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ABSTRACT

Matrix operations, such as linear solves, eigendecompositions, and log determi-
nants, are foundational building blocks for any number of downstream applications.
Therefore, any broadly capable learning system should be able to effectively ap-
proximate these operations in its internal representation. Accordingly, there is great
motivation to study transformers for linear algebra — for if transformers cannot
even semi-competently perform matrix operations, then we cannot expect them
to form a basis for a generally intelligent system. We demonstrate that current
techniques developing transformers for linear algebra have striking failure modes,
prohibitive scaling, and particularly poor out-of-distribution generalization to other
matrix distributions, and matrices of different sizes. Investigating further, we find
that current transformer approaches operate as statistical interpolators, rather than
discovering algorithms that will generalize to matrices from other distributions.
Based on our understanding of these limitations, we develop a sequence of in-
terventions that substantially improve scaling and performance, including matrix
embeddings through a learnable projection, linear attention, looping, and a data
pre-training distribution of structured matrices. We term the resulting method the
RangeFormer, which we show has significantly improved scaling and performance
on challenging OOD matrices from the matrix market. Moreover, with Range-
Former we show for the first time that transformers can be successfully applied
to downstream tasks that involve iterative matrix operations, including Gaussian
process learning, and improving the sampling distribution of randomized methods.

1 INTRODUCTION

Linear algebra is at the heart of science and engineering. Linear solves, eigenvalue computations,
log determinants, and other matrix operations, are the basis for Gaussian processes, normalizing
flows, principal component analysis, equivariant neural networks, differential equations, approximate
second-order optimizers, and any number of other applications (Rasmussen and Williams, 2006; Anil
et al., 2020; Cuturi, 2013; Dao et al., 2019; Finzi et al., 2023; Fu et al., 2023; Kovachki et al., 2021;
Li et al., 2018; Martens and Grosse, 2015; Nguyen et al., 2022; Perez et al., 2018; Potapczynski et al.,
2023). It follows that a broadly capable learning system must be able to perform matrix operations in
its internal representation, as a fundamental building block.

Not only have transformers rapidly become the most popular architecture, they are being applied to a
distinctly wide array of settings. We have moved from hand-crafted feature engineering, to neural
networks for particular modalities (CNNs for vision, RNNs for sequences, etc.), to transformers for
everything (Goldblum et al., 2024). However, if transformers are to be general purpose, a pressing
question arises: how good are transformers at matrix operations, a core primitive in many settings?
Despite the importance of this question, there is so far relatively little work on transformers for linear
algebra (e.g., Charton, 2022a;b; Yang et al., 2024).

In this paper, we first shed light on the limitations and failure modes of existing transformer approaches
for matrix operations. Standard approaches involve representing a matrix as a sequence of numbers,
represented as string tokens, mapped by a transformer to the output of a particular operation, such as
computing its eigenvalues (Charton, 2022a). These approaches have severe computational constraints,
requiring a staggeringO(N4D+N2D2) compute and memory, for anN×N matrix, and embedding
dimension D. Moreover, when trained on standard distributions, e.g., random matrices of a fixed
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Figure 1: How to profoundly improve the scaling and OOD performance of transformers for linear
algebra. (a) We train on a wide variety of structured random matrices resulting in diverse eigenspectra as
opposed to only training with Gaussian random matrices. (b) In contrast to flattening the matrix and then
projecting each scalar into a high dimensional X ∈ RN2×D , we embed the matrix via a learnable projection
X ∈ RN×D . Together with linear attention, we achieve O(ND2) scaling instead of O(N4D + N2D2).
(c) Performance improvement, over an ensemble of challenging OOD matrices (section 3), applying a set of
interventions for our RangeFormer method, over four canonical matrix operations. The baseline (Base) is a
vanilla transformer trained on Gaussian random matrices. We then train the same transformer but on our data
mixture (Data) from section 4. Finally, we apply the architectural changes (Arch), such as looping, learnable
projection (panel (b)) and linear attention. (d) OOD performance and runtime of RangeFormer (RF) against a
vanilla transformer baseline (TF) from section 3. TF cannot run matrices with N ≥ 100 on an 80 GB A100 and
its performance is worse than just predicting 0. In contrast, RangeFormer scales reasonably in compute and
performance.

size with standard Gaussian entries, transformers generalize poorly to other matrix structures, even a
basic identity matrix. Probing further, we show current approaches perform statistical interpolation,
rather than algorithm discovery, explaining their particularly poor OOD performance.

Based on our study of these limitations, we investigate a sequence of interventions for improved
scalability and performance. We note that the goal of our work is in understanding the potential
capabilities and limitations of transformers for linear algebra, and methodological interventions are
primarily in service of this understanding. First, rather than flatten the matrix, and represent each
number as a string token, we embed the matrix through a learnable projection. We then pursue linear
attention, which improves both scalability and the performance of matrix operations, as quadratic
softmax attention is known to be poor for matrix multiplications (Arora et al., 2023; Liu et al., 2025).
Together, these interventions significantly reduce memory and compute complexity to O(ND2).
Next, we use a looped transformer architecture (Giannou et al., 2023; Yang et al., 2024; Saunshi et al.,
2025; Geiping et al., 2025), inspired by iterative methods in numerical linear algebra (such as linear
conjugate gradients, and other Krylov subspace methods (Potapczynski et al., 2023)), so that each
matrix can be processed by the transformer a variable number of times, depending on the difficulty of
the operation and its conditioning. Finally, we construct and train on a novel data mixture comprised
of a wide range of matrix structures, covering diverse eigenspectra decays, leading to significantly
better out-of-distribution generalization than the standard Gaussian random matrix training: moving
from statistical interpolation towards generalizable algorithms. We illustrate the cumulative effects of
these interventions in Figure 1. We name our approach the RangeFormer (and release code here).

