GENERALIZING STOCHASTIC SMOOTHING FOR DIFFERENTIATION AND GRADIENT ESTIMATION

Anonymous authors

004

010 011

012

013

014

015

016

017

018

019

021

044

Paper under double-blind review

ABSTRACT

We deal with the problem of gradient estimation for stochastic differentiable relaxations of algorithms, operators, simulators, and other non-differentiable functions. Stochastic smoothing conventionally perturbs the input of a non-differentiable function with a differentiable density distribution with full support, smoothing it and enabling gradient estimation. Our theory starts at first principles to derive stochastic smoothing with reduced assumptions, without requiring a differentiable density nor full support, and presenting a general framework for relaxation and gradient estimation of non-differentiable black-box functions $f : \mathbb{R}^n \to \mathbb{R}^m$. We develop variance reduction for gradient estimation from 3 orthogonal perspectives. Empirically, we benchmark 6 distributions and up to 24 variance reduction strategies for differentiable sorting and ranking, differentiable shortest-paths on graphs, differentiable rendering for pose estimation, as well as diff. cryo-ET simulations.

023 024 1 INTRODUCTION

025 The differentiation of algorithms, operators, and other non-differentiable functions has been a topic 026 of rapidly increasing interest in the machine learning community [1]-[7]. In particular, whenever we 027 want to integrate a non-differentiable operation (such as ranking) into a machine learning pipeline, we need to relax it into a differentiable form in order to allow for backpropagation. To give a concrete 029 example, a body of recent work considered continuously relaxing the sorting and ranking operators for tasks like learning-to-rank [5], [7]-[15]. These works can be categorized into either casting sorting and ranking as a related problem (e.g., optimal transport [16]) and differentiably relaxing it (e.g., via 031 entropy-regularized OT [7]) or by considering a sorting algorithm and continuously relaxing it on the level of individual operations or program statements [5], [11], [14], [15]. To give another example, in 033 the space of differentiable graph algorithms and clustering, popular directions either relax algorithms 034 on a statement level [5] or cast the algorithm as a convex optimization problem and differentiate the solution of the optimization problem under perturbed parameterization [2], [3], [17].

Complementary to these directions of research, in this work, we consider algorithms, operators, simulators, and other non-differentiable functions directly as black-box functions and differentiably relax them via stochastic smoothing [18], i.e., via stochastic perturbations of the inputs and via multiple function evaluation. This is challenging as, so far, gradient estimators came with large variance and supported only a restrictive set of smoothing distributions. More concretely, for a black-box function $f : \mathbb{R}^n \to \mathbb{R}^m$, we consider the problem of estimating the derivative (or gradient) of the relaxation

$$f_{\epsilon}(x) = \mathbb{E}_{\epsilon \sim \mu} \left[f(x+\epsilon) \right] = \int f(x+\epsilon) \,\mu(\epsilon) \,\mathrm{d}\epsilon \tag{1}$$

where ϵ is a sample from a probability distribution with an (absolutely) continuous density $\mu(\epsilon)$. f_{ϵ} is a differentiable function (regardless of differentiability properties of f itself, see Section 2 for details) and its gradient is well defined. Under limiting restrictions on the probability distribution μ used for smoothing, gradient estimators exist in the literature [2], [18]–[20].

The **contribution** of this work lies in providing more generalized gradient estimators (reducing assumptions on μ , Lemma 3) that exhibit reduced variances (Sec. 2.2) for the application of differentiably relaxing conventionally non-differentiable algorithms. Moreover, we enable smoothing with and differentiation wrt. non-diagonal covariances (Thm. 7), characterize formal requirements for *f* (Lem. 8+9), discriminate smoothing of algorithms and losses (Sec. 2.3), and provide a *k*-sample median extension (Apx. C). The proposed approach is applicable for differentiation of (i) arbitrary¹ functions, which are (ii) considered as a black-box, which (iii) can be called many times (primarily) at low cost, and (iv) should be smoothed with any distribution with absolutely continuous density on R. This contrasts prior work, which smoothed (i) convex optimizers [2], [3], (ii) used first-order gradients [7], [11], [15], [21], (iii) allowed calling an environment only once or few times in RL [20], and/or (iv) smoothed with fully supported differentiable density distributions [2], [3], [18], [22]. In machine learning, many other fields also utilize the ideas underlying stochastic smoothing; stochastic smoothing and similar methods can be found, e.g., in REINFORCE [20], the score function estimator [23], the CatLog-Derivative trick [24], perturbed optimizers [2], [3], among others.

- 062
- 063 064

065

066

067

068

072

073 074 075

076

077 078 079

2 DIFFERENTIATION VIA STOCHASTIC SMOOTHING

We begin by recapitulating the core of the stochastic smoothing method. The idea behind smoothing is that given a (potentially non-differentiable) function $f : \mathbb{R}^n \to \mathbb{R}^{m-1}$, we can relax the function to a differentiable function by perturbing its argument with a probability distribution: if $\epsilon \in \mathbb{R}^n$ follows a distribution with a differentiable density $\mu(\epsilon)$, then $f_{\epsilon}(x) = \mathbb{E}_{\epsilon}[f(x + \epsilon)]$ is differentiable.

For the case of m = 1, i.e., for a scalar function f, we can compute the gradient of f_{ϵ} by following and extending part of Lemma 1.5 in Abernethy *et al.* [18] as follows:

Lemma 1 (Differentiable Density Smoothing). Given a function $f : \mathbb{R}^n \to \mathbb{R}^1$ and a differentiable probability density function $\mu(\epsilon)$ with full support on \mathbb{R}^n , then f_{ϵ} is differentiable and

$$\nabla_{x} f_{\epsilon}(x) = \nabla_{x} \mathbb{E}_{\epsilon \sim \mu} \left[f(x+\epsilon) \right] = \mathbb{E}_{\epsilon \sim \mu} \left[f(x+\epsilon) \cdot \nabla_{\epsilon} - \log \mu(\epsilon) \right].$$
(2)

Proof. For didactic reasons, we include a full proof in the paper to support the reader's understanding of the core of the method. Via a change of variables, replacing $x + \epsilon$ by u, we obtain $(d\epsilon/du = 1)$

$$f_{\epsilon}(x) = \int f(x+\epsilon)\mu(\epsilon) \, d\epsilon = \int f(u)\mu(u-x) \, du \,. \tag{3}$$

080 081

082

084 085

091 092

093 094

095

096 097 098 Now,

$$\nabla_x f_{\epsilon}(x) = \nabla_x \int f(u)\mu(u-x) \, du = \int f(u) \, \nabla_x \mu(u-x) \, du \,. \tag{4}$$

Using
$$\nabla_x \mu(u-x) = -\nabla_\epsilon \mu(\epsilon)$$
, $\nabla_x f_\epsilon(x) = -\int f(x+\epsilon) \nabla_\epsilon \mu(\epsilon) \, d\epsilon$. (5)

Because $\frac{\partial \mu(\epsilon)}{\partial \epsilon} = \mu(\epsilon) \cdot \frac{\partial \log \mu(\epsilon)}{\partial \epsilon}$, we can simplify the expression to

$$\nabla_{x} f_{\epsilon}(x) = -\int f(x+\epsilon) \,\mu(\epsilon) \,\nabla_{\epsilon} \log \mu(\epsilon) \,d\epsilon = \mathbb{E}_{\epsilon \sim \mu} \left[f(x+\epsilon) \,\nabla_{\epsilon} - \log \mu(\epsilon) \right]. \tag{6}$$

Empirically, for a number of samples s, this gradient estimator can be evaluated without bias via

$$\nabla_{x} f_{\epsilon}(x) \triangleq \frac{1}{s} \sum_{i=1}^{s} \left[f(x+\epsilon_{i}) \nabla_{\epsilon_{i}} - \log \mu(\epsilon_{i}) \right] \qquad \epsilon_{1}, ..., \epsilon_{s} \sim \mu.$$
(7)

Corollary 2 (Differentiable Density Smoothing for Vector-valued Functions). We can extend Lemma 1 to vector-valued functions $f : \mathbb{R}^n \to \mathbb{R}^m$, allowing to compute the Jacobian matrix $\mathbf{J}_{f_{\epsilon}} \in \mathbb{R}^{m \times n}$ as

$$\mathbf{J}_{f_{\epsilon}}(x) = \mathbb{E}_{\epsilon \sim \mu} \left[f(x+\epsilon) \cdot \left(\nabla_{\epsilon} - \log \mu(\epsilon) \right)^{\top} \right].$$
(8)

We remark that prior work (e.g., [18]) limits μ to be a differentiable density with full support on \mathbb{R} , typically of exponential family, whereas we generalize it to any absolutely continuous density, and include additional generalizations. This has important implications for distributions such as Cauchy, Laplace, and Triangular, which we show to have considerable practical relevance.

¹⁰³ ¹Traditionally and formally, only functions with compact range have been considered for f (i.e., $f : \mathbb{R}^n \to [a, b]$) [19], [25]. More recently, i.a., Abernethy *et al.* [18] have considered the general case of function with the real range. While this is very helpful, e.g., enabling linear functions for f, this is (even without our generalizations) not always finitely defined as we discuss with the help of degenerate examples in Appendix B. There, we characterize the set of valid f leading to finitely defined f_{ϵ} in Lemma 8 as well as ∇f_{ϵ} in Lemma 9 in dependence on μ . We remark that, beyond discussions in Appendix B, we assume this to be satisfied by f.

108 **Lemma 3** (Requirement of Continuity of μ). If $\mu(\epsilon)$ is absolutely continuous (and not necessarily differentiable), then f_{ϵ} is continuous and differentiable everywhere.

$$\nabla_{x} f_{\epsilon}(x) = \mathbb{E}_{\epsilon \sim \mu} \left[f(x+\epsilon) \cdot \mathbf{1}_{\epsilon \notin \Omega} \cdot \nabla_{\epsilon} - \log \mu(\epsilon) \right].$$
(9)

113 Ω is the zero-measure set of points with undefined gradient. We provide the proof in Appendix A.1.

Lemma 3 has important implications. In particular, it enables smoothing with non-differentiable density distributions such as the Laplace distribution, the triangular distribution, and the Wigner Semicircle distribution [26], [27] while maintaining differentiability of f_{ϵ} .

Remark 4 (Requirement of Continuity of μ). However, it is crucial to mention that, for stochastic smoothing (Lemmas 1, 3, Corollary 2), μ has to be continuous. For example, the uniform distribution is not a valid choice because it does not have a continuous density on \mathbb{R} . ($\mathcal{U}(a, b)$ has discontinuities at a, b where it jumps between 0 and 1/(b-a).) With other formulations, e.g., [28], [29], it is possible to perform smoothing with a uniform distribution over a ball; however, if f is discontinuous, uniform smoothing may not lead to a differentiable function. Continuity is a requirement but not a sufficient condition, and absolutely continuous is a sufficient condition; however, the difference to continuity corresponds only to non-practical and adversarial examples, e.g., the Cantor or Weierstrass functions.

125 **Remark 5** (Gaussian Smoothing). A popular special case of differentiable stochastic smoothing is 126 smoothing with a Gaussian distribution $\mu_{\mathcal{N}} = N(\mathbf{0}_n, \mathbf{I}_n)$. Here, due to the nature of the probability 127 density function of a Gaussian, $\nabla_{\epsilon} - \log \mu_{\mathcal{N}}(\epsilon) = \epsilon$. Further, when $\mu_{\mathcal{N}_{\sigma}} = N(\mathbf{0}_n, \sigma^2 \mathbf{I}_n)$, then 128 $\nabla_{\epsilon} - \log \mu_{\mathcal{N}_{\sigma}}(\epsilon) = \epsilon/\sigma$. We emphasize that this equality *only* holds for the Gaussian distribution.

Equipped with the core idea behind stochastic smoothing, we can differentiate any function f via perturbation with a probability distribution with (absolutely) continuous density.

Typically, probability distributions that we consider for smoothing are parameterized via a scale parameter, vi7., the standard deviation σ in a Gaussian distribution or the scale γ in a Cauchy distribution. Extending the formalism above, we may be interested in differentiating with respect to the scale parameter γ of our distribution μ . This becomes especially attractive when optimizing the scale and, thereby, degree of relaxation of our probability distribution. While our formalism allows reparameterization to express γ within μ , we can also explicitly write it as

$$\nabla_x f_{\gamma\epsilon}(x) = \nabla_x \mathbb{E}_{\epsilon \sim \mu} \left[f(x + \gamma \cdot \epsilon) \right] = \mathbb{E}_{\epsilon \sim \mu} \left[f(x + \gamma \cdot \epsilon) \cdot \left(\nabla_{\epsilon} - \log \mu(\epsilon) \right) / \gamma \right].$$
(10)

140 Now, we can differentiate wrt. γ , i.e., we can compute $\nabla_{\gamma} f_{\gamma \epsilon}(x)$.

The proof is deferred to Appendix A.2.

Lemma 6 (Differentiation wrt. γ). Extending Lemma 1, Corollary 2, and Lemma 3, we have

$$\nabla_{\gamma} f_{\gamma\epsilon}(x) = \nabla_{\gamma} \mathbb{E}_{\epsilon \sim \mu} \Big[f(x + \gamma \cdot \epsilon) \Big] = \mathbb{E}_{\epsilon \sim \mu} \Big[f(x + \gamma \cdot \epsilon) \cdot \big(-1 + (\nabla_{\epsilon} - \log \mu(\epsilon))^{\top} \cdot \epsilon \big) / \gamma \Big].$$
(11)

144 145 146

138 139

142 143

111

112

129

147 We can extend γ for multivariate distributions to a scale matrix Σ/L (e.g., a covariance matrix). 148 This enables optimization for finding the optimal scale matrix L, and further not only isotropic 149 distributions, but instead also, e.g., multivariate Gaussians with correlations between dimensions.

Theorem 7 (Multivariate Smoothing with Covariance Matrix). We have a function $f : \mathbb{R}^n \to \mathbb{R}^m$. We assume ϵ is drawn from a multivariate distribution with absolutely continuous density in \mathbb{R}^n . We have an invertible scale matrix $\mathbf{L} \in \mathbb{R}^{n \times n}$ (e.g., for a covariance matrix Σ , \mathbf{L} is based on its Cholesky decomposition $\mathbf{L}\mathbf{L}^{\top} = \Sigma$). We define $f_{\mathbf{L}\epsilon}(x) = \mathbb{E}_{\epsilon \sim \mu}[f(x + \mathbf{L} \cdot \epsilon)]$. Then, our derivatives $\partial f_{\mathbf{L}\epsilon}(x) / \partial x \ (\in \mathbb{R}^{m \times n})$ and $\partial f_{\mathbf{L}\epsilon}(x) / \partial \mathbf{L} \ (\in \mathbb{R}^{m \times n \times n})$ can be computed as

$$\nabla_x \left(f_{\mathbf{L}\epsilon}(x) \right)_i = \mathbb{E}_{\epsilon \sim \mu} \left[f(x + \mathbf{L} \cdot \epsilon)_i \cdot \mathbf{L}^{-1} \cdot \left(\nabla_{\epsilon} - \log \mu(\epsilon) \right) \right], \tag{12}$$

157 158

160

$$\nabla_{\mathbf{L}} \left(f_{\mathbf{L}\epsilon}(x) \right)_i = \mathbb{E}_{\epsilon \sim \mu} \left[f(x + \mathbf{L} \cdot \epsilon)_i \cdot \mathbf{L}^{-\top} \cdot \left(-1 + \left(\nabla_{\epsilon} - \log \mu(\epsilon) \right) \cdot \epsilon^{\top} \right) \right].$$
(13)

Above, the indicator (from (9)) is omitted for a simplified exposition. Proofs are deferred to Apx. A.3.

161 In Appendix C, we additionally extend stochastic smoothing to differentiating the expected k-sample median, show that it is differentiable, and provide an unbiased gradient estimator in Lemma 12.

