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Abstract—Individuals with Opioid Use Disorder (OUD) often
struggle to maintain sobriety, with many experiencing relapse
within the first year. While medication-assisted treatment (MAT)
is among the most effective approaches, access to intensive care is
often limited by financial barriers. Mobile health (mHealth) tech-
nologies offer a promising, cost-effective alternative by enabling
continuous monitoring and timely intervention through tools
such as ecological momentary assessments (EMAs), wearable
sensors, and smartphone data. In this study, we explore the
feasibility of using mHealth data to predict emotions that align
with cravings in OUD patients undergoing MAT. Using data col-
lected from EMAs, wearables, smartphone tracking, and surveys,
we demonstrate that machine learning models can accurately
predict emotional states associated with cravings. These findings
highlight the potential of mHealth systems to support individuals
with OUD through timely and scalable interventions.

I. INTRODUCTION

Substance use disorder (SUD) is a major public health
concern, affecting over 20 million Americans [1], and costing
hospitals nearly 13.2 billion dollars a year [2]. Managing
and intervening in SUD is crucial for reducing negative
health outcomes and improving well-being. However, there are
many barriers preventing healthcare providers from adequately
treating SUD. Madras et al. defined five barriers: provider,
institution, regulatory, financial, and other [3]. Many of these
barriers stem from the substantial financial costs and the time
investment required by providers to deliver effective treatment
for substance abuse.

The addiction cycle starts with the initiation of sobriety,
followed by withdrawal and stress, then cravings and adverse
emotions, culminating ultimately in relapse [4]. Approxi-
mately 40-60% of individuals with SUD relapse within a year
of achieving sobriety [5], and on average, it takes as many as
5.3 attempts to maintain long-term sobriety [6]. These statistics
highlight the pervasiveness of the addiction cycle. However,
we may be able to interrupt this cycle before a relapse occurs
through Just-In-Time Adaptive Interventions (JITAI), which
provides support at specific times based on an individual’s
needs [7].
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Researchers have explored mobile health (mHealth) tech-
nologies, including ecological momentary assessments (EMA)
and wearable sensors, to monitor and intervene in SUD [8],
[9], [10], [11]. While EMA remains a common tool for cap-
turing momentary states, machine learning models leveraging
data from wearable devices have shown promise in predicting
stress and cravings with up to 86% accuracy [12]. GPS-based
sensing and HRV-triggered JITAIs have also demonstrated
predictive and therapeutic potential [13]. However, reliance on
user-tagged events and surveys presents limitations, highlight-
ing the need for minimally burdensome, context-aware sensing
systems to support personalized treatment.

We address current limitations using multimodal analy-
ses and modeling for patients with Opioid Use Disorders
(OUD) undergoing Medication-assisted treatment (MAT) for
one month [14]. The project employs a combination of lab and
field studies, including functional magnetic resonance imaging
(fMRI), questionnaires, wearables, a smartphone tracking ap-
plication, and EMA to develop novel methods for modeling
multimodal data. In this paper, we aim to explore preliminary
craving and affect analyses and mHealth-based affect detection
that can eventually guide adaptive interventions. The contri-
butions of this paper can be summarized as follows:

o We present a multimodal longitudinal study of 35 OUD
patients receiving MAT, capturing contextual, physiolog-
ical, and EMA data.

e We provide a preliminary analysis of craving and emo-
tions.

o We develop machine learning models to predict positive
vs. negative emotions, which we identified as being linked
to cravings through past literature and our analyses.

II. STUDY
A. Study Design

The study enrolled 35 participants (23 female and 12
male) receiving Buprenorphine/Naloxone from a clinic located
at Ben Taub Hospital in Houston, Texas. Participants were
between 21 and 64 years of age (mean age = 43, SD =
10.7). Most participants identified as White (26), followed by
African American (8), and Other (1); 8 identified as Hispanic.



Eligible patients were referred by clinic psychiatrists and
contacted by phone for consent and onboarding. At the initial
visit, participants completed surveys and set up EMA, phone
sensing, and Fitbit tracking. Final visits were scheduled 1-2
months later.