We show that the RangeFormer profoundly relaxes the limitations of prior transformer approaches,
with substantial performance improvements on diverse OOD matrices from the matrix market
(Boisvert et al., 1997). Finally, for the first time, we show how transformers can be successfully
used in downstream applications requiring iterative matrix operations, including Gaussian process
learning, and improving the sampling distribution of randomized methods. Indeed, the ultimate test
of a numerical method is whether it can support a downstream application, as part of a pipeline,
especially in a setting that requires repeated matrix operations that build off of one another. In such
settings, compounding errors, or systematic biases, could easily prevent convergence.
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2 TRAINING TRANSFORMERS FOR LINEAR ALGEBRA TASKS

Assume that we have data in the form of (A, f(A)) where A is a N ×N matrix and f(A) is a linear
algebra operation applied to A, say Tr(A), log |A|, λmax(A), or A−1, and we would like to train a
vanilla transformer model (TF) based on Radford et al. (2018) to approximate f(A). For a given
input X ∈ RS×D, where S represents the sequence length and D an embedding dimension, the main
components of a TF are to apply a positional encoding X ← PosEnc(X) and then to iterate

X ←X + Attn(l)(Norm(l)
A (X))

X ←X + MLP(l)(Norm(l)
M (X))

(1)

for l = 1, . . . , L number of blocks. Here Norm(·) is a normalization function like layer norm, Attn(·)
is the attention mechanism (Vaswani et al., 2017) which requires O(S2D) compute, and MLP(·) is
applied to the embedding dimension, thus requiring O(SD2) compute.

We consider two baseline approaches, inspired by prior work, to train TFs for linear algebra tasks.
These approaches mostly differ by how to translate the input matrix A to X , and their loss functions.
The first approach, following Charton (2022a) and Charton (2022b), is to train a TF with its inputs and
outputs represented as strings. Here, the elements in the vocabulary V would be strings that represent
floating-point numbers like “±s1 . . . sME± e1 . . . eK” where sm represents the matissa and ek the
exponent. The size of |V| is approximately≈ 2×10M×2×10K (counting redundant representations),
which grows exponentially as we increase the precision of the floating-point representation by
increasing M and K. In this setup, the input matrix A gets flattened and each Ai,j gets converted
to an element of V and then embedded in a D-dimensional space to get X ∈ RN2×D. After X is
passed into equation (1) then, assuming f(A) = A−1, the last head layer creates Y ∈ RN2×|V|

which we use to compare it to the string representation of each A−1
i,j via the cross-entropy loss. In our

experiments we refer to this method as STRFormer (string transformer).

The second approach, NumFormer (numerical transformer), essentially removes the use of strings.
That is, we flatten A and then embed each Ai,j into a D-dimensional space through a linear layer
W (I) ∈ R1×D to obtain X ∈ RN2×D = vec(A)W (I) and, after passing X through the TF
(equation 1), we obtain Y = XW (O) ∈ RN2×1 through a final linear layer W (O) ∈ RD×1. In this
case we use an approximation loss between Y and f(A) such as the nuclear norm ∥Y − f(A)∥∗ if
f(A) = A−1 (with Y reshaped as N ×N ) or |YN2 − f(A)| if f(A) ∈ R.

The use of flattening allows both STRFormer and NumFormer to run for any matrix size. However,
following the discussion on equation 1, each TF block requires a prohibitive O(N4D + N2D2)
compute. As seen in Figure 1 we cannot run matrices larger than N > 50 as we run out of memory.
If we use the standard single precision (32 bits) to represent numbers, then if N = 100 and D = 256
we require N4D = 108 × 256× 32 ≈ 8× 1011 bits which is greater than the 80GB ≈ 6× 1011 bits
of memory of a (high memory) A100.

In terms of the training data, the standard procedure in the literature is to sample random Gaussian
matrices, Ai,j ∼ N (0, 1). This sampling strategy is used in prior work (Charton, 2022a;b) (among
other sampling distributions), and in all the works that study solving regression tasks with transformers
(Garg et al., 2023; von Oswald et al., 2023; Vladymyrov et al., 2024; Fu et al., 2024; Liu et al., 2025;
Yang et al., 2024). By sampling new random matrices during training we never repeat data and
therefore follow a single epoch training as is done for current LLMs.

3 DIAGNOSING THE SHORTCOMINGS OF USING TRANSFORMERS FOR NLA

We now seek to shed light on the limitations of using transformers for numerical linear algebra tasks.
We then consider several interventions in section 4 that further advance our understanding.

In this section we only show results with NumFormer as it consistently performs an order of magni-
tude better than STRFormer, as we will see in section 4. The main reason for the poor performance
of STRFormer is that the string representation of the numbers sacrifices numerical precision. Thus,
NumFormer trained with Gaussian random matrices Ai,j ∼ N (0, σ) (with σ = 1 unless specified
otherwise) is our main baseline and starting point. See Appendix D for additional experimental
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details and Appendix D.1 for further comparisons between STRFormer and NumFormer. While a
simple but substantial improvement on STRFormer, and our baseline, we note NumFormer itself
is novel and has not been proposed in prior work to the best of our knowledge.

Are transformers learning an algorithm? Prior work argues how transformers appear to learn in-
context regression (Garg et al., 2023) through iterative algorithms like gradient descent (von Oswald
et al., 2023) or Newton’s method (Fu et al., 2024). The argument in von Oswald et al. (2023) is that a
simplified transformer architecture has a set of parameter combinations that represent the gradient
descent algorithm and, empirically, as we traverse the blocks in equation 1, the approximations
become better at a similar rate as Newton’s method (Fu et al., 2024).

0 2 4
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Figure 2: The error does not
decrease as we traverse through
the transformer blocks. We
plot the relative error on the in-
verse A−1 task of a NumFormer
model for Gaussian symmetric
matrices (Ga), for the Identity (Id)
and the mean of the matrix market
ensemble (MM).