162	Table 1: Probability distributions considered for generalized stochastic smoothing. Displayed is (from left to
163	right) the density of the distribution $\mu(\epsilon)$ (plot + equation), the derivative of the NLL (equation), and the product
164	between the density and the derivative of the NLL (plot). The latter plot corresponds to the kernel that f is
165	effectively convolved by to estimate the gradient. (*): applies to $\epsilon \in (-1, 1) \setminus \{0\}$, otherwise 0 or undefined.

Distribution	Density	/ PDF $\mu(\epsilon)$	$\nabla_{\!\epsilon} \! - \log \mu(\epsilon)$	$\mu(\epsilon) \cdot \nabla_{\!\epsilon} \! - \log \mu(\epsilon)$
Gaussian		$\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{1}{2}\cdot\epsilon^2\right)$	ϵ	\sim
Logistic		$\frac{\exp(-\epsilon)}{(1+\exp(-\epsilon))^2}$	$\tanh(\epsilon/2)$	\sim
Gumbel		$\exp(-\epsilon - \exp(-\epsilon))$	$1 - \exp(-\epsilon)$	
Cauchy		$\frac{1}{\pi \cdot (1+\epsilon^2)}$	$\frac{2\cdot\epsilon}{1+\epsilon^2}$	
Laplace		$1/2 \cdot \exp(- \epsilon)$	$\operatorname{sign}(\epsilon)$	
Triangular		$\max(0,1- \epsilon)$	$\frac{\operatorname{sign}(\epsilon)}{1- \epsilon } (*)$	

181

2.1 DISTRIBUTION EXAMPLES

After covering the underlying theory of generalized stochastic smoothing, in this section, we provide examples of specific distributions that our theory applies to. We illustrate the distributions in Table 1. 185

186 Before delving into individual choices for distributions, we provide a clarification for multivariate 187 densities $\mu : \mathbb{R}^n \to \mathbb{R}_{>0}$: We consider the *n*-dimensional multivariate form of a distribution as the 188 concatenation of n independent univariate distributions. Thus, for μ_1 as the univariate formulation of the density, we have the proportionality $\mu(\epsilon) \simeq \prod_{i=1}^{n} \mu_1(\epsilon_i)$. We remark that the distribution by 189 190 which we smooth ($\mathbf{L}\epsilon$) is not an isotropic (per-dimension independent) distribution. Instead, through 191 transformation by the scale matrix L, e.g., in the case of the Gaussian distribution, $L\epsilon$ covers the entire space of multivariate Gaussian distributions with arbitrary covariance matrices. 192

193 Beyond the Gaussian distribution, the logistic distribution offers heavier tails, and the Gumbel 194 distribution provides max-stability, which can be important for specific tasks. The **Cauchy** distribu-195 tion [30], with its undefined mean and infinite variance, also has important implications in smoothing: 196 e.g., the Cauchy distribution is shown to provide monotonicity in differentiable sorting networks [12]. While prior art [22] heuristically utilized the Cauchy distribution for stochastic smoothing of argmax, 197 this had been, thus far, without a general formal justification. 198

199 In this work, for the first time, we consider Laplace and triangular distributions. First, the **Laplace** 200 distribution, as the symmetric extension of the exponential distribution, does not lie in the space of 201 exponential family distributions, and is not differentiable at 0. Via Lemma 3, we show that stochastic smoothing can still be applied and is exactly correct despite non-differentiablity of the distribution. 202 Second, with the **triangular** distribution, we illustrate, for the first time, that stochastic smoothing 203 can be performed even with a non-differentiable distribution with compact support ([-1, 1]). This 204 is crucial if the domain of f has to be limited to a compact set rather than the real domain, or in 205 applications where smoothing beyond a limited distance to the original point is not meaningful. 206 A hypothetical application for this could be differentiating a physical motor controlled robot in 207 reinforcement learning where we may not want to support an infinite range for safety considerations. 208

209 2.2 VARIANCE REDUCTION

210 Given an unbiased estimator of the gradient, e.g., in its simplest form (2), we desire reducing its 211 variance, or, in other words, improve the quality of the gradient estimate for a given number of 212 samples. For this, we consider 3 orthogonal perspectives of variance reduction: covariates, antithetic 213 samples, and (randomized) quasi-Monte Carlo. 214

To illustratively derive the first two variance reductions, let us consider the case of smoothing a 215 constant function f(x) = v for some large constant $v \gg 0$. Naturally, $f_{\epsilon}(x) = v$ and $\nabla_x f_{\epsilon}(x) = 0$. 216 However, for a finite number of samples s, our empirical estimate (e.g. (7)) will differ from 0 almost 217 surely. As the gradient of $f_{\epsilon}(x) - c$ wrt. x does not depend on c, we have $\nabla_x f_{\epsilon}(x) = \nabla_x (f_{\epsilon}(x) - c)$. If 218 we choose c = v, the variance of the gradient estimator is reduced to 0. For general and non-constant 219 f, we can estimate the optimal choice of c via c = f(x) or via the leave-one-out estimator [31], [32] 220 of $f_{\epsilon}(x)$. In the fields of stochastic smoothing of optimizers and reinforcement learning this is known as the *method of covariates*. f(x) and LOO were previously considered for smoothing, e.g., in [22] 221 and [33], respectively. We illustrate the effects of both choices of covariates in Figure 1. 222

From an orthogonal perspective, we 224 observe that $\mathbb{E}_{\epsilon \sim \mu} |\nabla_{\epsilon} - \log \mu(\epsilon)| = 0$, 225 which follows, e.g., from $\nabla_x f_{\epsilon}(x) =$ 226 $0 = \mathbb{E}_{\epsilon \sim \mu} [v \cdot \nabla_{\epsilon} - \log \mu(\epsilon)].$ For sym-227 metric distributions, we can guaran-228 tee an empirical estimate to be 0 by 229 always using pairs of *antithetic samples* [34], i.e., complementary ϵ s. Us-230 ing $\epsilon' = -\epsilon$, we have $\nabla_{\epsilon} \log \mu(\epsilon) + \frac{1}{2}$ 231 $\nabla_{\epsilon'} \log \mu(\epsilon') = 0$. This is illustrated 232 in Figure 2 (2). In our experiments in 233 the next section, we observe antithetic 234 sampling to generally perform poorly 235 in comparison to other variance reduc-236 tion techniques. 237

Figure 1: Comparison of covariates: a non-differentiable function (dark blue) is smoothed with a logistic distribution (light blue). The original gradient (dark red) is not everywhere defined, and does not meaningfully represent the gradient. The gradient of the smoothed function is shown in pink. Grey illustrates the variance of a gradient estimate with 5 samples via the [25%, 75%] (dark grey) and [10%, 90%] (light grey) percentiles. Using f(x) as a covariate, instead of using none reduces the gradient variance, in particular whenever f(x) is large. Leave-one-out (LOO) further improves over f(x) at discontinuities of the original function f (i.e., at x=1), but has slightly higher variance than f(x) where f is continuous and has large values (i.e., at x = -2.)

A third perspective considers that 238 points sampled with standard Monte 239 Carlo (MC) methods (see Fig. 2 (1)), 240 due to the random nature of the sam-241

256

264

265 266

pling, often form (accidental) clumps while other areas are void of samples. To counteract this, 242 quasi-Monte Carlo (QMC) methods [35] spread out sampled points as evenly as possible by foregoing 243 randomness and choosing points from a regular grid, e.g., a simple Cartesian grid, taking the grid cell 244 centers as samples (see Fig. 2 (3)). Via the inverse CDF of the respective distribution, the points can 245 be mapped from the unit hypercube to samples from a respective distribution. However, discarding randomness makes the sampling process deterministic, limits the dispersion introduced by the smooth-246 ing distribution to concrete points, and hence makes the estimator biased. Randomized quasi-Monte 247 Carlo (RQMC) [36] methods overcome this difficulty by reintroducing some randomness. Like 248 QMC, RQMC uses a grid to subdivide $[0, 1]^n$ into cells, but then samples a point from each cell (see 249 Fig. 2 (4)) instead of taking the grid cell center. While regular MC sampling leads to variances of 250 $\mathcal{O}(1/s)$, RQMC reduces them to $\mathcal{O}(1/s^{1+2/n})$ for a number s of samples and an input dimension of 251 n [37]. The default (i.e., Cartesian) QMC and RQMC methods require numbers of samples $s = k^n$ 252 for $k \in \mathbb{N}_+$, which can become infeasible for large input dimensionalities. Thus, we also consider 253 Latin-Hypercube Sampling (LHS) [38], which uses a subset of grid cells such that each interval in 254 every dimension is covered exactly once (see Fig. 2 (5+6)). Finally, we remark that, to our knowledge, 255 QMC and RQMC sampling strategies have not been considered in the field of gradient estimation.

257		•					1				•	ן ר					•	1 [•
258	•			•	•	-		•	٠	•					•						•		
050					•	•		•		•	•				•								
259	•	Ĩ				-			•				•						•				
260	•	•	9	•	•	•		•	•		•						•	$\left\{ \right\}$	•		_	•	_
261		•													_			+	_	•	_		-
201	•		· / • · · ·	•	•	•		•	• '		•			-	_		-		_		-	•	+
262			U				1					ונ				-		ιL					_

Figure 2: Sampling strategies. Left to right: Monte-Carlo (MC), Antithetic Monte-Carlo, Cartesian Quasi-Monte-Carlo (QMC), Cartesian Randomized-Quasi-Monte-Carlo (RQMC), Latin-Hypercube Sampled QMC and RQMC. Samples can be transformed via the inverse CDF of a respective distribution.

267 2.3 SMOOTHING OF THE ALGORITHM VS. THE OBJECTIVE 268

In algorithmic supervision settings, we can write our training objective as $\ell(h(y))$ where y is the 269 output of a neural network model, h is the algorithm, and the scalar function ℓ is the training objective

(loss function) applied to the output of the algorithms. In such cases, we can distinguish between smoothing the algorithms (f = h) and smoothing the loss ($f = \ell \circ h$).

When *smoothing the algorithm*, we compute the value and derivative of $\ell(\mathbb{E}_{\epsilon}[h(y+\epsilon)])$. This requires our loss function ℓ to be differentiable and capable of receiving relaxed inputs. (For example, if the output of h is binary, then ℓ has to be able to operate on real-valued inputs from (0, 1).) In this case, the derivative of $\mathbb{E}_{\epsilon}[h(y+\epsilon)]$ is a Jacobian matrix (see Corollary 2).

277 When *smoothing the objective / loss function*, we compute the value and derivative of $\mathbb{E}_{\epsilon}[\ell(h(y+\epsilon))]$. 278 Here, the objective / loss ℓ does not need to be differentiable and can be limited to operate on discrete 279 outputs of the algorithm h. Here, the derivative of $\mathbb{E}_{\epsilon}[\ell(h(y+\epsilon))]$ is a gradient.

The optimal choice between smoothing the algorithm and smoothing the objective depends on different factors including the problem setting and algorithm, the availability of a real-variate and real-valued ℓ , and the number of samples that can be afforded. In practice, we observe that, whenever we can afford large numbers of samples, smoothing of the algorithm performs better.

3 RELATED WORK

284

285

306

In the theoretical literature of gradient-free optimization, stochastic smoothing has been extensively
studied [18], [19], [39], [40]. Our work extends existing results, generalizing the set of allowed
distributions, considering vector-valued functions, anisotropic scale matrices, enabling *k*-sample
median differentiation, and a characterization of finite definedness of expectations and their gradients
based on the relationship between characteristics of the density and smoothed functions.

From a more applied perspective, stochastic smoothing has been applied for relaxing convex optimization problems [2], [3], [22]. In particular, convex optimization formulations of argmax [2], [22], the shortest-path problem [2], and the clustering problem [3] have been considered. We remark that the perspective of smoothing any function or algorithm f, as in this work, differs from the perspective of perturbed optimizers. In particular, optimizers are a special case of the functions we consider.

While we consider smoothing functions with real-valued inputs, there is also a rich literature of differentiating stochastic discrete programs [41]–[43]. These works typically use the inherent stochasticity from discrete random variables in programs and explicitly model the internals of the programs. We consider real-variate black-box functions and smooth them with added input noise.

In the literature of reinforcement learning, a special case or analogous idea to stochastic smoothing
 can be found in the REINFORCE formulation where the (scalar) score function is smoothed via a
 policy [18], [20], [44], [45]. Compared to the literature, we enable new distributions and respective
 characterizations of requirements for the score functions. We hope our results will pave their way
 into future RL research directions as they are also applicable to RL without major modification.

4 EXPERIMENTS

For the experiments, we consider 4 experimental domains: sorting & ranking, graph algorithms, 3D mesh rendering, and cryo-electron tomography (cryoET) simulations. The primary objective of the empirical evaluations is to compare different distributions as well as different variance reduction techniques. We begin our evaluations by measuring the variance of the gradient estimators, and then continue with optimizations and using the differentiable relaxations in deep learning tasks. We remark that, in each of the 4 experiments, f does not have any non-zero gradients, and thus using first-order or path-wise gradients or gradient estimators is not possible.

314
 315
 4.1 VARIANCE OF GRADIENT ESTIMATORS

We evaluate the gradient variances for different variance reduction techniques in Figures 3 and 4. For differentiable sorting and ranking, we smooth the (hard) permutation matrix that sorts an input vector $(f : \mathbb{R}^n \to \{0, 1\}^{n \times n})$. For diff. shortest-paths, we smooth the function that maps from a 2D costmap to a binary encoding of the shortest-path under 8-neighborhood $(f : \mathbb{R}^{n \times n} \to \{0, 1\}^{n \times n})$. Both functions are not only non-differentiable, but also have no non-zero gradients anywhere. For each distribution, we compare all combinations of the 3 complementary variance reduction techniques.

322 On the axis of sampling strategy, we can observe that, whenever available, Cartesian RQMC delivers 323 the lowest variance. The only exception is the triangular distribution, where latin QMC provides the lowest uncentered gradient variance (despite being a biased estimator) because of large contributions

Figure 4: Average L_2 norms between ground truth (oracle) and estimated gradient for smoothing shortest-path algorithms, and different distributions. Each plot compares different variance reduction strategies as indicated in the legend to the right of the caption. *Darker is better* (smaller values). Colors are only comparable within each subplot. We use 1 024 samples. Absolute values are reported in Table 9.

to the gradient for samples close to -1 and 1. Between latin QMC and RQMC, we can observe that their variance is equal except for the high-dimension cases of the Cauchy distribution and a few cases of the Gumbel distribution, where QMC is of lower variance. However, due to the bias in QMC, RQMC would typically still be preferable over QMC. We do not consider Cartesian QMC due to its substantially greater bias. In heuristic conclusion, RQMC (c.) \succ RQMC (l.) \succeq QMC (l.) \succ MC.

On the axis of using antithetic sampling (left vs. right in each subplot), we observe that it consistently performs worse than the regular counterpart, except for vanilla MC without a covariate. The reason for this is that antithetic sampling does lead to a good sample-utilization trade-off once we consider quasi Monte-Carlo strategies. For vanilla Monte-Carlo, antithetic sampling improves the results as long as we do not use the LOO covariate. Thus, in the following, we consider antithetic only for MC.

Con the axis of the covariate, we observe that LOO consistently provides the lowest gradient variances. This aligns with intuition from Figure 1 where LOO provides the lowest variance at discontinuities (in this subsection, f is discontinuous or constant everywhere). Comparing no covariate and f(x), the better choice has a strong dependence on the individual setting, which makes sense considering the binary outputs of the algorithms. f(x) would perform well for functions that attain large values while having fewer discontinuities.

In conclusion, the best setting is Cartesian RQMC with the LOO covariate and without antithetic sampling whenever available (only for $s = n^k$ samples for $k \in \mathbb{N}$). The next best choice is typically RQMC with Latin hypercube sampling.

