (i) arbitrary1

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

functions, which are (ii) considered as a black-box, which (iii) can be called many times (primarily)
at low cost, and (iv) should be smoothed with any distribution with absolutely continuous density
on R. This contrasts prior work, which smoothed (i) convex optimizers [2], [3], (ii) used first-order
gradients [7], [11], [15], [21], (iii) allowed calling an environment only once or few times in RL [20],
and/or (iv) smoothed with fully supported differentiable density distributions [2], [3], [18], [22]. In
machine learning, many other fields also utilize the ideas underlying stochastic smoothing; stochas-
tic smoothing and similar methods can be found, e.g., in REINFORCE [20], the score function
estimator [23], the CatLog-Derivative trick [24], perturbed optimizers [2], [3], among others.

2 DIFFERENTIATION VIA STOCHASTIC SMOOTHING

We begin by recapitulating the core of the stochastic smoothing method. The idea behind smoothing
is that given a (potentially non-differentiable) function f : Rn → Rm 1, we can relax the function to
a differentiable function by perturbing its argument with a probability distribution: if ϵ ∈ Rn follows
a distribution with a differentiable density µ(ϵ), then fϵ(x) = Eϵ[f(x+ ϵ)] is differentiable.

For the case of m = 1, i.e., for a scalar function f , we can compute the gradient of fϵ by following
and extending part of Lemma 1.5 in Abernethy et al. [18] as follows:
Lemma 1 (Differentiable Density Smoothing). Given a function f : Rn → R 1 and a differentiable
probability density function µ(ϵ) with full support on Rn, then fϵ is differentiable and

∇xfϵ(x) = ∇xEϵ∼µ

[
f(x+ ϵ)

]
= Eϵ∼µ

[
f(x+ ϵ) · ∇ϵ− logµ(ϵ)

]
. (2)

Proof. For didactic reasons, we include a full proof in the paper to support the reader’s understanding
of the core of the method. Via a change of variables, replacing x+ ϵ by u, we obtain (dϵ/du = 1)

fϵ(x) =

∫
f(x+ ϵ)µ(ϵ) dϵ =

∫
f(u)µ(u− x) du . (3)

Now,
∇xfϵ(x) = ∇x

∫
f(u)µ(u− x) du =

∫
f(u)∇xµ(u− x) du . (4)

Using ∇xµ(u− x) = −∇ϵµ(ϵ), ∇xfϵ(x) = −
∫

f(x+ ϵ)∇ϵµ(ϵ) dϵ . (5)

Because ∂µ(ϵ)
∂ϵ = µ(ϵ) · ∂ log µ(ϵ)

∂ϵ , we can simplify the expression to

∇xfϵ(x) = −
∫

f(x+ ϵ)µ(ϵ)∇ϵ logµ(ϵ) dϵ = Eϵ∼µ

[
f(x+ ϵ)∇ϵ− logµ(ϵ)

]
. (6)

Empirically, for a number of samples s, this gradient estimator can be evaluated without bias via

∇xfϵ(x) ≜
1

s

s∑
i=1

[
f(x+ ϵi)∇ϵi− logµ(ϵi)

]
ϵ1, ..., ϵs ∼ µ . (7)

Corollary 2 (Differentiable Density Smoothing for Vector-valued Functions). We can extend Lemma 1
to vector-valued functions f : Rn → Rm, allowing to compute the Jacobian matrix Jfϵ∈ Rm×n as

Jfϵ(x) = Eϵ∼µ

[
f(x+ ϵ) ·

(
∇ϵ− logµ(ϵ)

)⊤]
. (8)

We remark that prior work (e.g., [18]) limits µ to be a differentiable density with full support on R,
typically of exponential family, whereas we generalize it to any absolutely continuous density, and
include additional generalizations. This has important implications for distributions such as Cauchy,
Laplace, and Triangular, which we show to have considerable practical relevance.

1Traditionally and formally, only functions with compact range have been considered for f (i.e., f : Rn →
[a, b]) [19], [25]. More recently, i.a., Abernethy et al. [18] have considered the general case of function with
the real range. While this is very helpful, e.g., enabling linear functions for f , this is (even without our
generalizations) not always finitely defined as we discuss with the help of degenerate examples in Appendix B.
There, we characterize the set of valid f leading to finitely defined fϵ in Lemma 8 as well as ∇fϵ in Lemma 9 in
dependence on µ. We remark that, beyond discussions in Appendix B, we assume this to be satisfied by f .

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Lemma 3 (Requirement of Continuity of µ). If µ(ϵ) is absolutely continuous (and not necessarily
differentiable), then fϵ is continuous and differentiable everywhere.

∇xfϵ(x) = Eϵ∼µ

[
f(x+ ϵ) · 1ϵ/∈Ω · ∇ϵ− logµ(ϵ)

]
. (9)

Ω is the zero-measure set of points with undefined gradient. We provide the proof in Appendix A.1.

Lemma 3 has important implications. In particular, it enables smoothing with non-differentiable
density distributions such as the Laplace distribution, the triangular distribution, and the Wigner
Semicircle distribution [26], [27] while maintaining differentiability of fϵ.
Remark 4 (Requirement of Continuity of µ). However, it is crucial to mention that, for stochastic
smoothing (Lemmas 1, 3, Corollary 2), µ has to be continuous. For example, the uniform distribution
is not a valid choice because it does not have a continuous density on R. (U(a, b) has discontinuities
at a, b where it jumps between 0 and 1/(b−a).) With other formulations, e.g., [28], [29], it is possible
to perform smoothing with a uniform distribution over a ball; however, if f is discontinuous, uniform
smoothing may not lead to a differentiable function. Continuity is a requirement but not a sufficient
condition, and absolutely continuous is a sufficient condition; however, the difference to continuity
corresponds only to non-practical and adversarial examples, e.g., the Cantor or Weierstrass functions.
Remark 5 (Gaussian Smoothing). A popular special case of differentiable stochastic smoothing is
smoothing with a Gaussian distribution µN = N(0n, In). Here, due to the nature of the probability
density function of a Gaussian, ∇ϵ− logµN (ϵ) = ϵ. Further, when µNσ = N(0n, σ

2In), then
∇ϵ− logµNσ (ϵ) = ϵ/σ. We emphasize that this equality only holds for the Gaussian distribution.

Equipped with the core idea behind stochastic smoothing, we can differentiate any function f via
perturbation with a probability distribution with (absolutely) continuous density.

Typically, probability distributions that we consider for smoothing are parameterized via a scale
parameter, vi7., the standard deviation σ in a Gaussian distribution or the scale γ in a Cauchy
distribution. Extending the formalism above, we may be interested in differentiating with respect to
the scale parameter γ of our distribution µ. This becomes especially attractive when optimizing the
scale and, thereby, degree of relaxation of our probability distribution. While our formalism allows
reparameterization to express γ within µ, we can also explicitly write it as

∇xfγϵ(x) = ∇xEϵ∼µ

[
f(x+ γ · ϵ)

]
= Eϵ∼µ

[
f(x+ γ · ϵ) ·

(
∇ϵ− logµ(ϵ)

)
/ γ

]
. (10)

Now, we can differentiate wrt. γ, i.e., we can compute ∇γfγϵ(x).
Lemma 6 (Differentiation wrt. γ). Extending Lemma 1, Corollary 2, and Lemma 3, we have

∇γfγϵ(x) = ∇γEϵ∼µ

[
f(x+ γ · ϵ)

]
= Eϵ∼µ

[
f(x+ γ · ϵ) ·

(
− 1+ (∇ϵ− logµ(ϵ))⊤ · ϵ

)
/ γ

]
. (11)

The proof is deferred to Appendix A.2.

We can extend γ for multivariate distributions to a scale matrix Σ/L (e.g., a covariance matrix).
This enables optimization for finding the optimal scale matrix L, and further not only isotropic
distributions, but instead also, e.g., multivariate Gaussians with correlations between dimensions.
Theorem 7 (Multivariate Smoothing with Covariance Matrix). We have a function f : Rn → Rm.
We assume ϵ is drawn from a multivariate distribution with absolutely continuous density in Rn.
We have an invertible scale matrix L ∈ Rn×n (e.g., for a covariance matrix Σ, L is based on its
Cholesky decomposition LL⊤ = Σ). We define fLϵ(x) = Eϵ∼µ

[
f(x+L · ϵ)

]
. Then, our derivatives

∂fLϵ(x) / ∂x (∈ Rm×n) and ∂fLϵ(x) / ∂L (∈ Rm×n×n) can be computed as

∇x

(
fLϵ(x)

)
i
= Eϵ∼µ

[
f(x+ L · ϵ)i · L−1 ·

(
∇ϵ− logµ(ϵ)

)]
, (12)

∇L

(
fLϵ(x)

)
i
= Eϵ∼µ

[
f(x+ L · ϵ)i · L−⊤ ·

(
− 1 + (∇ϵ− logµ(ϵ)) · ϵ⊤

)]
. (13)

Above, the indicator (from (9)) is omitted for a simplified exposition. Proofs are deferred to Apx. A.3.

In Appendix C, we additionally extend stochastic smoothing to differentiating the expected k-sample
median, show that it is differentiable, and provide an unbiased gradient estimator in Lemma 12.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Probability distributions considered for generalized stochastic smoothing. Displayed is (from left to
right) the density of the distribution µ(ϵ) (plot + equation), the derivative of the NLL (equation), and the product
between the density and the derivative of the NLL (plot). The latter plot corresponds to the kernel that f is
effectively convolved by to estimate the gradient. (∗): applies to ϵ ∈ (−1, 1) \ {0}, otherwise 0 or undefined.

Distribution Density / PDF µ(ϵ) ∇ϵ− logµ(ϵ) µ(ϵ) · ∇ϵ− logµ(ϵ)

Gaussian
1√
2π

exp
(
− 1/2 · ϵ2

)
ϵ

Logistic
exp(−ϵ)

(1 + exp(−ϵ))2
tanh(ϵ/2)

Gumbel exp(−ϵ− exp(−ϵ)) 1− exp(−ϵ)

Cauchy
1

π · (1 + ϵ2)

2 · ϵ
1 + ϵ2

Laplace 1/2 · exp(−|ϵ|) sign(ϵ)

Triangular max(0, 1− |ϵ|) sign(ϵ)

1− |ϵ|
(∗)

2.1 DISTRIBUTION EXAMPLES

After covering the underlying theory of generalized stochastic smoothing, in this section, we provide
examples of specific distributions that our theory applies to. We illustrate the distributions in Table 1.

Before delving into individual choices for distributions, we provide a clarification for multivariate
densities µ : Rn → R≥0: We consider the n-dimensional multivariate form of a distribution as the
concatenation of n independent univariate distributions. Thus, for µ1 as the univariate formulation
of the density, we have the proportionality µ(ϵ) ≃

∏n
i=1 µ1(ϵi). We remark that the distribution by

which we smooth (Lϵ) is not an isotropic (per-dimension independent) distribution. Instead, through
transformation by the scale matrix L, e.g., in the case of the Gaussian distribution, Lϵ covers the
entire space of multivariate Gaussian distributions with arbitrary covariance matrices.

Beyond the Gaussian distribution, the logistic distribution offers heavier tails, and the Gumbel
distribution provides max-stability, which can be important for specific tasks. The Cauchy distribu-
tion [30], with its undefined mean and infinite variance, also has important implications in smoothing:
e.g., the Cauchy distribution is shown to provide monotonicity in differentiable sorting networks [12].
While prior art [22] heuristically utilized the Cauchy distribution for stochastic smoothing of argmax,
this had been, thus far, without a general formal justification.

In this work, for the first time, we consider Laplace and triangular distributions. First, the Laplace
distribution, as the symmetric extension of the exponential distribution, does not lie in the space of
exponential family distributions, and is not differentiable at 0. Via Lemma 3, we show that stochastic
smoothing can still be applied and is exactly correct despite non-differentiablity of the distribution.
Second, with the triangular distribution, we illustrate, for the first time, that stochastic smoothing
can be performed even with a non-differentiable distribution with compact support ([−1, 1]). This
is crucial if the domain of f has to be limited to a compact set rather than the real domain, or in
applications where smoothing beyond a limited distance to the original point is not meaningful.
A hypothetical application for this could be differentiating a physical motor controlled robot in
reinforcement learning where we may not want to support an infinite range for safety considerations.

