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ABSTRACT

In reinforcement learning (RL) the use of simulators is ubiquitous, allowing cheaper
and safer agent training than training directly in the real target environment. How-
ever, this approach relies on the simulator being a sufficiently accurate reflection
of the target environment, which is difficult to achieve in practice. Accordingly,
recent methods have proposed an alternative paradigm, utilizing offline datasets
from the target environment to train an agent, avoiding online access to either the
target or any simulated environment but leading to poor generalization outside the
support of the offline data. Here, we propose to combine these two paradigms
to leverage both offline datasets and synthetic simulators. We formalize our ap-
proach as offline targeted environment design (OTED), which automatically learns
a distribution over simulator parameters to match a provided offline dataset, and
then uses the learned simulator to train an RL agent in standard online fashion.
We derive an objective for learning the simulator parameters which corresponds
to minimizing a divergence between the target offline dataset and the state-action
distribution induced by the simulator. We evaluate our method on standard offline
RL benchmarks and show that it yields impressive results compared to existing
approaches, thus successfully leveraging both offline datasets and simulators for
better RL.

1 INTRODUCTION

Recent years have witnessed the proliferation of reinforcement learning (RL) as a way to train agents
to solve a variety of tasks, encompassing game playing Brown & Sandholm (2019); Silver et al.
(2016) and robotics Akkaya et al. (2019); Schulman et al. (2015); Chiang et al. (2019), among other
applications. These successes often rely on the use of high-fidelity simulators, allowing for an agent
to be trained on large amounts of online data collected at relatively low cost. In many instances, for
example in game playing, an accurate simulator is easy to devise. However, in other applications
such as robotics Kalashnikov et al. (2018); Todorov et al. (2012) and health Ernst et al. (2006),
a simulator is only a rough approximation to the real target environment, and properly designing
the simulator to match a desired target environment can be a highly manual process Nachum et al.
(2019a); Tolani et al. (2021); Krishnan et al. (2021), potentially requiring repeated online access to
the target environment Chebotar et al. (2019); Ramos et al. (2019); Mehta et al. (2020).

Due to the difficulty in matching simulators to target environments and motivated by the successes of
supervised learning on large static datasets, a recent line of works Fujimoto et al. (2019); Agarwal et al.
(2020); Wu et al. (2019); Levine et al. (2020); Fu et al. (2020); Gulcehre et al. (2020) has proposed to
circumvent online training altogether (whether on the simulator or in the target environment) and
instead perform RL on an offline dataset of logged experience in the target environment, typically
collected by an unknown behavior policy. This approach avoids any potential mismatch between
training and test environment. However, existing algorithms for offline RL are highly liable to
generalization errors, and so these methods often impose a strong regularization on the learned policy
to maintain proximity to the offline dataset Fujimoto et al. (2019); Wu et al. (2019); Kostrikov et al.
(2021); Yu et al. (2020). Thus, such methods can rarely approach the performance of online RL on an
accurate simulator.

In this work, we propose to leverage both approximate simulators and offline datasets to train agents.
Namely, we consider settings in which one has access to an offline dataset collected from a target
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environment as well an approximate (but nevertheless inaccurate) simulator. How can we leverage
both of these to learn a near-optimal policy for the target environment?

To tackle this problem, we propose an approach which, at a high level, is composed of two stages: (1)
use the offline dataset to learn a distribution over simulator parameters; (2) train an RL agent in an
online fashion on the simulator using any off-the-shelf RL algorithm. The key question is then how to
appropriately learn the simulator parameters from an offline dataset, which we term offline targeted
environment design (OTED). For this problem, we devise an objective quantifying the divergence
between the state-action distribution appearing in the offline dataset and the state-action distribution
induced by a learned behavior policy acting in the simulator. We show that the simulator parameters
and the target behavior policy can be jointly learned such that even a suboptimal behavior policy, that
would otherwise perform poorly on the target environment, can help learn simulator parameters very
effectively. We further show how the performance of the final returned policy can be improved by
employing OTED not only for policy training but also for offline policy selection Yang et al. (2020);
Fu et al. (2021). Namely, we show how one may use the OTED-learned simulators to both provide a
set of candidate policies as well as evaluate those policies in order to rank and choose the best policy
to return, reminiscent of cross-validation techniques popular supervised learning Arlot & Celisse
(2010) but so far elusive in RL contexts (Paine et al., 2020).

