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Abstract

Autonomous inspection in hazardous environments requires AI agents that can
interpret high-level goals and execute precise control. A key capability for such
agents is spatial grounding, for example when a drone must center a detected object
in its camera view to enable reliable inspection. While large language models
provide a natural interface for specifying goals, using them directly for visual
control achieves only 58% success in this task. We envision that equipping agents
with a world model as a tool would allow them to roll out candidate actions and
perform better in spatially grounded settings, but conventional world models are
data and compute intensive. To address this, we propose a task-specific latent
dynamics model that learns state-specific action-induced shifts in a shared latent
space using only goal-state supervision. The model leverages global action embed-
dings and complementary training losses to stabilize learning. In experiments, our
approach achieves 71% success and generalizes to unseen images and instructions,
highlighting the potential of compact, domain-specific latent dynamics models for
spatial alignment in autonomous inspection.

1 Introduction

Autonomous inspection systems offer deployment potential in industrial environments where hazards
such as high-altitude structures, confined spaces, or toxic atmospheres make human operation
unsafe [18, 13, 19]. These systems must integrate perception, task understanding, and precise control,
capabilities well suited to AI agent architectures. World models improve planning and sample
efficiency, while language models provide a natural interface for operators to specify high-level
goals and convert them into executable actions [27, 25, 11, 20, 26]. A common use case involves
autonomous or semi-autonomous inspection with a human in the loop. An operator might issue a
command such as "Inspect for defects under the bridge," which the agent interprets, plans, optionally
simulates using a world model, and executes the best action. This agentic approach reduces workload,
speeds positioning, increases safety and enables more flexible and adaptive inspection strategies
compared to rigid, predefined workflows.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Space in Vision,
Language, and Embodied AI.



While full-fidelity world models could allow agents to simulate many possible action sequences, they
are data and compute intensive and often unnecessary for targeted tasks [10, 5, 3]. We propose a
task-specific latent dynamics model that captures only the action-conditioned spatial shifts in the
latent space required for centering the object, enabling effective planning with limited supervision.
We focus on a subproblem of visual inspection: the agent has detected the target object in its camera
view, but it is off-center. The task is to generate motion commands that bring the object into the
center of the images, testing spatially grounded planning and requiring precise visual-motor coupling.

This workshop paper’s contributions are as follows: First, we identify a scenario where naive
multimodal LLM-based planning achieves limited success, even with careful prompting and reasoning
models. Second, we propose a latent dynamics model specialized for object centering. Thirdly, we
show that the model can roll out effective actions using only goal-state supervision and demonstrate
that compact, task-specific latent dynamics models trained with limited data can outperform larger
foundational models for spatial alignment tasks. Figure 1 provides an overview of our LLM-powered
AI agent using a latent dynamics model for this inspection task.

2 Related Works

Figure 1: Overview of an LLM-powered AI
agent leveraging tools, including a latent dynam-
ics model, for improved spatially grounded visual-
language control in inspection tasks.

Research at the intersection of language, vision,
and action has explored how agents interpret nat-
ural language instructions and interact with the
environment. Early benchmarks such as AL-
FRED introduced household-scale instruction-
following tasks [21], while subsequent work in-
tegrated large language models with embodied
agents, enabling robots to sequence skills from
high-level commands [1]. More recent efforts,
including CALVIN [16] and MineDojo [8], pro-
vide long-horizon, multimodal benchmarks test-
ing agents’ ability to ground instructions in visual
and interactive contexts.

Visual-language models (VLMs) have shown
strong generalization for object identification,
spatial queries, and zero-shot navigation, though
most evaluations emphasize semantic rather than
fine-grained control. Models such as LLaVA [15]
and Flamingo [2] demonstrate multimodal rea-
soning in dialogue, but targeted studies reveal
VLMs underperform on precise spatial reasoning
tasks [4, 23].