370 371

372

333

334

335

336

337

338

339

340 341 342

343

344

345

4.2 DIFFERENTIABLE SORTING & RANKING

After investigating the choices of variance reduction techniques wrt. the variance alone, in this section, we explore the utility of stochastic smoothing on the 4-digit MNIST sorting benchmark [8]. Here, at each step, a set of n=5 4-digit MNIST images (such as 3756) is presented to a CNN, which predicts the displayed scalar value for each of the *n* images independently. For training the model, no absolute information about the displayed value is provided, and only the ordering or ranking of the *n* images according to their ground truth value is supervised. The goal is to learn an order-preserving 378 CNN, and the evaluation metric is the fraction of 379 correctly inferred orders from the CNN (exact 380 match accuracy). Training the CNN requires a 381 differentiable ranking operator (that maps from a 382 vector to a differentiable permutation matrix) for the ranking loss. Previous work has considered 383 NeuralSort [8], SoftSort [9], casting sorting as 384 a regularized OT problem [7], and differentiable 385 sorting networks (DSNs) [11], [12]. The state-386 of-the-art is monotonic DSN [12], which utilizes 387 a relaxation based on Cauchy distributions to 388 provide monotonic differentiable sorting, which 389 has strong theoretical and empirical advantages. 390

In Figure 5, we evaluate the performance of 391 generalized stochastic smoothing with different 392 distributions and different numbers of samples 393 for each variance reduction technique. We ob-394 serve that, while the Cauchy distribution per-395 forms poorly for small numbers of samples, for 396 large numbers of samples, the Cauchy distri-397 bution performs best. This makes sense as the 398 Cauchy distribution has infinite variance and, 399 for DSNs, provides monotonicity. We remark that large numbers of samples can easily be af-400 forded in many applications (when comparing 401 the high cost of neural networks to the vanishing 402 cost of sorting/ranking within a loss function). 403 (Nevertheless, for 32768 samples, the sorting 404 operation starts to become the bottleneck.) The 405

Laplace distribution is the best choice for 406 smaller numbers of samples. Wrt. vari-407 ance reduction, we continue to observe 408 that vanilla MC performs worst. RQMC 409 performs best, except for Triangular, 410 where QMC is best. For the Gumbel 411 distribution, we observe reduced perfor-412 mance for latin sampling. Generally, we observe that f(x) is the worst choice of 413 covariate, but the effect lies within stan-414 dard deviations. In Table 2, we provide 415 a numerical comparison to other differen-416 tiable sorting approaches. We can observe 417 that all choices of distributions improve 418 over all baselines except for the mono-419 tonic DSNs, even at smaller numbers of 420 samples (i.e., without measurable impact 421 on training speed). Finally, the Cauchy

Table 2: Sorting benchmark results (n = 5), avg. over 12 seeds. 'best (cv)' refers to the best sampling strategy, as determined via cross-validation (thus, there is no bias from the selection of the strategy). Table 7 includes additional num. of samples and stds. Baselines are NeuralSort [8], SoftSort [9], Logistic DSNs [11], Cauchy and Error-optimal DSNs [12], and OT Sort [7], avg. over at least 5 seeds each.

Baselines		Neu.S.	Soft.S.	L. DSN	C. DSN	E. DSN	OT. S.
_		71.3	70.7	77.2	84.9	85.0	81.1
Sampling	#s	Gauss.	Logis.	Gumbel	Cauchy	Laplace	Trian.
vanilla best (cv)	256 256	82.3 83.1	82.8 82.7	79.2 81.6	68.1 55.6	82.6 83.7	81.3 82.7
vanilla best (cv)	1k 1k	81.3 83.9	83.7 84.0	82.0 84.2	68.5 73.0	80.6 84.3	82.8 82.4
vanilla best (cv)	32k 32k	84.2 84.4	84.1 84.4	84.5 84.8	84.9 85.1	84.4 84.4	83.4 84.0

distribution leads to a small improvement over the SOTA, without requiring a manually designed differentiable sorting algorithm.

424 425

4.3 DIFFERENTIABLE SHORTEST-PATHS

The Warcraft shortest-path benchmark [17] is the established benchmark for differentiable shortestpath algorithms (e.g., [2], [5], [17]). Here, a Warcraft pixel map is provided, a CNN predicts a 12×12 cost matrix, a differentiable algorithm computes the shortest-path, and the supervision is only the ground truth shortest-path. Berthet et al. [2] considered stochastic smoothing with Fenchel-Young (FY) losses, which improves sample efficiency for small numbers of samples. However, the FY loss does not improve for larger numbers of samples (e.g., Tab. 7.5 in [4]). As computing the shortest-path is computationally efficient and parallelizable (our implementation is $\approx 5\,000 \times$ faster than the

432 Dijkstra implementation used in previous 433 work [2], [17]), we can afford substan-434 tially larger numbers of samples, improv-435 ing the quality of gradient estimation. In 436 Figure 6, we compare the performance of different smoothing strategies. The logis-437 tic distribution performs best, and smooth-438 ing of the algorithm (top) performs better 439 than smoothing of the loss (bottom). Vari-440 ance reduction via sampling strategies (an-441 tithetic, QMC, or RQMC) improves perfor-442 mance, and the best covariate is LOO. For 443 reference, the FY loss [2] leads to an accu-444 racy of 80.6%, regardless of the number of 445 samples. GSS consistently achieves 90%+ 446 using 100 samples (see Fig. 13 right).

447 Using 10 000 samples, and variance reduction, we 448 achieve 96.6% (Fig. 14) compared to the SOTA of 449 95.8% [5], a reduction of the error from 4.2% to 3.4%. In Fig. 7, we illustrate that smaller standard 451 deviations (larger β) are better for more samples.

4.4 DIFFERENTIABLE RENDERING

453

454

For differentiable rendering [22], [46]–[51], we 455 smooth a non-differentiable hard renderer via sam-456 pling. This differs from DRPO [22], which uses 457 stochastic smoothing to relax the Heaviside and 458 Argmax functions within an already differentiable 459 renderer. Instead, we consider the renderer as a black-460 box function. This has the advantage of noise pa-461 rameterized in the coordinate space rather than the 462 image space. We benchmark stochastic smoothing 463 for rendering by optimizing the camera-pose (4-DoF) for a Utah teapot, an experiment inspired by [22], 464 [51]. We illustrate the results in Figure 8. Here, the 465

logistic distribution performs best, and 466 QMC/RQMC as well as LOO lead to the 467 largest improvements. While Fig. 8 shows 468 smoothing the rendering algorithm, Fig. 12 469 performs smoothing of the training objective / 470 loss. Smoothing the algorithm is better because 471 the loss (MSE), while well-defined on discrete 472 renderings, is less meaningful on discrete 473 renderings. 474

475 4.5 DIFFERENTIABLE

476 CRYO-ELECTRON TOMOGRAPHY

477 Transmission Electron Microscopy (TEM) trans-478 mits electron beams through thin specimens 479 to form images [52]. Due to the small elec-480 tron beam wavelength, TEM leads to higher 481 resolutions of up to single columns of atoms. 482 Obtaining high resolution images from TEM 483 involves adjustments of various experimental parameters. We apply smoothing to a realis-484 tic black-box TEM simulator [53], optimizing 485

Figure 7: Warcraft shortest-path experiment using Gaussian smoothing of the algorithm (RQMC with latin hypercube-sampling and LOO covariate). Comparing the effects between the inverse temperature β and the number of samples. We observe that with growing numbers of samples, the optimal inverse temperature increases, i.e., the optimal standard deviation for the Gaussian noise decreases. Averaged over 5 seeds.

RQMC (lat.)

RQMC (car.)

sets of parameters to approximate reference Tobacco Mosaic Virus (TMV) [54] micrographs. In

Avg. over 768 seeds. The dis-

played range is [0%, 90%].

486 Figure 9, we perform two experiments: a 2-parameter study optimizing the microscope acceleration voltage and x-position of the specimen, and a 4-parameter study with additional parameters of the particle's y-position and the primary lens focal length. The micrograph image sizes are 489 400×400 pixels, and accordingly we use smoothing of the loss. 490

499 Figure 9: RMSE to Ground Truth parameters for the 2-parameter (left) and 4- Figure 10: (a) Simulated 500 parameter experiment (right). We optimize the L_2 loss between generated and 501 GT images using loss smoothing. No marker lines correspond to Gaussian, × to Laplace and \triangle to Triangular distributions. Laplace and Triangular perform best; 502 LOO leads to the largest improvements. Add. results are in Figure 15. 503

Transmission Electron micrograph, (b) TMV structure, with RNA (orange) and protein stacks (blue).

SUMMARY OF EXPERIMENTAL RESULTS 505

506 Generally, we observe that QMC and RQMC perform best, whereas antithetic sampling performs 507 rather poorly. In low-dimensional problems, it is advisable to use RQMC (cartesian), and in higher 508 dimensional problems (R)QMC (latin), still works well. As for the covariate, LOO typically performs 509 best; however, the choice of sampling strategy (QMC/RQMC) is more important than choosing the 510 covariate. In sorting and ranking, the Cauchy distribution performs best for large numbers of samples and for smaller numbers of samples, the Laplace distribution performs best. In the shortest-path 511 case, the logistic distribution performs best, and Gaussian closely follows. Here, we also observe 512 that with larger numbers of samples, the optimal standard deviation decreases. For differentiable 513 rendering, the logistic distribution performs best. 514

LIMITATIONS 516

517 A limitation of our work is that zeroth-order gradient estimators are generally only competitive if the 518 first-order gradients do not exist (see [55] for discussions on exceptions). In this vein, in order to 519 be competitive with custom designed continuous relaxations like a differentiable renderer, we may 520 need a very large number of samples, which could become prohibitive for expensive functions f. 521 The optimal choice of distribution depends on the function to be smoothed, which means there is no singular distribution that is optimal for all f; however, if one wants to limit the distribution to a 522 single choice, we recommend the logistic or Laplace distribution, as, with their simple exponential 523 convergence, they give a good middle ground between heavy-tailed and light-tailed distributions. 524 Finally, the variance reduction techniques like QMC/RQMC are not immediately applicable in single 525 sample settings, and the variance reduction techniques in this paper build on evaluating f many times. 526

527

487

488

491

492

493

494

495

496

497

498

504

515

5 CONCLUSION

528 529

In this work, we derived stochastic smoothing with reduced assumptions and outline a general 530 framework for relaxation and gradient estimation of non-differentiable black-box functions. This 531 enables an increased set of distributions for stochastic smoothing, e.g., enabling smoothing with 532 the triangular distribution while maintaining full differentiablility of f_{ϵ} . We investigated variance 533 reduction for stochastic smoothing-based gradient estimation from 3 orthogonal perspectives, finding 534 that RQMC and LOO are generally the best methods, whereas the popular antithetic sampling method performs rather poorly. Moreover, enabled by supporting vector-valued functions, we disentangled 536 the algorithm and objective, thus smoothing f while analytically backpropagating through the loss ℓ , improving gradient estimation. We applied stochastic smoothing to differentiable sorting and ranking, diff. shortest-paths on graphs, diff. rendering for pose estimation and diff. cryo-ET simulations. 538 We hope that our work inspires the community to develop their own stochastic relaxations for differentiating non-differentiable algorithms, operators, and simulators.

540 REPRODUCIBILITY STATEMENT

We provide proofs for all theoretical statements. For the statements in the main paper, we provide
proofs in Appendix A. We provide experimental details in Appendix E including specification of
hyperparameters, a list of assets, and runtimes for our experiments. Alongside this submission, we
upload the source code of generalized stochastic smoothing. At publication, we will publicly release
the code.

548 REFERENCES

547

549

550

551

552

553

554

560

- F. Petersen, M. Cuturi, M. Niepert, H. Kuehne, M. Kagan, W. Neiswanger, and S. Ermon, "Differentiable Almost Everything: Differentiable Relaxations, Algorithms, Operators, and Simulators Workshop at ICML 2023," 2023.
- [2] Q. Berthet, M. Blondel, O. Teboul, M. Cuturi, J.-P. Vert, and F. Bach, "Learning with Differentiable Perturbed Optimizers," in *Proc. Neural Information Processing Systems (NeurIPS)*, 2020.
- 555 [3] L. Stewart, F. S. Bach, F. L. López, and Q. Berthet, "Differentiable clustering with perturbed spanning forests," *Proc. Neural Information Processing Systems (NeurIPS)*, 2023.
- [4] F. Petersen, "Learning with differentiable algorithms," Ph.D. dissertation, Universität Konstanz, 2022.
 - [5] F. Petersen, C. Borgelt, H. Kuehne, and O. Deussen, "Learning with algorithmic supervision via continuous relaxations," in *Proc. Neural Information Processing Systems (NeurIPS)*, 2021.
- 561
 562
 [6] M. Cuturi and M. Blondel, "Soft-DTW: A Differentiable Loss Function for Time-Series," in Proc. International Conference on Machine Learning (ICML), 2017.
 563
 - [7] M. Cuturi, O. Teboul, and J.-P. Vert, "Differentiable ranking and sorting using optimal transport," in *Proc. Neural Information Processing Systems (NeurIPS)*, 2019.
- [8] A. Grover, E. Wang, A. Zweig, and S. Ermon, "Stochastic Optimization of Sorting Networks via Continuous Relaxations," in *Proc. International Conference on Learning Representations (ICLR)*, 2019.
- 568 [9] S. Prillo and J. Eisenschlos, "Softsort: A continuous relaxation for the argsort operator," in *Proc. International Conference on Machine Learning (ICML)*, 2020.
- [10] M. Blondel, O. Teboul, Q. Berthet, and J. Djolonga, "Fast Differentiable Sorting and Ranking," in *Proc. International Conference on Machine Learning (ICML)*, 2020.
- 572 [11] F. Petersen, C. Borgelt, H. Kuehne, and O. Deussen, "Differentiable sorting networks for scalable sorting and ranking supervision," in *Proc. International Conference on Machine Learning (ICML)*, 2021.
- 575 [12] F. Petersen, C. Borgelt, H. Kuehne, and O. Deussen, "Monotonic differentiable sorting networks," in *Proc. International Conference on Learning Representations (ICLR)*, 2022.
- 577 [13] M. E. Sander, J. Puigcerver, J. Djolonga, G. Peyré, and M. Blondel, "Fast, differentiable and sparse top-k: A convex analysis perspective," in *Proc. International Conference on Machine Learning (ICML)*, 2023.
- [14] A. Vauvelle, B. Wild, R. Eils, and S. Denaxas, "Differentiable sorting for censored time-to event data," in *ICML 2023 Workshop on Differentiable Almost Everything: Differentiable Relaxations, Algorithms, Operators, and Simulators*, 2023.
- [15] N. Shvetsova, F. Petersen, A. Kukleva, B. Schiele, and H. Kuehne, "Learning by sorting:
 Self-supervised learning with group ordering constraints," in *Proc. International Conference* on Computer Vision (ICCV), 2023.
- [16] M. Cuturi, "Sinkhorn distances: Lightspeed computation of optimal transport," in *Proc. Neural Information Processing Systems (NeurIPS)*, 2013.
- [17] M. Vlastelica, A. Paulus, V. Musil, G. Martius, and M. Rolinek, "Differentiation of blackbox combinatorial solvers," in *Proc. International Conference on Learning Representations (ICLR)*, 2020.
- [18] J. Abernethy, C. Lee, and A. Tewari, "Perturbation techniques in online learning and optimization," *Perturbations, Optimization, and Statistics*, 2016.
- [19] P. Glasserman, *Gradient estimation via perturbation analysis*. Springer Science & Business Media, 1990, vol. 116.