We apply our method to a variety of domains, including MiniGrid Chevalier-Boisvert et al. (2018) and
D4RL Fu et al. (2020), showing that our method is able to recover the target environment parameter
using as few as 5 demonstrations and learn from high-dimensional image observations. We also
show that an online agent trained in designed simulators yields improved performance compared
to methods which leverage only simulators or only offline datasets, as well as existing methods for
domain transfer Tobin et al. (2017). On the D4RL Fu et al. (2020) benchmark, we demonstrate that
our method can even outperform an online SAC agent trained on the ground-truth target environment.
Our method achieves up to 17 times higher score compared to previous state-of-the-art offline RL and
behavior cloning (BC) methods as well as domain randomization. On datasets with medium-level
behavior that can be collected without domain experts, we show more relative improvements where
our model even reaches the performance of the offline RL methods trained on expert-level behaviors.

2 RELATED WORK

Our work focuses on learning simulator parameters to match a target environment and is thus
related to a large and diverse literature on domain transfer in RL. One of the most common and
simple approaches to handling unknown simulator parameters is domain randomization Sadeghi &
Levine (2016); Tobin et al. (2017); Matas et al. (2018); Chiang et al. (2019); Tolani et al. (2021);
Krishnan et al. (2021), which suggests to randomize the setting of those unknown parameters during
training, thus learning an agent which is robust to a wide distribution of possible simulators. While
domain randomization has demonstrated successes, the process of choosing appropriate ranges for
unknown parameters can be a highly manual process Andrychowicz et al. (2020), in which one must
balance between too wide a range that hampers agent training and too narrow a range which may
exclude the target environment parameterization Nachum et al. (2019a). While some works have
proposed heuristic mechanisms to better automate this process Akkaya et al. (2019); Krishnan et al.
(2021), others have explored incorporating online interaction with the environment into this tuning
process Chebotar et al. (2019); Ramos et al. (2019); Mehta et al. (2020). In this work, we avoid any
online interactions with the target environment during training, and only assume access to a static
offline dataset.

Our approach of using an offline dataset to learn a simulator can be related to recent model-based
approaches to offline RL Matsushima et al. (2020); Yu et al. (2020); Argenson & Dulac-Arnold (2020).
In these works, the offline dataset learns approximate dynamics and reward models of the environment,
and the agent optimizes behavior in this approximate model of the environment. Although this makes
minimal assumptions on the target environment, using reward and dynamics models as proxies for the
environment leads to extrapolation issues which necessitate strong regularizers on the learned policy.
Moreover, these existing approaches mostly ignore the fact that in many scenarios, one already has
an approximate simulator, albeit not differentiable; e.g., the physical laws in a continuous control
environments are straightforward to implement Todorov et al. (2012), although parameters more
specific to the environment (friction coefficient, actuator gain, gravity) are unknown. Leveraging
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these simulators and focusing learning on the unknown parameters, as performed by our approach,
can thus improve over modelling the full dynamics from scratch.

Our proposed objective is based on a distribution matching loss. Similar losses have appeared in
the past, especially in generative models Goodfellow et al. (2014), off-policy evaluation Nachum
et al. (2019b), off-policy learning Nachum et al. (2019c), and imitation learning Ho & Ermon (2016);
Stadie et al. (2017); Kostrikov et al. (2020). These predominantly focus on learning a policy via an
adversarial objective and ignore the mismatch between simulators and real environments. Even when
the distribution matching objective is optimal, this mismatch might give very suboptimal policies,
due to potential poor support of the data distribution. This is a very realistic scenario since tuning
simulator parameters accurately is a very tedious process and requires domain-experts.

3 BACKGROUND

We consider an RL setting in which we are given access to both an offline dataset of experience from
the target environment and an approximate simulator, in which the agent can gather more experience.
We elaborate on the notation and background relevant to this setting.