2.2 VARIANCE REDUCTION

Given an unbiased estimator of the gradient, e.g., in its simplest form (2), we desire reducing its
variance, or, in other words, improve the quality of the gradient estimate for a given number of
samples. For this, we consider 3 orthogonal perspectives of variance reduction: covariates, antithetic
samples, and (randomized) quasi-Monte Carlo.

To illustratively derive the first two variance reductions, let us consider the case of smoothing a
constant function f(x) = v for some large constant v ≫ 0. Naturally, fϵ(x) = v and ∇xfϵ(x) = 0.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

However, for a finite number of samples s, our empirical estimate (e.g. (7)) will differ from 0 almost
surely. As the gradient of fϵ(x)−c wrt. x does not depend on c, we have ∇xfϵ(x) = ∇x(fϵ(x)−c). If
we choose c = v, the variance of the gradient estimator is reduced to 0. For general and non-constant
f , we can estimate the optimal choice of c via c = f(x) or via the leave-one-out estimator [31], [32]
of fϵ(x). In the fields of stochastic smoothing of optimizers and reinforcement learning this is known
as the method of covariates. f(x) and LOO were previously considered for smoothing, e.g., in [22]
and [33], respectively. We illustrate the effects of both choices of covariates in Figure 1.

−2
−1

0
1
2
3
4
5

−2−1 0 1 2 3 4

none

−2
−1

0
1
2
3
4
5

−2−1 0 1 2 3 4

f (x)

−2
−1

0
1
2
3
4
5

−2−1 0 1 2 3 4

LOO

Figure 1: Comparison of covariates: a non-differentiable function
(dark blue) is smoothed with a logistic distribution (light blue).
The original gradient (dark red) is not everywhere defined, and
does not meaningfully represent the gradient. The gradient of the
smoothed function is shown in pink. Grey illustrates the variance of
a gradient estimate with 5 samples via the [25%, 75%] (dark grey)
and [10%, 90%] (light grey) percentiles. Using f(x) as a covariate,
instead of using none reduces the gradient variance, in particular
whenever f(x) is large. Leave-one-out (LOO) further improves
over f(x) at discontinuities of the original function f (i.e., at x=1),
but has slightly higher variance than f(x) where f is continuous
and has large values (i.e., at x=−2.)

From an orthogonal perspective, we
observe that Eϵ∼µ

[
∇ϵ−logµ(ϵ))

]
=0,

which follows, e.g., from ∇xfϵ(x) =
0=Eϵ∼µ

[
v·∇ϵ−logµ(ϵ)

]
. For sym-

metric distributions, we can guaran-
tee an empirical estimate to be 0 by
always using pairs of antithetic sam-
ples [34], i.e., complementary ϵs. Us-
ing ϵ′ = −ϵ, we have ∇ϵ logµ(ϵ) +
∇ϵ′ logµ(ϵ

′) = 0. This is illustrated
in Figure 2 (2). In our experiments in
the next section, we observe antithetic
sampling to generally perform poorly
in comparison to other variance reduc-
tion techniques.

A third perspective considers that
points sampled with standard Monte
Carlo (MC) methods (see Fig. 2 (1)),
due to the random nature of the sam-
pling, often form (accidental) clumps while other areas are void of samples. To counteract this,
quasi-Monte Carlo (QMC) methods [35] spread out sampled points as evenly as possible by foregoing
randomness and choosing points from a regular grid, e.g., a simple Cartesian grid, taking the grid cell
centers as samples (see Fig. 2 (3)). Via the inverse CDF of the respective distribution, the points can
be mapped from the unit hypercube to samples from a respective distribution. However, discarding
randomness makes the sampling process deterministic, limits the dispersion introduced by the smooth-
ing distribution to concrete points, and hence makes the estimator biased. Randomized quasi-Monte
Carlo (RQMC) [36] methods overcome this difficulty by reintroducing some randomness. Like
QMC, RQMC uses a grid to subdivide [0, 1]n into cells, but then samples a point from each cell (see
Fig. 2 (4)) instead of taking the grid cell center. While regular MC sampling leads to variances of
O(1/s), RQMC reduces them to O(1/s1+2/n) for a number s of samples and an input dimension of
n [37]. The default (i.e., Cartesian) QMC and RQMC methods require numbers of samples s = kn

for k ∈ N+, which can become infeasible for large input dimensionalities. Thus, we also consider
Latin-Hypercube Sampling (LHS) [38], which uses a subset of grid cells such that each interval in
every dimension is covered exactly once (see Fig. 2 (5+6)). Finally, we remark that, to our knowledge,
QMC and RQMC sampling strategies have not been considered in the field of gradient estimation.

Figure 2: Sampling strategies. Left to right: Monte-Carlo (MC), Antithetic Monte-Carlo, Cartesian Quasi-
Monte-Carlo (QMC), Cartesian Randomized-Quasi-Monte-Carlo (RQMC), Latin-Hypercube Sampled QMC
and RQMC. Samples can be transformed via the inverse CDF of a respective distribution.

2.3 SMOOTHING OF THE ALGORITHM VS. THE OBJECTIVE

In algorithmic supervision settings, we can write our training objective as ℓ(h(y)) where y is the
output of a neural network model, h is the algorithm, and the scalar function ℓ is the training objective

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(loss function) applied to the output of the algorithms. In such cases, we can distinguish between
smoothing the algorithms (f = h) and smoothing the loss (f = ℓ ◦ h).

When smoothing the algorithm, we compute the value and derivative of ℓ
(
Eϵ[h(y+ϵ)]

)
. This requires

our loss function ℓ to be differentiable and capable of receiving relaxed inputs. (For example, if the
output of h is binary, then ℓ has to be able to operate on real-valued inputs from (0, 1).) In this case,
the derivative of Eϵ[h(y + ϵ)] is a Jacobian matrix (see Corollary 2).

When smoothing the objective / loss function, we compute the value and derivative of Eϵ[ℓ(h(y+ ϵ))].
Here, the objective / loss ℓ does not need to be differentiable and can be limited to operate on discrete
outputs of the algorithm h. Here, the derivative of Eϵ[ℓ(h(y + ϵ))] is a gradient.

The optimal choice between smoothing the algorithm and smoothing the objective depends on
different factors including the problem setting and algorithm, the availability of a real-variate and
real-valued ℓ, and the number of samples that can be afforded. In practice, we observe that, whenever
we can afford large numbers of samples, smoothing of the algorithm performs better.

3 RELATED WORK

In the theoretical literature of gradient-free optimization, stochastic smoothing has been extensively
studied [18], [19], [39], [40]. Our work extends existing results, generalizing the set of allowed
distributions, considering vector-valued functions, anisotropic scale matrices, enabling k-sample
median differentiation, and a characterization of finite definedness of expectations and their gradients
based on the relationship between characteristics of the density and smoothed functions.

From a more applied perspective, stochastic smoothing has been applied for relaxing convex opti-
mization problems [2], [3], [22]. In particular, convex optimization formulations of argmax [2], [22],
the shortest-path problem [2], and the clustering problem [3] have been considered. We remark that
the perspective of smoothing any function or algorithm f , as in this work, differs from the perspective
of perturbed optimizers. In particular, optimizers are a special case of the functions we consider.

While we consider smoothing functions with real-valued inputs, there is also a rich literature of
differentiating stochastic discrete programs [41]–[43]. These works typically use the inherent
stochasticity from discrete random variables in programs and explicitly model the internals of the
programs. We consider real-variate black-box functions and smooth them with added input noise.

In the literature of reinforcement learning, a special case or analogous idea to stochastic smoothing
can be found in the REINFORCE formulation where the (scalar) score function is smoothed via a
policy [18], [20], [44], [45]. Compared to the literature, we enable new distributions and respective
characterizations of requirements for the score functions. We hope our results will pave their way
into future RL research directions as they are also applicable to RL without major modification.

4 EXPERIMENTS

For the experiments, we consider 4 experimental domains: sorting & ranking, graph algorithms, 3D
mesh rendering, and cryo-electron tomography (cryoET) simulations. The primary objective of the
empirical evaluations is to compare different distributions as well as different variance reduction
techniques. We begin our evaluations by measuring the variance of the gradient estimators, and
then continue with optimizations and using the differentiable relaxations in deep learning tasks. We
remark that, in each of the 4 experiments, f does not have any non-zero gradients, and thus using
first-order or path-wise gradients or gradient estimators is not possible.

4.1 VARIANCE OF GRADIENT ESTIMATORS

We evaluate the gradient variances for different variance reduction techniques in Figures 3 and 4. For
differentiable sorting and ranking, we smooth the (hard) permutation matrix that sorts an input vector
(f : Rn → {0, 1}n×n). For diff. shortest-paths, we smooth the function that maps from a 2D cost-
map to a binary encoding of the shortest-path under 8-neighborhood (f : Rn×n → {0, 1}n×n). Both
functions are not only non-differentiable, but also have no non-zero gradients anywhere. For each
distribution, we compare all combinations of the 3 complementary variance reduction techniques.

On the axis of sampling strategy, we can observe that, whenever available, Cartesian RQMC delivers
the lowest variance. The only exception is the triangular distribution, where latin QMC provides the
lowest uncentered gradient variance (despite being a biased estimator) because of large contributions

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

n
=

3

Gaussian

n
=

5

Logistic Gumbel Cauchy Laplace Triangular
Figure 3: Average L2 norms between ground truth (oracle) and estimated
gradient for different numbers of elements to sort and rank n, and different
distributions. Each plot compares different variance reduction strategies as
indicated in the legend to the right of the caption. Darker is better (smaller
values). Colors are only comparable within each subplot. We use 1 024
samples, except for Cartesian and n = 3 where we use 103 = 1000 samples.
An extension with n ∈ {7, 10} can be found in Figure 11 in the appendix.
Absolute values are reported in Table 8.

MC
QMC (latin)

RQMC (latin)
RQMC (cart.)

no
ne

f
(x

)

L
O

O
no

ne
f
(x

)

L
O

O

regular antithetic

8×
8

Gaussian

12
×

12

Logistic Gumbel Cauchy Laplace Triangular
Figure 4: Average L2 norms between ground truth (oracle) and estimated
gradient for smoothing shortest-path algorithms, and different distributions.
Each plot compares different variance reduction strategies as indicated in the
legend to the right of the caption. Darker is better (smaller values). Colors are
only comparable within each subplot. We use 1 024 samples. Absolute values
are reported in Table 9.

MC
QMC (latin)

RQMC (latin)

no
ne

f
(x

)

L
O

O
no

ne
f
(x

)

L
O

O

regular antithetic

to the gradient for samples close to −1 and 1. Between latin QMC and RQMC, we can observe that
their variance is equal except for the high-dimension cases of the Cauchy distribution and a few cases
of the Gumbel distribution, where QMC is of lower variance. However, due to the bias in QMC,
RQMC would typically still be preferable over QMC. We do not consider Cartesian QMC due to its
substantially greater bias. In heuristic conclusion, RQMC(c.) ≻ RQMC(l.) ⪰ QMC(l.) ≻ MC.

On the axis of using antithetic sampling (left vs. right in each subplot), we observe that it consistently
performs worse than the regular counterpart, except for vanilla MC without a covariate. The reason
for this is that antithetic sampling does lead to a good sample-utilization trade-off once we consider
quasi Monte-Carlo strategies. For vanilla Monte-Carlo, antithetic sampling improves the results as
long as we do not use the LOO covariate. Thus, in the following, we consider antithetic only for MC.

On the axis of the covariate, we observe that LOO consistently provides the lowest gradient variances.
This aligns with intuition from Figure 1 where LOO provides the lowest variance at discontinuities
(in this subsection, f is discontinuous or constant everywhere). Comparing no covariate and f(x),
the better choice has a strong dependence on the individual setting, which makes sense considering
the binary outputs of the algorithms. f(x) would perform well for functions that attain large values
while having fewer discontinuities.

In conclusion, the best setting is Cartesian RQMC with the LOO covariate and without antithetic
sampling whenever available (only for s = nk samples for k ∈ N). The next best choice is typically
RQMC with Latin hypercube sampling.