- [20] R. J. Williams, "Simple statistical gradient-following algorithms for connectionist reinforcement learning," *Machine learning*, vol. 8, pp. 229–256, 1992.
 [20] A. J. Williams, "Like and the statistical gradient following algorithms for connectionist reinforcement learning," *Machine learning*, vol. 8, pp. 229–256, 1992.
- [21] S. Liu, T. Li, W. Chen, and H. Li, "Soft Rasterizer: A Differentiable Renderer for Image-based 3D Reasoning," in *Proc. International Conference on Computer Vision (ICCV)*, 2019.
- Q. L. Lidec, I. Laptev, C. Schmid, and J. Carpentier, "Differentiable rendering with perturbed optimizers," in *Proc. Neural Information Processing Systems (NeurIPS)*, 2021.
- [23] M. C. Fu, "Gradient estimation," *Handbooks in operations research and management science*, vol. 13, pp. 575–616, 2006.
 [24] M. C. Fu, "Gradient estimation," *Handbooks in operations research and management science*, vol. 13, pp. 575–616, 2006.
- [24] L. De Smet, E. Sansone, and P. Zuidberg Dos Martires, "Differentiable sampling of categorical distributions using the catlog-derivative trick," *Advances in Neural Information Processing Systems*, vol. 36, 2024.
- [25] R. E. Showalter, *Hilbert space methods in partial differential equations*. Courier Corporation, 2010.
- E. P. Wigner, "Characteristic vectors of bordered matrices with infinite dimensions," *Annals of Mathematics*, vol. 62, pp. 548–564, 3 1955.
- E. P. Wigner, "On the distribution of the roots of certain symmetric matrices," *Annals of Mathematics*, vol. 67, pp. 325–328, 2 1958.
- [28] A. S. Berahas, L. Cao, K. Choromanski, and K. Scheinberg, "A theoretical and empirical comparison of gradient approximations in derivative-free optimization," *Foundations of Computational Mathematics*, vol. 22, no. 2, pp. 507–560, 2022.
- A. D. Flaxman, A. T. Kalai, and H. B. McMahan, "Online convex optimization in the bandit setting: Gradient descent without a gradient," *arXiv preprint cs/0408007*, 2004.
- [30] T. S. Ferguson, "A representation of the symmetric bivariate cauchy distribution," *The Annals of Mathematical Statistics*, vol. 33, pp. 1256–1266, 4 1962.
- ⁶¹⁸ [31] M. H. Quenouille, "Notes on bias in estimation," *Biometrika*, vol. 43, pp. 353–360, 3–4 1956.
- [32] J. W. Tukey, "Bias and confidence in not quite large samples," *The Annals of Mathematical Statistics*, vol. 29, p. 614, 2 1958.
- [33] T. Mimori and M. Hamada, "Geophy: Differentiable phylogenetic inference via geometric gradients of tree topologies," *Advances in Neural Information Processing Systems*, 2023.
- [34] J. M. Hammersley and K. W. Morton, "A new Monte Carlo technique: Antithetic variates," *Mathematical proceedings of the Cambridge philosophical society*, vol. 52, pp. 449–475, 3 1956.
- [35] N. Metropolis and S. M. Ulam, "The monte carlo method," *Journal of the American Statistical Association*, vol. 44, pp. 335–341, 1949.
- [36] H. Niederreiter, "Quasi-Monte Carlo methods and pseudo-random numbers," *Bulletin of the American Mathematical Society*, vol. 84, pp. 957–1041, 6 1978.
- [37] P. L'Ecuyer, *Randomized quasi-Monte Carlo: An introduction for practitioners*. Springer, 2018.
- [38] M. D. McKay, R. J. Beckman, and W. J. Conover, "A comparison of three methods for selecting values of input variables in the analysis of output from a computer code," *Technometrics*, vol. 21, pp. 239–245, 2 1979.
- [39] F. Yousefian, A. Nedić, and U. V. Shanbhag, "Convex nondifferentiable stochastic optimization:
 A local randomized smoothing technique," in *Proceedings of the 2010 American Control Conference*, IEEE, 2010, pp. 4875–4880.
- [40] J. C. Duchi, P. L. Bartlett, and M. J. Wainwright, "Randomized smoothing for stochastic optimization," *SIAM Journal on Optimization*, vol. 22, no. 2, pp. 674–701, 2012.
- [41] E. Krieken, J. Tomczak, and A. Ten Teije, "Storchastic: A framework for general stochastic automatic differentiation," *Advances in Neural Information Processing Systems*, vol. 34, pp. 7574–7587, 2021.
- [42] G. Arya, M. Schauer, F. Schäfer, and C. Rackauckas, "Automatic differentiation of programs with discrete randomness," *Advances in Neural Information Processing Systems*, vol. 35, pp. 10435–10447, 2022.
- [43] M. Kagan and L. Heinrich, "Branches of a tree: Taking derivatives of programs with discrete and branching randomness in high energy physics," *arXiv preprint arXiv:2308.16680*, 2023.

648 [44] J. Schmidhuber, Making the world differentiable: on using self supervised fully recurrent neural 649 networks for dynamic reinforcement learning and planning in non-stationary environments. 650 Inst. für Informatik, 1990, vol. 126. 651 [45] R. Sutton and A. Barto, *Reinforcement Learning, second edition: An Introduction* (Adaptive 652 Computation and Machine Learning series). MIT Press, 2018, ISBN: 9780262039246. 653 M. M. Loper and M. J. Black, "OpenDR: An approximate differentiable renderer," in Proc. Eu-[46] 654 ropean Conference on Computer Vision (ECCV), 2014. 655 [47] H. Kato, Y. Ushiku, and T. Harada, "Neural 3D mesh renderer," in Proc. International Confer-656 ence on Computer Vision and Pattern Recognition (CVPR), 2018. 657 F. Petersen, A. H. Bermano, O. Deussen, and D. Cohen-Or, "Pix2Vex: Image-to-Geometry [48] 658 Reconstruction using a Smooth Differentiable Renderer," Computing Research Repository 659 (CoRR) in arXiv, 2019. 660 [49] H. Kato, D. Beker, M. Morariu, T. Ando, T. Matsuoka, W. Kehl, and A. Gaidon, "Differentiable 661 rendering: A survey," Computing Research Repository (CoRR) in arXiv, 2020. 662 [50] F. Petersen, B. Goldluecke, O. Deussen, and H. Kuehne, "Style agnostic 3d reconstruction via 663 adversarial style transfer," in IEEE Winter Conference on Applications of Computer Vision 664 (WACV), 2022. 665 [51] F. Petersen, B. Goldluecke, C. Borgelt, and O. Deussen, "GenDR: A Generalized Differentiable Renderer," in Proc. International Conference on Computer Vision and Pattern Recognition 666 667 (CVPR), 2022. [52] D. B. Williams, C. B. Carter, D. B. Williams, and C. B. Carter, *The transmission electron* 668 microscope. Springer, 1996. 669 670 [53] H. Rullgård, L.-G. Öfverstedt, S. Masich, B. Daneholt, and O. Öktem, "Simulation of trans-671 mission electron microscope images of biological specimens," Journal of microscopy, vol. 243, no. 3, pp. 234–256, 2011. 672 C. Sachse, J. Z. Chen, P.-D. Coureux, M. E. Stroupe, M. Fändrich, and N. Grigorieff, "High-673 [54] resolution electron microscopy of helical specimens: A fresh look at tobacco mosaic virus," 674 Journal of molecular biology, vol. 371, no. 3, pp. 812-835, 2007. 675 [55] H. J. Suh, M. Simchowitz, K. Zhang, and R. Tedrake, "Do differentiable simulators give better 676 policy gradients?" In Proc. International Conference on Machine Learning (ICML), 2022. 677 [56] J. T. Chu and H. Hotelling, "The moments of the sample median," The Annals of Mathematical 678 Statistics, pp. 593-606, 1955. 679 [57] J. Arvo and D. Kirk, "Fast ray tracing by ray classification," ACM Siggraph Computer Graphics, 680 vol. 21, no. 4, pp. 55–64, 1987. 681 Y. LeCun, C. Cortes, and C. Burges, "Mnist handwritten digit database," 2010. [Online]. [58] 682 Available: http://yann.lecun.com/exdb/mnist. 683 [59] A. Paszke, S. Gross, F. Massa, et al., "Pytorch: An imperative style, high-performance deep 684 learning library," in Proc. Neural Information Processing Systems (NeurIPS), 2019. 685 686 687 688 689 690 691 692 693 694 696 697 699 700

702 A PROOFS

705 A.1 PROOF OF LEMMA 3

Proof of Lemma 3. Let $\Omega \subset \mathbb{R}^n$ be the set of values where $\nabla_{\epsilon}\mu(\epsilon)$ is undefined. μ is differentiable a.e. and Ω has Lebesgue measure 0.

710 Recapitulating (5) from the proof of Lemma 1, we have

Replacing $\nabla_{\epsilon}\mu(\epsilon)$ by *any* of the weak derivatives ν of μ , which exists and is integrable due to absolute continuity, we have

 $abla_x f_\epsilon(x) = -\int f(x+\epsilon) \,
abla_\epsilon \mu(\epsilon) \, d\epsilon \, .$

$$\nabla_x f_{\epsilon}(x) = -\int f(x+\epsilon) \,\nu(\epsilon) \,d\epsilon \tag{15}$$

$$= -\int_{\mathbb{R}^n \setminus \Omega} f(x+\epsilon) \,\nu(\epsilon) \,d\epsilon \,- \int_{\Omega} f(x+\epsilon) \,\nu(\epsilon) \,d\epsilon \,. \tag{16}$$

(14)

Because μ is absolutely continuous and as the Lebesgue measure of Ω is 0, per Hölder's inequality

$$\int_{\Omega} |f(x+\epsilon)\nu(\epsilon)| \, d\epsilon \le \int_{\Omega} |f(x+\epsilon)| \, d\epsilon \cdot \int_{\Omega} |\nu(\epsilon)| \, d\epsilon = \int_{\Omega} |f(x+\epsilon)| \, d\epsilon \cdot 0 = 0$$
(17)

where $\int_{\Omega} |\nu(\epsilon)| d\epsilon = 0$ follows from absolute continuity of μ . Thus,

$$\int_{\Omega} f(x+\epsilon) \nu(\epsilon) d\epsilon = 0.$$
(18)

As $\nu = \nabla_{\epsilon} \mu(\epsilon)$ for all $\epsilon \in \mathbb{R}^n \setminus \Omega$

$$\nabla_{x} f_{\epsilon}(x) = -\int_{\mathbb{R}^{n} \setminus \Omega} f(x+\epsilon) \,\nu(\epsilon) \,d\epsilon - \int_{\Omega} f(x+\epsilon) \,\nu(\epsilon) \,d\epsilon = -\int_{\mathbb{R}^{n} \setminus \Omega} f(x+\epsilon) \,\nabla_{\epsilon} \mu(\epsilon) \,d\epsilon \,,$$
(19)

showing that for all possible choices of ν , the gradient estimator coincides. Thus, we complete our proof via

$$\nabla_x f_{\epsilon}(x) = -\int_{\mathbb{R}^n \setminus \Omega} f(x+\epsilon) \,\mu(\epsilon) \,\nabla_{\epsilon} \log \mu(\epsilon) \,d\epsilon = \mathbb{E}_{\epsilon \sim \mu} \left[f(x+\epsilon) \,\cdot \mathbf{1}_{\epsilon \notin \Omega} \cdot \,\nabla_{\epsilon} - \log \mu(\epsilon) \right]. \tag{20}$$

After completing the proof, we remark that, if the density was not continuous, e.g., uniform $\mathcal{U}([0,1])$, then $\int_{\{0\}} \nabla_{\epsilon} \mu(\epsilon) d\epsilon = \left[\mu(\epsilon)\right]_{\epsilon \neq 0}^{\epsilon \searrow 0} = 1$. This means that the weak derivative is not defined (or loosely speaking "the derivative is infinity"), thereby violating the assumptions of Hölder's inequality (Eq. 17). This concludes that continuity is required for the proof to hold.

756 A.2 PROOF OF LEMMA 6

Proof of Lemma 6.

$$\nabla_{\gamma} f_{\gamma\epsilon}(x) = \nabla_{\gamma} \mathbb{E}_{\epsilon \sim \mu} \left[f(x + \gamma \cdot \epsilon) \right]$$
(21)

$$= \nabla_{\gamma} \int f(x + \gamma \cdot \epsilon) \mu(\epsilon) d\epsilon$$
(22)

$$\left(u = x + \epsilon \cdot \gamma \Rightarrow \epsilon = \frac{u - x}{\gamma} \; ; \; \frac{du}{d\epsilon} = \gamma \Rightarrow d\epsilon = \frac{1}{\gamma} du\right) \tag{23}$$

$$= \nabla_{\gamma} \int f(u)\mu(\epsilon)\frac{1}{\gamma}du$$
 (24)

$$= \int f(u)\nabla_{\gamma}(\mu(\epsilon)\frac{1}{\gamma})du$$
(25)

$$= \int f(u)(\frac{1}{\gamma}\nabla_{\gamma}\mu(\epsilon) + \mu(\epsilon)\nabla_{\gamma}\frac{1}{\gamma})du$$
(26)

$$= \int f(u)(\frac{1}{\gamma}(\nabla_{\epsilon}\mu(\epsilon))^{\top}\frac{\partial\epsilon}{\partial\gamma} - \mu(\epsilon)\frac{1}{\gamma^{2}})du$$
(27)

$$= \int f(u)(\frac{1}{\gamma}(\nabla_{\epsilon}\mu(\epsilon))^{\top}\frac{\partial}{\partial\gamma}\frac{u-x}{\gamma} - \mu(\epsilon)\frac{1}{\gamma^{2}})du$$
(28)

$$= \int f(u)(\frac{1}{\gamma}(\nabla_{\epsilon}\mu(\epsilon))^{\top}(-\frac{\epsilon}{\gamma}) - \frac{1}{\gamma^{2}}\mu(\epsilon))du$$
(29)

$$= \int f(u)(-(\nabla_{\epsilon}\mu(\epsilon))^{\top}\epsilon - \mu(\epsilon))\frac{1}{\gamma^{2}}du$$
(30)

$$\left(\nabla_{\epsilon} \log \mu(\epsilon) = \frac{1}{\mu(\epsilon)} \nabla_{\epsilon} \mu(\epsilon) \Rightarrow \nabla_{\epsilon} \mu(\epsilon) = \mu(\epsilon) \nabla_{\epsilon} \log \mu(\epsilon)\right)$$
(31)

$$= \int_{\epsilon} f(u)(-(\mu(\epsilon)\nabla_{\epsilon}\log\mu(\epsilon))^{\top}\epsilon - \mu(\epsilon))\frac{1}{\gamma^{2}} \cdot \underbrace{\gamma \, d\epsilon}_{-du}$$
(32)

$$= \int f(u) \cdot (-(\nabla_{\epsilon} \log \mu(\epsilon))^{\top} \epsilon - 1) \cdot \frac{1}{\gamma} \cdot \mu(\epsilon) d\epsilon^{-uu}$$
(33)

$$= \int f(u) \cdot (-1 + (\nabla_{\epsilon} - \log \mu(\epsilon))^{\top} \epsilon) \cdot \frac{1}{\gamma} \cdot \mu(\epsilon) \, d\epsilon$$
(34)

$$= \mathbb{E}_{\epsilon \sim \mu} \left[f(x + \gamma \cdot \epsilon) \cdot \left(-1 + (\nabla_{\epsilon} - \log \mu(\epsilon))^{\top} \cdot \epsilon \right) / \gamma \right].$$
(35)

(37)

A.3 PROOF OF THEOREM 7

Proof of Theorem 7.