Reinforcement Learning We define an environment as a Markov Decision Process (MDP)
given by a tuple (S,A, ⇢0, T, r, �) where S is a state space, A is an action space, ⇢0 is an ini-
tial state distribution, T (s0|s, a) is a state transition distribution, r : S ⇥ A ! R is a reward
function over state and actions, and � 2 [0, 1) is a discount factor. A stationary policy ⇡ in
this environment is a function from states to distributions over actions. In reinforcement learn-
ing, we are interested in finding a policy ⇡ that maximizes the cumulative discounted returns:
E [

P1
t=0 �

tr(st, at)|s0 ⇠ ⇢0, at ⇠ ⇡(st), st+1 ⇠ T (st, at)] . We will use d⇡(s, a) to denote the
state-action distribution of ⇡: d⇡(s, a) := (1 � �)

P1
t=0 �

tPr[st = s, at = a|s0 ⇠ ⇢0, at ⇠
⇡(st), st+1 ⇠ T (st, at)].

Simulator vs. Target Environment Typically in online reinforcement learning, a policy is trained
based on experience collected by the agent in a simulator. While this implicitly assumes that the
simulator can perfectly mimic the target environment, in practice this is often not the case. The
simulator typically only provides an approximation to the true initial state distribution ⇢0 and state
transition distribution T .1 For example in robotics applications, while physics simulators can be
built, it is infeasible to accurately set all appropriate parameters (e.g., friction coefficients, actuator
gains, wind speed). In this work, we assume such a parameterized simulator exists, and it is
given by M(z) := (S,A, ⇢0(·|z), T (·|·, ·, z), r, �), where z denotes the parameters of the simulated
environment. Naive approaches would either set z heuristically or using randomization methods. In
this work, we aim to use offline datasets to learn z so that M(z) approximates the target MDP, which
we denote as M⇤. We use d⇡(s, a|z) to denote the state-action distribution of ⇡ in the parameterized
simulator M(z).

Offline Reinforcement Learning Offline RL, as an alternative to online RL on simulators, assumes
that an agent cannot collect any online experience and is restricted to a dataset D of (s, a, s0) collected
by an unknown behavior policy µ; i.e., (s, a) ⇠ dµ, s0 ⇠ p(s, a). We use dD(s, a) to denote the
distribution over state-action pairs appearing in D. When trained on a fixed dataset, previous state-of-
the-art online reinforcement learning algorithms such as SAC Haarnoja et al. (2019) underperform
due to extrapolation errors Fujimoto et al. (2019); Kumar et al. (2019), which stem from sparsity of
the samples in the dataset. Accordingly, many RL algorithms designed specifically for the offline
setting make use of strong regularizations to maintain proximity to the offline dataset Wu et al. (2019);
Kostrikov et al. (2021); Yu et al. (2020).

4 OTED: OFFLINE TARGETED ENVIRONMENT DESIGN

We now describe our method for leveraging both offline datasets and simulators to learn return-
maximizing policies, thus alleviating both of the above issues: (i) data sparsity and extrapolation

1For simplicity, we assume the reward function is known, although our method can be readily extended to
handle unknown rewards.
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Figure 1: Outline of OTED: The simulator parameters are learned by the designer, which uses signals
from a learned discriminator to match the distribution appearing in the offline dataset to that induced
by a learned behavior policy acting in the environment. The learned simulator parameters are then
used to train a target policy via standard online RL.

issues when performing offline learning and (ii) inaccuracy of an approximate simulator for online
learning.

At a high-level, our algorithm can be summarized as follows, also illustrated in Figure 1.

1. Learn an approximate behavior policy µ̂ from D using any off-the-shelf imitation learning
algorithm; e.g., behavioral cloning Pomerleau (1991) or ValueDICE Kostrikov et al. (2020).

2. Learn a distribution q(z), also called designer, over simulator parameters so that dµ̂(s, a|z)
approximates the state-action distribution appearing in D.

3. Use any off-the-shelf online RL algorithm – e.g., SAC Haarnoja et al. (2019) – to learn
a return-maximizing policy ⇡ on the simulator M(z), where z is sampled anew from the
learned distribution q(z) at the beginning of each episode.

Steps (1) and (3) above are straightforward, and so we focus this section on first elaborating on
step (2) below, and this is also summarized in Algorithm 1. We then continue to show how we
reduce variance inherent in the procedural three-step process above by using replicated experiments,
distributions over mixtures of simulator parameters, and model selection without online access (see
Algorithm 2 for a pseudocode).