B. Wearable

Participants were provided with the Fitbit Inspire 2 and
guided through setup using a prepared installation guide and
pre-registered accounts for data access via the Fitbit API. The
device collected minute-by-minute intraday data, including
timestamps, step count, average heart rate, and sleep stages
(awake, asleep, or restless).

C. Phone applications

Participants installed two smartphone apps alongside the
Fitbit app (i0S > 15, Android > 9). The AWARE app [15]
collected call and message logs, location, and screen usage,
with all tracked data disclosed for privacy transparency. The
CraveSense app prompted four daily EMAs, balancing data
quality with participant burden. EMAs included sleep, stress,
mood, and the Geneva Emotion Wheel (GEW) [16] (Fig. 1).
The GEW is divided into four quadrants. The x-axis separates
responses by emotion type, with negative emotions on the left
and positive emotions on the right. The y-axis differentiates
responses by control level, with low control emotions in
the bottom and high control emotions in the top half. After
choosing up to three emotions, the participants were then asked
to provide the intensity of that emotion on a scale between
1 and 5. Participants were also asked if they were currently
experiencing cravings for opioids or any other drug; if they
indicated that they were experiencing a craving, they would
then be asked to fill out the Brief Substance Craving Scale
[17].
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Fig. 1. Screenshot from the Cravesense APP of the Geneva Emotion Wheel
(GEW). The Quadrants of the GEW are also displayed. The GEW splits
emotions based on emotional state (x-axis) and level of control (y-axis).

TABLE I

FEATURES EXTRACTED FROM FITBIT AND AWARE DATA.
Modality | Features
Steps Mean, Standard Deviation, Max
Heart Rate | Mean, Standard Deviation, Max, Min
Sleep Time Asleep, Time Restless, Time Awake, Sleep Regularity Index
Phone # of Incoming and Outgoing Calls, Call Duration, Common
Calls Callers
SMS Messages Sent, Messages Received, Common Texters
Location Cluster Location, Location Count
Screen Screen Usage

III. ANALYSES AND MODELING

A. Data Processing

We segment the data into 30-minute intervals and ex-
tract statistical features from each data source within these
segments. A list of all the features extracted is found in
Table I. For heart rate and step count, we calculate statistical
features. For sleep, we extract four features that summarize the
participant’s sleep from the previous night: Time Awake, Time
Restless, Time Asleep, and the Sleep Regularity Index (SRI).
SRI represents the consistency of a person’s sleep pattern by
assessing the likelihood of sleep occurring 24 hours apart [18].

For phone data, we record the number and duration of
phone calls, the number of text messages sent and received,
and the duration of screen time in each interval. We rank
callers and texters in ascending order by how often the
participant interacts with them, and for each segment, we
identify frequently contacted persons for calls and text mes-
sages. For GPS features, we cluster the locations by applying
a dynamic k-Means clustering algorithm to stationary GPS
data, determining the optimal number of clusters based on a
maximum distance threshold. We assign the most frequently
visited cluster location to each interval and record the number
of unique locations visited within that interval.

B. Analysis

We analyze the reported emotional responses obtained
through EMAs, particularly how they differed when partic-
ipants indicated cravings. Many of our participants report
few, if any, cravings (20% of responses). Therefore, we focus
on participants who reported cravings and analyze whether
their emotional states differ significantly between craving and
non-craving moments. We evaluate these relationships using
Cohen’s Kappa to measure agreement between binary emotion
labels (e.g., Q1-Q4, Positive/Negative, High/Low Control) and
binary craving responses.

C. Machine Learning Models

We train models to predict emotion labels using data col-
lected 90 to 120 minutes before each EMA response. This
approach enables the delivery of interventions before craving
episodes occur. In addition, given potential delays in wearable
sensor data, particularly with devices such as Fitbit, predicting
future emotional states allows sufficient time to collect the
necessary data and stay ahead of participant cravings.