Part 1: $\partial f_{\mathbf{L}\epsilon}(x) / \partial x$

We perform a change of variables, $u = x + \mathbf{L}\epsilon \implies \epsilon = \mathbf{L}^{-1}(u - x)$ and

$$d\epsilon = \frac{du}{du}d\epsilon = \frac{d\epsilon}{du}du = \frac{d\mathbf{L}^{-1}(u-x)}{du}du = \frac{d\mathbf{L}^{-1}u}{du}du = \det(\mathbf{L}^{-1})du$$
(36)

Thus,

$$f_{\mathbf{L}\epsilon}(x) = \int f(x + \mathbf{L}\epsilon)\mu(\epsilon) \, d\epsilon = \int f(u) \cdot \mu(\mathbf{L}^{-1}(u - x)) \cdot \det(\mathbf{L}^{-1}) \, du \, .$$

 $\nabla_{x} f_{\mathbf{L}\epsilon}(x)_{i} = \nabla_{x} \int f(u)_{i} \cdot \mu(\mathbf{L}^{-1}(u-x)) \cdot \det(\mathbf{L}^{-1}) \, du$ (38)

$$= \int f(u)_i \cdot \nabla_x \left(\mu(\mathbf{L}^{-1}(u-x)) \right) \cdot \det(\mathbf{L}^{-1}) \, du \tag{39}$$

$$= \int f(u)_i \cdot \mathbf{L}^{-1} \cdot \left(\nabla_{\epsilon} - \mu(\epsilon)\right) \cdot \det(\mathbf{L}^{-1}) \, du \tag{40}$$

$$= \int_{\epsilon} f(x + \mathbf{L}\epsilon)_i \cdot \mathbf{L}^{-1} \cdot \nabla_{\epsilon} - \mu(\epsilon) \, d\epsilon$$
(41)

$$= \int f(x + \mathbf{L}\epsilon)_i \cdot \mathbf{L}^{-1} \cdot \mu(\epsilon) \cdot \nabla_\epsilon - \log \mu(\epsilon) \, d\epsilon$$
(42)

$$= \mathbb{E}_{\epsilon \sim \mu} \Big[f(x + \mathbf{L}\epsilon)_i \cdot \mathbf{L}^{-1} \cdot \nabla_{\epsilon} - \log \mu(\epsilon) \Big]$$
(43)

Now,

Part 2: $\partial f_{\mathbf{L}\epsilon}(x) / \partial \mathbf{L}$

We use the same change of variables as above.

$$\nabla_{\mathbf{L}} \mathbb{E}_{\epsilon \sim \mu} \big[f(x + \mathbf{L} \cdot \epsilon)_i \big] \tag{44}$$

$$= \nabla_{\mathbf{L}} \int f(x + \mathbf{L}\epsilon)_i \cdot \mu(\epsilon) \, d\epsilon \tag{45}$$

$$= \nabla_{\mathbf{L}} \int f(u)_i \cdot \mu(\mathbf{L}^{-1}(u-x)) \cdot \det(\mathbf{L}^{-1}) \, du \tag{46}$$

$$= \int f(u)_i \cdot \nabla_{\mathbf{L}} \left(\mu(\mathbf{L}^{-1}(u-x)) \cdot \det(\mathbf{L}^{-1}) \right) du$$
(47)

$$= \int f(x + \mathbf{L}\epsilon)_i \cdot \nabla_{\mathbf{L}} \left(\mu(\mathbf{L}^{-1}(u - x)) \cdot \det(\mathbf{L}^{-1}) \right) / \det(\mathbf{L}^{-1}) \, d\epsilon \tag{48}$$

$$= \mathbb{E}_{\epsilon \sim \mu} \Big[f(x + \mathbf{L}\epsilon)_i \cdot \nabla_{\mathbf{L}} \Big(\mu(\mathbf{L}^{-1}(u - x)) \cdot \det(\mathbf{L}^{-1}) \Big) \cdot \det(\mathbf{L}) / \mu(\epsilon) \Big]$$
(49)

Now, while $\nabla_{\mathbf{L}} \left(\mu(\mathbf{L}^{-1}(u-x)) \cdot \det(\mathbf{L}^{-1}) \right)$ may be computed via automatic differentiation, we can also solve it in closed-form. Firstly, we can observe that

$$\nabla_{\mathbf{L}}\mu(\mathbf{L}^{-1}(u-x)) = \nabla_{\epsilon^{\top}}\mu(\epsilon) \cdot \nabla_{\mathbf{L}}(\mathbf{L}^{-1}\cdot(u-x))$$
(50)

$$= \nabla_{\mathbf{L}} (\nabla_{\epsilon^{\top}} \mu(\epsilon) \cdot \mathbf{L}^{-1} \cdot (u - x))$$
(51)

$$= -\mathbf{L}^{-\top} \cdot \nabla_{\epsilon} \mu(\epsilon) \cdot (u - x)^{\top} \cdot \mathbf{L}^{-\top}$$
(52)

and

$$\nabla_{\mathbf{L}} \det(\mathbf{L}^{-1}) = -\det(\mathbf{L})^{-1} \cdot \mathbf{L}^{-\top} .$$
(53)

We can combine this to resolve it in closed form to:

$$\nabla_{\mathbf{L}} \left(\mu(\mathbf{L}^{-1}(u-x)) \cdot \det(\mathbf{L}^{-1}) \right) = -\mathbf{L}^{-\top} \cdot \nabla_{\epsilon} \mu(\epsilon) \cdot (u-x)^{\top} \cdot \mathbf{L}^{-\top} \cdot \det(\mathbf{L}^{-1}) - \mu(\mathbf{L}^{-1}(u-x)) \cdot \det(\mathbf{L})^{-1} \cdot \mathbf{L}^{-\top}$$
(54)
$$\mathbf{L}^{-\top} \cdot \nabla_{\epsilon} \left(\mathbf{L}^{-1}(u-x) \right)^{\top} \cdot \mathbf{L}^{-\top} \left(\mathbf{L}^{-1} \right)$$

$$= -\mathbf{L}^{-\top} \cdot \nabla_{\epsilon} \mu(\epsilon) \cdot \left(\mathbf{L}^{-1}(u-x)\right)^{\top} \cdot \det(\mathbf{L}^{-1}) - \mu(\epsilon) \cdot \det(\mathbf{L})^{-1} \cdot \mathbf{L}^{-\top}$$
(55)

$$\begin{aligned} \mu(\epsilon) & \det(\mathbf{L}) & \mathbf{L} \end{aligned}$$

$$= -\mathbf{L}^{-\top} \cdot \nabla_{\epsilon} \mu(\epsilon) \cdot \epsilon^{\top} \cdot \det(\mathbf{L}^{-1}) \\ = -\mu(\epsilon) \cdot \det(\mathbf{L})^{-1} \cdot \mathbf{L}^{-\top} \end{aligned}$$

$$(56)$$

$$\begin{aligned} & -\mu(\epsilon) \cdot \det(\mathbf{L})^{-1} \cdot \mathbf{L}^{-\top} & (56) \\ & = -\det(\mathbf{L}^{-1}) \cdot (\mathbf{L}^{-\top} \cdot \nabla_{\epsilon} \mu(\epsilon) \cdot \epsilon^{\top} + \mu(\epsilon) \cdot \mathbf{L}^{-\top}) . \end{aligned}$$

$$= -\det(\mathbf{L}^{-1}) \cdot \left(\mathbf{L}^{-\top} \cdot \nabla_{\epsilon} \mu(\epsilon) \cdot \epsilon^{\top} + \mu(\epsilon) \cdot \mathbf{L}^{-\top}\right).$$
(57)

Combing this with equation (49), we have

$$\nabla_{\mathbf{L}} \mathbb{E}_{\epsilon \sim \mu} \Big[f(x + \mathbf{L} \cdot \epsilon)_i \Big]$$

$$= \mathbb{E}_{\epsilon \sim \mu} \Bigg[f(x + \mathbf{L} \epsilon)_i \cdot \nabla_{\mathbf{L}} \Big(\mu(\mathbf{L}^{-1}(u - x)) \cdot \det(\mathbf{L}^{-1}) \Big) \cdot \det(\mathbf{L}) / \mu(\epsilon) \Bigg]$$

$$= \mathbb{E}_{\epsilon \sim \mu} \Bigg[f(x + \mathbf{L} \epsilon)_i \cdot -\det(\mathbf{L}^{-1}) \cdot \big(\mathbf{L}^{-\top} \cdot \nabla_{\epsilon} \mu(\epsilon) \cdot \epsilon^{\top} + \mu(\epsilon) \cdot \mathbf{L}^{-\top} \big) \cdot \det(\mathbf{L}) / \mu(\epsilon) \Bigg]$$
(58)

$$= \mathbb{E}_{\epsilon \sim \mu} \left[f(x + \mathbf{L}\epsilon)_i \cdot - \left(\mathbf{L}^{-\top} \cdot \nabla_{\epsilon} \mu(\epsilon) \cdot \epsilon^{\top} + \mu(\epsilon) \cdot \mathbf{L}^{-\top} \right) / \mu(\epsilon) \right]$$
(59)

$$= \mathbb{E}_{\epsilon \sim \mu} \left[f(x + \mathbf{L}\epsilon)_i \cdot - \left(\mathbf{L}^{-\top} \cdot \nabla_{\epsilon} \mu(\epsilon) \cdot \epsilon^{\top} / \mu(\epsilon) + \mathbf{L}^{-\top} \right) \right]$$
(60)

$$= \mathbb{E}_{\epsilon \sim \mu} \left[f(x + \mathbf{L}\epsilon)_i \cdot \mathbf{L}^{-\top} \cdot \left(-1 + \nabla_{\epsilon} - \log \mu(\epsilon) \cdot \epsilon^{\top} \right) \right].$$
(61)

(64)

879 880

882

883

877 878

864

865

866 867 868

B DISCUSSION OF PROPERTIES OF f for Finitely Defined f_{ϵ} and ∇f_{ϵ}

When we have a function f that is not defined with a compact range with $f : \mathbb{R}^n \to \mathbb{R}$, and have a density μ with unbounded support (e.g., Gaussian or Cauchy), we may experience f_{ϵ} or even ∇f_{ϵ} to not be finitely defined. For example, virtually any distribution with full support on \mathbb{R} leads to the smoothing f_{ϵ} of the degenerate function $f : x \mapsto \exp(\exp(\exp(\exp(x^2))))$ to not be finitely defined.

We say a function, as described via an expectation, is finitely defined iff it is defined (i.e., the expectation has a value) and its value is finite (i.e., not infinity). For example, the first moment of the Cauchy distribution is undefined, and the second moment is infinite; thus, both moments are not finitely defined.

We remark that the considerations in this appendix also apply to prior works that enable the real plane as the output space of f. We further remark that writing an expression for smoothing and the gradient of a arbitrary function with non-compact range is not necessarily false; however, e.g., any claim that smoothness is guaranteed if the gradient jumps from $-\infty$ to ∞ (e.g., the power tower in the first paragraph) is not formally correct. We remark that characterizing valid fs via a Lipschitz or other continuity requirement is not applicable because this would defeat the goal of differentiating non-differentiable and discontinuous f.

In the following, we discuss when f_{ϵ} or ∇f_{ϵ} are finitely defined. For this, let us cover a few preliminaries:

Let a function
$$f(x)$$
 be called $\mathcal{O}(b(x))$ bounded if there exist $c, v \in \mathcal{O}(b(x))$ and $\bar{c}, \bar{v} \in \mathbb{R}$ such that
 $\bar{c} + c(x) \le f(x) \le \bar{v} + v(x) \quad \forall x$. (62)

For example, a function may be called polynomially bounded (wrt. a polynomial b(x)) if (but not only if) $-b(x) \le f(x) \le b(x)$.

Moreover, let a density μ with support \mathbb{R} be called decaying faster than b(x) if $\mu(x) \in o(b(x))$. For example, the standard Gaussian density decays faster than $\exp(-|x|)$, i.e., $\mu(x) \in o(\exp(-|x|))$. Additionally, we can say that Gaussian density decays at rate $\exp(-x^2)$, i.e., $\mu(x) \in \theta(\exp(-x^2))$.

910 Now, we can formally characterize finite definedness of f_{ϵ} and ∇f_{ϵ} :

911 Lemma 8 (Finite Definedness of f_{ϵ}). f_{ϵ} is finitely defined if there exists an increasing function $b(\cdot)$ 912 such that f(x) is bounded by $\mathcal{O}(b(x))$ and $\mu(\epsilon) \in \mathcal{O}(1/b(\epsilon + \alpha \epsilon)/\epsilon^{(1+\alpha)})$ (63) for some $\alpha \ge 0$

914 for some $\alpha > 0$.

916 *Proof.* To show that f_{ϵ} exists, we need to show that

917

915

 $\int_{\mathbb{D}} \left| f(x+\epsilon) \cdot \mu(\epsilon) \right| d\epsilon$

is finite for all x. Let \tilde{f} be an absolutely upper bound of f, and w.l.o.g. let us choose $\tilde{f}(y) = b(y) + \bar{b}$ with b(y) > 1 for $y \in \mathbb{R}$. Further, as per the assumptions $\mu(\epsilon) < \frac{1}{\epsilon^{(1+\alpha)} \cdot b(\epsilon+\alpha\epsilon)} \cdot w$ for all $\epsilon < \omega_1$ as well as all $\epsilon > \omega_2$ for some w, ω_1, ω_2 . Let us restrict ω_1, ω_2 to $\omega_1 < -|x|/\alpha$ and $\omega_2 > |x|/\alpha$. It is trivial to see that

$$\int_{1}^{\omega_2} \left| f(x+\epsilon) \cdot \mu(\epsilon) \right| d\epsilon < \infty \,. \tag{65}$$

W.l.o.g., let us consider the upper remainder:

$$\int_{\omega_2}^{\infty} \left| f(x+\epsilon) \cdot \mu(\epsilon) \right| d\epsilon \le \int_{\omega_2}^{\infty} \left| \tilde{f}(x+\epsilon) \cdot \mu(\epsilon) \right| d\epsilon$$
(66)

$$\leq \int_{\omega_2}^{\infty} \left| (b(x+\epsilon) + \bar{b}) \cdot \frac{1}{\epsilon^{(1+\alpha)} \cdot b(\epsilon + \alpha\epsilon)} \cdot w \right| d\epsilon$$
(67)

$$\int_{\omega_2}^{\infty} \left| \left(\frac{b(x+\epsilon)}{\epsilon^{(1+\alpha)} \cdot b(\epsilon+\alpha\epsilon)} + \frac{\bar{b}}{\epsilon^{(1+\alpha)} \cdot b(\epsilon+\alpha\epsilon)} \right) \cdot w \right| d\epsilon \qquad (68)$$

$$\leq \int_{\omega_2}^{\infty} \left| \left(\frac{b(x+\epsilon)}{\epsilon^{(1+\alpha)} \cdot b(\epsilon+|x|)} + \frac{\bar{b}}{\epsilon^{(1+\alpha)} \cdot b(\epsilon+\alpha\epsilon)} \right) \cdot w \right| d\epsilon$$
 (69)

$$\leq \int_{\omega_2}^{\infty} \left| \left(\frac{1}{\epsilon^{(1+\alpha)}} + \frac{\bar{b}}{\epsilon^{(1+\alpha)} \cdot b(\epsilon + \alpha\epsilon)} \right) \cdot w \right| d\epsilon \tag{70}$$

$$<\int_{\omega_2}^{\infty} \left| \frac{1}{\epsilon^{(1+\alpha)}} + \frac{b}{\epsilon^{(1+\alpha)}} \right| \, d\epsilon \cdot w \tag{71}$$

$$= \int_{\omega_2}^{\infty} \left| \frac{1}{\epsilon^{(1+\alpha)}} \right| \, d\epsilon \cdot w \cdot (1+\bar{b}) < \infty \,. \tag{72}$$

That $\int_{\omega_2}^{\infty} \frac{1}{\epsilon^{(1+\alpha)}} d\epsilon$ is finite for the step in (72) can be shown via

_

$$\int_{\omega_2}^{\infty} \frac{1}{\epsilon^{(1+\alpha)}} d\epsilon = \int_{\omega_2}^{\infty} \epsilon^{-1-\alpha} d\epsilon = \left[-\frac{1}{\alpha} \epsilon^{-\alpha} \right]_{\omega_2}^{\infty} = \left[-\frac{1}{\alpha} \lim_{\epsilon \to \infty} \epsilon^{-\alpha} + \frac{1}{\alpha} \omega_2^{-\alpha} \right] = \frac{1}{\alpha} \omega_2^{-\alpha}.$$

The same can be shown analogously for the integral $\int_{-\infty}^{\omega_1}$. This completes the proof.

Lemma 9 (Finite Definedness of ∇f_{ϵ}). ∇f_{ϵ} is finitely defined if there exists an increasing function $b(\cdot)$ such that

$$f(x) \text{ is bounded by } \mathcal{O}(b(x)) \qquad \text{and} \qquad \left|\mu(\epsilon) \cdot \nabla_{\epsilon} - \log \mu(\epsilon)\right| \in \mathcal{O}(1/b(\epsilon + \alpha \epsilon)/\epsilon^{(1+\alpha)})$$
(73) for some $\alpha > 0$.