4.1 LEARNING SIMULATOR PARAMETERS VIA DISTRIBUTION MATCHING

Given an approximate behavior policy µ̂, we propose to learn a distribution q(z) over simulator
parameters so that dµ̂(s, a|z) approximates the state-action distribution appearing in D. Thus,
our objective for q(z) is based on a probability divergence between dµ̂(s, a|z) and dD(s, a). To
encourage better generalization, we also introduce a prior p(z), and measure a divergence between
dµ̂(s, a|z)q(z) and dD(s, a)p(z). Our proposed objective is given by,

DKL(d
µ̂(s, a|z)q(z)kdD(s, a)p(z)) = E

z⇠q(z)
(s,a)⇠dµ̂(s,a|z)


� log

dD(s, a)

dµ̂(s, a|z)

�
+DKL(q(z)|p(z)). (1)

As desired, it is clear that the first term above encourages the parameter distribution q(z) to match
the state-action distribution of the approximate behavior policy µ̂ in the simulator to that of the
dataset; meanwhile, the second term regularizes the simulator distribution from collapsing. We can
immediately see that the objective above is an RL (actually, a bandit) objective for q, where the
actions are z, the stochastic reward is given by log dD(s,a)

dµ̂(s,a|z) for (s, a) ⇠ dµ̂(s, a|z), and a relative
entropy regularizer is applied to q. Therefore, one may use any off-the-shelf policy gradient algorithm
to learn q, as long as one has access to the density ratios dD(s,a)

dµ̂(s,a|z) .
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However, in general one does not have access to the densities dµ̂ or dD explicitly. Nevertheless,
one can easily sample from either density; samples from dµ̂ are given by running the simulator
M(z) and samples from dD are given by the dataset D itself. A number of algorithms exist for
estimating density ratios of two distributions given sampling access. In our implementation, we use
the discriminative approach based on Nguyen et al. (2010). Namely, we train a discriminator g(s, a)
to minimize the objective

E(s,a)⇠dµ̂ [� log(1� g(s, a))] + E(s,a)⇠dD [� log g(s, a)], (2)
similar to the discriminator in GAIL Ho & Ermon (2016). When trained to optimality, the discrimina-
tor will satisfy the following, log g⇤(s,a)

1�g⇤(s,a) = log dD(s,a)
dµ(s,a,z) , and this can be used as a reward signal

for training q.

In practice, to allow for more flexibility in the trade-off between exploitation and safety, we extend
the objective with a tunable parameter ✏:

� E
z⇠q(z)

(s,a)⇠dµ̂(s,a|z)


log

dD(s, a)

dµ̂(s, a|z)

�
+ ✏DKL(q(z)|p(z)). (3)

A small ✏ encourages q to exploit the signal from the log-ratios, while a large ✏ encourages q to stay
close to the prior p. In addition to serving as a trade-off parameter, ✏ can also be interpreted as (i) a
reward scaling term in front of log ratios, i.e., 1

✏ log
dD(s,a)
dµ(s,a|z) or (ii) a distribution smoothing term

applied to both dµ and dD, i.e., log (dD(s,a))
1
✏

(dµ(s,a|z))
1
✏

.

Algorithm 1 Training of the simulator parameters and the discriminator
Input: Dataset D, initial behavior policy µ, initialized discriminator g, tunable simulator S

1: Gather experience, E, by running the policy µ in the simulator S.
2: Estimate log-ratio, log g(E)

1�g(E) , of the simulated experience using the discriminator.

3: Update q(z) using the objective in Eq. 3 with g(E)
1�g(E) as the reward.

4: Update g(s, a) using mini-batches from (E,D).
5: Repeat above.

Return: (q(z), g(s, a))

Algorithm 2 Training of a single online agent using off-policy data and multiple simulator models
Input: Simulator distributions qi(z) from N different experiments, simulator S, empty replay R

1: Sample i ⇠ U [1, N ] and set the simulator S using the mode of the distribution qi(z).
2: Run the online agent ⇡(a|s; z) in the simulator and populate the replay with new experience.
3: Sample a mini-batch from the replay and update the agent parameters.
4: Repeat above.