In our linear algebra context, if our model has learned an algorithm
to solve the task, we could then pass any matrix A that is not a
random Gaussian and expect a reasonable solution. Throughout our
paper, we will evaluate our trained models on two sets of such OOD
matrices S and M. The first set S contains canonical structured
matrices such as identity I , diagonal D with Di,i ∼ N (0, 1), and
Toeplitz with the bands sampled from N (0, 1). Even though the
entries of the structured matrices in S are also sampled from a
N (0, 1), their spectra are quite different, as we show in Figure 1.
The second set M contains more than 100 non-random matrices
from the matrix market (Boisvert et al., 1997). These matrices are
gathered from challenging real-world applications like finite element
approximations, structural engineering, fluid flow, power system
networks and many more (see appendix B.2).

For Figure 2 we train a 6 layered NumFormer model on 20 × 20
Gaussian symmetric matricesAi,j ∼ N (0, 1) to calculate the inverse
NNθ(A) ≈ A−1. We compute the relative error using the nuclear
norm rerr(A) = ∥ANNθ(A)− I∥∗ / ∥I∥∗, after each block of the
transformer model (equation 1). We test on three different matrices:
(1) the distribution of matrices that the model was trained on, Gaus-
sian symmetric matrices, (2) the identity A = I and (3) on all the
matrices M ∈M, computing 1

|M|
∑

M∈M rerr(M). In contrast to
von Oswald et al. (2023) and Fu et al. (2024), we do not observe a monotonically decreasing error as
we traverse the different layers in the transformer. This finding suggests that the NumFormer model
is at least not learning an iterative algorithm to solve the task. Moreover, we see the NumFormer
has high error for the OOD matrix market, and even worse for the trivial identity matrix! We revisit
this observation shortly, in validating with canonical matrices (below).

Transformers as Statistical Machines From random matrix theory, we know that a symmetric
Gaussian matrix Ai,j ∼ N

(
0, σ2

)
with Ai,j = Aj,i has the bulk of its eigenvalues λi(A) in the

interval (−2σ
√
N, 2σ

√
N), and E [λmax(A)] /

√
N → 2σ as N →∞ (Tao, 2012). In Figure 3 (left)

we train a NumFormer model on symmetric 20 × 20 Ai,j ∼ N (0, 1) matrices to solve λmax. We
then probe its predictions on a set of masked inputs M ⊙ A where Mi,j ∈ {0, 1} and vary the
overall proportion of nonzero entries. That is, we go from the zero matrix 0 = 0 ⊙A (masking
proportion = 1) to A = 1⊙A (masking proportion = 0). Note how the NumFormer model assigns
to the zero matrix an estimate of the min λmax(A) most likely obtained through training. In other
words, NNθ(0) ≈ min(λmax(Ab))

B
b=1 (grey dot and line), which is much larger than λmax(0) = 0.

We compute our estimate with B = 10K.

In Figure 3 (middle) we train a NumFormer model on symmetric 20× 20 Ai,j ∼ N (0, 1) matrices
to predict the whole eigenspectrum λ(A) ∈ R20. In the top panel we have the prediction of the model
NNθ(AN ) and the actual spectrum λ(AN ) for AN ∼ N (0, I) and A⊺

N = AN . On the bottom
panel we have the prediction of the model and the actual spectrum but for a Toeplitz structured matrix
AS ∈ S. The NumFormer learned through training that a linear decay is a close approximation to
the λ(AN ) and it erroneously predicts a linear decay also for AS .

Overall, we found these results alarming as the transformer models appear to be learning statistical
properties of the random matrices that they were trained on and not an algorithm to solve the linear
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Figure 3: Unexpected failure cases for transformer methods for NLA. Left: We compute the λmax for
distinct symmetric Gaussian matrices Ai,j ∼ N (0, 1) as we mask their inputs with different proportions of
non-zero values (green), compared to the output of a NumFormer model trained on the same symmetric
Gaussian matrices (orange). As we increase the proportion of zeros in the input, the NumFormer models
goes from predicting E[λmax] without masking to minλmax. Middle: In the top panel, we compare the full
eigenspectrum of a symmetric Gaussian matrix Ai,j ∼ N (0, 1) (grey) to the eigenspectrum prediction for the
same matrix for a NumFormer model trained on the same distribution of symmetric Gaussian matrices (green).
The NumFormer learns a linear decay in the spectrum that closely matches the training data. In the bottom
panel, we compare the eigenspectrum prediction of a NumFormer but now for a symmetric Toepliz matrix with
Gaussian bands Ai,j ∼ N (0, 1) (orange). The NumFormer erroneously predicts the same linear decay for the
Toepliz input. Right: We display the MSE loss of 3 different methods (Liu et al., 2025; Charton, 2022a;b) for
training transformers to solve least-squares problems when we pass an in-distribution Gaussian matrix (green)
versus passing the identity matrix (orange). There is significant performance degradation when evaluating on
canonical matrices like the identity and STRFormer failed to decode for I . See section 3 for full details.

algebra operations. Similar results can be obtained when Ai,j is sampled from a Laplace or uniform
distribution (see Appendix D.1).

Validating with Canonical Matrices It is common to sanity check an NLA algorithm on ma-
trices like the identity A = I , zero A = 0, or diagonal A = diag(d), as these are considered
trivial matrices with closed-form solutions. In Figure 3 (left), we show the discrepancy between
the test loss achieved in-distribution versus the loss obtained by passing A = I as the input
for distinct transformer models for least-squares problems ∥Ax− b∥2. Namely, NumFormer,
STRFormer (Charton, 2022a;b), and the high-precision solver (HPS) in Liu et al. (2025).
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Figure 4: The approximation
error exponentially increases
for smaller matrices.