4.2 DIFFERENTIABLE SORTING & RANKING

After investigating the choices of variance reduction techniques wrt. the variance alone, in this section,
we explore the utility of stochastic smoothing on the 4-digit MNIST sorting benchmark [8]. Here,
at each step, a set of n=5 4-digit MNIST images (such as) is presented to a CNN, which
predicts the displayed scalar value for each of the n images independently. For training the model, no
absolute information about the displayed value is provided, and only the ordering or ranking of the n
images according to their ground truth value is supervised. The goal is to learn an order-preserving

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

#s
=

25
6

#s
=

1
02

4
#s

=
2

04
8

#s
=

8
19

2

Gaussian

#s
=

32
76

8

Logistic Gumbel Cauchy Laplace Triangular

0.76

0.78

0.80

0.82

0.84

Figure 5: Sorting benchmark (n=5).
Exact match (EM) accuracy. Brighter
is better (greater values). Values
between subplots are compara-
ble. IQM over 12 seeds and dis-
played range of [75%, 85.5%].

MC
MC (at.)

QMC (lat.)
RQMC (lat.)
RQMC (car.)

no
ne

f
(x

)

L
O

O

CNN, and the evaluation metric is the fraction of
correctly inferred orders from the CNN (exact
match accuracy). Training the CNN requires a
differentiable ranking operator (that maps from a
vector to a differentiable permutation matrix) for
the ranking loss. Previous work has considered
NeuralSort [8], SoftSort [9], casting sorting as
a regularized OT problem [7], and differentiable
sorting networks (DSNs) [11], [12]. The state-
of-the-art is monotonic DSN [12], which utilizes
a relaxation based on Cauchy distributions to
provide monotonic differentiable sorting, which
has strong theoretical and empirical advantages.

In Figure 5, we evaluate the performance of
generalized stochastic smoothing with different
distributions and different numbers of samples
for each variance reduction technique. We ob-
serve that, while the Cauchy distribution per-
forms poorly for small numbers of samples, for
large numbers of samples, the Cauchy distri-
bution performs best. This makes sense as the
Cauchy distribution has infinite variance and,
for DSNs, provides monotonicity. We remark
that large numbers of samples can easily be af-
forded in many applications (when comparing
the high cost of neural networks to the vanishing
cost of sorting/ranking within a loss function).
(Nevertheless, for 32 768 samples, the sorting
operation starts to become the bottleneck.) The

Table 2: Sorting benchmark results (n = 5), avg. over 12 seeds.
‘best (cv)’ refers to the best sampling strategy, as determined
via cross-validation (thus, there is no bias from the selection
of the strategy). Table 7 includes additional num. of samples
and stds. Baselines are NeuralSort [8], SoftSort [9], Logistic
DSNs [11], Cauchy and Error-optimal DSNs [12], and OT
Sort [7], avg. over at least 5 seeds each.

Baselines Neu.S. Soft.S. L. DSN C. DSN E. DSN OT. S.

— 71.3 70.7 77.2 84.9 85.0 81.1

Sampling #s Gauss. Logis. Gumbel Cauchy Laplace Trian.

vanilla 256 82.3 82.8 79.2 68.1 82.6 81.3
best (cv) 256 83.1 82.7 81.6 55.6 83.7 82.7

vanilla 1k 81.3 83.7 82.0 68.5 80.6 82.8
best (cv) 1k 83.9 84.0 84.2 73.0 84.3 82.4

vanilla 32k 84.2 84.1 84.5 84.9 84.4 83.4
best (cv) 32k 84.4 84.4 84.8 85.1 84.4 84.0

Laplace distribution is the best choice for
smaller numbers of samples. Wrt. vari-
ance reduction, we continue to observe
that vanilla MC performs worst. RQMC
performs best, except for Triangular,
where QMC is best. For the Gumbel
distribution, we observe reduced perfor-
mance for latin sampling. Generally, we
observe that f(x) is the worst choice of
covariate, but the effect lies within stan-
dard deviations. In Table 2, we provide
a numerical comparison to other differen-
tiable sorting approaches. We can observe
that all choices of distributions improve
over all baselines except for the mono-
tonic DSNs, even at smaller numbers of
samples (i.e., without measurable impact
on training speed). Finally, the Cauchy
distribution leads to a small improvement over the SOTA, without requiring a manually designed
differentiable sorting algorithm.

4.3 DIFFERENTIABLE SHORTEST-PATHS

The Warcraft shortest-path benchmark [17] is the established benchmark for differentiable shortest-
path algorithms (e.g., [2], [5], [17]). Here, a Warcraft pixel map is provided, a CNN predicts a 12×12
cost matrix, a differentiable algorithm computes the shortest-path, and the supervision is only the
ground truth shortest-path. Berthet et al. [2] considered stochastic smoothing with Fenchel-Young
(FY) losses, which improves sample efficiency for small numbers of samples. However, the FY loss
does not improve for larger numbers of samples (e.g., Tab. 7.5 in [4]). As computing the shortest-path
is computationally efficient and parallelizable (our implementation is ≈ 5 000× faster than the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

al
go

Gaussian

lo
ss

Logistic Gumbel Cauchy Laplace Triangular
0.70

0.75

0.80

0.85

0.90

0.95

Figure 6: Warcraft shortest-path experiment with
1000 samples. Brighter is better (larger values).
Values between subplots are
comparable. Exact match accuracy
avg. over 5 seeds and displayed
range [70%, 96%]. Additional
settings in Figures 13 and 14.

MC
MC (at.)

QMC (lat.)
RQMC (lat.)

no
ne

f
(x

)

L
O

O

Dijkstra implementation used in previous
work [2], [17]), we can afford substan-
tially larger numbers of samples, improv-
ing the quality of gradient estimation. In
Figure 6, we compare the performance of
different smoothing strategies. The logis-
tic distribution performs best, and smooth-
ing of the algorithm (top) performs better
than smoothing of the loss (bottom). Vari-
ance reduction via sampling strategies (an-
tithetic, QMC, or RQMC) improves perfor-
mance, and the best covariate is LOO. For
reference, the FY loss [2] leads to an accu-
racy of 80.6%, regardless of the number of
samples. GSS consistently achieves 90%+
using 100 samples (see Fig. 13 right).

3 10 30 100 300 1000 3000 10000
samples

1

3

10

30

100

300

1000

in
ve

rs
e

te
m

pe
ra

tu
re

=

1/

0.70

0.75

0.80

0.85

0.90

0.95

Figure 7: Warcraft shortest-path experiment us-
ing Gaussian smoothing of the algorithm (RQMC
with latin hypercube-sampling and LOO covari-
ate). Comparing the effects between the inverse
temperature β and the number of samples. We
observe that with growing numbers of samples,
the optimal inverse temperature increases, i.e., the
optimal standard deviation for the Gaussian noise
decreases. Averaged over 5 seeds.

Using 10 000 samples, and variance reduction, we
achieve 96.6% (Fig. 14) compared to the SOTA of
95.8% [5], a reduction of the error from 4.2% to
3.4%. In Fig. 7, we illustrate that smaller standard
deviations (larger β) are better for more samples.

4.4 DIFFERENTIABLE RENDERING

For differentiable rendering [22], [46]–[51], we
smooth a non-differentiable hard renderer via sam-
pling. This differs from DRPO [22], which uses
stochastic smoothing to relax the Heaviside and
Argmax functions within an already differentiable
renderer. Instead, we consider the renderer as a black-
box function. This has the advantage of noise pa-
rameterized in the coordinate space rather than the
image space. We benchmark stochastic smoothing
for rendering by optimizing the camera-pose (4-DoF)
for a Utah teapot, an experiment inspired by [22],
[51]. We illustrate the results in Figure 8. Here, the

#s
=

16
#s

=
64

Gaussian

#s
=

25
6

Logistic Gumbel Cauchy Laplace Triangular
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 8: Utah teapot camera pose optimiza-
tion. The metric is fraction of camera
poses recovered; the initialization an-
gle errors are uniformly distributed
in [15◦, 75◦]. Brighter is better.
Avg. over 768 seeds. The dis-
played range is [0%, 90%].

MC
MC (at.)

QMC (lat.)
RQMC (lat.)
RQMC (car.)

no
ne

f
(x

)

L
O

O
logistic distribution performs best, and
QMC/RQMC as well as LOO lead to the
largest improvements. While Fig. 8 shows
smoothing the rendering algorithm, Fig. 12
performs smoothing of the training objective /
loss. Smoothing the algorithm is better because
the loss (MSE), while well-defined on discrete
renderings, is less meaningful on discrete
renderings.

4.5 DIFFERENTIABLE
CRYO-ELECTRON TOMOGRAPHY

Transmission Electron Microscopy (TEM) trans-
mits electron beams through thin specimens
to form images [52]. Due to the small elec-
tron beam wavelength, TEM leads to higher
resolutions of up to single columns of atoms.
Obtaining high resolution images from TEM
involves adjustments of various experimental
parameters. We apply smoothing to a realis-
tic black-box TEM simulator [53], optimizing
sets of parameters to approximate reference Tobacco Mosaic Virus (TMV) [54] micrographs. In

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 9, we perform two experiments: a 2-parameter study optimizing the
microscope acceleration voltage and x-position of the specimen, and a
4-parameter study with additional parameters of the particle’s y-position
and the primary lens focal length. The micrograph image sizes are
400× 400 pixels, and accordingly we use smoothing of the loss.

0 100 200 300 400 500 600 700
num. samples

0

2

4

6

8

10

RM
SE

 to
 G

T

MC [none]
MC [LOO]
QMC (latin) [LOO]
RQMC (cart.) [LOO]
RQMC (latin) [none]
RQMC (latin) [LOO]
RQMC (latin) [f(x)]
MC Search

0 200 400 600 800 1000
num. samples

0

2

4

6

RM
SE

 to
 G

T

Figure 9: RMSE to Ground Truth parameters for the 2-parameter (left) and 4-
parameter experiment (right). We optimize the L2 loss between generated and
GT images using loss smoothing. No marker lines correspond to Gaussian, × to
Laplace and △ to Triangular distributions. Laplace and Triangular perform best;
LOO leads to the largest improvements. Add. results are in Figure 15.

Figure 10: (a) Simulated
Transmission Electron mi-
crograph, (b) TMV struc-
ture, with RNA (orange)
and protein stacks (blue).

SUMMARY OF EXPERIMENTAL RESULTS

Generally, we observe that QMC and RQMC perform best, whereas antithetic sampling performs
rather poorly. In low-dimensional problems, it is advisable to use RQMC (cartesian), and in higher
dimensional problems (R)QMC (latin), still works well. As for the covariate, LOO typically performs
best; however, the choice of sampling strategy (QMC/RQMC) is more important than choosing the
covariate. In sorting and ranking, the Cauchy distribution performs best for large numbers of samples
and for smaller numbers of samples, the Laplace distribution performs best. In the shortest-path
case, the logistic distribution performs best, and Gaussian closely follows. Here, we also observe
that with larger numbers of samples, the optimal standard deviation decreases. For differentiable
rendering, the logistic distribution performs best.

LIMITATIONS

A limitation of our work is that zeroth-order gradient estimators are generally only competitive if the
first-order gradients do not exist (see [55] for discussions on exceptions). In this vein, in order to
be competitive with custom designed continuous relaxations like a differentiable renderer, we may
need a very large number of samples, which could become prohibitive for expensive functions f .
The optimal choice of distribution depends on the function to be smoothed, which means there is
no singular distribution that is optimal for all f ; however, if one wants to limit the distribution to a
single choice, we recommend the logistic or Laplace distribution, as, with their simple exponential
convergence, they give a good middle ground between heavy-tailed and light-tailed distributions.
Finally, the variance reduction techniques like QMC/RQMC are not immediately applicable in single
sample settings, and the variance reduction techniques in this paper build on evaluating f many times.

5 CONCLUSION

In this work, we derived stochastic smoothing with reduced assumptions and outline a general
framework for relaxation and gradient estimation of non-differentiable black-box functions. This
enables an increased set of distributions for stochastic smoothing, e.g., enabling smoothing with
the triangular distribution while maintaining full differentiablility of fϵ. We investigated variance
reduction for stochastic smoothing–based gradient estimation from 3 orthogonal perspectives, finding
that RQMC and LOO are generally the best methods, whereas the popular antithetic sampling method
performs rather poorly. Moreover, enabled by supporting vector-valued functions, we disentangled
the algorithm and objective, thus smoothing f while analytically backpropagating through the loss ℓ,
improving gradient estimation. We applied stochastic smoothing to differentiable sorting and ranking,
diff. shortest-paths on graphs, diff. rendering for pose estimation and diff. cryo-ET simulations.
We hope that our work inspires the community to develop their own stochastic relaxations for
differentiating non-differentiable algorithms, operators, and simulators.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We provide proofs for all theoretical statements. For the statements in the main paper, we provide
proofs in Appendix A. We provide experimental details in Appendix E including specification of
hyperparameters, a list of assets, and runtimes for our experiments. Alongside this submission, we
upload the source code of generalized stochastic smoothing. At publication, we will publicly release
the code.