955*Proof.* The proof of Lemma 8 also applies here, but with $|\mu(\epsilon) \cdot \nabla_{\epsilon} - \log \mu(\epsilon)| < \frac{1}{\epsilon^{(1+\alpha)} \cdot b(\epsilon+\alpha\epsilon)} \cdot w$ 956for all $\epsilon < \omega_1$ as well as all $\epsilon > \omega_2$ for some w, ω_1, ω_2 .

Example 10 (Cauchy and the Identity). Let μ be the density of a Cauchy distribution and let f(x) = x. The tightest b for $f(x) \in \mathcal{O}(b(x))$ is b(x) = x.

960 We have $\mu(\epsilon) \in \theta(1/\epsilon^2)$ and thus $\mu(\epsilon) \notin o(1/\epsilon^2)$. f_{ϵ} , i.e., the mean of the Cauchy distribution is not defined. 962

However, its gradient $\nabla f_{\epsilon} = 1$ is indeed finitely defined. In particular, we can see that

$$\mu(\epsilon) \cdot \nabla_{\epsilon} - \log \mu(\epsilon) = \frac{2\epsilon}{\pi \cdot (1 + \epsilon^2) \cdot (1 + \epsilon^2)} \in \theta(1/\epsilon^3).$$
(74)

This is an intriguing property of the Cauchy distribution (or other edge cases) where f_{ϵ} is undefined whereas ∇f_{ϵ} is finitely and well-defined. In practice, we often only require the gradient for stochastic gradient descent, which means that we often only require ∇f_{ϵ} to be well defined and do not necessarily need to evaluate f_{ϵ} depending on the application.

970

964 965

923 924

929 930 931

948 949

950

951 952 953

954

971 Additional discussions for the Cauchy distribution and an extension of stochastic smoothing to the *k*-sample median can be found in the next appendix.

STOCHASTIC SMOOTHING, MEDIANS, AND THE CAUCHY DISTRIBUTION С

In this section, we provide a discussion of a special case of stochastic smoothing with the Cauchy 975 distribution, and provide an extension of stochastic smoothing to the k-sample median. This becomes 976 important if the range of f is not subset of a compact set, and thus $\mathbb{E}_{\epsilon \sim \mu} |f(x+\epsilon)|$ becomes undefined 977 for some choice of distribution μ . For example, for $f(x + \epsilon) = \epsilon$ and μ being the density of a Cauchy 978 distribution, $\mathbb{E}_{\epsilon \sim \mu} [f(x + \epsilon)] = \mathbb{E}_{\epsilon \sim \mu} [\epsilon]$ is undefined. Nevertheless, even in this case, the gradient 979 estimators discussed in this paper for $\nabla_x \mathbb{E}_{\epsilon \sim \mu} [f(x + \epsilon)]$ remain well defined. This is practically 980 relevant because $\mathbb{E}_{\epsilon \sim \mu} [f(x+\epsilon)]$ does not need to be finitely defined as long as $\nabla_x \mathbb{E}_{\epsilon \sim \mu} [f(x+\epsilon)]$ 981 is well defined. Further, we remark that the undefinedness of $\mathbb{E}_{\epsilon \sim \mu} [f(x+\epsilon)]$ requires the range of f 982 to be unbounded, i.e., if there exists a maximum / minimum possible output, then it is well defined. 983 Moreover, there exist f with unbounded range for which $\mathbb{E}_{\epsilon \sim \mu} |f(x + \epsilon)|$ also remains well defined. 984 985 To account for cases where $\mathbb{E}_{\epsilon \sim \mu}[f(x + \epsilon)]$ may not be well defined or not a robust statistic, we 986 introduce an extension of smoothing to the median. We begin by defining the k-sample median. 987 **Definition 11** (k-Sample Median). For a number of samples k > 1, and a distribution ζ , we say that 988 989 $\mathbb{E}_{z_1, z_2, \dots, z_k \sim \zeta} \left[\operatorname{median} \left\{ z_1, z_2, \dots, z_k \right\} \right]$ 990 (75)

is the k-sample median. For multivariate distributions, let median be the per-dimension median.

Indeed, for k > 5, the k-sample median estimator is shown to have finite variance for the Cauchy distribution (Theorem 3 and Example 2 in [56]), which implies a well defined k-sample median. Moreover, for any distribution with a density of the median bounded away from 0, the first and second moments are guaranteed to be finitely defined for sufficiently large k. This is important for non-trivial f with $f(\epsilon) \neq \epsilon$ for at least one ϵ with $\epsilon \sim \mu$, which implies $\zeta \neq \mu$. Thus, rather than computing and differentiating the expected value, we can differentiate the k-sample median.

 $f_{\epsilon}^{(k)}(x) = \mathbb{E}_{\epsilon_1, \dots, \epsilon_k \sim \mu} \left[\operatorname{median} \left\{ f(x+\epsilon_1), \dots, f(x+\epsilon_k) \right\} \right],$

1000 **Lemma 12** (Differentiation of the k-Sample Median). With the k-sample median smoothing as 1001

991 992

993 994

995

996

997

998

999

972

973 974

1004

1008 1009

we can differentiate $f_{\epsilon}^{(k)}(x)$ as 1006

$$\nabla_{x} f_{\epsilon}^{(k)}(x) = \mathbb{E}_{\epsilon_{1},\dots,\epsilon_{k} \sim \mu} \Big[f(x + \epsilon_{r(\epsilon)}) \cdot \nabla_{\epsilon_{r(\epsilon)}} - \log \mu(\epsilon_{r(\epsilon)}) \Big]$$
(77)

(76)

1010 where $r(\epsilon)$ is the arg-median of the set $\{f(x+\epsilon_1), ..., f(x+\epsilon_k)\}$, which is equivalent to the implicit 1011 definition via $f(x + \epsilon_{r(\epsilon)}) = \text{median} \{f(x + \epsilon_1), ..., f(x + \epsilon_k)\}.$ 1012

1013 1014 1015

1016 1017 *Proof.* We denote $\epsilon_{1:k} \sim \mu^{(1:k)}$ such that $\epsilon_{1:k} = [\epsilon_1^\top, ..., \epsilon_k^\top]^\top$ and $\epsilon_i \sim \mu \ \forall i \in \{1, ..., k\}$.

$$\nabla_x f_{\epsilon}^{(k)}(x) = \nabla_x \mathbb{E}_{\epsilon_1, \dots, \epsilon_k \sim \mu} \Big[\operatorname{median} \left\{ f(x+\epsilon_1), \dots, f(x+\epsilon_k) \right\} \Big]$$
(78)

$$= \nabla_{x} \mathbb{E}_{\epsilon_{1:k} \sim \mu^{(1:k)}} \left[\operatorname{median} \left\{ f(x+\epsilon_{1}), ..., f(x+\epsilon_{k}) \right\} \right]$$
(79)

1021
1022
1023
$$= \nabla_x \int_{\mathbb{R}^{n \cdot k}} \operatorname{median} \left\{ f(x + \epsilon_1), ..., f(x + \epsilon_k) \right\} \cdot \mu^{(1:k)}(\epsilon_{1:k}) \, d\epsilon_{1:k}$$
(80)

1024
1025
$$(x_1, ..., x_k = x) = \sum_{j=1} \nabla_{x_j} \int_{\mathbb{R}^{n \cdot k}} \operatorname{median} \{f(x_1 + \epsilon_1), ..., f(x_k + \epsilon_k)\} \cdot \mu^{(1:k)}(\epsilon_{1:k}) d\epsilon_{1:k}$$
 (81)

As a shorthand, we abbreviate the indicator $\mathbb{1}_{f(x_j+\epsilon_j)=\text{median}\{f(x_1+\epsilon_1),\dots,f(x_k+\epsilon_k)\}}$ as $\mathbb{1}_{j,\epsilon_{1:k}}$ and abbreviate $\mathbb{1}_{f(u_j)=\text{median}\{f(u_1),\dots,f(u_k)\}}$ as $\mathbb{1}_{j,u_{1:k}}$:

$$\nabla_x f_{\epsilon}^{(k)}(x) = \sum_{j=1}^k \nabla_{x_j} \int_{\mathbb{R}^{n \cdot k}} f(x_j + \epsilon_j) \cdot \mathbb{1}_{j,\epsilon_{1:k}} \cdot \mu^{(1:k)}(\epsilon_{1:k}) \, d\epsilon_{1:k} \tag{82}$$

$$=\sum_{j=1}^{k} \nabla_{x_j} \int_{\mathbb{R}^{n\cdot k}} f(u) \cdot \mathbb{1}_{j,u1:k} \cdot \mu^{(1:k)}(u_{1:k} - x) \, du_{1:k}$$
(83)

$$=\sum_{j=1}^{k}\int_{\mathbb{R}^{n\cdot k}}f(u)\cdot\mathbb{1}_{j,u1:k}\cdot\nabla_{x_{j}}\mu^{(1:k)}(u_{1:k}-x)\,du_{1:k}$$
(84)

$$=\sum_{j=1}^{k}\int_{\mathbb{R}^{n\cdot k}}f(x+\epsilon_{j})\cdot\mathbb{1}_{j,\epsilon_{1:k}}\cdot-\nabla_{\epsilon_{j}}\mu^{(1:k)}(\epsilon_{1:k})\,d\epsilon_{1:k}$$
(85)

1041 We have

$$\nabla_{\epsilon_j} \mu^{(1:k)}(\epsilon_{1:k}) = \mu^{(1:k)}(\epsilon_{1:k}) \cdot \nabla_{\epsilon_j} \log \mu^{(1:k)}(\epsilon_{1:k}) = \mu^{(1:k)}(\epsilon_{1:k}) \cdot \nabla_{\epsilon_j} \log \mu(\epsilon_j) \,. \tag{86}$$

1044 Thus,

$$\nabla_{x} f_{\epsilon}^{(k)}(x) = \sum_{j=1}^{k} \int_{\mathbb{R}^{n \cdot k}} f(x+\epsilon_{j}) \cdot \mathbb{1}_{j,\epsilon_{1:k}} \cdot -\mu^{(1:k)}(\epsilon_{1:k}) \cdot \nabla_{\epsilon_{j}} \log \mu(\epsilon_{j}) \, d\epsilon_{1:k}$$
(87)

$$= \int_{\mathbb{R}^{n \cdot k}} \sum_{j=1}^{k} \left[\mathbb{1}_{j,\epsilon_{1:k}} \cdot f(x+\epsilon_j) \cdot \nabla_{\epsilon_j} - \log \mu(\epsilon_j) \right] \cdot \mu^{(1:k)}(\epsilon_{1:k}) \, d\epsilon_{1:k} \tag{88}$$

Indicating the choice of median in dependence of $\epsilon_{1:k}$, we define $r(\epsilon_{1:k})$ s.t. $\mathbb{1}_{r(\epsilon_{1:k}),\epsilon_{1:k}} = 1$. Thus,

$$\nabla_x f_{\epsilon}^{(k)}(x) = \int_{\mathbb{R}^{n \cdot k}} f(x + \epsilon_{r(\epsilon_{1:k})}) \cdot \nabla_{\epsilon_{r(\epsilon_{1:k})}} - \log \mu(\epsilon_{r(\epsilon_{1:k})}) \cdot \mu^{(1:k)}(\epsilon_{1:k}) \, d\epsilon_{1:k} \tag{89}$$

$$= \mathbb{E}_{\epsilon_{1:k} \sim \mu^{(1:k)}} \Big[f(x + \epsilon_{r(\epsilon_{1:k})}) \cdot \nabla_{\epsilon_{r(\epsilon_{1:k})}} - \log \mu(\epsilon_{r(\epsilon_{1:k})}) \Big]$$
(90)
proof.

1057 This concludes the proof.

1059 Empirically, we can estimate $\nabla_x f_{\epsilon}^{(k)}(x)$ for s propagated samples (s > k) without bias as

$$\nabla_{x} f_{\epsilon}^{(k)}(x) \triangleq \sum_{i=1}^{s} \left[q_{i} \cdot f(x+\epsilon_{i}) \cdot \nabla_{\epsilon_{i}} - \log \mu(\epsilon_{i}) \right] \qquad \epsilon_{1}, \dots, \epsilon_{s} \sim \mu$$
(91)

where q_i is the probability of $f(x + \epsilon_i)$ being the median in a subset of k samples, i.e., under uniqueness of g_i s, we have

$$q_i = \frac{\sum_{\{h_1,\dots,h_k\}\subset\{g_1,\dots,g_s\}} \mathbb{1}\left(g_i = \text{median}\{h_1,\dots,h_k\}\right)}{\binom{s}{k}} \qquad \qquad g_i := f(x+\epsilon_i) \,. \tag{92}$$

We remark that, in case of non-uniqueness, it is adequate to split the probability among the candidates; however, under non-discreteness assumptions on f (density of $\zeta < \infty$, the converse typically implies the range of f being a subset of a compact set), this almost surely (with probability 1) does not occur.

1074 We have shown that the k-sample median $f_{\epsilon}^{(k)}(x)$ is differentiable and demonstrated an unbiased 1075 gradient estimator for it. A straightforward extension for the case of f being differentiable is 1076 differentiating through the median via a $k \to \infty$ -sample median, e.g., via setting $s = k^2$. The 1077 $k \to \infty$ extension for differentiating through the median itself requires f being differentiable because, 1078 for discontinuous $f, f_{\epsilon}^{(k)}(x)$ is differentiable only for $k < \infty$. (As an illustration, the median of the 1079 Heaviside function under a symmetric perturbation μ with density at 0 bounded away from 0 is the exactly the Heaviside function.)

1084

1080 D VARIANCES AND LIPSCHITZ CONSTANTS FOR EACH DISTRIBUTION

In this section, we provide variances of the gradient estimator ∇f_{ϵ} and Lipschitz constants of f_{ϵ} for each of the 6 distributions considered in the paper.

Table 3: Lipschitz constants for each distribution for functions $f : \mathbb{R}^n \to \{0, 1\}^m$.

Distribution	Lipschitz constant
Gaussian	$\frac{1}{\sqrt{2\pi\gamma}} \approx 0.399/\gamma$
Logistic	$0.25/\gamma$
Gumbel	$\frac{1}{e\gamma} \approx 0.368/\gamma$
Cauchy	$\frac{1}{\pi\gamma} \approx 0.318/\gamma$
Laplace	$0.5/\gamma$
Triangular	$1.0/\gamma$

In Table 4, we can see that the Laplace distribution performs best, consistently achieving a variance of 0, which however, in this particular case is due to the simple nature of the problem. The second best distribution is the logistic distribution. The logistic behavior is similar to the Laplace distribution also from an analytical perspective (the logistic can be seen as a smoothed variant of the Laplace).

Table 4: Variances in the case of the sign function (f(x) = sign(x)), smoothed with each respective distribution, and evaluating the variance at point 0, in dependence of the number of samples *s*. To standardize the distributions, we consider 2 settings: scaling each input distribution to a variance of 1, as well as choosing a scale such that the Lipschitz constant of the resulting smooth function is 1.

$f(x) = \operatorname{sign}(x)$	Var = 1	Lipschitz = 1
Gaussian	0.364/s	0.573/s
Logistic	0.272/s	0.336/s
Gumbel	0.759/s	0.859/s
Cauchy	n/a	0.234/s
Laplace	0.000/s	0.000/s
Triangular	1.747/s	2.496/s

In the more complex setting of Table 5, we observe similar behavior. The Laplace dist. has a variance different from 0, but still has the smallest variance. Extending the variances to RQMC (latin) in Table 6, we observe similar behavior, but substantially smaller variances.

Table 5: Variances in the case of f being the sign of the sine function (f(x) = sign(sin(x))), smoothed with each respective distribution, and evaluating the variance at point 0, in dependence of the number of samples s.

$f(x) = \operatorname{sign}(\sin(x))$	Var = 1	Lipschitz = 1
Gaussian	0.382/s	0.588/s
Logistic	0.318/s	0.690/s
Gumbel	0.840/s	1.130/s
Cauchy	n/a	0.452/s
Laplace	0.093/s	0.144/s
Triangular	1.727/s	2.609/s

Table 6: Variances for f(x) = sign(x)) with RQMC (latin) at s = 100 samples, which drastically reduces the variance further. As the rate is faster than 1/s, we report it for 100 samples.