We train our models following the setup in Liu et al. (2025) which
is also almost identical to Charton (2022a) and Vladymyrov et al.
(2024). That is, A ∈ R20×5, Ai,j ∼ N (0, 1), b ∈ R5, and bi ∼
N (0, 1) where we cap the condition number to κ(A) = 5. In Figure
3 (right) we see how all the methods struggle to produce reasonable
outputs for A = I . On the one hand, I is OOD since matrices close
to I have low probability density under Ai,j ∼ N (0, 1). Yet, it is
surprising if we believe that the transformer models are learning a
reasonable algorithm, as I should be a trivial example.

On Different Matrix Sizes A clear benefit of transformers is that
they can handle different sequence lengths, here different matrix
sizes, without any additional intervention. When training a LLM
such as a GPT-2 (Radford et al., 2018), we can create input batches of
the same context length by collecting sequences of different lengths
and denoting the length difference using the <EOS> token. When
training transformers for linear algebra problems, it is not clear how
to accommodate for different matrix sizes in the same batch, so the
transformers models in the literature are trained with a fixed size. In Figure 4 we train a NumFormer
model on 50 × 50 Gaussian symmetric matrices Ai,j ∼ N (0, 1) on the Tr(A) task. We measure
the relative error when passing as input Gaussian symmetric matrices but of sizes 5 × 5, 10 × 10,
20 × 20, 30 × 30, 45 × 45 and 50 × 50. Even a reduction from N = 50 to N = 45 worsens the
performance almost 10 times.
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4 THE RANGEFORMER METHOD
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Figure 5: Our data and architectural interventions significantly improve performance. (Left): Intervention
breakdown and its effect on improving the test relative error on OOD matrix market data for the A−1 task
for 20 × 20 matrices. Our baseline is the NumFormer model trained on Gaussian random matrices, and
the interventions are: (1) adding an iterative bias (Loop), (2) embedding through the range of the operator
(Range), (3) incorporating subquadratic attention mechanisms (Attn), (4) using our data distribution (Dist).
(Right): Performance of RangeFormer against STRFormer (Charton, 2022a) and NumFormer on λmax(A),
Tr(A), log |A| and A−1 across matrix market data for sizes 5× 5, 10× 10 and 20× 20. We expand upon the
different model configurations and loss functions in appendix D.7. The missing numbers for STRFormer are
due to decoding errors.

We now construct, step-by-step, our RangeFormer architecture, and introduce our synthetic data
procedure. We will study the effects of each intervention on classical linear algebra problems such
as max eigenvalue λmax(A), trace Tr(A), log determinant log(|A|) and inverse A−1 (additional
details in Appendix D.2).

Figure 5 (left) shows the cumulative and substantial performance increase from all the interventions,
previously summarized in Figure 1, that transform NumFormer to RangeFormer. In Figure 5
(right) we compare the performance of RangeFormer across different matrix sizes and linear
algebra operations. For each linear algebra operation, we train each model using our batching
technique (discussed below) that enables the models to perform for different matrix sizes and
avoids the lack of size generalization discussed in Figure 4. Overall, RangeFormer is an order of
magnitude better when testing our OOD matrix market ensemble. For STRFormer, we use the code
and checkpoints provided by Charton (2022a;b). Interestingly, the checkpoints perform well when
ran on in-distribution random matrices but they usual fail to decode a correct string when ran on the
OOD matrix market data. We now explain each intervention in detail.

Positional encodings Though not a particular intervention in Figure 5, introducing positional
encodings is vital for our application as the results of linear operations like trace, solves, or max
eigenvalue are not permutation invariant. For example, permuting the identity changes the value of
the trace. In appendix D.3 we compare the performance of the different encoding methods.

Looping To introduce an algorithmic bias into our transformer model, and avoid the situation
depicted in Figure 2, we tie the transformer weights in equation 1 to obtain a looped transformer
(Saunshi et al., 2025; Giannou et al., 2023; Yang et al., 2024; Geiping et al., 2025). Via looping, now
the model is forced to use the recurrences to improve the solutions, similar to how most iterative linear
algebra routines work, such as linear conjugate gradients, or stochastic Lanczos quadrature (Saad,
2003). In Figure 6 (left), we compare the quality of the approximation of the transformer model as
we traverse the layers in equation 1 on a OOD Toepliz matrix for the A−1 task. The NumFormer
model does not improve its approximation as we traverse the layers. In contrast, our RangeFormer
model monotonically decreases the error as we traverse the layers, more sharply in the beginning and
flattening at the end. Additional experimental details are in Appendix A.2.
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Range embedding This intervention circumvents the O(N4D +N2D2) scaling of the model by
not flattening the matrix. Rather, we learn a projection matrix Γ ∈ RN×D that allows us to work
directly with the range of the operator as X = AΓ ∈ RN×D by now considering the rows of X
as the sequence dimension and the columns as the embedding, scaling as O(N2D + ND2). To
underscore the relevance of this modification, we name our transformer models as RangeFormer.
Figure 5 (left) shows a minor performance improvement in substituting to this approach despite a
reduction in total parameter count. See Appendix D for additional details on the architecture.

Attention alternatives Giannou et al. (2023) and Liu et al. (2025) argue that the scale normalization
and the nonlinear functional form of the standard softmax attention introduces an approximation
distortion that is not favorable to linear algebra primitives like matrix-multiplies. Thus, we use
linear attention alternatives like Taylor attention (Arora et al., 2023) or BaseConv (Liu et al.,
2025) that allow us to improve upon standard attention and, most notably, achieve additional scaling
improvements of O(ND2) by avoiding the construction of the full attention matrix. Figure 1 (c)
shows the performance improvement captured by this architectural intervention (Arch) (among
others). Moreover, Figure 1 (d) shows the staggering runtime and memory benefits achieved through
this intervention. We can now train transformers on matrices of size N = 1K in less time than prior
methods on N = 50 as seen in Figure 1 (d). Additional large scale experiments in Appendix D.1.