REFERENCES

[1] F. Petersen, M. Cuturi, M. Niepert, H. Kuehne, M. Kagan, W. Neiswanger, and S. Ermon,
“Differentiable Almost Everything: Differentiable Relaxations, Algorithms, Operators, and
Simulators Workshop at ICML 2023,” 2023.

[2] Q. Berthet, M. Blondel, O. Teboul, M. Cuturi, J.-P. Vert, and F. Bach, “Learning with Differ-
entiable Perturbed Optimizers,” in Proc. Neural Information Processing Systems (NeurIPS),
2020.

[3] L. Stewart, F. S. Bach, F. L. López, and Q. Berthet, “Differentiable clustering with perturbed
spanning forests,” Proc. Neural Information Processing Systems (NeurIPS), 2023.

[4] F. Petersen, “Learning with differentiable algorithms,” Ph.D. dissertation, Universität Konstanz,
2022.

[5] F. Petersen, C. Borgelt, H. Kuehne, and O. Deussen, “Learning with algorithmic supervision
via continuous relaxations,” in Proc. Neural Information Processing Systems (NeurIPS), 2021.

[6] M. Cuturi and M. Blondel, “Soft-DTW: A Differentiable Loss Function for Time-Series,” in
Proc. International Conference on Machine Learning (ICML), 2017.

[7] M. Cuturi, O. Teboul, and J.-P. Vert, “Differentiable ranking and sorting using optimal trans-
port,” in Proc. Neural Information Processing Systems (NeurIPS), 2019.

[8] A. Grover, E. Wang, A. Zweig, and S. Ermon, “Stochastic Optimization of Sorting Networks
via Continuous Relaxations,” in Proc. International Conference on Learning Representations
(ICLR), 2019.

[9] S. Prillo and J. Eisenschlos, “Softsort: A continuous relaxation for the argsort operator,” in
Proc. International Conference on Machine Learning (ICML), 2020.

[10] M. Blondel, O. Teboul, Q. Berthet, and J. Djolonga, “Fast Differentiable Sorting and Ranking,”
in Proc. International Conference on Machine Learning (ICML), 2020.

[11] F. Petersen, C. Borgelt, H. Kuehne, and O. Deussen, “Differentiable sorting networks for
scalable sorting and ranking supervision,” in Proc. International Conference on Machine
Learning (ICML), 2021.

[12] F. Petersen, C. Borgelt, H. Kuehne, and O. Deussen, “Monotonic differentiable sorting net-
works,” in Proc. International Conference on Learning Representations (ICLR), 2022.

[13] M. E. Sander, J. Puigcerver, J. Djolonga, G. Peyré, and M. Blondel, “Fast, differentiable and
sparse top-k: A convex analysis perspective,” in Proc. International Conference on Machine
Learning (ICML), 2023.

[14] A. Vauvelle, B. Wild, R. Eils, and S. Denaxas, “Differentiable sorting for censored time-to-
event data,” in ICML 2023 Workshop on Differentiable Almost Everything: Differentiable
Relaxations, Algorithms, Operators, and Simulators, 2023.

[15] N. Shvetsova, F. Petersen, A. Kukleva, B. Schiele, and H. Kuehne, “Learning by sorting:
Self-supervised learning with group ordering constraints,” in Proc. International Conference
on Computer Vision (ICCV), 2023.

[16] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal transport,” in Proc. Neural
Information Processing Systems (NeurIPS), 2013.

[17] M. Vlastelica, A. Paulus, V. Musil, G. Martius, and M. Rolinek, “Differentiation of blackbox
combinatorial solvers,” in Proc. International Conference on Learning Representations (ICLR),
2020.

[18] J. Abernethy, C. Lee, and A. Tewari, “Perturbation techniques in online learning and optimiza-
tion,” Perturbations, Optimization, and Statistics, 2016.

[19] P. Glasserman, Gradient estimation via perturbation analysis. Springer Science & Business
Media, 1990, vol. 116.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

[20] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning,” Machine learning, vol. 8, pp. 229–256, 1992.

[21] S. Liu, T. Li, W. Chen, and H. Li, “Soft Rasterizer: A Differentiable Renderer for Image-based
3D Reasoning,” in Proc. International Conference on Computer Vision (ICCV), 2019.

[22] Q. L. Lidec, I. Laptev, C. Schmid, and J. Carpentier, “Differentiable rendering with perturbed
optimizers,” in Proc. Neural Information Processing Systems (NeurIPS), 2021.

[23] M. C. Fu, “Gradient estimation,” Handbooks in operations research and management science,
vol. 13, pp. 575–616, 2006.

[24] L. De Smet, E. Sansone, and P. Zuidberg Dos Martires, “Differentiable sampling of categorical
distributions using the catlog-derivative trick,” Advances in Neural Information Processing
Systems, vol. 36, 2024.

[25] R. E. Showalter, Hilbert space methods in partial differential equations. Courier Corporation,
2010.

[26] E. P. Wigner, “Characteristic vectors of bordered matrices with infinite dimensions,” Annals of
Mathematics, vol. 62, pp. 548–564, 3 1955.

[27] E. P. Wigner, “On the distribution of the roots of certain symmetric matrices,” Annals of
Mathematics, vol. 67, pp. 325–328, 2 1958.

[28] A. S. Berahas, L. Cao, K. Choromanski, and K. Scheinberg, “A theoretical and empirical
comparison of gradient approximations in derivative-free optimization,” Foundations of Com-
putational Mathematics, vol. 22, no. 2, pp. 507–560, 2022.

[29] A. D. Flaxman, A. T. Kalai, and H. B. McMahan, “Online convex optimization in the bandit
setting: Gradient descent without a gradient,” arXiv preprint cs/0408007, 2004.

[30] T. S. Ferguson, “A representation of the symmetric bivariate cauchy distribution,” The Annals
of Mathematical Statistics, vol. 33, pp. 1256–1266, 4 1962.

[31] M. H. Quenouille, “Notes on bias in estimation,” Biometrika, vol. 43, pp. 353–360, 3–4 1956.
[32] J. W. Tukey, “Bias and confidence in not quite large samples,” The Annals of Mathematical

Statistics, vol. 29, p. 614, 2 1958.
[33] T. Mimori and M. Hamada, “Geophy: Differentiable phylogenetic inference via geometric

gradients of tree topologies,” Advances in Neural Information Processing Systems, 2023.
[34] J. M. Hammersley and K. W. Morton, “A new Monte Carlo technique: Antithetic variates,”

Mathematical proceedings of the Cambridge philosophical society, vol. 52, pp. 449–475, 3
1956.

[35] N. Metropolis and S. M. Ulam, “The monte carlo method,” Journal of the American Statistical
Association, vol. 44, pp. 335–341, 1949.

[36] H. Niederreiter, “Quasi-Monte Carlo methods and pseudo-random numbers,” Bulletin of the
American Mathematical Society, vol. 84, pp. 957–1041, 6 1978.

[37] P. L’Ecuyer, Randomized quasi-Monte Carlo: An introduction for practitioners. Springer,
2018.

[38] M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of three methods for selecting
values of input variables in the analysis of output from a computer code,” Technometrics,
vol. 21, pp. 239–245, 2 1979.

[39] F. Yousefian, A. Nedić, and U. V. Shanbhag, “Convex nondifferentiable stochastic optimization:
A local randomized smoothing technique,” in Proceedings of the 2010 American Control
Conference, IEEE, 2010, pp. 4875–4880.

[40] J. C. Duchi, P. L. Bartlett, and M. J. Wainwright, “Randomized smoothing for stochastic
optimization,” SIAM Journal on Optimization, vol. 22, no. 2, pp. 674–701, 2012.

[41] E. Krieken, J. Tomczak, and A. Ten Teije, “Storchastic: A framework for general stochastic
automatic differentiation,” Advances in Neural Information Processing Systems, vol. 34,
pp. 7574–7587, 2021.

[42] G. Arya, M. Schauer, F. Schäfer, and C. Rackauckas, “Automatic differentiation of programs
with discrete randomness,” Advances in Neural Information Processing Systems, vol. 35,
pp. 10 435–10 447, 2022.

[43] M. Kagan and L. Heinrich, “Branches of a tree: Taking derivatives of programs with discrete
and branching randomness in high energy physics,” arXiv preprint arXiv:2308.16680, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

[44] J. Schmidhuber, Making the world differentiable: on using self supervised fully recurrent neural
networks for dynamic reinforcement learning and planning in non-stationary environments.
Inst. für Informatik, 1990, vol. 126.

[45] R. Sutton and A. Barto, Reinforcement Learning, second edition: An Introduction (Adaptive
Computation and Machine Learning series). MIT Press, 2018, ISBN: 9780262039246.

[46] M. M. Loper and M. J. Black, “OpenDR: An approximate differentiable renderer,” in Proc. Eu-
ropean Conference on Computer Vision (ECCV), 2014.

[47] H. Kato, Y. Ushiku, and T. Harada, “Neural 3D mesh renderer,” in Proc. International Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2018.

[48] F. Petersen, A. H. Bermano, O. Deussen, and D. Cohen-Or, “Pix2Vex: Image-to-Geometry
Reconstruction using a Smooth Differentiable Renderer,” Computing Research Repository
(CoRR) in arXiv, 2019.

[49] H. Kato, D. Beker, M. Morariu, T. Ando, T. Matsuoka, W. Kehl, and A. Gaidon, “Differentiable
rendering: A survey,” Computing Research Repository (CoRR) in arXiv, 2020.

[50] F. Petersen, B. Goldluecke, O. Deussen, and H. Kuehne, “Style agnostic 3d reconstruction via
adversarial style transfer,” in IEEE Winter Conference on Applications of Computer Vision
(WACV), 2022.

[51] F. Petersen, B. Goldluecke, C. Borgelt, and O. Deussen, “GenDR: A Generalized Differentiable
Renderer,” in Proc. International Conference on Computer Vision and Pattern Recognition
(CVPR), 2022.

[52] D. B. Williams, C. B. Carter, D. B. Williams, and C. B. Carter, The transmission electron
microscope. Springer, 1996.

[53] H. Rullgård, L.-G. Öfverstedt, S. Masich, B. Daneholt, and O. Öktem, “Simulation of trans-
mission electron microscope images of biological specimens,” Journal of microscopy, vol. 243,
no. 3, pp. 234–256, 2011.

[54] C. Sachse, J. Z. Chen, P.-D. Coureux, M. E. Stroupe, M. Fändrich, and N. Grigorieff, “High-
resolution electron microscopy of helical specimens: A fresh look at tobacco mosaic virus,”
Journal of molecular biology, vol. 371, no. 3, pp. 812–835, 2007.

[55] H. J. Suh, M. Simchowitz, K. Zhang, and R. Tedrake, “Do differentiable simulators give better
policy gradients?” In Proc. International Conference on Machine Learning (ICML), 2022.

[56] J. T. Chu and H. Hotelling, “The moments of the sample median,” The Annals of Mathematical
Statistics, pp. 593–606, 1955.

[57] J. Arvo and D. Kirk, “Fast ray tracing by ray classification,” ACM Siggraph Computer Graphics,
vol. 21, no. 4, pp. 55–64, 1987.

[58] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,” 2010. [Online].
Available: http://yann.lecun.com/exdb/mnist.

[59] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-performance deep
learning library,” in Proc. Neural Information Processing Systems (NeurIPS), 2019.

13

http://yann.lecun.com/exdb/mnist

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOFS

A.1 PROOF OF LEMMA 3

Proof of Lemma 3. Let Ω ⊂ Rn be the set of values where ∇ϵµ(ϵ) is undefined. µ is differentiable
a.e. and Ω has Lebesgue measure 0.