1128	$f(x) = \operatorname{sign}(x)$	RQMC, $Var = 1$	RQMC, $L = 1$
1129	Gaussian	0.0000224	0.0000355
1130	Logistic	0.0000011	0.0000013
1131	Gumbel	0.0001780	0.0002008
1132	Cauchy	n/a	0.0000041
1133	Laplace Triangular	$0.0000000 \\ 0.0109100$	$0.0000000 \\ 0.0156400$

E EXPERIMENTAL DETAILS

1144 Warcraft Shortest-Path Benchmark Experiments Following the established protocol [17], we 1145 train for 50 epochs with the Adam optimizer at a batch size of 70 and an initial learning rate of 0.001. 1146 The learning rate decays by a factor of 10 after 30 and 40 epochs each. The model is the first block of 1147 ResNet18. The hyperparameter $\gamma = 1/\beta$ as specified in Figures 13 and 14.

Utah Teapot Camera Pose Optimization Experiments We initialize the pose to be perturbed by angles uniformly sampled from $[15^\circ, 75^\circ]$. The ground truth orientation is randomly sampled from the sphere of possible orientations. The ground truth camera angle is 20° , and the ground truth camera distance is uniformly sampled from [2.5, 4]. The initial camera distance is sampled as being uniformly offset by [-0.5, 6], thus the feasible set of initial camera distance guesses lies in [2, 10]. The initial camera angle is uniformly sampled from $[10^\circ, 30^\circ]$. We optimize for 1 000 steps with the Adam optimizer $[(\beta_1, \beta_2) = (0.5, 0.99)]$ and the CosineAnnealingLR scheduler with an initial learning rate of 0.3. We schedule the diagonal of L to decay exponentially from $[0.1, 5^{\circ}, 5^{\circ}, 0.25^{\circ}] \cdot 10^{0.75}$ to $[0.1, 5^{\circ}, 5^{\circ}, 0.25^{\circ}] \cdot 10^{-1.75}$ (the dimensions are camera distance, 2 pose angles, and the camera angle). As discussed, the success criterion is finding the angle within 5° of the ground truth angle. There is typically no local minimum within 5° and it is a reliable indicator for successful alignment.

Differentiable Cryo-Electron Tomography Experiments The ground truth values of the parame-ters are set to 300 kV for acceleration voltage, 3 mm for the focal length, and the ground truth sample specimen is centered as (x, y) = (0, 0) nm units. For reporting errors, the acceleration voltages are normalized by a factor of 100 to ensure that all parameters vary over commensurate ranges. For the 2-parameter optimization, the feasible set of acceleration voltage varied over a range of [0, 1000] kV and the feasible set of the specimen's x-position varied over the range [-5, 5]. For the 4-parameter optimization, the feasible set of acceleration voltage varied over a range of [0, 600] kV, the focal length ranges over [0, 6] mm, the x- and y-positions range over [-3, 3]. We use the Adam optimizer for both experiments, with $[(\beta_1, \beta_2) = (0.5, 0.9)]$. For the MC Search baseline, we generate sets of n uniform random points in the feasible region of the parameters, generate micrographs for these random parameter tuples using the TEM simulator [53], and identify the parameter tuple in the set having the lowest mean squared error with respect to the ground truth image. The RMSE between this parameter tuple and the ground truth parameters is the metric for the specific set of n randomly generated values. This is repeated 20 times to obtain the mean and standard deviation of the RMSE metric at that n.

- E.1 Assets
- *List of assets:*

- The sixth platonic solid (aka. Teapotahedron or Utah tea pot) [57] [License N/A]
- Multi-digit MNIST [8], which builds on MNIST [58] [MIT License / CC License]
- Warcraft shortest-path data set [17] [MIT License]
- PyTorch [59] [BSD 3-Clause License]
 - TEM-simulator [53] [GNU General Public License]

- 1185 E.2 RUNTIMES
- 1187 The runtimes for sorting and shortest-path experiments are for one full training on 1 GPU. The pose optimization experiment runtimes are the total time for all 768 seeds on 1 GPU. For the TEM-

simulator, we report the CPU time per simulation sample, which is the dominant and only the measureable component of the total optimization routine time. The choice of distribution, covariate, and choice of variance reduction does not have a measurable effect on training times.

1192		 MNIST Sorting Benchmark Experiments [1 Nvidia V100 GPU]
1193		- Training w/ 256 samples: 65 min
1194		- Training w/ 1 024 samples: 67 min
1195		- Training w/ 2 048 samples: 68 min
1196		- Training w/ 8 192 samples: 77 min
1197		- Training w/ 32 768 samples: 118 min
1199		• Warcraft Shortest-Path Benchmark Experiments [1 Nvidia V100 GPU]
1200		– Training w/ 10 samples: 9 min
1201		– Training w/ 100 samples: 19 min
1202		– Training w/ 1 000 samples: 26 min
1203		- Training w/ 10 000 samples: 101 min
1204 1205		• Utah Teapot Camera Pose Optimization Experiments [1 Nvidia A6000 GPU]
1206		- Optimization on 768 seeds w/ 16 samples: 25 min
1207		- Optimization on 768 seeds w/ 64 samples: 81 min
1208		- Optimization on 768 seeds w/ 256 samples: 362 min
1209		• Differentiable Crvo-Electron Tomography Experiments [CPU: 44 Intel Xeon Gold 5118]
1210		Simulator time per sample on 1 CPU core: 67 sec
1211		- Simulator time per sample on 1 er 0 core. 07 see
1212	Б	
1213	F	ADDITIONAL EXPERIMENTAL RESULTS

Table 7: Extension of Table 2 with additional numbers of samples and standard deviations.

Baselines		Neu.S.	Soft.S.	L. DSN	C. DSN	E. DSN	OT. S.
		71.3	70.7	77.2	84.9	85.0	81.1
Sampling	#s	Gauss.	Logis.	Gumbel	Cauchy	Laplace	Trian.
vanilla best (cv)	256 256	$^{82.3\pm2.0}_{83.1\pm1.6}$	$\substack{82.8 \pm 0.9 \\ 82.7 \pm 1.8}$	$79.2{\pm}9.7 \\ 81.6{\pm}3.6$	${}^{68.1\pm19.3}_{55.6\pm13.3}$	$^{82.6\pm0.8}_{83.7\pm0.8}$	$81.3 {\pm} 1.2 \\ 82.7 {\pm} 1.1$
vanilla best (cv)	1024 1024	81.3±9.1 83.9±0.6	83.7±0.7 84.0±0.5	$\substack{82.0 \pm 1.6 \\ 84.2 \pm 0.6}$	${}^{68.5\pm24.8}_{73.0\pm12.6}$	$80.6 {\pm} 9.0 \\ 84.3 {\pm} 0.6$	82.8±1.0 82.4±1.6
vanilla best (cv)	2048 2048	$\substack{84.1 \pm 0.6 \\ 84.2 \pm 0.5}$	$\substack{83.6 \pm 0.8 \\ 84.2 \pm 0.6}$	$84.0 {\pm} 0.5 \\ 84.6 {\pm} 0.4$	$75.7{\pm}11.6 \\ 82.0{\pm}2.2$	$83.8 {\pm} 0.7 \\ 84.8 {\pm} 0.5$	$83.2 \pm 0.6 \\ 83.4 \pm 0.5$
vanilla best (cv)	8192 8192	$84.0 \pm 0.6 \\ 84.4 \pm 0.6$	$\substack{84.2 \pm 0.8 \\ 84.5 \pm 0.5}$	$84.0 \pm 0.6 \\ 84.1 \pm 0.7$	83.6±1.0 84.3±0.5	$83.9{\pm}1.0 \\ 84.3{\pm}0.4$	83.6±0.7 83.7±0.4
vanilla best (cv)	32768 32768	84.2 ± 0.5 84.4 ± 0.4	84.1 ± 0.4 84.4 ± 0.4	84.5 ± 0.7 84.8 ± 0.5	84.9 ± 0.5 85.1 ± 0.4	84.4 ± 0.5 84.4 ± 0.4	83.4 ± 0.8 84.0 ± 0.3

n = 3 n = 5n = 7n = 10Gaussian Logistic Gumbel Cauchy Laplace Triangular

Figure 15: Cryo-Electron Tomography Experiments: RMSE with respect to Ground Truth parameters for different number of parameters optimized and for different number of samples per optimization step: (Top Left) 2-parameters & number of samples=9, (Top Right) 2-parameters & number of samples=25, (Bottom Left) 2-parameters & number of samples=36, (Bottom Right) 4-parameters. No marker lines correspond to Gaussian, \times corresponds to Laplace, and \triangle corresponds to Triangular distributions. Ascertaining optimal parameters with minimal evaluations is important not just for high resolution imaging, but also to minimize radiation damage to the specimen. In this light, of the covariate choices, LOO generally leads to best improvement and none consistently leads to deterioration in performance. The Laplace and Triangular distributions lead to best performance. For the Gaussian distribution, Cartesian RQMC is generally exhibiting best results.

Table 8: Individual absolute values from the variance simulations for differentiable sorting in Figure 3. The minimum and values within 1% of the minimum are indicated as bold.

(a) values for Gaussian $(n = 3)$							((b) valu	ies for	Gaussia	an $(n =$	= 5)	
	none	f(x)	LOO	none	f(x)	LOO		none	f(x)	LOO	none	f(x)	LOO
		regular		8	ntitheti	2			regular		8	antitheti	с
MC (QMC (lat.) (RQMC (l.) (RQMC (c.) (0.0084 0.0029 0.0030 0.0012	0.0079 0.0030 0.0030 0.0013	0.0046 0.0030 0.0030 0.0012	0.0055 0.0036 0.0036 0.0014	0.0054 0.0036 0.0035 0.0014	0.0053 0.0036 0.0036 0.0014	MC QMC (lat.) RQMC (l.) RQMC (c.)	0.0241 0.0143 0.0145 0.0103	0.0308 0.0144 0.0145 0.0116	0.0171 0.0144 0.0144 0.0097	0.0192 0.0164 0.0164 —	0.0192 0.0164 0.0164 —	0.0192 0.0164 0.0162
(c) valu	ues for	Logisti	c (n =	: 3)			(d) valı	ues for	Logisti	c (n =	= 5)	
	none	f(x)	LOO	none	f(x)	LOO		none	f(x)	LOO	none	f(x)	LOO
		regular		2	ntitheti	c			regular		8	antitheti	с
MC (QMC (lat.) (RQMC (l.) (RQMC (c.) (0.0028 0.0012 0.0012 0.0013	0.0030 0.0012 0.0012 0.0003	0.0016 0.0012 0.0012 0.0003	0.0019 0.0014 0.0014 0.0004	0.0019 0.0014 0.0013 0.0004	0.0019 0.0014 0.0014 0.0004	MC QMC (lat.) RQMC (l.) RQMC (c.)	0.0081 0.0053 0.0053 0.0033	0.0114 0.0053 0.0054 0.0036	0.0061 0.0054 0.0053 0.0033	0.0067 0.0060 0.0060 —	0.0067 0.0060 0.0060 —	0.0067 0.0060 0.0059
(e) valı	ues for	Gumbe	el ($n =$	3)			(f) valu	ues for	Gumbe	el $(n =$	5)	
	none	f(x)	LOO	none	f(x)	LOO		none	f(x)	LOO	none	f(x)	LOO
		regular		а	ntithetic	2			regular		а	intithetio	2
MC (QMC (lat.) (RQMC (l.) (RQMC (c.) (0.0086 0.0033 0.0033 0.0017	0.0082 0.0033 0.0033 0.0018	0.0048 0.0032 0.0033 0.0014				MC QMC (lat.) RQMC (l.) RQMC (c.)	0.0243 0.0151 0.0150 0.0124	0.0323 0.0149 0.0151 0.0148	0.0177 0.0150 0.0150 0.0109			
(g) valı	ues for	Cauch	y ($n =$	3)			(h) val	ues for	Cauch	y (n =	5)	
	none	f(x)	LOO	none	f(x)	LOO		none	f(x)	LOO	none	f(x)	LOO
		regular		8	ntitheti	2			regular		8	antitheti	с
MC (QMC (lat.) (RQMC (l.) (RQMC (c.) (0.0043 0.0022 0.0022 0.0026	0.0044 0.0022 0.0022 0.0006	0.0026 0.0022 0.0022 0.0005	0.0030 0.0027 0.0027 0.0006	0.0030 0.0027 0.0026 0.0006	0.0030 0.0027 0.0027 0.0006	MC QMC (lat.) RQMC (l.) RQMC (c.)	0.0123 0.0088 0.0088 0.0061	0.0169 0.0087 0.0088 0.0070	0.0094 0.0088 0.0087 0.0056	0.0102 0.0098 0.0098	0.0101 0.0098 0.0097	0.0102 0.0098 0.0097
((i) valu	ues for	Laplace	e (n =	3)			(j) valı	ues for	Laplac	e (<i>n</i> =	5)	
	none	f(x)	LOO	none	f(x)	LOO		none	f(x)	LOO	none	f(x)	LOC
		regular		2	ntitheti	c			regular			antitheti	с
MC (QMC (lat.) (RQMC (l.) (RQMC (c.) (0.0086 0.0037 0.0037 0.0009	0.0074 0.0037 0.0037 0.0009	0.0044 0.0038 0.0037 0.0009	0.0054 0.0046 0.0047 0.0010	0.0054 0.0046 0.0046 0.0011	0.0054 0.0047 0.0046 0.0010	MC QMC (lat.) RQMC (l.) RQMC (c.)	0.0245 0.0159 0.0160 0.0091	0.0305 0.0160 0.0159 0.0091	0.0176 0.0160 0.0159 0.0091	0.0191 0.0182 0.0182 —	0.0192 0.0180 0.0181 —	0.0192 0.0182 0.0181
(k)) value	es for T	Friangul	ar (n :	= 3)		(l) value	es for T	riangu	ar (n =	= 5)	
	none	f(x)	LOO	none	f(x)	LOO		none	f(x)	LOO	none	f(x)	LOC
		regular		8	ntitheti	c			regular			antitheti	с
MC (QMC (lat.) (0.1191 0.0166	0.0683 0.0169 0.0358	0.0490 0.0166 0.0352	0.0659 0.0189 0.0444	0.0624 0.0188 0.0417	0.0602 0.0188 0.0431	MC QMC (lat.) RQMC (l.)	0.3329 0.0844 0.1768	0.2779 0.0845 0.1872	0.1857 0.0851 0.1479	0.2255 0.0932 0.1827	0.2157 0.0931 0.1765	0.2149 0.0928 0.1737