Training data distribution As discussed in section 3, a notable limitation of previous methods
is to solely train on Gaussian random matrices (Liu et al., 2025; Charton, 2022a;b; Dutta and Sra,
2025; Vladymyrov et al., 2024) as transformer models would then only learn statistical properties
about the data. As seen in Appendix B.3, Figure 8, different Gaussian matrices almost have an
identical eigenspectrum, making them essentially the same linear operator. We take a different
approach and construct a data mixture consisting of two main elements: structured matrices and
matrices with different eigenspectrum decays. To generate structured matrices we use the continuous
Einsum parameterization from Potapczynski et al. (2024) (discussed in Appendix B) which allows
us to randomly sample structures like Kronecker, Low-rank, Tensor Train, Block Tensor Train and
Monarch, and many more. Interestingly, our way of sampling from the Einsum parameterization
prevents us from sampling matrices like I , 0, diagonal, or Toeplitz (Appendix B). Furthermore, in
Appendix B.3, Figure 9, we see how the different structures lead to diverse eigenspectra, even when
the elements of these matrices are still sampled from N (0, 1). Finally, as discussed in Appendix
B.3, we use a series of functional forms to create a wide variety of eigenspectra Λ as seen in Figure
10. Once we have Λ, then we sample a random basis Q and create A = Q⊺ΛQ. Figure 6 (Right)
shows the benefits of transitioning from training a RangeFormer model on Gaussian random data,
to one trained on our data mixture for the inverse A−1 task. Also Figure 1 (c) displays the benefits of
training with this data mixture on other linear algebra operations.

Varying sequence length batching To avoid the situation depicted in Figure 4, we must train our
transformer models with a diverse set of matrix sizes. Thus, during training, we uniformly sample a
matrix size N from a predefined set {N1, . . . , NR} and then sample a batch of matrices of size N
from our data mixture. Figure 6 (Middle): shows how our model can stabilize its OOD performance
across different sizes, even ones that were not seen during training.

5 DOWNSTREAM APPLICATIONS

Ultimately, matrix operations are rarely an end in and of themselves but instead are used as part of a
downstream application. For the first time, we replace linear algebra routines with transformers to
compute the matrix operations in downstream applications.

5.1 ACCELERATING THE CONVERGENCE OF KRYLOV SUBSPACE METHODS

Krylov subspace methods are classical iterative methods for computing matrix operations, such as
conjugate gradients (CG) for solving linear systems. As discussed in appendix A.1, any Krylov
subspace algorithm requires an initial vector to start forming the basis K(t)(x0,A). We now use our
trained RangeFormer models NNθ(·) to provide x0 = NNθ(A). The intuition is that since NNθ

provides a good approximation to the solution, then the overall effect is that the Krylov subspace
algorithm will converge to the solution faster when compared to simply picking a standard random
or zero initialization for x0. In Figure 7 (Right) we show how CG converges much rapidly on the
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Figure 6: Different benefits of training with our methodology. (Left): Looping encourages the model to
iteratively improve upon its solution. OOD performance of RangeFormer as we iterate across the transformer
layers, for two OOD cases the identity I (Id) and our matrix market ensemble (MM) on the A−1 task. (Middle):
We compare the performance on the same two OOD cases, of our RangeFormer model across different matrix
sizes. The RangeFormer model was trained using our batching method on 50 × 50, 30 × 30 and 10 × 10
matrices but can perform relatively well for other cases like 5× 5, 20× 20 and 45× 45. (Right): Incorporating
a diversity of structures, as well as matrices with a wide variety of eigenspectra decay, in the training distribution
highly improves OOD performance. We show the relative error on different OOD matrices for a RangeFormer
model trained on Gaussian random matrices and one trained on our data mixture (mix) for λmax. The matrices
are the Identity (Id), zeros (Ze), Toeplitz (To) and the matrix market ensemble (averaged).

bcsstk02 matrix from the matrix market. We provide additional results for other algorithms and other
matrices in appendix D.4. Since matrix operations are a fundamental primitive for learning tasks,
our goal in this paper is to expose limitations of transformers for linear algebra, and show how they
can be improved, rather than to argue that they are preferable to classical solvers. However, this
experiment demonstrates that there is indeed promise for transformers to be combined with classical
solvers for better performance than these solvers could achieve alone.

5.2 IMPROVING THE SAMPLING DISTRIBUTION FOR RNLA

All randomized linear algebra methods rely on sampling some random embedding Ω, usually
Gaussian Ω ∼ N (0, I). In this application, we train RangeFormer models that define p(Ω) =
NNθ(A) such that our samples Ω ∼ p(Ω) improve the performance of the randomized algorithm. In
other words, NNθ will take into consideration the characteristics and structure of A and bias p(Ω) to
provide a better sampling distribution. Since RangeFormer uses looping, the process of sampling
Ω is similar to diffusion, where we start with Ω0 ∼ N (0, I) and progressively pass this noise
through the layers of NNθ to get Ω ∼ NNθ(A). In Figure 7 (Middle), we compare the performance
of randomized SVD using RangeFormer, namely RFSVD, and the usual algorithm RSVD that uses
Ω ∼ N (0, I). We use a matrix A ∈ R100×100 stemming from a Gaussian Process RBF kernel on a
uni-variate grid that has a fast decaying spectrum. As seen in the figure, RFSVD (with D = 16) is
able to more closely resemble the spectrum of A when compared to a RSVR (rank 16) approximation
(appendix D.5 has additional details). Moreover, Figure 15 (Right) also shows contour plots of the
learned distribution p(Ω) which are quite distinct from the contours of N (0, I) Figure 15 (Left).

5.3 GAUSSIAN PROCESSES

In our last application, we use RangeFormer to train Gaussian process (GPs) kernel hyperparame-
ters. This is a particularly challenging stress-test, as the kernel learning pipeline requires a sequence
of matrix operations that build off one another, where compounding errors and biases could preclude
convergence.