Model-based approaches using learned world
models have improved planning, sample effi-
ciency, and generalization in both simulated and real-world settings [12]. Methods like DreamerV3
leverage compact latent dynamics for scalable, data-efficient reinforcement learning, and latent
predictive learning frameworks such as JEPA [14] show that abstract representations improve general-
ization in data-limited regimes. However, these approaches often face high computational cost, sparse
supervision, and difficulty capturing precise action semantics for fine-grained control. In contrast, our
work focuses on task-specific dynamics modeling, learning only the dynamics needed to achieve a
target goal with limited supervision, using initial and goal states rather than full trajectories [9, 7, 17].
By operating in a latent space, we capture explicit action semantics without sequential action data,
enabling data-efficient planning for centering objects.

Alternative spatially grounded control methods include traditional vision-based pipelines that compute
object displacements with camera calibration and bounding box detection [6]. While effective, these
require engineering effort, careful calibration, and requires further integration with language models.
Zero-shot multi-modal LLM planning offers a data-efficient alternative [24], but our experiments
(Section 4.1) show limited performance for precise, visually grounded tasks. Table 1 provides
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a qualitative comparison of zero-shot LLM planning, conventional world models, and our latent
dynamics model, highlighting the importance of explicit action semantics for spatial alignment.

Sequential Action Task Compute
Method Data Representation Specific Cost

Zero-shot LLM Planning No Implicit No Low
Conventional World Model Yes Explicit (Observation) No High
Latent Dynamics Model (this work) No Explicit (Latent) Yes Low

Table 1: Comparison of approaches highlighting data requirements, how actions are represented, task
specificity, and computational cost.

3 Problem Formulation and Method

3.1 Problem Definition

We consider the problem of training a task-specific latent dynamics model for autonomous alignment
in drone-based inspection since prior studies have shown that learning a dynamics model in a latent
space can yield better generalization than direct action prediction, especially when data quality is
limited [22]. An agent (a drone) receives a natural-language instruction (e.g., "center the object")
and must select discrete movement actions to center a target object in the frame. We focus on this
problem because centering is the minimal subproblem requiring vision–language–action grounding
and precise control. Success here is a strong indicator for generalization to more complex inspection
tasks. A state s is defined as the tuple (ximg, xinstr), where ximg is the current off-center image and
xinstr is the textual instruction. The goal state s∗ is any image where the object of interest (e.g., gauges,
switches, or structural features) is centered. For practical applications, we assume a small set of goal
images is available, which can be safely captured in advance. Our dataset consists of (s, a, s∗) triples,
where a ∈ A is the correct action vector that will lead the drone towards the s∗ (e.g., left, right,
up, down, none). Importantly, intermediate states st+1 for arbitrary actions are not available, which
prevents standard supervised transition-model learning.

3.2 Latent Dynamics Model

In our formulation, both states and actions are embedded into a shared d-dimensional latent space Z
using separate image, instruction and action encoders Eimg

ϕ , Einst
ϕ , Eact

ϕ :

zs = concat(Eimg
ϕ (ximg), E

inst
ϕ (xinstr)) ∈ Z, za = Eact

ϕ (a) ∈ Z. (1)

Goal embeddings are obtained by encoding the available goal images into latent space and averaging
to obtain a goal prototype, z∗:

z∗ =
1

N

N∑
i=1

Eimg
ϕ (s∗i ) (2)

Predicting the next state directly in latent space can lead to degenerate solutions where the model
ignores action semantics and outputs the goal embedding for all inputs. As such, the latent dynamics
model fθ is instead trained to predict ∆θ, where ∆θ is the state-specific action-induced shift in the
latent embedding space.

∆θ(zs, za) = fθ(zs, za) (3)

and the state transition is approximated by

ẑs∗ ≈ ẑs′ = zs +∆θ(zs, za), (4)

Note that the above approximation is not strictly accurate. Our collected action data does not
guarantee that the action will move the drone immediately to the goal state; it only ensures that the
action directs the drone toward the goal. Since the ground truth of the next state is unavailable under
our assumptions, the latent dynamics model must be trained using only weak supervision from the
goal state prototypes, together with additional constraints, as described in the next section.
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3.3 Training Objectives

To ensure that the latent dynamics model is robust and does not learn spurious shortcut transitions in
the latent space, we train the model using four complementary losses:

Ltotal = wdirLdir + wrankLrank + wconsLcons + wregLreg. (5)

Directional and Ranking Losses: These losses ensure that the predicted next state moves closer to
the goal, and that the correct action ranks highest among all candidate actions:

Ldir = max
(
0, D(ẑs′ , z

∗)−D(zs, z
∗) +m

)
, (6)

Lrank = CE
(
softmax

(
−D(ẑ

(i)
s′ , z

∗)/τ
)
, y
)
, (7)

where ẑ
(i)
s′ is the predicted next-state embedding for action ai, τ is a temperature parameter, y is the

index of the correct action, m is the margin hyperparameter and D(·, ·) is a distance metric (e.g.,
Cosine similarity, or Euclidean distance). The directional loss Ldir encourages the model to move the
state embedding closer to the goal prototype z∗, while the ranking loss Lrank ensures that the correct
action is preferred over alternative actions.

Additionally, we introduce a global action embedding, ga, for each discrete action a ∈ A, which is
learned simultaneously with the latent dynamics model. These vectors represent the typical effect of
an action across all states and serve as stable reference points in the latent space. For example, the
global shift for the action left encodes the general tendency to move the object right in the image,
independent of the current state. The state-specific delta ∆θ(zs, za) then adapts this global shift to the
current state, capturing situational variations such as object position or perspective. Global shifts are
used only during training to guide and stabilize learning through the consistency and regularization
losses and are not required at inference time. To our knowledge, global action embeddings have not
been explicitly used to stabilize weakly supervised latent dynamics training.

Consistency and Regularization Losses: With the global action embeddings, we use the following
losses to further promote stable and consistent action semantics in the latent space:

Lcons = ∥∆θ(zs, za)− ga∥22, (8)

Lreg = ∥ga∥22. (9)

The consistency loss Lcons aligns the state-specific predicted shifts ∆θ(zs, za) with the corresponding
global action embeddings ga, ensuring that the model produces coherent and semantically meaningful
movements across different states. The regularization loss Lreg prevents the global shifts from
growing excessively large, which could destabilize training or produce unrealistic latent transitions.

3.4 Model architectures and training

Algorithm 1 summarizes the end-to-end training procedure of the model, and we use the following
architectures for each component in our proposed model:

Encoders: Inputs are mapped into a shared d-dimensional latent space via three separate encoders.
The image encoder Eimg

ϕ utilizes a ResNet architecture with residual connections. The instruction
encoder Einst

ϕ is a lightweight transformer with positional encodings and a transformer encoder. The
action encoder Eact

ϕ is realized by maintaining separate embedding tables for each discrete action.

Dynamics Model: The dynamics model fθ is implemented as a multilayer perceptron that predicts
state-specific action-induced shifts ∆θ in the latent space. The network processes concatenated state
and action embeddings and outputs the predicted transition vector.

Global Action Embeddings: Global action embeddings ga are implemented as learnable parameters
representing the typical behavior of each discrete action a ∈ A in the latent space.

Once the model is trained, the latent dynamics model can then be used for planning in latent space.
At each step, given an image and a textual instruction, the model predicts the next-state embeddings
for all actions and selects the action minimizing distance to the goal prototype. Execution continues
until the object is centered, defined as being within ϵ pixels of the image center. Algorithm 2 in the
Appendix summarizes this process.
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Algorithm 1: Latent Dynamics Model Training
Input: Training dataset D, goal prototype z∗, learning rate η, loss weights w, temperature τ , margin m
Output: Trained model parameters {ϕimg, ϕinst, ϕact, θ,ga}

1 Initialize model parameters and optimizers;
2 for epoch = 1 to Nepochs do
3 for batch B ∈ D do
4 Encode images: zimg ← E img

ϕ (ximg);
5 Encode instructions: zinst ← E inst

ϕ (xinstr);
6 Concatenate state: zs ← concat(zimg, zinst);
7 foreach action a in batch do
8 Encode action: za ← Eact

ϕ (a);
9 Predict delta: ∆θ ← fθ(zs, za);