((a) values	s for C	Jaussi	an (8	$\times 8)$)		(b) values	for Ga	ussian	(12)	× 12)	
	none	f(x)	LOO	none	f(x)	LOO			none	f(x)	LOO	none	f(x)	LOC
	re	gular		ar	ntithet	tic			1	egular		a	ntithet	ic
MC QMC (lat.) RQMC (l.)	1330.01 4.04 4.25	4.17 4.04 4.05	4.17 4.04 4.05	8.32 8.04 8.10	8.32 8.04 8.09	8.34 8.07 8.12		MC QMC (lat.) RQMC (l.)	6800.98 20.60 21.69	20.93 20.60 20.66	20.95 20.65 20.68	41.82 41.12 41.31	41.78 41.11 41.33	41.88 41.18 41.42
	(c) value	s for I	Logist	ic (8	× 8)			(0	l) values	s for Lo	ogistic	(12 ×	(12)	
	none	f(x)	LOO	none	f(x)	LOO			none	f(x)	L00	none	f(x)	LOC
	re	gular		aı	ntithet	tic			1	egular		a	ntithet	ic
MC QMC (lat.) RQMC (l.)	1449.44 4.42 4.44	4.53 4.42 4.44	4.53 4.43 4.44	9.04 8.80 8.88	9.04 8.80 8.87	9.05 8.83 8.90		MC QMC (lat.) RQMC (l.)	7447.38 22.56 22.66	22.83 22.56 22.65	22.86 22.61 22.68	45.62 45.01 45.30	45.61 44.99 45.32	45.75 45.07 45.41
	(e) value	s for (Gumb	el (8	× 8)			(1	f) values	for Gu	umbel	$(12 \times$	12)	
	none	f(x)	LOO	none	f(x)) LOO			nor	the $f(x)$) LOC) none	f(x)	L00
	re	egular		a	ntithe	etic				regular		а	ntithet	tic
MC QMC (lat.) RQMC (l.)	2275.31 9.11 11.33	10.35 8.84 8.91	9.08 8.85 8.91			 		MC QMC (lat.) RQMC (l.)	11642.7 46.8 58.1	4 52.8 8 45.4 2 45.7	9 46.11 1 45.48 4 45.80	1 — 8 — 0 —		
					(g)	values	for C	Cauchy (8 \times	8)					
				none	e	f(x)		LOO 1	none	f(x)		LOO		
					re	oular				tithatia				
						Sului			an	umenc				
	MC QM RQ	C IC (lat MC (l.	249 .) 2 .) 251	027.67 533.2 4 018.28	7 263 4 2 8 267	426.66 532.93 124.91	2554 25 2641	440.59 50700 537.32 253 146.84 47629	an 4.19 52: 1.24 2 3.00 50	5973.88 2 532.92 7766.00	50970 253 52903	64.25 37.35 30.06		
	MC QM RQ	C IC (lat MC (l.	249 .) 2 .) 251	027.67 533.2 4 018.28	7 263 4 2 8 267 (h) v	426.66 532.93 124.91 ralues f	2554 25 2641 or Ca	440.59 50700 537.32 253 146.84 47629 auchy (12 ×	an 4.19 52: 1.24 2 3.00 50' 12)	5973.88 2532.92 7766.00	50976 253 52903	64.25 37.35 30.06		
	MC QM RQ	IC (lat MC (l.	249 .) 2 .) 251	027.67 533.24 018.28	7 263 4 2 8 267 (h) v	426.66 532.93 124.91 ralues f f(x)	2554 25 2641 or Ca	440.59 50700 537.32 253 146.84 47629 auchy (12 × LOO	an 4.19 52: 1.24 3.00 50 12) none	f((<i>x</i>)	64.25 37.35 30.06	00	
	MC QMC (RQMC (C (lat MC (l. 	249 .) 251 .) 251 .) 31680 1292 31829	027.67 533.2 018.28 none 1.88 1 2.79 7.38 1	7 263 4 2 3 267 (h) v regu 12840 12998	$\begin{array}{c} 426.66\\ \textbf{532.93}\\ 124.91\\ \textbf{alues f}\\ f(x)\\ \textbf{ilar}\\ \textbf{78.38}\\ \textbf{22.31}\\ 69.75 \end{array}$	2554 2641 or Ca 12977 129 13657	$\begin{array}{c} 440.59 & 50700 \\ 537.32 & 253 \\ 446.84 & 47629 \\ \mathbf{auchy} & (12 \times 10^{-10}) \\ 12 \times 1000 \\ 12$	an 4.19 52: 1.24 2 3.00 50 [°] 12) none 88.00 2 31.28 23.50 20	f(antithet 5973.88 2532.92 7766.00 f(antithet 531427 12928 515697	(x) (x) (x) (x) (x) (x) (x) (x) (x) (x)	64.25 37.35 30.06 LC 333413 12945 29304.!	00 50 27 00	
	MC QMC RQMC (RQMC (RQMC (i) value	C (lat MC (l. 	249 .) 251 31680 1292 31829	027.67 533.24 018.28 none 1.88 1 2.79 7.38 1 ce (8	7 263 4 2 3 267 (h) v regu 12840 12998 × 8)	$\frac{g_{allar}}{426.66}$ 532.93 124.91 alues f $f(x)$ aluar 78.38 22.31 69.75	2554 2641 or Ca 12977 129 13657	$\begin{array}{c} 440.59 & 50700 \\ 537.32 & 253 \\ 146.84 & 47629 \\ auchy & (12 \times 10^{-10}) \\ 1200 & -1000 \\ \hline \\ 748.25 & 26578 \\ 248.75 & 129 \\ 709.75 & 26067 \\ \hline \\ \end{array}$	an 4.19 52: 1.24 2 3.00 50 ⁻ 12) none 88.00 20 31.28 23.50 20 j) values	f(antithet 531427 12928 515697 5 for La	(x) (x) (x) (x) (x) (x) (x) (x) (x) (x)	64.25 37.35 30.06 LC 333413 12945. 29304. (12 ×	00 50 27 00 12)	
	MC QMC (RQMC (RQMC (i) value none	$\frac{1}{1}$ $\frac{1}$	249 .) 251 1 31680 1292 31829 Laplac	027.67 533.2 018.28 none 1.88 1 2.79 7.38 1 ce (8 none	7 263. 4 2. 3 267 (h) v regu 12840 12998 \times 8) f(x)	$\begin{array}{c} g \text{ diam} \\ 426.66 \\ \textbf{532.93} \\ 124.91 \\ a \text{ lues f} \\ \hline f(x) \\ 1 \text{ lar} \\ 78.38 \\ \textbf{22.31} \\ 69.75 \\ \hline \end{array}$	2554 25 2641 or Ca 12977 129 13657	$\begin{array}{c} 440.59 & 50700 \\ 537.32 & 253 \\ 146.84 & 47629 \\ \hline \\ auchy & (12 \times \\ \hline \\ LOO \\ \hline \\ 748.25 & 26578 \\ \hline \\ 248.75 & 129 \\ 709.75 & 26067 \\ \hline \\ \hline \\ \hline \\ \hline \end{array}$	an 4.19 52: 1.24 2 3.00 50 [°] 12) none 88.00 20 31.28 23.50 20 j) values nor	$\frac{f(1)}{5973.88}$ 2532.92 7766.00 f(1) antithet 531427 12928 515697 515697 a for La b f(x) b f(x)	x) ic 25 260 25 260 25 260 25 260 25 260 25 260 25 250 250 250 250 250 250 250 250 250 250	64.25 37.35 30.06 LC 33413 12945 29304 (12 × D none	$\frac{\overline{00}}{50}$ $\frac{\overline{50}}{12}$ $\frac{12}{\overline{12}}$;) LO
	MC QMC QMC (RQMC (RQMC (i) value none re	$\frac{1}{1}$ $\frac{1}$	249 .) 251 31680 1292 31829 Laplac	$\begin{array}{c} 027.67\\ \textbf{533.24}\\ 018.28\\ \hline \\ \hline \\ \textbf{none}\\ \hline \\ \textbf{1.88 1}\\ \textbf{2.79}\\ \textbf{7.38 1}\\ \hline \\ \textbf{xe} (8\\ \hline \\ \hline \\ \textbf{none}\\ \hline \\ \textbf{a} \end{array}$	7 263 4 2 3 267 (h) v regu 12840 12998 \times 8) f(x) untitle	$\frac{1}{426.66}$ 532.93 124.91 alues f $f(x)$ alues f 78.38 22.31 69.75 (c) LOC etic	2554 2641 or Ca 12977 129 13657	440.59 50700 537.32 253 146.84 47629 auchy (12 × LOO 748.25 26578 048.75 129 709.75 26067 (j	an 4.19 52: 1.24 2 3.00 50' 12) none 88.00 20 31.28 23.50 20 j) values nor	$\frac{f(1)}{5973.88}$ 2532.92 7766.00 <i>f(1)</i> antithet 531427 12928 515697 for La te $f(x)$ regular	(x) (x) (x) (x) (x) (x) (x) (x) (x) (x)	64.25 37.35 30.06 LC 33413 12945. 29304. (12 × 0 none	$\frac{\overline{00}}{50}$ $\frac{50}{27}$ $\frac{12}{12}$ $\frac{1}{12}$ $\frac{1}{12}$;) LO etic
MC QMC (lat.) RQMC (l.)	MC QMC (RQMC (RQMC (RQMC (i) value i) value 2641.38 8.04 8.09	IC (lat MC (l. MC (l. 1 lat.) 2 (l.) 1 s for I f(x) gular 8.15 8.05 8.09	249 251 31680 1292 31829 Laplac LOO 8.15 8.06 8.10	$\begin{array}{c} 027.6^{\circ}, \\ 533.22 \\ \hline \\ 018.28 \\ \hline \\ 1.88 \\ 1 \\ 2.79 \\ \hline \\ 7.38 \\ 1 \\ 2.79 \\ \hline \\ r \\ r \\ 16.28 \\ 16.01 \\ 16.19 \\ \hline \end{array}$	7 263 7 263 4 2 2 267 (h) v regu 12998 × 8) f(x) 16.2 16.0 16.1	426.66 532.93 124.91 alues f $f(x)$ aluer 78.38 22.31 69.75 $c)$ LOC etic 7 16.20 7 16.22	2554 2641 2641 129777 12977 129777 129777 129777 129777 129777 129777 1297777 1297777 129777777 1297777777777	440.59 50700 537.32 253 146.84 47629 auchy (12 × LOO 748.25 26578 948.75 129 709.75 26067 (j MC QMC (lat.) RQMC (l.)	an 4.19 52: 1.24 3.00 50 ⁻ 12) none 88.00 20 31.28 23.50 20 i) values i) values 13593.8 41.0 41.3	f(a) =	(x) (x) (x) (x) (x) (x) (x) (x) (x) (x)	64.25 37.35 30.06 LC 33413 12945. 29304 (12 × 0 none 5 82.77 6 81.78 6 82.62	$\frac{1}{50}$ 50 12) $\frac{1}{27}$ $\frac{1}{2}$ $\frac{1}{$:) LC etic 1 82.: 1 82.: 4 82.:
MC QMC (lat.) RQMC (l.) (l	MC QMC (QMC (RQMC (RQMC (RQMC (i) value in one re 2641.38 8.04 8.09 k) values	IC (lat MC (l. MC (l.) 1 lat.) (1,) 1 f(x) gular 8.15 8.05 8.09 for T	249) 251 31680 1292 31829 Laplac LOO 8.15 8.06 8.10 riangu	$\begin{array}{c} 027.6^{\circ}\\ 533.2^{\circ}\\ 018.2^{\circ}\\ \hline \\ 1.88 \ 1\\ 2.79 \\ 7.38 \ 1\\ 2.79 \\ \hline \\ 7.38 \ 1\\ 6.01 \\ \hline \\ 16.28 \\ 16.01 \\ 16.19 \\ \hline \\ 116.19 \\ \hline \end{array}$	7 263 4 22 3 267 (h) v regu 2840 12998 × 8) f(x) nutithe 16.2 16.0 16.1 f(x)	$\begin{array}{c} g \text{ diam} \\ 426.66 \\ \textbf{532.93} \\ 124.91 \\ a \text{ lues f} \\ \hline f(x) \\ a \text{ lues f} \\ \hline f(x) \\ \textbf{c} \\ $	2554 25 2641 007 Ca 129777 129 33657	$\begin{array}{c} 440.59 & 50700 \\ 537.32 & 253 \\ 146.84 & 47629 \\ auchy & (12 \times 10^{-10}) \\ 1200 & -1000 \\ \hline \\ 148.25 & 26578 \\ 129 \\ 709.75 & 26067 \\ \hline \\ 1000 & -1000 \\ \hline \\ 1$	an 4.19 52: 1.24 2 3.00 50 ⁷ 12) none 88.00 20 31.28 23.50 20 () values 13593.8 41.0 41.3 values	f(a) =	(x) (x) (x) (x) (x) (x) (x) (x) (x) (x)	64.25 37.35 30.06 LC 33413. 12945. 29304. (12 × 0 none 5 82.72 6 81.73 6 82.62 r (12	$\frac{1}{50}$ $\frac{1}{50}$ $\frac{1}{27}$ $\frac{1}{2$	e) LO etic 1 82.5 5 81.9 4 82.3
MC QMC (lat.) RQMC (l.) (l	MC QMC (QMC RQMC (RQMC (RQMC (i) value re 2641.38 8.04 8.09 k) values none	C (lat MC (l. MC (l. 1 lat.) f(1) 1 s for I f(x) gular 8.15 8.05 8.09 for T f(x)	249 249 251 31680 1292 31829 231	$\frac{027.67}{533.24}$ none $\frac{11.88 \text{ I}}{2.79}$ $\frac{1}{7.38 \text{ I}}$ $\frac{1}{2.79}$ $\frac{1}{16.28}$ $\frac{1}{16.28}$ $\frac{1}{16.19}$ $\frac{1}{16.19}$ $\frac{1}{16.19}$ $\frac{1}{16.19}$ $\frac{1}{16.19}$	7 263 7 263 4 2 2 207 (h) v regu 12840 12998 $\times 8)$ f(x) 16.2 16.0 16.1 16.2 16.0 16.1 188 × 8 e f(x)	x 426.66 532.93 124.91 alues f $f(x)$	2554 2641 or Ca 12977 129 13657	440.59 50700 537.32 253 146.84 47629 auchy (12 × LOO 748.25 26578 948.75 129 709.75 26067 (j MC QMC (lat.) RQMC (l.) (l)	an 4.19 52: 1.24 3.00 50 12) none 88.00 20 31.28 23.50 20 j) values 13593.8 41.0 41.3 values 1 nor	$\frac{f(1)}{5973.88}$ 2532.92 7766.00 $\frac{f(1)}{531427}$ antithet 531427 12928 515697 a for La $\frac{f(x)}{515697}$ a for La $\frac{f(x)}{641.0}$ 2 41.3 for Tria $\frac{f(x)}{567}$	(x) (x) (x) (x) (x) (x) (x) (x) (x) (x)	64.25 37.35 30.06 LC 33413. 129304 . (12 × 0 none 5 82.73 6 82.63 r (12 0 none	$\frac{1}{50}$ $\frac{1}{50}$ $\frac{1}{12}$ $\frac{1}{2}$ \frac	 :) LO ettic 1 82.9 5 81.9 4 82.3 :) Li
MC QMC (lat.) RQMC (l.) (l	MC QM RQ MC QMC (RQMC (RQMC (RQMC (i) value 2641.38 8.04 8.09 k) values none re	IC (lat MC (l. MC (l. 1 lat.) f(x) gular 8.15 8.05 8.09 for Tr f(x) egular	249) 251 31680 1292 31829 LOO 8.15 8.06 8.10 riangu LOO	$\begin{array}{c} 027.6^{\circ}\\ 533.2^{\circ}\\ 018.2^{\circ}\\ 018.2^{\circ}\\ 18.8^{\circ}\\ 18.8^{\circ}\\ 18.8^{\circ}\\ 7.38^{\circ}\\ 18.8^{\circ}\\ 16.28^{\circ}\\ 16.28^{\circ}$	7 263 7 263 4 2 2 80 (h) v regu 12998 × 8) f(x) 12998 × 8) f(x) 12998 × 8) f(x) 12998 × 8) f(x) 12998 f(x) 12998 f(x) 12998 f(x) f(x) 12998 f(x)	gainal 426.66 532.93 124.91 alues f $f(x)$	2554 2641 or Ca 129777 129 33657	440.59 50700 537.32 253 146.84 47629 auchy (12 × LOO 748.25 26578 048.75 129 709.75 26067 (j MC QMC (lat.) RQMC (l.) (l)	an 4.19 52: 1.24 2 3.00 50 ⁻ 12) none 88.00 20 31.28 23.50 20 i) values i 13593.8 41.0 41.3 values i	$\frac{f(1)}{5973.88}$ 2532.92 7766.00 $\frac{f(1)}{531427}$ 12928 515697 3 for La 16 f(x) 12928 16 f(x) 12928 16 f(x) 16 f(x	(x) (x) (x) (x) (x) (x) (x) (x) (x) (x)	$\begin{array}{c} 64.25 \\ 37.35 \\ 30.06 \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ $	$\frac{12}{50}$ 1	 c) LC etic 1 82. 5 81. 4 82. c) L c) L etic

1513 test paths in Figure 4. simulations for differentiable **c**... 1. . 1 . ·