We explore several machine learning algorithms for both
binary classification and regression tasks, drawing from previ-
ous research. We utilize algorithms such as XGBoost (XGB),
Random Forest (RF), and Support Vector Machine (SVM) for
binary classification. [8], [13], [19]. We opt not to employ
more complex models, such as neural networks, due to the
limited size of the labeled data. We also include a baseline
model that labels the data points in the test set based on a
probabilistic random choice, reflecting the distribution of class
labels in the training set.

1) Class Labels: Based on positive and negative GEW
emotions, we define a binary label, Positive vs. Negative
(PVN), where responses are labeled as positive if only positive
emotions are reported, negative if only negative emotions are
reported, and excluded if both are reported. Given the high
rate of negative emotions during craving instances compared
to non-craving instances, and the opposite pattern observed
for positive emotions, we hypothesize that the PVN label may
serve as an effective proxy for predicting drug cravings.

2) Cross-Validation: We split the data into training and
test sets with two kinds of strategies: Leave-One-Subject-
Out (LOSO) and random. The random strategy is to split
all users’ data points randomly; therefore, the training and
test sets contain data points from all users. We refrain from
using a purely personalized approach due to insufficient la-
beled data points per participant. Although a personalized
model might be feasible for some individuals, the data col-
lected from Fitbit, AWARE, and EMAs varied significantly
among participants. The LOSO strategy splits the data into
observed and unobserved users. The training set contains
data points from observed users, and the test set contains
unobserved users. This strategy demonstrates the model’s
generalizability when predicting new participants’ emotional
states. Hyperparameters were tuned via exhaustive grid search
within each cross-validation fold. For XGBoost and Random
Forest we varied n_estimators (20-200), max_depth (2-5), and
min_samples_split (1-3); for SVM we compared linear and
Radial Basis Function (RBF) kernels with grids over C (0.1-
10) and ~y (0.0001-0.1).

3) Model Evaluation: Our model evaluation encompasses
accuracy, precision, recall, and F1 score for each of the four
machine learning algorithms, including the baseline model.
Furthermore, we provide an interpretation of these models by
highlighting the importance of features across all iterations of
model prediction.

IV. RESULTS & DISCUSSION

A. Study Statistics

We collected 1,674 EMA responses, with participants re-
porting cravings in 171 instances. Response counts varied
widely, averaging 60 per participant (SD = 50.1), with some
submitting only one. Data availability also varied, averaging
25 days (SD = 20.9) of Fitbit data and 9.6 days (SD = 7.4)
of AWARE data.

TABLE II
DISTRIBUTION OF CLASSIFICATION LABELS. Q1 (POSITIVE & HIGH
CONTROL), Q2 (NEGATIVE & HIGH CONTROL), Q3 (NEGATIVE & Low
CONTROL), AND Q4 (POSITIVE & LOW CONTROL)

Class Label Craving(responses=171)  Non-Craving(responses=1503)
Ql 36 (21%) 687 (46%)
Q2 90 (53%) 217 (14%)
Q3 100 (58%) 210 (14%)
Q4 72 (42%) 754 (50%)
Positive 82 (48%) 1029 (68%)
Negative 117 (68%) 353 (23%)
High Control 119 (70%) 846 (56%)
Low Control 131 (78%) 911 (61%)
TABLE III

PREDICTION RESULTS FOR POSITIVE VS. NEGATIVE (PVN) 90 MINUTES
AHEAD USING FITBIT AND AWARE DATA. RESULTS AVERAGE 20 RUNS
(STANDARD DEVIATIONS IN PARENTHESES). RF: RANDOM FOREST,
SVM: SUPPORT VECTOR MACHINE, XGB: XGBoosT, LOSO:
LEAVE-ONE-SUBJECT-OUT, CV: CROSS-VALIDATION. RANDOM-CV
ANOVA FOUND SIGNIFICANT METRIC DIFFERENCES; TUKEY TESTS
CONFIRMED RANDOM FOREST DIFFERED FROM ALL OTHER ALGORITHMS.