GPs are flexible distributions over functions, with properties controlled by a kernel (Rasmussen
and Williams, 2006). Given some data (xi, yi)

N
i=1 and a kernel function kϕ(x, x′) parametrized

by ϕ, training a GP requires constructing Kϕ [i, j] = kϕ(xi, xj) and then minimizing the negative
log-likelihood L (ϕ) = log |Kϕ|+ y⊺K−1

ϕ y which involves the computation of log-determinants
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Figure 7: Performance of RangeFormer on downstream applications. (Left): CG convergence with and
without RangeFormer warm starts on bcsstk02 from the matrix market. (Middle): Spectrum approximation
for RSVD sampling Ω ∼ N (0, I) and sampling Ω ∼ NNθ(A). (Right): The RangeFormer linear algebra
primitives allow us to recover the length scale parameter of an RBF kernel for data generated from a Gaussian
process with an RBF kernel.

and solves (Rasmussen and Williams, 2006). In our case, we use RangeFormer for these operations
in order to learn ϕ. In Figure 7 (Right) we perform a sanity check showing that our RangeFormer
pipeline recovers the true length scale ℓ when trained on data generated from a GP. Finally, we fit
a RBF kernel on data generated as yi = sin(2π xi) + ϵi, for i = 1, . . . , 50 with ϵi ∼ N (0, 0.04),
and xi ∼ U [0, 1], using our RangeFormer pipeline and using Cholesky. Both strategies give
almost identical results on the hyperparameter values learned, their trajectories, and the test RMSEs:
0.87996 (Cholesky) and 0.87978 (RangeFormer). We provide additional experimental details
in appendix D.6.

6 DISCUSSION

We have found that current transformer approaches for matrix operations profoundly fail on even
trivial out-of-distribution matrices, such as the identity matrix. We shed light on these failure modes,
showing that current approaches perform statistical interpolation on in-distribution matrices, rather
discovering more generalizable algorithms. We also find that current approaches are computationally
intractable, beyond even tiny 30× 30 matrices.

Through a sequence of interventions, we were able to profoundly relax these limitations. In particular,
we found that introducing a learnable projection improves scaling by several orders of magnitude,
and new richer training distributions improve performance by several orders of magnitude, especially
in OOD settings. These interventions are not merely making transformers better at numerical linear
algebra, but moving from a system that was essentially broken, to one that can start to perform
competently on challenging real-world matrices, and shifting closer to algorithm discovery.

This research area is in its early stages. Our goal is not to compete with purpose-built classical
algorithms, just like a transformer could not be expected to compete with a calculator for arithmetic.
At the same time, we also provide the first results using transformers successfully for matrix operations
in downstream applications, which suggests that transformers could become practical in this setting.
For example, GP marginal likelihood optimization is particularly challenging, since it is an iterative
pipeline that would quickly become unstable under compounding errors. Moreover, our randomized
linear algebra application also shows how transformers can play a complementary role to classical
methods, learning how to improve randomized SVD. And our warm-start CG application additionally
shows how transformers can naturally be combined with classical methods.

We hope that our results will inspire research into transformers for matrix operations. Presently,
this research area is in its infancy, relative to decades of work on purpose-built classical solvers,
representing millions of human hours of effort. But with a sustained program, over years, we will
see both more general purpose architectures, and transformers that become practically compelling
for matrix operations. Indeed, after years of work on neural graph methods, which initially were
outperformed by classical approaches, there were eventually significant breakthroughs.
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APPENDIX OUTLINE

1. Appendix A provides additional background on Linear Algebra problems and methods.

2. Appendix B describes our data construction procedure, evaluation metrics, and provides an
analysis of the the eigenspectra of different data distributions.

3. Appendix C describes the proposed RangeFormer architecture in detail.

4. Appendix D provides additional experimental details.

5. Appendix E formally analyzes the runtime for NumFormer and RangeFormer.

A BACKGROUND

In this section we briefly introduce and describe the techniques, methods and problems that will be
used throughout the paper.

A.1 LINEAR ALGEBRA

Canonical Linear Algebra problems Assume that we have A ∈ RN×N . Arguably the most
important linear algebra operations, besides matrix-vector-multiplies (MVM) Ax, are: (1) linear
solves x = A−1b, (2) eigen decompositions A = QΛQ⊺ (assuming A is symmetric), (3) applying
a function f to A, as f(A) = Qf(Λ)Q⊺ or (4) applying a matrix to scalar function like trace
Tr(A), determinant |A|, or condition number κ(A). The previous list is far from exhaustive but
it encompasses the majority of the operations that are common place in ML. For example, linear
solves and log-determinant computations are part of Gaussian Process (GP) training (Rasmussen
and Williams, 2006) while eigen-decompositions and matrix functions f(A) are part of approximate
second-order optimizers like Shampoo (Anil et al., 2020). In section 4 we will train transformers to
tackle all of the aforementioned operations.

Linear Algebra methods There is a vast set of algorithms to solve all the linear algebra problems
from above (Trefethen and Bau, 1997; Golub and Loan, 2018). In this paper, we will focus on two
broad families of methods that are the most commonly used in practice: (1) Krylov subspace methods
(Saad, 2003; 2011) and (2) randomized methods (Martinsson and Tropp, 2020).