10 Compute next state: ẑs′ ← zs +∆θ;
11 Directional loss: Ldir ← max(0, D(ẑs′ , z

∗)−D(zs, z
∗) +m);

12 foreach action ai ∈ A do
13 ∆

(i)
θ ← fθ(zs, E

act
ϕ (ai));

14 ẑ
(i)

s′ ← zs +∆
(i)
θ ;

15 di ← D(ẑ
(i)

s′ , z
∗);

16 Ranking loss: Lrank ← CrossEntropy(softmax(−d/τ), ytrue);
17 Consistency loss: Lcons ← ∥∆θ − ga∥22;
18 Regularization loss: Lreg ← ∥ga∥22;

19 Ltotal ← wdirLdir + wrankLrank + wconsLcons + wregLreg;
20 Update parameters: {ϕ, θ,ga} ← {ϕ, θ,ga} − η∇{ϕ,θ,ga}Ltotal;

4 Results

4.1 Multi-modal LLM as Planners

Figure 2: Example images of a pressure gauge. (a) Raw images, (b) Images with bounding box
annotations, (c) Ideal images with gauge centered.

We first evaluate whether multimodal LLMs has sufficient spatial knowledge to act as a spatial planner.
Given an image and a textual instruction to center the object of interest in the image (detailed prompt
shown in Appendix A.2), the LLM is tasked to output a two-dimensional direction vector selected
from a discrete set of movement commands: left, right, up, down, or none. This vector corresponds
to the motion the drone should take. To test this, we collected 40 test images of a pressure gauge
in a mock industrial setting. The images were taken by a drone from various positions, as shown in
Figure 2(a). As a simplification, we treat this as a two-dimensional control problem with fixed depth,
although the images were captured from different distances from the gauge.
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Input Mode Instruction Acc. (%) -Gemini Acc. (%) - GPT

Image + Annotations R Varied 26.5 ± 4.9 57.0 ± 4.8
Image + Annotations R Fixed 36.0 ± 4.2 58.0 ± 4.5
Image + Annotations NR Varied 38.5 ± 2.9 33.5 ± 6.3
Image + Annotations NR Fixed 42.5 ± 3.1 34.5 ± 2.7
Raw Image R Varied 14.0 ± 4.2 44.5 ± 5.1
Raw Image R Fixed 9.5 ± 3.3 48.0 ± 5.4
Raw Image NR Varied 29.0 ± 9.6 21.5 ± 5.5
Raw Image NR Fixed 34.0 ± 1.4 29.5 ± 3.7

Table 2: Performance across input type, reasoning (R) vs non-reasoning (NR), and instruction type -varied vs.
fixed across 5 random trials.

For the experiments, we use two relatively frontier models at the time of writing, Gemini-2.5 Flash
in both reasoning and non-reasoning modes as well as GPT-4.1 for non-reasoning mode and o3 for
reasoning mode. We also perform bounding box detection on the object of interest and annotate
it in the image, as shown in Figure 2(b), to test whether a more explicit representation improves
performance. In addition, we study the effect of prompt variation. For experiments with fixed prompts,
we use a single manually defined prompt for all 40 images. For experiments with varying prompts,
we use the same manually defined prompt and generate 40 additional variations with an LLM. Table 2
shows that bounding box information provides slight improvements, and prompt variation has only
minor effects though overall performance remains low. Even with explicit bounding boxes and
reasoning prompts, accuracy remains <58%, showing lack of grounded spatial control. This suggests
that while LLMs can interpret relative positions, they lack a grounded world model that connects
actions to visual outcomes.

4.2 Latent Dynamics Model as a Planner

Data collection and Experiments

To train the proposed latent model, we collected a relatively small amount of additional training
data. Recall that training requires access to samples of the goal state as well as samples of various
initial states. We collected 100 images in which the gauge was approximately centered and encode
them using Gemini as a trained image embedder. For initial states, we divided the space around the
gauge into eight discrete quadrants (north, northeast, east, and so on) and programmed the drone
to fly to random locations within each quadrant. The drone was positioned at different depths and
orientations to capture diverse images with variation in yaw and distance from the gauge. This
setup provided a straightforward way to generate correct action direction labels for each image. We
collected approximately 200 samples from each quadrant. Each image was paired with either a fixed
instruction or a varied instruction to form the dataset. Training followed the procedure in Algorithm 1.
To further enhance the dataset, we applied standard non-geometric image augmentation techniques to
each batch in order to improve generalization while preserving geometry so that the corresponding
action labels remained valid.