Recapitulating (5) from the proof of Lemma 1, we have

∇xfϵ(x) = −
∫

f(x+ ϵ)∇ϵµ(ϵ) dϵ . (14)

Replacing ∇ϵµ(ϵ) by any of the weak derivatives ν of µ, which exists and is integrable due to absolute
continuity, we have

∇xfϵ(x) = −
∫

f(x+ ϵ) ν(ϵ) dϵ (15)

= −
∫

Rn\Ω
f(x+ ϵ) ν(ϵ) dϵ −

∫
Ω

f(x+ ϵ) ν(ϵ) dϵ . (16)

Because µ is absolutely continuous and as the Lebesgue measure of Ω is 0, per Hölder’s inequality

∫
Ω

|f(x+ ϵ) ν(ϵ)| dϵ ≤
∫
Ω

|f(x+ ϵ)| dϵ ·
∫
Ω

|ν(ϵ)| dϵ =
∫
Ω

|f(x+ ϵ)| dϵ · 0 = 0 (17)

where
∫
Ω
|ν(ϵ)| dϵ = 0 follows from absolute continuity of µ. Thus,

∫
Ω

f(x+ ϵ) ν(ϵ) dϵ = 0 . (18)

As ν = ∇ϵµ(ϵ) for all ϵ ∈ Rn \ Ω

∇xfϵ(x) = −
∫

Rn\Ω
f(x+ ϵ) ν(ϵ) dϵ −

∫
Ω

f(x+ ϵ) ν(ϵ) dϵ = −
∫

Rn\Ω
f(x+ ϵ)∇ϵµ(ϵ) dϵ , (19)

showing that for all possible choices of ν, the gradient estimator coincides. Thus, we complete our
proof via

∇xfϵ(x) = −
∫

Rn\Ω
f(x+ ϵ)µ(ϵ)∇ϵ logµ(ϵ) dϵ = Eϵ∼µ

[
f(x+ ϵ) · 1ϵ/∈Ω · ∇ϵ− logµ(ϵ)

]
. (20)

After completing the proof, we remark that, if the density was not continuous, e.g., uniform U([0, 1]),

then
∫
{0} ∇ϵµ(ϵ) dϵ =

[
µ(ϵ)

]ϵ↘0

ϵ↗0
= 1. This means that the weak derivative is not defined (or

loosely speaking “the derivative is infinity”), thereby violating the assumptions of Hölder’s inequality
(Eq. 17). This concludes that continuity is required for the proof to hold.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 PROOF OF LEMMA 6

Proof of Lemma 6.

∇γfγϵ(x) = ∇γEϵ∼µ [f(x+ γ · ϵ)] (21)

= ∇γ

∫
f(x+ γ · ϵ)µ(ϵ)dϵ (22)(

u = x+ ϵ · γ ⇒ ϵ = u−x
γ ; du

dϵ = γ ⇒ dϵ = 1
γ du

)
(23)

= ∇γ

∫
f(u)µ(ϵ) 1γ du (24)

=

∫
f(u)∇γ(µ(ϵ)

1
γ)du (25)

=

∫
f(u)(1γ∇γµ(ϵ) + µ(ϵ)∇γ

1
γ)du (26)

=

∫
f(u)(1γ (∇ϵµ(ϵ))

⊤ ∂ϵ
∂γ − µ(ϵ) 1

γ2)du (27)

=

∫
f(u)(1γ (∇ϵµ(ϵ))

⊤ ∂
∂γ

u−x
γ − µ(ϵ) 1

γ2)du (28)

=

∫
f(u)(1γ (∇ϵµ(ϵ))

⊤(− ϵ
γ)−

1
γ2µ(ϵ))du (29)

=

∫
f(u)(−(∇ϵµ(ϵ))

⊤ϵ− µ(ϵ)) 1
γ2 du (30)(

∇ϵ logµ(ϵ) =
1

µ(ϵ)∇ϵµ(ϵ) ⇒ ∇ϵµ(ϵ) = µ(ϵ)∇ϵ logµ(ϵ)
)

(31)

=

∫
f(u)(−(µ(ϵ)∇ϵ logµ(ϵ))

⊤ϵ− µ(ϵ)) 1
γ2 · γ dϵ︸︷︷︸

=du

(32)

=

∫
f(u) · (−(∇ϵ logµ(ϵ))

⊤ϵ− 1) · 1
γ · µ(ϵ) dϵ (33)

=

∫
f(u) · (−1 + (∇ϵ− logµ(ϵ))⊤ϵ) · 1

γ · µ(ϵ) dϵ (34)

= Eϵ∼µ

[
f(x+ γ · ϵ) ·

(
−1 + (∇ϵ− logµ(ϵ))⊤ · ϵ

)
/ γ

]
. (35)

A.3 PROOF OF THEOREM 7

Proof of Theorem 7.
Part 1: ∂fLϵ(x) / ∂x

We perform a change of variables, u = x+ Lϵ =⇒ ϵ = L−1(u− x) and

dϵ =
du

du
dϵ =

dϵ

du
du =

dL−1(u− x)

du
du =

dL−1u

du
du = det(L−1) du (36)

Thus,

fLϵ(x) =

∫
f(x+ Lϵ)µ(ϵ) dϵ =

∫
f(u) · µ(L−1(u− x)) · det(L−1) du . (37)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Now,

∇xfLϵ(x)i = ∇x

∫
f(u)i · µ(L−1(u− x)) · det(L−1) du (38)

=

∫
f(u)i · ∇x

(
µ(L−1(u− x))

)
· det(L−1) du (39)

=

∫
f(u)i · L−1 ·

(
∇ϵ−µ(ϵ)

)
· det(L−1) du (40)

=

∫
f(x+ Lϵ)i · L−1 · ∇ϵ−µ(ϵ) dϵ (41)

=

∫
f(x+ Lϵ)i · L−1 · µ(ϵ) · ∇ϵ− logµ(ϵ) dϵ (42)

= Eϵ∼µ

[
f(x+ Lϵ)i · L−1 · ∇ϵ− logµ(ϵ)

]
(43)

Part 2: ∂fLϵ(x) / ∂L

We use the same change of variables as above.

∇L Eϵ∼µ

[
f(x+ L · ϵ)i

]
(44)

= ∇L

∫
f(x+ Lϵ)i · µ(ϵ) dϵ (45)

= ∇L

∫
f(u)i · µ(L−1(u− x)) · det(L−1) du (46)

=

∫
f(u)i · ∇L

(
µ(L−1(u− x)) · det(L−1)

)
du (47)

=

∫
f(x+ Lϵ)i · ∇L

(
µ(L−1(u− x)) · det(L−1)

)
/ det(L−1) dϵ (48)

= Eϵ∼µ

[
f(x+ Lϵ)i · ∇L

(
µ(L−1(u− x)) · det(L−1)

)
· det(L) /µ(ϵ)

]
(49)

Now, while ∇L

(
µ(L−1(u−x)) · det(L−1)

)
may be computed via automatic differentiation, we can

also solve it in closed-form. Firstly, we can observe that

∇Lµ(L
−1(u− x)) = ∇ϵ⊤µ(ϵ) · ∇L(L

−1 · (u− x)) (50)

= ∇L(∇ϵ⊤µ(ϵ) · L−1 · (u− x)) (51)

= −L−⊤ · ∇ϵµ(ϵ) · (u− x)⊤ · L−⊤ (52)

and

∇L det(L−1) = − det(L)−1 · L−⊤ . (53)

We can combine this to resolve it in closed form to:

∇L

(
µ(L−1(u− x)) · det(L−1)

)
= −L−⊤ · ∇ϵµ(ϵ) · (u− x)⊤ · L−⊤ · det(L−1)

− µ(L−1(u− x)) · det(L)−1 · L−⊤ (54)

= −L−⊤ · ∇ϵµ(ϵ) ·
(
L−1(u− x)

)⊤ · det(L−1)

− µ(ϵ) · det(L)−1 · L−⊤ (55)

= −L−⊤ · ∇ϵµ(ϵ) · ϵ⊤ · det(L−1)

− µ(ϵ) · det(L)−1 · L−⊤ (56)

= −det(L−1) ·
(
L−⊤ · ∇ϵµ(ϵ) · ϵ⊤ + µ(ϵ) · L−⊤) . (57)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Combing this with equation (49), we have
∇L Eϵ∼µ

[
f(x+ L · ϵ)i

]
= Eϵ∼µ

[
f(x+ Lϵ)i · ∇L

(
µ(L−1(u− x)) · det(L−1)

)
· det(L) /µ(ϵ)

]

= Eϵ∼µ

[
f(x+ Lϵ)i · −det(L−1) ·

(
L−⊤ · ∇ϵµ(ϵ) · ϵ⊤ + µ(ϵ) · L−⊤) · det(L) / µ(ϵ)

]
(58)

= Eϵ∼µ

[
f(x+ Lϵ)i · −

(
L−⊤ · ∇ϵµ(ϵ) · ϵ⊤ + µ(ϵ) · L−⊤) / µ(ϵ)] (59)

= Eϵ∼µ

[
f(x+ Lϵ)i · −

(
L−⊤ · ∇ϵµ(ϵ) · ϵ⊤ / µ(ϵ) + L−⊤)] (60)

= Eϵ∼µ

[
f(x+ Lϵ)i · L−⊤ ·

(
− 1 +∇ϵ− logµ(ϵ) · ϵ⊤

)]
. (61)

B DISCUSSION OF PROPERTIES OF f FOR FINITELY DEFINED fϵ AND ∇fϵ

When we have a function f that is not defined with a compact range with f : Rn → R, and have a
density µ with unbounded support (e.g., Gaussian or Cauchy), we may experience fϵ or even ∇fϵ
to not be finitely defined. For example, virtually any distribution with full support on R leads to the
smoothing fϵ of the degenerate function f : x 7→ exp(exp(exp(exp(x2)))) to not be finitely defined.

We say a function, as described via an expectation, is finitely defined iff it is defined (i.e., the
expectation has a value) and its value is finite (i.e., not infinity). For example, the first moment of
the Cauchy distribution is undefined, and the second moment is infinite; thus, both moments are not
finitely defined.

We remark that the considerations in this appendix also apply to prior works that enable the real
plane as the output space of f . We further remark that writing an expression for smoothing and the
gradient of a arbitrary function with non-compact range is not necessarily false; however, e.g., any
claim that smoothness is guaranteed if the gradient jumps from −∞ to ∞ (e.g., the power tower in
the first paragraph) is not formally correct. We remark that characterizing valid fs via a Lipschitz or
other continuity requirement is not applicable because this would defeat the goal of differentiating
non-differentiable and discontinuous f .

In the following, we discuss when fϵ or ∇fϵ are finitely defined. For this, let us cover a few
preliminaries:

Let a function f(x) be called O(b(x)) bounded if there exist c, v ∈ O(b(x)) and c̄, v̄ ∈ R such that
c̄+ c(x) ≤ f(x) ≤ v̄ + v(x) ∀x . (62)

For example, a function may be called polynomially bounded (wrt. a polynomial b(x)) if (but not
only if) −b(x) ≤ f(x) ≤ b(x).

Moreover, let a density µ with support R be called decaying faster than b(x) if µ(x) ∈ o(b(x)). For
example, the standard Gaussian density decays faster than exp(−|x|), i.e., µ(x) ∈ o(exp(−|x|)).
Additionally, we can say that Gaussian density decays at rate exp(−x2), i.e., µ(x) ∈ θ(exp(−x2)).

Now, we can formally characterize finite definedness of fϵ and ∇fϵ:
Lemma 8 (Finite Definedness of fϵ). fϵ is finitely defined if there exists an increasing function b(·)
such that

f(x) is bounded by O(b(x)) and µ(ϵ) ∈ O(1/b(ϵ+ αϵ)/ϵ(1+α)) (63)
for some α > 0.