Algorithm |CV Accuracy |Recall Precision |F1
Random |Random |0.63 0.57 0.63 0.52
Baseline (0.13) (0.23) (0.13) (0.18)
LOSO 0.49 0.12 0.49 0.11

0.21) (0.24) 0.21) (14)
RF Random |0.73%* 0.76* 0.73%* 0.67*
(0.06) (0.12) (0.06) (0.09)

LOSO 0.59 0.05 0.59 0.05
(0.25) (0.08) (0.25) (0.09)

SVM Random |0.64 0.45 0.64 0.45
0.11) (0.25) 0.11) (0.18)

LOSO 0.52 0.11 0.52 0.07
(0.24) 0.21) (0.23) (0.12)

Random |0.67 0.51 0.67 0.51
XGB ©12)  |024) |0.12) |©0.19)
LOSO 0.55 0.11 0.55 0.09
(0.24) 0.21) 0.24) (0.15)

B. EMA Analysis

Table II presents the distribution of GEW values reported
during craving and non-craving episodes. Although many
participants reported few or no cravings, negative emotions
were reported far more frequently during cravings (68%) than
non-cravings (23%). Similar results were found for Stress
and Mood. Average Stress during cravings was 3.6 (SD=1.4),
but decreased to 2.4 (SD=1.6) during non-cravings. Average
Mood was 3.0 (SD=1.2) during cravings, and increased to 3.8
(SD=1.0) during non-cravings.

Cohen’s kappa scores, used to assess agreement between
binary GEW labels and craving instances, showed modest
alignment for labels linked to negative emotions: 0.28 for Q2,
0.33 for Q3, and 0.25 for Negative Emotions (Q2 and 3). This
supports the emotion distribution patterns in Table II. The
low frequency of reported cravings, especially among those
early in recovery, contrasts with existing literature [20]. This
may stem from participants’ reluctance to disclose cravings
to avoid jeopardizing their access to Buprenorphine/Naloxone
or straining their relationship with psychiatric providers. This
may be due to social desirability bias, where participants
present themselves to be seen in a more favorable way to
others, in this case, the research team [21].
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Fig. 2. Average Feature Importance across multiple runs using Random

Forest, when predicting Positive vs. Negative (PVN).
C. Model Evaluation

The results in Table III demonstrate the model’s ability to
predict the PVN class label 90 minutes in advance. Notably,
the RF classifier outperformed the random baseline, while the
performance gains from SVM and XGB were marginal, if
any. These differences in performance were confirmed using
a one-way ANOVA, which showed that the random cross-
validation results showed significant performance differences
across algorithms. A Post-Hoc Tukey test revealed that RF
was statistically different from the XGB, SVM, and baseline
models across all four metrics. The disparity in performance
between the LOSO and random cross-validation highlights the
importance of incorporating personalization when deploying
these models in real-world settings. Figure 2 presents a box-
plot of feature importance for predicting PVN across all 20
iterations of our random cross-validation using the RF model,
with Fitbit and AWARE data as input. The results highlight
the significant role of sleep- and heart rate-related features.

V. CONCLUSION AND FUTURE WORK

Our findings represent a significant step forward, demon-
strating the feasibility of working with this population using
mHealth tools to predict momentary affect and cravings.
Despite the limited number of craving reports, our ability to
predict related emotional states is promising, highlighting the
potential of mHealth for monitoring and supporting recovery
through timely interventions.

However, several limitations must be addressed in future
work. The study’s notable challenges related to participant
engagement and data collection are noteworthy. To improve the
robustness and reliability of our findings, we have updated our
study protocol by incorporating engagement-based incentives
and adopting more user-friendly third-party applications to
increase participant engagement in our ongoing data collec-
tion. Analyses and modeling with a larger and more engaged
cohort including other modality of data and parameters (e.g.,
temporal segmentation of features and labels) will be crucial
for enhance performance and generalizability of our machine
learning algorithms.
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