We conducted experiments with both fixed and varying instructions. We also compared different
distance metrics, including cosine similarity, Euclidean distance, and a combination of both, to
evaluate their effect on performance. All experiments were conducted on a single consumer-grade
RTX-4090 GPU and trained for 50 epochs using five random seeds. During training, we monitored
validation accuracy and saved the best-performing model checkpoint for final evaluation. The dataset
was split into 80 percent training and 20 percent validation, with the 40 images collected in the
previous section reserved as a fixed held-out test set. A complete list of experimental hyperparameters
is provided in the Appendix.

Results

Table 3 presents the results of using the trained latent dynamics model to plan the next best action to
center the object, evaluated on the held-out test images under two conditions. The first evaluation
pairs the images with instructions drawn from the training set, randomly matched so that specific
image–instruction pairs differ from those seen in training. The second evaluation instead uses newly
generated instructions not included in training, while keeping the same held-out images. The first
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setting therefore measures generalization primarily in the visual domain, while the second measures
generalization across both vision and language.

Several observations can be made. First, training a domain-specific latent dynamics model for
planning consistently outperforms directly using a multimodal LLM for planning, even when varying
hyperparameters. Second, the type of instruction, whether fixed or varied, does not lead to large
differences in accuracy, suggesting robustness of the model to instruction style. Third, models trained
with a cosine similarity component generally achieve higher accuracy than those trained solely with
Euclidean distance. Across both evaluations, the combination of cosine similarity and Euclidean
distance does not yield a consistent advantage over cosine similarity alone.

The best model achieves an accuracy of 70.5% in the first evaluation and 71.0% in the second
evaluation. Importantly, performance in the second setting does not degrade compared to the first,
indicating that the latent model generalizes well to previously unseen images and instructions drawn
from similar distributions. Both results are significantly higher than the multimodal LLM baselines,
which achieves 48% with raw images and 58% with annotated images, which also requires an
additional detection module and is based on the assumption that the annotations are accurate. These
findings highlight that the proposed latent dynamics model generalizes effectively within the task
distribution while maintaining robustness across both visual and textual variation.

Accuracy Accuracy
Instruction Distance (Vision Gen.) (Vision + Text Gen.)

Fixed Cosine Similarity 70.5 ± 7.6 71.0 ± 6.9
Fixed Euclidean 67.5 ± 7.7 68.0 ± 7.4
Fixed Cosine Similarity + Euclidean 69.5 ± 6.7 70.5 ± 5.4
Varied Cosine Similarity 70.0 ± 6.1 70.0 ± 6.1
Varied Euclidean 68.5 ± 8.0 69.5 ± 7.8
Varied Cosine Similarity + Euclidean 70.5 ± 4.8 70.5 ± 4.8

Table 3: Performance of the latent dynamics model on held-out test images. The first evaluation uses
training-style instructions (vision generalization), while the second uses newly generated instructions
(vision and text generalization).

4.3 Ablation Studies

Next, we perform an ablation study to determine which components contribute most to overall
performance. We use cosine similarity as the distance metric with varied instructions, as this
corresponds to the best distance hyperparameter and represents a typical use case where users provide
semantically similar but different instructions. Similar to previous experiments, for each ablation
study we trained 5 seeds and evaluated the models on the set of unseen images and instructions. For
each experiment, we systematically remove one or more loss function components: the directional
loss (Ldir), the ranking loss (Lrank) and the consistency loss (Lcons) together with the regularization
loss (Lreg) that operates on the global action embeddings, to measure their individual contributions.