Return: ⇡(a|s; z)

Our objective, Eq. 1, resembles mutual information when the joint distribution is defined using
the proposal distribution and marginal distributions are defined using expert data distribution. The
main difference is that we use the behavior policy in the joint distribution and use expert policy in
marginals while in mutual information they are the same. Through optimizing the behavior policy to
mimic the expert better, the objective will get closer to a mutual information formulation.

4.2 REDUCING VARIANCE WITH REPLICATED EXPERIMENTS

Our proposed three step process – approximate µ̂, then learn q(z), and finally training – introduces
noise at each step due to randomness in optimizers and learning algorithms. It is important to
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reduce the variance inherent in this process so that the returned policy is best prepared for evaluation
in the target environment. We tackle this problem via two techniques: simulator ensembles and
simulator-based policy selection.

Simulator ensembles To increase the chance that the policy transfers well to the target environment,
we borrow ideas from domain randomization and replicate our step (2) to generate multiple simulator
distributions qi(z). Although the distributions are all trained the same way, each one will induce
slightly different parameter distributions due to randomization in learning. To mitigate the effects
of this randomness, we train our online agent on a mixture of these distributions. More specifically,
we set the simulator with new parameters at each online episode collection, with these parameters
sampled uniformly from the mode of each parameter distribution qi(z).

Simulator-based policy selection Even with the ensemble approach described above, multiple
online RL training runs on the simulator can result in drastically different policies, again due to
randomness in the learning process. This presents the problem of offine policy selection, which is a
well-known challenge for real-world RL Yang et al. (2020); Paine et al. (2020); Fu et al. (2021). We
propose a simple approach to this. Given a set of policies ⇡j , we evaluate and rank them based on
online performance in a learned simulator distribution q(z) on which the policies were trained. The
best performing policy in the simulator is then the final returned policy.

One can view this offline evaluation as a form of rudimentary cross-validation, similar to existing
techniques in offline policy selection which evaluate a learned policy according to Q-values learned
separate from the Q-values used to train the policy Paine et al. (2020). Although the separately-
trained Q-values (like q(z)) are trained on the same offline dataset, this simple approach has been
demonstrated to achieve strong performance, even compared to more sophisticated methods Fu et al.
(2021).

5 EXPERIMENTS

We evaluate OTED, in a variety of settings; different tasks, data sources and simulator parame-
terizations. We first evaluate our method against state-of-the-art offline RL methods on previous
benchmarks including the D4RL benchmark Fu et al. (2020). Next, we experiment with a discrete
MiniGrid Chevalier-Boisvert et al. (2018) environment to illustrate that OTED can also learn from
high-dimensional image observations. We implemented our approach using ACME Hoffman et al.
(2020) and TensorFlow Abadi et al. (2015) open-source libraries. We used a single CPU which
required a total of 24 hours to train per seed. We report results with 5 different seeds.

5.1 SETUP

5.1.1 CONTINUOUS ENVIRONMENTS

We use the Mujoco Todorov et al. (2012) simulator and study 4 different continuous control tasks
that have been adopted by the offline RL community, Ant, HalfCheetah, Hopper, and Walker2d. We
modify the simulators so that some of the physics parameters are unknown. We consider 3 different
parameterizations: geom-friction, actuator-gainprm, and gravity that causes different effects on the
underlying simulator physics. These are 1-dimensional parameters and we learn them separately as
well as jointly in 3-dimensions. We constrain the search space for the geom-friction and actuator-
gainprm parameters to be within [�5, 5] and for the gravity parameter and joint parameters to be
within [�20, 20]. See Appendix B for a list of ground truth design parameters.

We use two different offline demonstration datasets for continuous environments: (i) 5 trajectories
used in ValueDICE Kostrikov et al. (2020) and (ii) D4RL Fu et al. (2020) benchmark datasets divided
into 3 levels, medium, medium-expert, and expert, reflecting the competency of the behavior policy
used to collect the data. We use the ValueDICE objective to induce behavior policy for the first
dataset and behavior cloning for the D4RL benchmark.