Proof. To show that fϵ exists, we need to show that∫
R

∣∣f(x+ ϵ) · µ(ϵ)
∣∣ dϵ (64)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

is finite for all x. Let f̃ be an absolutely upper bound of f , and w.l.o.g. let us choose f̃(y) = b(y) + b̄
with b(y) > 1 for y ∈ R. Further, as per the assumptions µ(ϵ) < 1

ϵ(1+α)·b(ϵ+αϵ)
· w for all ϵ < ω1 as

well as all ϵ > ω2 for some w,ω1, ω2. Let us restrict ω1, ω2 to ω1 < −|x|/α and ω2 > |x|/α. It is
trivial to see that ∫ ω2

ω1

∣∣f(x+ ϵ) · µ(ϵ)
∣∣ dϵ < ∞ . (65)

W.l.o.g., let us consider the upper remainder:∫ ∞

ω2

∣∣f(x+ ϵ) · µ(ϵ)
∣∣ dϵ ≤ ∫ ∞

ω2

∣∣f̃(x+ ϵ) · µ(ϵ)
∣∣ dϵ (66)

≤
∫ ∞

ω2

∣∣∣∣(b(x+ ϵ) + b̄) · 1

ϵ(1+α) · b(ϵ+ αϵ)
· w

∣∣∣∣ dϵ (67)

=

∫ ∞

ω2

∣∣∣∣(b(x+ ϵ)

ϵ(1+α) · b(ϵ+ αϵ)
+

b̄

ϵ(1+α) · b(ϵ+ αϵ)

)
· w

∣∣∣∣ dϵ (68)

≤
∫ ∞

ω2

∣∣∣∣(b(x+ ϵ)

ϵ(1+α) · b(ϵ+ |x|)
+

b̄

ϵ(1+α) · b(ϵ+ αϵ)

)
· w

∣∣∣∣ dϵ (69)

≤
∫ ∞

ω2

∣∣∣∣(1

ϵ(1+α)
+

b̄

ϵ(1+α) · b(ϵ+ αϵ)

)
· w

∣∣∣∣ dϵ (70)

<

∫ ∞

ω2

∣∣∣∣ 1

ϵ(1+α)
+

b̄

ϵ(1+α)

∣∣∣∣ dϵ · w (71)

=

∫ ∞

ω2

∣∣∣∣ 1

ϵ(1+α)

∣∣∣∣ dϵ · w · (1 + b̄) < ∞ . (72)

That
∫∞
ω2

1
ϵ(1+α) dϵ is finite for the step in (72) can be shown via∫ ∞

ω2

1

ϵ(1+α)
dϵ =

∫ ∞

ω2

ϵ−1−α dϵ =

[
− 1

α
ϵ−α

]∞
ω2

=

[
− 1

α
lim
ϵ→∞

ϵ−α +
1

α
ω−α
2

]
=

1

α
ω−α
2 .

The same can be shown analogously for the integral
∫ ω1

−∞. This completes the proof.

Lemma 9 (Finite Definedness of ∇fϵ). ∇fϵ is finitely defined if there exists an increasing function
b(·) such that

f(x) is bounded by O(b(x)) and
∣∣µ(ϵ) · ∇ϵ− logµ(ϵ)

∣∣ ∈ O(1/b(ϵ+ αϵ)/ϵ(1+α)) (73)

for some α > 0.

Proof. The proof of Lemma 8 also applies here, but with
∣∣µ(ϵ) · ∇ϵ− logµ(ϵ)

∣∣ < 1
ϵ(1+α)·b(ϵ+αϵ)

· w
for all ϵ < ω1 as well as all ϵ > ω2 for some w,ω1, ω2.

Example 10 (Cauchy and the Identity). Let µ be the density of a Cauchy distribution and let
f(x) = x. The tightest b for f(x) ∈ O(b(x)) is b(x) = x.

We have µ(ϵ) ∈ θ(1/ϵ2) and thus µ(ϵ) /∈ o(1/ϵ2). fϵ, i.e., the mean of the Cauchy distribution is not
defined.

However, its gradient ∇fϵ = 1 is indeed finitely defined. In particular, we can see that

µ(ϵ) · ∇ϵ− logµ(ϵ) =
2ϵ

π · (1 + ϵ2) · (1 + ϵ2)
∈ θ(1/ϵ3) . (74)

This is an intriguing property of the Cauchy distribution (or other edge cases) where fϵ is undefined
whereas ∇fϵ is finitely and well-defined. In practice, we often only require the gradient for stochastic
gradient descent, which means that we often only require ∇fϵ to be well defined and do not necessarily
need to evaluate fϵ depending on the application.

Additional discussions for the Cauchy distribution and an extension of stochastic smoothing to the
k-sample median can be found in the next appendix.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C STOCHASTIC SMOOTHING, MEDIANS, AND THE CAUCHY DISTRIBUTION

In this section, we provide a discussion of a special case of stochastic smoothing with the Cauchy
distribution, and provide an extension of stochastic smoothing to the k-sample median. This becomes
important if the range of f is not subset of a compact set, and thus Eϵ∼µ

[
f(x+ϵ)

]
becomes undefined

for some choice of distribution µ. For example, for f(x+ ϵ) = ϵ and µ being the density of a Cauchy
distribution, Eϵ∼µ

[
f(x+ ϵ)

]
= Eϵ∼µ

[
ϵ
]

is undefined. Nevertheless, even in this case, the gradient
estimators discussed in this paper for ∇xEϵ∼µ

[
f(x + ϵ)

]
remain well defined. This is practically

relevant because Eϵ∼µ

[
f(x+ ϵ)

]
does not need to be finitely defined as long as ∇xEϵ∼µ

[
f(x+ ϵ)

]
is well defined. Further, we remark that the undefinedness of Eϵ∼µ

[
f(x+ ϵ)

]
requires the range of f

to be unbounded, i.e., if there exists a maximum / minimum possible output, then it is well defined.
Moreover, there exist f with unbounded range for which Eϵ∼µ

[
f(x+ ϵ)

]
also remains well defined.

To account for cases where Eϵ∼µ

[
f(x + ϵ)

]
may not be well defined or not a robust statistic, we

introduce an extension of smoothing to the median. We begin by defining the k-sample median.

Definition 11 (k-Sample Median). For a number of samples k > 1, and a distribution ζ, we say that

Ez1,z2,...,zk∼ζ

[
median {z1, z2, ..., zk}

]
(75)

is the k-sample median. For multivariate distributions, let median be the per-dimension median.

Indeed, for k ≥ 5, the k-sample median estimator is shown to have finite variance for the Cauchy
distribution (Theorem 3 and Example 2 in [56]), which implies a well defined k-sample median.
Moreover, for any distribution with a density of the median bounded away from 0, the first and second
moments are guaranteed to be finitely defined for sufficiently large k. This is important for non-trivial
f with f(ϵ) ̸= ϵ for at least one ϵ with ϵ ∼ µ, which implies ζ ̸= µ. Thus, rather than computing and
differentiating the expected value, we can differentiate the k-sample median.

Lemma 12 (Differentiation of the k-Sample Median). With the k-sample median smoothing as

f (k)
ϵ (x) = Eϵ1,...,ϵk∼µ

[
median {f(x+ ϵ1), ..., f(x+ ϵk)}

]
, (76)

we can differentiate f
(k)
ϵ (x) as

∇xf
(k)
ϵ (x) = Eϵ1,...,ϵk∼µ

[
f(x+ ϵr(ϵ)) · ∇ϵr(ϵ)− logµ(ϵr(ϵ))

]
(77)

where r(ϵ) is the arg-median of the set {f(x+ ϵ1), ..., f(x+ ϵk)}, which is equivalent to the implicit
definition via f(x+ ϵr(ϵ)) = median {f(x+ ϵ1), ..., f(x+ ϵk)}.

Proof. We denote ϵ1:k ∼ µ(1:k) such that ϵ1:k =
[
ϵ⊤1 , ..., ϵ

⊤
k

]⊤
and ϵi ∼ µ ∀i ∈ {1, ..., k}.

∇xf
(k)
ϵ (x) = ∇xEϵ1,...,ϵk∼µ

[
median {f(x+ ϵ1), ..., f(x+ ϵk)}

]
(78)

= ∇xEϵ1:k∼µ(1:k)

[
median {f(x+ ϵ1), ..., f(x+ ϵk)}

]
(79)

= ∇x

∫
Rn·k

median {f(x+ ϵ1), ..., f(x+ ϵk)} · µ(1:k)(ϵ1:k) dϵ1:k (80)

(
x1, ..., xk = x

)
=

k∑
j=1

∇xj

∫
Rn·k

median {f(x1 + ϵ1), ..., f(xk + ϵk)} · µ(1:k)(ϵ1:k) dϵ1:k (81)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

As a shorthand, we abbreviate the indicator 1f(xj+ϵj)=median{f(x1+ϵ1),...,f(xk+ϵk)} as 1j,ϵ1:k and
abbreviate 1f(uj)=median{f(u1),...,f(uk)} as 1j,u1:k

:

∇xf
(k)
ϵ (x) =

k∑
j=1

∇xj

∫
Rn·k

f(xj + ϵj) · 1j,ϵ1:k · µ(1:k)(ϵ1:k) dϵ1:k (82)

=

k∑
j=1

∇xj

∫
Rn·k

f(u) · 1j,u1:k · µ(1:k)(u1:k − x) du1:k (83)

=

k∑
j=1

∫
Rn·k

f(u) · 1j,u1:k · ∇xj
µ(1:k)(u1:k − x) du1:k (84)

=

k∑
j=1

∫
Rn·k

f(x+ ϵj) · 1j,ϵ1:k · −∇ϵjµ
(1:k)(ϵ1:k) dϵ1:k (85)

We have

∇ϵjµ
(1:k)(ϵ1:k) = µ(1:k)(ϵ1:k) · ∇ϵj logµ

(1:k)(ϵ1:k) = µ(1:k)(ϵ1:k) · ∇ϵj logµ(ϵj) . (86)

Thus,

∇xf
(k)
ϵ (x) =

k∑
j=1

∫
Rn·k

f(x+ ϵj) · 1j,ϵ1:k · −µ(1:k)(ϵ1:k) · ∇ϵj logµ(ϵj) dϵ1:k (87)

=

∫
Rn·k

k∑
j=1

[
1j,ϵ1:k · f(x+ ϵj) · ∇ϵj− logµ(ϵj)

]
· µ(1:k)(ϵ1:k) dϵ1:k (88)

Indicating the choice of median in dependence of ϵ1:k, we define r(ϵ1:k) s.t. 1r(ϵ1:k),ϵ1:k = 1. Thus,

∇xf
(k)
ϵ (x) =

∫
Rn·k

f(x+ ϵr(ϵ1:k)) · ∇ϵr(ϵ1:k)
− logµ(ϵr(ϵ1:k)) · µ

(1:k)(ϵ1:k) dϵ1:k (89)

= Eϵ1:k∼µ(1:k)

[
f(x+ ϵr(ϵ1:k)) · ∇ϵr(ϵ1:k)

− logµ(ϵr(ϵ1:k))
]

(90)

This concludes the proof.

Empirically, we can estimate ∇xf
(k)
ϵ (x) for s propagated samples (s > k) without bias as

∇xf
(k)
ϵ (x) ≜

s∑
i=1

[
qi · f(x+ ϵi) · ∇ϵi− logµ(ϵi)

]
ϵ1, ..., ϵs ∼ µ (91)

where qi is the probability of f(x + ϵi) being the median in a subset of k samples, i.e., under
uniqueness of gis, we have

qi =

∑
{h1,...,hk}⊂{g1,...,gs}

1
(
gi = median{h1, ..., hk}

)
(
s

k

) gi := f(x+ ϵi) . (92)

We remark that, in case of non-uniqueness, it is adequate to split the probability among the candidates;
however, under non-discreteness assumptions on f (density of ζ < ∞, the converse typically implies
the range of f being a subset of a compact set), this almost surely (with probability 1) does not occur.

We have shown that the k-sample median f
(k)
ϵ (x) is differentiable and demonstrated an unbiased

gradient estimator for it. A straightforward extension for the case of f being differentiable is
differentiating through the median via a k → ∞-sample median, e.g., via setting s = k2. The
k → ∞ extension for differentiating through the median itself requires f being differentiable because,
for discontinuous f , f (k)

ϵ (x) is differentiable only for k < ∞. (As an illustration, the median of the
Heaviside function under a symmetric perturbation µ with density at 0 bounded away from 0 is the
exactly the Heaviside function.)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D VARIANCES AND LIPSCHITZ CONSTANTS FOR EACH DISTRIBUTION

In this section, we provide variances of the gradient estimator ∇fϵ and Lipschitz constants of fϵ for
each of the 6 distributions considered in the paper.

Table 3: Lipschitz constants for each distribution for functions f : Rn → {0, 1}m.

Distribution Lipschitz constant

Gaussian 1√
2πγ

≈ 0.399/γ

Logistic 0.25/γ

Gumbel 1
eγ

≈ 0.368/γ

Cauchy 1
πγ

≈ 0.318/γ
Laplace 0.5/γ

Triangular 1.0/γ

In Table 4, we can see that the Laplace distribution performs best, consistently achieving a variance
of 0, which however, in this particular case is due to the simple nature of the problem. The second
best distribution is the logistic distribution. The logistic behavior is similar to the Laplace distribution
also from an analytical perspective (the logistic can be seen as a smoothed variant of the Laplace).