Table 4 shows the impact of each ablation on the accuracy. Interestingly, removing the directional
loss results in a slight increase in performance to 72.0% ± 3.3%, slightly higher than the baseline of
71.0% ± 6.9%, indicating that this component is not critical in this setting. We hypothesize that the
directional loss may over-penalize ambiguous near-center states, making ranking loss alone more
effective. Removing the consistency and regularization losses leads to a moderate decrease to 68.5% ±
4.2%. In contrast, removing the ranking loss causes a dramatic drop to 12.0% ± 9.1%, demonstrating
that this component is essential for the model to perform well. These results highlight that while all
components contribute, the ranking loss is the most crucial for guiding the model, with consistency
and directional losses providing smaller but still beneficial effects.

Ablation Type Rank-1 Accuracy
No Consistency/Regularization 68.5% ± 4.2%

No Directional Loss 72.0% ± 3.3%
No Ranking Loss 12.0% ± 9.1%

Table 4: Ablation study evaluating the contribution of each loss component.
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4.4 Analysis of failures

Figure 3: Heatmaps of overall, horizontal, and vertical accuracy showing that most errors occur when
the drone is near the image centerline.

Figure 4: Sample images where the latent model fails to estimate the best actions to center the object
in the image.

We analyze model failures on the test set by visualizing the drone’s position relative to the image
center and plotting heatmaps of average accuracy across all random seeds at those locations. Figure 3
shows heatmaps for overall accuracy, horizontal control accuracy, and vertical control accuracy.
When decomposing overall accuracy into horizontal and vertical components, we observe that most
failures occur when the drone is positioned near the horizontal or vertical centerline. In these cases,
the model is often uncertain whether a corrective movement is necessary, leading to misclassifications
of the action as either a shift or no movement. This suggests that the model’s main source of error
lies in fine-grained decision making near the center, where distinctions between valid actions are
most subtle. Figure 4 shows some of the representative samples of failure cases.

4.5 Benefits and Limitations

Our approach provides practical advantages for real-world tasks, particularly in scenarios where
collecting sequential interaction data is difficult or unsafe. The method requires only random initial
states and goal images for training, making data collection feasible and safe since both centered
and off-centered states can be scripted. It generalizes across unseen images and diverse natural
language instructions, and consistently outperforms multi-modal LLMs in the task, demonstrating
that lightweight, task-specific latent models can offer an efficient and effective solution for grounded
spatial control.

At the same time, the proposed model does not constitute a general world model. It is designed
for fixed-goal tasks and does not capture full environmental dynamics, stochastic behaviors, or all
possible transitions, which limits its applicability to open-ended or multi-step planning scenarios,
which we plan to extend upon in future works. The method also depends on the quality of latent
representations, and its robustness under more complex objects or environments has not yet been
evaluated. Despite these limitations, we believe this approach strikes a practical balance between
simplicity, safety, and performance for goal-directed spatial planning.

5 Conclusion

We present a latent dynamics model for goal-directed visual planning, achieving over 70% accuracy
on unseen images and instructions, outperforming zero-shot LLM planners. Task-specific latent
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modeling provides reliable, grounded action selection, complementing agentic frameworks as a
tool. While limited to single-object centering and a fixed action space, our approach highlights the
value of ranking-based losses and structured latent representations. Future work includes scaling
the approach from 2D to 3D to include depth, and more objects of interest, testing transferability
from simulation to real environments, and incorporating negative states to capture failure modes.
Additionally, we plan to leverage LLMs to generate candidate plans and evaluate them efficiently using
the lightweight dynamic model, rather than relying on brute-force planning or pure LLM reasoning
for more unstructured free-form actions. Overall, lightweight latent models offer a promising route
for grounded perception as a tool for agentic systems that operates in the physical world.