We compare OTED to the Domain randomization (DR) Tobin et al. (2017) and a custom baseline
that we introduce called Interval Search with online feedback (IS). For DR, we set the simulator with
a randomly sampled parameter from the corresponding interval at the beginning of each episode
and train an online agent in the simulated environment. DR can be very conservative when the
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(a) Friction (b) Gain PRM (c) Gravity

Figure 2: Absolute design error of OTED using different parameterizations on ValueDICE demon-
strations. OTED reliably learns to recover the target MDP with a small error on all environments.

ex
pe

rt

(a) geom-friction (b) actuator-gainprm (c) gravity (d) all parameters

Figure 3: Absolute error of OTED on different simulator parameters using the D4RL expert dataset.
For all parameters, we used absolute relative error as the scale of each parameter is different.

dependency between the simulator and parameter is highly nonlinear. As an alternative, we introduce
an interval search baseline (IS) where a smaller initial interval is gradually expanded over time based
on the performance of an online agent. We first sample a random parameter value c to be the center
of an initial search interval, i.e., [c� 0.1, c+ 0.1]. We evaluate the performance of the agent at every
10000 steps and if the performance of the agent is improved, we expand the interval by increments of
0.1, i.e., the above interval would become [c� 0.2, c+ 0.2].

5.1.2 MINIGRID

We use a discrete MiniGrid environment where observations are gray-scale images of the current
view of an agent. The agent is tasked with navigating the grid by avoiding obstacles to reach to
a goal state. We parameterize a MiniGrid environment by the ratio of obstacles in the grid. For
example, a ratio of 0.3 would give 30 obstacles with random shapes and locations. We use a 10-
by-10 grid and both the agent and the goal are placed randomly on empty cells. We constrain
the search space of the ratio parameter to be within [0, 0.6] as beyond 60 obstacles, the goal is
mostly unreachable. We further quantize this search interval into 13 discrete values by increments of
0.05, i.e., {0.0, 0.05, · · · , 0.6}. We experiment with three different target environment parameters:
[0.2, 0.26, 0.3]. Note that while 0.2 and 0.3 are within the support set of the search distribution, 0.26
is not where the best approximation is 0.25. To easily collect a diverse set of demonstrations and to
estimate the KL-divergence term accurately, we use a randomly initialized behavior policy network
whose weights are known and fixed.

5.1.3 METRICS AND ONLINE POLICY

We use two metrics to evaluate the accuracy of OTED: (i) absolute error which is the absolute
difference between predicted parameter and ground truth parameter and (ii) absolute relative error
which is the absolute error divided by the absolute value of the ground truth parameter. We use SAC
as the online agent specifically as it is not designed to work in the offline RL setting. We call an
online SAC agent trained in designed environments OTED-SAC and report its performance in the
ground truth target environments.

5.2 CONTINUOUS ENVIRONMENT RESULTS

5.2.1 ERROR OF THE CONTINUOUS SIMULATOR PARAMETER PREDICTIONS

We first evaluate OTED on 5 ValueDICE demonstrations. OTED recovers the unknown target
environment parameter with low absolute error on all parameterizations (Figure 2). We observe that
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(a) Friction (b) Gain PRM (c) Gravity

Figure 4: Performance of the OTED-SAC using ValueDICE dataset. On all parameters, it is on-par
with the online SAC trained in the ground-truth target environment. On gravity parameter, we see
better performance.

(a) HalfCheetah (b) Hopper (c) Walker2D (d) Ant

Figure 5: Comparison of OTED-SAC to baseline DR and IS methods on ValueDICE dataset.

different tasks show varying sensitivity to different parameters. For example, on actuator-gainprm,
all environments exhibit low error and relatively low variance while on geom-friction, we observe
relatively high error and high variance. Ant is one of the most challenging environments where we
get higher error on all settings. We hypothesize that the reason is higher number of dimensions in the
observation space (111 dimensions which is around 7 times higher than others) which makes it more
difficult to learn using a small demonstration dataset.

OTED performs similarly on the D4RL expert dataset (Figure 3). As an interesting use case,
HalfCheetah emits a very high variance on the geom-friction parameter early on but converges to a
smaller error. This is due to one experiment giving a much higher error and taking much longer to
find the correct parameter. See Appendix C for more results with different expert levels.

We see that OTED easily learns in Walker2D and Ant environments with very small absolute relative
error. Sensitivity of HalfCheetah is also amplified, giving a high relative error.