The main idea of Krylov subspace methods is to iteratively apply MVMs to construct a subspace
that can be used to solve a target problem. Namely, given an initial vector x0, and a number of
iterations t = 1, . . . , N , we will implicitly construct and utilize the Krylov subspace K(t) (x0,A) =
span{x0,Ax0, . . . ,A

t−1x0}. Based on the previous equation, the cost of these methods can thus
be upper-bounded by O

(
TN2

)
by assuming the worst case MVM cost for A and where T is the

number of iterations. To give some examples, some well-known Krylov subspace methods for
linear solves are CG, MINRES, and GMRES (Saad, 2003) and for eigenvalue problems we have the
PowerIteration, Lanczos, LOBPCG, and Arnoldi (Saad, 2011). In section 5.1 we will train
transformers to suggest an initial x0 that will accelerate the convergence of these methods.
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The key insight of randomized methods is to reduce the problem size by multiplying A with a random
matrix Ω ∈ RN×ℓ where ℓ≪ N and then apply distinct deterministic methods to Y = AΩ ∈ RN×ℓ

to solve a target problem. A famous example is RSVD (Martinsson and Tropp, 2020), where we extract
an orthonormal basis Q = QR(Y ), then construct C = Q⊺A ∈ Rℓ×N , get [U ,Σ,V ] = SVD(C)
and thus provide an approximation of the form A ≈ (QU)ΣV ⊺ where U ∈ Rℓ×ℓ, V ∈ RN×ℓ are
orthonormal matrices, and Σ ∈ Rℓ×ℓ is a diagonal matrix. With RSVD, we avoid the O(N3) cost of
applying SVD to A but rather incur a O(ℓ2N) cost of the SVD to C. Most commonly, Ω is sampled
Ω ∼ N (0, I) but there are also other more efficient alternatives such as sparse sign matrices or
subsampled trigonometric transforms (Martinsson and Tropp, 2020). However, the overall decision
of the sampling distribution is either speed or convenience and, in section, 5.2 we explore other learnt
distributions that our transformer models uncovered to improve performance.

Matrix structures By matrix structure we refer to various patterns and relations between the
entries of A that ultimately lead to more efficient MVMs and more efficient algorithms to solve
distinct linear algebra problems. A trivial example would be when A is diagonal, that is Ai,j = 0 if
i ̸= j. In this case, a MVM simply amounts to Ax = diag(A)⊙ x, a O(N) operation not O(N2).
Additionally, a linear solve would also be O(N), since x = diag(A)−1 ⊙ b. A popular example is
when A is Toeplitz. In this case, the FFT is used to efficiently compute a MVM in O (N logN).
In section 4 we will make extensive use of different matrix structures to pre-train the transformers.
Specifically, we will use the Einsum parameterization of matrix structures from Potapczynski et al.
(2024). The Einsum parameterization is able to capture many well-known structures such as low rank,
Kronecker, Tensor Train (Oseledets, 2011), Monarch (Dao et al., 2022), BTT (Qiu et al., 2024) and
more by representing the structures as tensor contractions between two factors. All that is required
in the Einsum parameterization is to specify a real valued vector ξ ∈ [0, 1]7 and the values on the
entries ξi dictate the structure of the matrix.

A.2 TRANSFORMERS

Architecture Our architecture is inspired and resembles Radford et al. (2018). That is, for a given
input X ∈ RS×D, where S represent the sequence length and D an embedding dimension, we will
first apply a positional encoding X ← PosEnc(X) and then iterate

X ←X + Attn(l)(NormA(X))

X ←X + MLP(l)(NormM (X))

for l = 1, . . . , L number of blocks. Here Norm(·) is some sort of normalization function like layer
norm, Attn(·) refers to the attention mechanism that is detailed in the next subsection and MLP(·) is
an MLP applied to the embedding dimension, thus requiring O(SD2) operations.

We depart from Radford et al. (2018) in several ways. First, our transformer is not a text to text model.
At a high level, representing numbers as strings as Charton (2022a), has two clear drawbacks: (1) the
vocabulary grows exponentially in the precision and (2) it adds redundant, lossy transformations like
representing numbers as strings to then embed them as numbers again. In terms of the vocabulary, if
we have a string: “±s1 . . . sME± e1 . . . eK”, then the size of the vocabulary would be approximately
|V | ≈ 2×10M ×2×10K (counting redundant representations). Second, our transformer model does
not apply a causal mask as the sequence length is related to the input matrix where we have complete
access. Third, our training loss is not next token prediction but rather approximation error. Arguably
the deviations from Radford et al. (2018) make our models completely different in nature. However,
we are not trying to train a LLMs to do linear algebra, rather we are training neural networks to solve
linear algebra tasks and a transformer architecture is a natural choice as it can gracefully handle
different sequence lengths (matrix sizes).

Attention mechanisms Following the classical attention mechanism from Vaswani et al.
(2017), we construct Q(h) = XWQ(h), K(h) = XWK(h) and V (h) = XWV (h) with
WQ(h),WK(h),WV (h) ∈ RD×d where d represents the head dimension with Hd = D and h =
1, . . . ,H indexes the head number. For each head, we then output Y (h) = softmax(Q(h)K(h)⊺)V (h)

and finally concatenate the output as Y = concat(Y (1), . . . ,Y (H)) ∈ RS×D. This attention mecha-
nism requires O(S2D) operations for computing Q(h)K(h)⊺ for each h.

There have been several efforts to reduce the quadratic requirement of the standard attention mech-
anism, most notably the use of linear attention (Wang et al., 2020) where the goal is to circum-
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vent the construction of softmax(Q(h)K(h)⊺) by instead applying a feature map ψ(·) such that
Y (h) = ψ(Q(h))(ψ(K(h))⊺V ) and therefore only requireO(SD2) operations. Two popular feature
maps are ψ(x) = 1 + elu(x) and ψ(x) = 1 + x+ 1

2x
2 (Arora et al., 2023).

Looped transformers The idea of looped transformers (Giannou et al., 2023; Yang et al., 2024;
Saunshi et al., 2025; Geiping et al., 2025) is to incorporate an algorithmic inductive bias into
the transformer architecture by sharing weights across blocks. Namely, Attn(l)(·) = Attn(·) and
MLP(l)(·) = MLP(·) for all l = 1, . . . , L. Interestingly, this inductive bias allow us to increase the
amount of computation (by extending the number of loops) and hopefully improve predictions.