Table 4: Variances in the case of the sign function (f(x) = sign(x)), smoothed with each respective distribution,
and evaluating the variance at point 0, in dependence of the number of samples s. To standardize the distributions,
we consider 2 settings: scaling each input distribution to a variance of 1, as well as choosing a scale such that the
Lipschitz constant of the resulting smooth function is 1.

f(x) = sign(x) Var = 1 Lipschitz = 1

Gaussian 0.364/s 0.573/s
Logistic 0.272/s 0.336/s
Gumbel 0.759/s 0.859/s
Cauchy n/a 0.234/s
Laplace 0.000/s 0.000/s
Triangular 1.747/s 2.496/s

In the more complex setting of Table 5, we observe similar behavior. The Laplace dist. has a variance
different from 0, but still has the smallest variance. Extending the variances to RQMC (latin) in
Table 6, we observe similar behavior, but substantially smaller variances.

Table 5: Variances in the case of f being the sign of the sine function (f(x) = sign(sin(x))), smoothed with
each respective distribution, and evaluating the variance at point 0, in dependence of the number of samples s.

f(x) = sign(sin(x)) Var = 1 Lipschitz = 1

Gaussian 0.382/s 0.588/s
Logistic 0.318/s 0.690/s
Gumbel 0.840/s 1.130/s
Cauchy n/a 0.452/s
Laplace 0.093/s 0.144/s
Triangular 1.727/s 2.609/s

Table 6: Variances for f(x) = sign(x)) with RQMC (latin) at s = 100 samples, which drastically reduces the
variance further. As the rate is faster than 1/s, we report it for 100 samples.

f(x) = sign(x) RQMC, Var = 1 RQMC, L = 1

Gaussian 0.0000224 0.0000355
Logistic 0.0000011 0.0000013
Gumbel 0.0001780 0.0002008
Cauchy n/a 0.0000041
Laplace 0.0000000 0.0000000
Triangular 0.0109100 0.0156400

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

E EXPERIMENTAL DETAILS

MNIST Sorting Benchmark Experiments We train for 100 000 steps at a learning rate of 0.001
with the Adam optimizer using a batch size of 100. Following the requirements of the benchmark, we
use the same model as previous works [7], [8], [11]. That is, two convolutional layers with a kernel
size of 5× 5, 32 and 64 channels respectively, each followed by a ReLU and MaxPool layer; after
flattening, this is followed by a fully connected layer with a size of 64, a ReLU layer, and a fully
connected output layer mapping to a scalar. For each distribution and number of samples, we choose
the optimal γ ∈ {1, 1/3, 0.1}.

Warcraft Shortest-Path Benchmark Experiments Following the established protocol [17], we
train for 50 epochs with the Adam optimizer at a batch size of 70 and an initial learning rate of 0.001.
The learning rate decays by a factor of 10 after 30 and 40 epochs each. The model is the first block of
ResNet18. The hyperparameter γ = 1/β as specified in Figures 13 and 14.

Utah Teapot Camera Pose Optimization Experiments We initialize the pose to be perturbed by
angles uniformly sampled from [15◦, 75◦]. The ground truth orientation is randomly sampled from
the sphere of possible orientations. The ground truth camera angle is 20◦, and the ground truth camera
distance is uniformly sampled from [2.5, 4]. The initial camera distance is sampled as being uniformly
offset by [−0.5, 6], thus the feasible set of initial camera distance guesses lies in [2, 10]. The initial
camera angle is uniformly sampled from [10◦, 30◦]. We optimize for 1 000 steps with the Adam
optimizer [(β1, β2) = (0.5, 0.99)] and the CosineAnnealingLR scheduler with an initial learning
rate of 0.3. We schedule the diagonal of L to decay exponentially from [0.1, 5◦, 5◦, 0.25◦] · 100.75
to [0.1, 5◦, 5◦, 0.25◦] · 10−1.75 (the dimensions are camera distance, 2 pose angles, and the camera
angle). As discussed, the success criterion is finding the angle within 5◦ of the ground truth angle.
There is typically no local minimum within 5◦ and it is a reliable indicator for successful alignment.

Differentiable Cryo-Electron Tomography Experiments The ground truth values of the parame-
ters are set to 300 kV for acceleration voltage, 3 mm for the focal length, and the ground truth sample
specimen is centered as (x, y) = (0, 0) nm units. For reporting errors, the acceleration voltages are
normalized by a factor of 100 to ensure that all parameters vary over commensurate ranges. For the
2-parameter optimization, the feasible set of acceleration voltage varied over a range of [0, 1000] kV
and the feasible set of the specimen’s x-position varied over the range [−5, 5]. For the 4-parameter
optimization, the feasible set of acceleration voltage varied over a range of [0, 600] kV, the focal
length ranges over [0, 6] mm, the x- and y-positions range over [−3, 3]. We use the Adam optimizer
for both experiments, with [(β1, β2) = (0.5, 0.9)]. For the MC Search baseline, we generate sets of
n uniform random points in the feasible region of the parameters, generate micrographs for these
random parameter tuples using the TEM simulator [53], and identify the parameter tuple in the set
having the lowest mean squared error with respect to the ground truth image. The RMSE between
this parameter tuple and the ground truth parameters is the metric for the specific set of n randomly
generated values. This is repeated 20 times to obtain the mean and standard deviation of the RMSE
metric at that n.

E.1 ASSETS

List of assets:

• The sixth platonic solid (aka. Teapotahedron or Utah tea pot) [57] [License N/A]
• Multi-digit MNIST [8], which builds on MNIST [58] [MIT License / CC License]
• Warcraft shortest-path data set [17] [MIT License]
• PyTorch [59] [BSD 3-Clause License]
• TEM-simulator [53] [GNU General Public License]

E.2 RUNTIMES

The runtimes for sorting and shortest-path experiments are for one full training on 1 GPU. The
pose optimization experiment runtimes are the total time for all 768 seeds on 1 GPU. For the TEM-

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

simulator, we report the CPU time per simulation sample, which is the dominant and only the
measureable component of the total optimization routine time. The choice of distribution, covariate,
and choice of variance reduction does not have a measurable effect on training times.

• MNIST Sorting Benchmark Experiments [1 Nvidia V100 GPU]
– Training w/ 256 samples: 65 min
– Training w/ 1 024 samples: 67 min
– Training w/ 2 048 samples: 68 min
– Training w/ 8 192 samples: 77 min
– Training w/ 32 768 samples: 118 min

• Warcraft Shortest-Path Benchmark Experiments [1 Nvidia V100 GPU]
– Training w/ 10 samples: 9 min
– Training w/ 100 samples: 19 min
– Training w/ 1 000 samples: 26 min
– Training w/ 10 000 samples: 101 min

• Utah Teapot Camera Pose Optimization Experiments [1 Nvidia A6000 GPU]
– Optimization on 768 seeds w/ 16 samples: 25 min
– Optimization on 768 seeds w/ 64 samples: 81 min
– Optimization on 768 seeds w/ 256 samples: 362 min

• Differentiable Cryo-Electron Tomography Experiments [CPU: 44 Intel Xeon Gold 5118]
– Simulator time per sample on 1 CPU core: 67 sec

F ADDITIONAL EXPERIMENTAL RESULTS

Table 7: Extension of Table 2 with additional numbers of samples and standard deviations.

Baselines Neu.S. Soft.S. L. DSN C. DSN E. DSN OT. S.

— 71.3 70.7 77.2 84.9 85.0 81.1

Sampling #s Gauss. Logis. Gumbel Cauchy Laplace Trian.

vanilla 256 82.3±2.0 82.8±0.9 79.2±9.7 68.1±19.3 82.6±0.8 81.3±1.2
best (cv) 256 83.1±1.6 82.7±1.8 81.6±3.6 55.6±13.3 83.7±0.8 82.7±1.1

vanilla 1024 81.3±9.1 83.7±0.7 82.0±1.6 68.5±24.8 80.6±9.0 82.8±1.0
best (cv) 1024 83.9±0.6 84.0±0.5 84.2±0.6 73.0±12.6 84.3±0.6 82.4±1.6

vanilla 2048 84.1±0.6 83.6±0.8 84.0±0.5 75.7±11.6 83.8±0.7 83.2±0.6
best (cv) 2048 84.2±0.5 84.2±0.6 84.6±0.4 82.0±2.2 84.8±0.5 83.4±0.5

vanilla 8192 84.0±0.6 84.2±0.8 84.0±0.6 83.6±1.0 83.9±1.0 83.6±0.7
best (cv) 8192 84.4±0.6 84.5±0.5 84.1±0.7 84.3±0.5 84.3±0.4 83.7±0.4

vanilla 32768 84.2±0.5 84.1±0.4 84.5±0.7 84.9±0.5 84.4±0.5 83.4±0.8
best (cv) 32768 84.4±0.4 84.4±0.4 84.8±0.5 85.1±0.4 84.4±0.4 84.0±0.3

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

n
=

3
n

=
5

n
=

7

Gaussian

n
=

10

Logistic Gumbel Cauchy Laplace Triangular

Figure 11: Average L2 norms between ground truth (oracle) and estimated
gradient for different numbers of elements to sort and rank n, and different
distributions. Each plot compares different variance reduction strategies as
indicated in the legend to the right of the caption. Darker is better (smaller
values). Colors are only comparable within each subplot. We use 1 024
samples, except for Cartesian and n = 3 where we use 103 = 1000 samples.

MC
QMC (latin)

RQMC (latin)
RQMC (cart.)

no
ne

f
(x

)

L
O

O
no

ne
f
(x

)

L
O

O

regular antithetic

#s
=

16
#s

=
64

Gaussian

#s
=

25
6

Logistic Gumbel Cauchy Laplace Triangular
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 12: Utah teapot camera pose optimization with smoothing of the loss,
compared to Figure 8, which performs smoothing of the algorithm. Smoothing
the algorithm is consistently better, with the largest effect for larger numbers
of samples. Results averaged over 768 seeds.

MC

MC (at.)

QMC (lat.)

RQMC (lat.)

RQMC (car.)

no
ne

f
(x

)

L
O

O

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

al
go

 |
=

1
al

go
 |

=
3

al
go

 |
=

10
al

go
 |

=
30

al
go

 |
=

10
0

lo
ss

 |
=

1
lo

ss
 |

=
3

lo
ss

 |
=

10
lo

ss
 |

=
30

Gaussian

lo
ss

 |
=

10
0

Logistic Gumbel Cauchy Laplace Triangular

al
go

 |
=

1
al

go
 |

=
3

al
go

 |
=

10
al

go
 |

=
30

al
go

 |
=

10
0

lo
ss

 |
=

1
lo

ss
 |

=
3

lo
ss

 |
=

10
lo

ss
 |

=
30

Gaussian

lo
ss

 |
=

10
0

Logistic Gumbel Cauchy Laplace Triangular

Figure 13: Warcraft shortest-path experiment. Left: 10 samples. Right: 100
samples. Averaged over 5 seeds. Brighter is better. Values between subplots
are comparable. The displayed range is [70%, 96.5%].

MC

MC (antith.)

QMC (latin)

RQMC (latin)

no
ne

f
(x

)

L
O

O

0.70

0.75

0.80

0.85

0.90

0.95

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

al
go

 |
=

3
al

go
 |

=
10

al
go

 |
=

30
al

go
 |

=
10

0
al

go
 |

=
30

0
lo

ss
 |

=
3

lo
ss

 |
=

10
lo

ss
 |

=
30

lo
ss

 |
=

10
0

Gaussian

lo
ss

 |
=

30
0

Logistic Gumbel Cauchy Laplace Triangular

al
go

 |
=

3
al

go
 |

=
10

al
go

 |
=

30
al

go
 |

=
10

0
al

go
 |

=
30

0
lo

ss
 |

=
3

lo
ss

 |
=

10
lo

ss
 |

=
30

lo
ss

 |
=

10
0

Gaussian

lo
ss

 |
=

30
0

Logistic Gumbel Cauchy Laplace Triangular

Figure 14: Warcraft shortest-path experiment. Left: 1 000 samples. Right:
10 000 samples. Averaged over 5 seeds. Brighter is better. Values between
subplots are comparable. The displayed range is [70%, 96.5%].

MC

MC (antith.)