5.2.2 PERFORMANCE OF THE ONLINE AGENT WITH DESIGNED SIMULATORS

As OTED exhibits low absolute error on average, the natural question to ask is if this correlates
with the performance of an online agent trained on designed simulators. In Figure 4, we plot the
performance of OTED-SAC trained in tuned simulators using ValueDICE demonstrations. Across
all experiments, we observe consistently good results where we achieve on par with an online state-
of-the-art SAC agent that is trained on the ground truth target environment. We also compare with
baseline domain transfer methods in Figure 5 where OTED-SAC consistently performs better. Figure
5 also demonstrates that a misspecified simulator would significantly hurt the performance of a SAC
agent.

We present our results on D4RL benchmark in Table 1. For medium-level expert datasets, OTED-SAC
clearly outperforms previous offline RL methods. The only exception is Hopper environment with
the gravity parameter. Even though Walker2D environments exhibit higher variance on geom-friction
parameter for medium and medium-expert level experts, OTED-SAC outperforms previous models
and also performs better compared to other parameterizations. In majority of the cases, OTED-
SAC achieves more than 100% performance, outperforming a baseline SAC agent trained on the
ground-truth target environment.
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OTED
BC F-BRC MBOP DR IS geom actuator

friction gainprm gravity
halfcheetah-medium 36.1 41.3 44.6 6.7 12.2 97.0 106.7 118.8

halfcheetah-medium-expert 35.8 93.3 105.9 6.7 12.2 80.0 109.3 113.6

halfcheetah-expert 107.0 108.4 - 6.7 12.2 119.0 109.6 110.5
hopper-medium 29.0 99.4 48.8 73.9 20.9 107.3 94.2 80.4

hopper-medium-expert 111.9 112.4 55.1 73.9 20.9 114.0 98.5 109.6
hopper-expert 109.0 112.3 - 73.9 20.9 113.8 100.4 72.3

walker2d-medium 6.6 78.8 41.0 46.2 26.9 113.4 97.3 109.1
walker2d-medium-expert 11.3 105.2 70.2 46.2 26.9 110.4 60.1 121.4

walker2d-expert 125.7 103.0 - 46.2 26.9 119.7 102.8 103.6

Table 1: Performance comparison of our work (OTED) to existing offline RL algorithms – behavioral
cloning (BC), F-BRC Kostrikov et al. (2021), MBOP Argenson & Dulac-Arnold (2020) – as well as
domain transfer algorithms – domain randomization (DR), interval search (IS) – on D4RL dataset.

Figure 6: Absolute design error of OTED and KL-divergence between induced behavior policy and
target policy in MiniGrid environment.

5.3 MINIGRID ENVIRONMENT RESULTS

We show our MiniGrid results in Figure 6 where we present absolute error between learned parameter
and ground truth parameter. After being trained for only several hundred steps, the discriminator
learns to distinguish between generated and expert data, emitting a very strong signal for the designer
to learn the simulator parameter. Note that 0.26 is not in the support set of the parameter distribution
as we quantize by increments of 0.05 but OTED is still able to find the optimal prediction. This shows
(i) the capability of OTED to generalize to observations that are not seen during training and (ii) the
robustness to quantization errors. This also explains why it takes slightly longer for the discriminator
to learn.

As suggested by small KL divergence, induced behavior policy closely mimics the target policy. This
is crucial since the training data to both the discriminator and the designer come from interaction of
the behavior policy with the simulator. While the mode of the distribution exhibits a much higher
probability, we still observe a significant mass around the mode. This is expected as obstacles are
randomly placed in the grid and ratio of obstacles from different observations might be similar even
if they come from different environments.

6 CONCLUSION

We introduced a principled method, OTED, to learning simulator parameters of a target environment
from offline datasets, combining two different paradigms, namely offline and online RL. We proposed
a KL-divergence regularized distribution matching objective where a distribution over simulator
parameters is learned to minimize the discrepancy between the offline dataset and state-action
distribution of an online behavior policy in the induced simulator. By jointly learning the behavior
policy and design distribution, we showed that OTED is able to recover the unknown parameter
with high accuracy. When evaluated on previous benchmarks, including D4RL, OTED exhibited
low absolute error on average. An online SAC agent (OTED-SAC) trained with designed simulators
performed on par or better than previous state-of-the-art offline and online RL methods.
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