6 Broader Impacts

This work presents a method for training models that enable agentic systems to control autonomous
platforms and center objects of interest within images. While the method itself is not inherently
harmful, we acknowledge its potential misuse in applications such as large-scale surveillance, and
thus recognize the importance of considering dual-use risks. However, in the context of automated
inspection, this approach can provide substantial benefits by reducing the physical risks faced by
workers in hazardous environments, improving the accuracy and efficiency of inspection task, and
enhancing the overall reliability of safety assessments. These outcomes can contribute both to
improved worker safety and to greater scalability and cost-effectiveness in industrial inspection
workflows.
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A Appendix

A.1 Using the Latent Dynamics during Model Test Time

Algorithm 2: Planning with Latent Dynamics Model
Input: Current image and instruction (ximg, xinstr), goal prototype z∗, action set A, encoders

E img
ϕ , E inst

ϕ , Eact
ϕ , latent dynamics model fθ

Output: Actions to center the object
1 Encode state: zs ← concat(E img

ϕ (ximg), E
inst
ϕ (xinstr));

2 while object not centered (within ϵ pixels) do
3 foreach a ∈ A do
4 Encode action: za ← Eact

ϕ (a);
5 Predict delta: ∆θ ← fθ(zs, za);
6 Predict next state: ẑs′ ← zs +∆θ;
7 Compute distance to goal: da ← D(ẑs′ , z

∗);

8 Select action: a∗ ← argmina da;
9 Execute a∗ on the drone;

10 Update state embedding: zs ← concat(E img
ϕ (new image), E inst

ϕ (xinstr));

A.2 Prompts for LLM

In this section, we provide the full prompts used for both multi-modal LLMs to generate the required
actions to center the object in the image.

Output: Prompt for raw images

Analyze this image taken by a drone for a gauge and predict the direction the drone should move
so that the gauge is centered in the image.
Assume that the gauge is within the field of view of the drone, and the image is taken from the
front of the drone.
The drone is able to move left, right, up, down, or not move at all.
The response must include both horizontal and vertical movement directions.
The response must be in the following format: ["move x": "left", "move z": "up"], ["move x":
"right", "move z": "down"], ["move x": "none", "move z": "none"]

A.3 Model hyperparameters

This section tabulates the specific details on the model architecture and hyperparameters used to train
latent dynamics model for this work.
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Output: Prompt for annotated images

Analyze this image taken by a drone for a gauge and predict the direction the drone should move
so that the gauge is centered in the image.
This image contains bounding box annotations of a gauge as well as a dot to indicate the center
of the image.
Assume that the gauge is within the field of view of the drone, and the image is taken from the
front of the drone.
The drone is able to move left, right, up, down, or not move at all.
The response must include both horizontal and vertical movement directions.
The response must be in the following format: ["move x": "left", "move z": "up"], ["move x":
"right", "move z": "down"], ["move x": "none", "move z": "none"]

Table 5: Model Architecture Components and Details
Component Architecture / Details Dimensions / Config

Image Embedder

ResNet-18 style with residual connections Input: 3×224×224; Out-
put: 128

Stem: Conv2d(7×7, stride=2) + MaxPool -
4 residual layers: [64,128,256,512] -
Residual block: 3×3 Conv + BatchNorm + ReLU -
Global average pooling + linear projection -

Text Embedder

Token embedding + positional encoding Embedding: 128; Vo-
cabulary: 5000

DistilBERT tokenizer -
2 transformer encoder layers; Multi-head attention (4
heads)

Max length: 50

Feed-forward dim: 256; Dropout: 0.1 -

Action Embedder
Separate embedding tables for X/Z axes 16-dim per action → 32-

dim total
3 actions per axis (left/right/none, up/down/none) -
Concatenated output -

Latent Dynamics Model
MLP: 160 → 128 → 128 → 128 Predicts state transfor-

mation in latent space
Input: state embedding + action embedding -
ReLU activation; Dropout: 0.2 -

Global Action Embeddings Learnable 3×128 parameter matrices per axis 3×128 per axis
Provides consistent action semantics -

Table 6: Training Hyperparameters and Loss Configuration
Category Parameter Value

Optimization

Optimizer Adam
Learning Rate 3e-4
Batch Size 64
Epochs 50

Data Processing
Image Size 224×224
Validation Split 0.2
Sequence Length 50 tokens

Loss Hyperparameters Margin 0.1
Temperature 1.0

Augmentation

Color Jitter brightness, contrast, saturation, hue
Random Affine shear
Gaussian Noise N/A
Instruction Variations 30 paraphrased versions
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