QMC (latin)

RQMC (latin)

no
ne

f
(x

)

L
O

O

0.70

0.75

0.80

0.85

0.90

0.95

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500 600 700
num. samples

0

2

4

6

8

10

RM
SE

 to
 G

T

MC [none]
MC [LOO]
QMC (latin) [LOO]
RQMC (cart.) [LOO]
RQMC (latin) [none]
RQMC (latin) [LOO]
RQMC (latin) [f(x)]
MC Search

0 100 200 300 400 500 600 700
num. samples

0

2

4

6

8

10

RM
SE

 to
 G

T

MC [none]
MC [LOO]
QMC (latin) [LOO]
RQMC (cart.) [LOO]
RQMC (latin) [none]
RQMC (latin) [LOO]
RQMC (latin) [f(x)]
MC Search

0 100 200 300 400 500 600 700
num. samples

0

2

4

6

8

10

RM
SE

 to
 G

T

MC [none]
MC [LOO]
QMC (latin) [LOO]
RQMC (cart.) [LOO]
RQMC (latin) [none]
RQMC (latin) [LOO]
RQMC (latin) [f(x)]
MC Search

0 200 400 600 800 1000
num. samples

0

2

4

6

8

RM
SE

 to
 G

T

MC [none]
MC [LOO]
QMC (latin) [LOO]
RQMC (cart.) [LOO]
RQMC (latin) [none]
RQMC (latin) [LOO]
RQMC (latin) [f(x)]
MC Search

Figure 15: Cryo-Electron Tomography Experiments: RMSE with respect to Ground Truth parameters for
different number of parameters optimized and for different number of samples per optimization step: (Top
Left) 2-parameters & number of samples=9, (Top Right) 2-parameters & number of samples=25, (Bottom Left)
2-parameters & number of samples=36, (Bottom Right) 4-parameters. No marker lines correspond to Gaussian,
× corresponds to Laplace, and △ corresponds to Triangular distributions. Ascertaining optimal parameters
with minimal evaluations is important not just for high resolution imaging, but also to minimize radiation
damage to the specimen. In this light, of the covariate choices, LOO generally leads to best improvement and
none consistently leads to deterioration in performance. The Laplace and Triangular distributions lead to best
performance. For the Gaussian distribution, Cartesian RQMC is generally exhibiting best results.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 8: Individual absolute values from the variance simulations for differentiable sorting in Figure 3. The
minimum and values within 1% of the minimum are indicated as bold.

(a) values for Gaussian (n = 3)

none f(x) LOO none f(x) LOO

regular antithetic

MC 0.0084 0.0079 0.0046 0.0055 0.0054 0.0053
QMC (lat.) 0.0029 0.0030 0.0030 0.0036 0.0036 0.0036
RQMC (l.) 0.0030 0.0030 0.0030 0.0036 0.0035 0.0036
RQMC (c.) 0.0012 0.0013 0.0012 0.0014 0.0014 0.0014

(b) values for Gaussian (n = 5)

none f(x) LOO none f(x) LOO

regular antithetic

MC 0.0241 0.0308 0.0171 0.0192 0.0192 0.0192
QMC (lat.) 0.0143 0.0144 0.0144 0.0164 0.0164 0.0164
RQMC (l.) 0.0145 0.0145 0.0144 0.0164 0.0164 0.0162
RQMC (c.) 0.0103 0.0116 0.0097 — — —

(c) values for Logistic (n = 3)

none f(x) LOO none f(x) LOO

regular antithetic

MC 0.0028 0.0030 0.0016 0.0019 0.0019 0.0019
QMC (lat.) 0.0012 0.0012 0.0012 0.0014 0.0014 0.0014
RQMC (l.) 0.0012 0.0012 0.0012 0.0014 0.0013 0.0014
RQMC (c.) 0.0003 0.0003 0.0003 0.0004 0.0004 0.0004

(d) values for Logistic (n = 5)

none f(x) LOO none f(x) LOO

regular antithetic

MC 0.0081 0.0114 0.0061 0.0067 0.0067 0.0067
QMC (lat.) 0.0053 0.0053 0.0054 0.0060 0.0060 0.0060
RQMC (l.) 0.0053 0.0054 0.0053 0.0060 0.0060 0.0059
RQMC (c.) 0.0033 0.0036 0.0033 — — —

(e) values for Gumbel (n = 3)

none f(x) LOO none f(x) LOO

regular antithetic

MC 0.0086 0.0082 0.0048 — — —
QMC (lat.) 0.0033 0.0033 0.0032 — — —
RQMC (l.) 0.0033 0.0033 0.0033 — — —
RQMC (c.) 0.0017 0.0018 0.0014 — — —

(f) values for Gumbel (n = 5)

none f(x) LOO none f(x) LOO

regular antithetic

MC 0.0243 0.0323 0.0177 — — —
QMC (lat.) 0.0151 0.0149 0.0150 — — —
RQMC (l.) 0.0150 0.0151 0.0150 — — —
RQMC (c.) 0.0124 0.0148 0.0109 — — —

(g) values for Cauchy (n = 3)

none f(x) LOO none f(x) LOO

regular antithetic

MC 0.0043 0.0044 0.0026 0.0030 0.0030 0.0030
QMC (lat.) 0.0022 0.0022 0.0022 0.0027 0.0027 0.0027
RQMC (l.) 0.0022 0.0022 0.0022 0.0027 0.0026 0.0027
RQMC (c.) 0.0006 0.0006 0.0005 0.0006 0.0006 0.0006

(h) values for Cauchy (n = 5)

none f(x) LOO none f(x) LOO

regular antithetic

MC 0.0123 0.0169 0.0094 0.0102 0.0101 0.0102
QMC (lat.) 0.0088 0.0087 0.0088 0.0098 0.0098 0.0098
RQMC (l.) 0.0088 0.0088 0.0087 0.0098 0.0097 0.0097
RQMC (c.) 0.0061 0.0070 0.0056 — — —

(i) values for Laplace (n = 3)

none f(x) LOO none f(x) LOO

regular antithetic

MC 0.0086 0.0074 0.0044 0.0054 0.0054 0.0054
QMC (lat.) 0.0037 0.0037 0.0038 0.0046 0.0046 0.0047
RQMC (l.) 0.0037 0.0037 0.0037 0.0047 0.0046 0.0046
RQMC (c.) 0.0009 0.0009 0.0009 0.0010 0.0011 0.0010

(j) values for Laplace (n = 5)

none f(x) LOO none f(x) LOO

regular antithetic

MC 0.0245 0.0305 0.0176 0.0191 0.0192 0.0192
QMC (lat.) 0.0159 0.0160 0.0160 0.0182 0.0180 0.0182
RQMC (l.) 0.0160 0.0159 0.0159 0.0182 0.0181 0.0181
RQMC (c.) 0.0091 0.0091 0.0091 — — —

(k) values for Triangular (n = 3)

none f(x) LOO none f(x) LOO

regular antithetic

MC 0.1191 0.0683 0.0490 0.0659 0.0624 0.0602
QMC (lat.) 0.0166 0.0169 0.0166 0.0189 0.0188 0.0188
RQMC (l.) 0.0498 0.0358 0.0352 0.0444 0.0417 0.0431
RQMC (c.) 0.0682 0.0494 0.0361 0.0435 0.0461 0.0452

(l) values for Triangular (n = 5)

none f(x) LOO none f(x) LOO

regular antithetic

MC 0.3329 0.2779 0.1857 0.2255 0.2157 0.2149
QMC (lat.) 0.0844 0.0845 0.0851 0.0932 0.0931 0.0928
RQMC (l.) 0.1768 0.1872 0.1479 0.1827 0.1765 0.1737
RQMC (c.) 0.2251 0.2325 0.1430 — — —

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 9: Individual absolute values from the variance simulations for differentiable shortest-paths in Figure 4.
The minimum and values within 1% of the minimum are indicated as bold.

(a) values for Gaussian (8× 8)

none f(x) LOO none f(x) LOO

regular antithetic

MC 1330.01 4.17 4.17 8.32 8.32 8.34
QMC (lat.) 4.04 4.04 4.04 8.04 8.04 8.07
RQMC (l.) 4.25 4.05 4.05 8.10 8.09 8.12

(b) values for Gaussian (12× 12)

none f(x) LOO none f(x) LOO

regular antithetic

MC 6800.98 20.93 20.95 41.82 41.78 41.88
QMC (lat.) 20.60 20.60 20.65 41.12 41.11 41.18
RQMC (l.) 21.69 20.66 20.68 41.31 41.33 41.42

(c) values for Logistic (8× 8)

none f(x) LOO none f(x) LOO

regular antithetic

MC 1449.44 4.53 4.53 9.04 9.04 9.05
QMC (lat.) 4.42 4.42 4.43 8.80 8.80 8.83
RQMC (l.) 4.44 4.44 4.44 8.88 8.87 8.90

(d) values for Logistic (12× 12)

none f(x) LOO none f(x) LOO

regular antithetic

MC 7447.38 22.83 22.86 45.62 45.61 45.75
QMC (lat.) 22.56 22.56 22.61 45.01 44.99 45.07
RQMC (l.) 22.66 22.65 22.68 45.30 45.32 45.41

(e) values for Gumbel (8× 8)

none f(x) LOO none f(x) LOO

regular antithetic

MC 2275.31 10.35 9.08 — — —
QMC (lat.) 9.11 8.84 8.85 — — —
RQMC (l.) 11.33 8.91 8.91 — — —

(f) values for Gumbel (12× 12)

none f(x) LOO none f(x) LOO

regular antithetic

MC 11642.74 52.89 46.11 — — —
QMC (lat.) 46.88 45.41 45.48 — — —
RQMC (l.) 58.12 45.74 45.80 — — —

(g) values for Cauchy (8× 8)

none f(x) LOO none f(x) LOO

regular antithetic

MC 249027.67 263426.66 255440.59 507004.19 525973.88 509764.25
QMC (lat.) 2533.24 2532.93 2537.32 2531.24 2532.92 2537.35
RQMC (l.) 251018.28 267124.91 264146.84 476293.00 507766.00 529030.06

(h) values for Cauchy (12× 12)

none f(x) LOO none f(x) LOO

regular antithetic

MC 1316801.88 1284078.38 1297748.25 2657888.00 2631427.25 2633413.50
QMC (lat.) 12922.79 12922.31 12948.75 12931.28 12928.22 12945.27
RQMC (l.) 1318297.38 1299869.75 1365709.75 2606723.50 2615697.50 2529304.00

(i) values for Laplace (8× 8)

none f(x) LOO none f(x) LOO

regular antithetic

MC 2641.38 8.15 8.15 16.28 16.27 16.29
QMC (lat.) 8.04 8.05 8.06 16.01 16.00 16.04
RQMC (l.) 8.09 8.09 8.10 16.19 16.17 16.22

(j) values for Laplace (12× 12)

none f(x) LOO none f(x) LOO

regular antithetic

MC 13593.82 41.40 41.45 82.73 82.71 82.92
QMC (lat.) 41.06 41.07 41.16 81.78 81.75 81.92
RQMC (l.) 41.32 41.31 41.36 82.62 82.64 82.80

(k) values for Triangular (8× 8)

none f(x) LOO none f(x) LOO

regular antithetic

MC 3090.80 10.21 10.11 20.27 20.43 20.07
QMC (lat.) 5.57 5.57 5.57 10.17 10.18 10.20
RQMC (l.) 884.22 9.88 9.82 19.14 19.71 19.76

(l) values for Triangular (12× 12)

none f(x) LOO none f(x) LOO

regular antithetic

MC 15975.60 49.73 49.89 99.81 99.32 100.31
QMC (lat.) 28.28 28.28 28.34 51.79 51.79 51.86
RQMC (l.) 4606.71 49.01 49.47 98.56 98.66 98.01

29

	Introduction
	Differentiation via Stochastic Smoothing
	Distribution Examples
	Variance Reduction
	Smoothing of the Algorithm vs. the Objective

	Related Work
	Experiments
	Variance of Gradient Estimators
	Differentiable Sorting & Ranking
	Differentiable Shortest-Paths
	Differentiable Rendering
	Differentiable Cryo-Electron Tomography

	Conclusion
	Proofs
	Proof of Lemma 3
	Proof of Lemma 6
	Proof of Theorem 7

	Discussion of Properties of f for Finitely Defined f epsilon and nabla f epsilon
	Stochastic Smoothing, Medians, and the Cauchy Distribution
	Variances and Lipschitz Constants for each Distribution
	Experimental Details
	Assets
	Runtimes

	Additional Experimental Results