In our models we add the regularization techniques from Geiping et al. (2025) of injecting input noise
at each iteration as well as sampling randomly the number of blocks to run at each iteration during
training. We used looped transformers as they are the model class that gave us better empirical results
but also because we want our transformer models to learn iterative algorithms.

B DATASETS

B.1 TRAINING DATA

Previous results on transformers for NLA have used random matrix families to train their models.
However, random matrices exhibit certain statistical properties which may make tasks like λmax(A)
predictible from those statistics rather than required an algorithm to be learned. To avoid this pitfall,
we train transformers on a distribution of structured matrices with a rich variety of eigenspectra,
making this data less predictible from statistics only.

• Base. Our baseline training dataset simply consists of square Gaussian matrices, Aij ∼
N (0, σ2). Usually, we would symmetrize the input Ai,j = Aj,i to have well-defined data
for the problem.

• Einsums. The Einsum parameterization of matrices described in Potapczynski et al. (2024)
captures structured matrices such as Kronecker, Low-rank, Tensor-train and many more. To
sample a matrix of size N × N from the distribution of Einsums, we give the following
sampling algorithm.

1. Enumerate triplet factorizations, T = {(Nx, Ny, Nz) ∈ N3 : NxNyNz = N}. Sample
(Nα, Nβ , Nγ) and (Nδ, Nϵ, Nϕ) from T . Sampling can be done uniformly or biased
to factorizations with more 1s as that induces more varied structures.

2. Uniformly sample the rank Nρ from the discrete interval [1,min(Nα, Nϵ) + 1].
3. Construct tensors X ∈ RNα×Nγ×Nδ×Nϕ×Nρ , Y ∈ RNβ×Nγ×Nϵ×Nϕ×Nρ from a

standard normal distribution N (0, 1). Together, these two matrices define a linear
operator A.

4. Let I be the identity where I ∈ RN×N . Reshape it such that I ∈ RN×NαNβNγ .
Finally, compute

A′ =
∑
αβγρ

YβγϵϕρXαγδϕρIαβγ (2)

Now, A′ is of shape (N,Nδ, Nϵ, Nϕ). Reshape it to size N ×N to recover A.
In Figure 9 we observe the diverse eigenspectra obtain through the einsum sampling.

• Diagonal Decays. To equip the training dataset with a wide variety of eigenspectra, we
directly sample various diagonals and then construct matrices from those diagonals. The
experiments done in Figure 5 use a uniform mixture over four different diagonal decay
distributions. For all of the decays, we evenly space our input values over the [0, 1] interval,
i.e. {xi}Ni=1, xi = (i− 1)/(N − 1) and sample a scale parameter s ∼ U [1, 3]. Each of the
following distributions also includes a rate parameter α which controls the rate of spectral
decline.

– Polynomial. We sample α ∼ U [0, 5]. Then, we compute our eigenvalues λ as
λi = 1− xαi and add jitter of 10−4 to λN to avoid a zero eigenvalue.
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– Cosine. We sample α from a mixture of uniform distributions, α ∼ 0.2 · U [0.05, 0.1] +
0.2 · U [1, 4] + 0.6 · U [0.3, 0.9]. We then compute, λi = 0.5 · (1 + cos(παxi)).

– Inverse exponential. We sample α ∼ U [0.3, 30]. Let f(x) = 1
1+ex . Then, we

compute λi = f(α(xi − 0.5)).

– Log. We sample α ∼ U [1, 1000] and compute λi = 1− log(1+αxi)
log(1+α) .

Given eigenvalues λ, we can compute D = s · diag(λ). Then, we randomly sample
X ∼ N (0, 1) and compute the QR-decomposition QR = X . Finally, we compute
A = QDQ⊺ to sample random bases. As Q is an orthonormal matrix, it does not change
the eigenvalues present in D. In Figure 10 we see the diverse eigenspectra obtained by
through our diverse decay functions.

For the Tr(A) and the λmax(A) tasks, given a matrix A taken from one of the above distributions,
we symmetrize it in order to have real eigenvalues and a well-defined notion of λmax(A).

For the log |A| and A−1 tasks, we use positive definite matrices. Specifically, we compute A ←
AA⊺ + ϵI . Practically, we use ϵ = 10−4 to ensure that the log |A| task is well-defined while not
being trivial for the transformer model.

B.2 MATRIX MARKET

To accurately evaluate the performance of our models on OOD matrices, we sample several “real-
world”, symmetric matrices from the matrix market 1 as described in Boisvert et al. (1997). Here are
the collections that we used in our experiments:

• BCSSTRUC1. These matrices represent dynamic analyses in structural engineering, con-
taining stiffness and mass matrices.

• BCSSTRUC2. These matrices are linear equation problems “arising from applications of
the GT-STRUDL structural engineering code”.

• BCSSTRUC3. These matrices were collected from structural engineering packages and
serve as generalized symmetric eigenproblems.

• BCSSTRUC4. Symmetric eigenproblems and linear equations.

• CYLSHELL. Finite element discretized octant of a cylindrical shell.

• LANPRO. Lanczos with partial reorthogonalization.

• LAPLACE. Finite different Laplacians.

• PSADMIT. Four symmetric matrices used in modeling power system networks.

All the previous matrices come in a wide variety of shapes. In our experiments, if we need a size
of N × N , we simply take the first N columns and the first N rows. That is, we slice the matrix
as A[: N, : N ] following the notation in Python. We also considered projecting them via random
matrices. Assuming that N0 is the original size of the matrix, we then have A′ = ΩAΩT where Ω
is a N0 ×N matrix.

Also, we normalize the matrices by its largest entry asAi,j/ |Ai⋆,j⋆ | where |Ai⋆,j⋆ | = max(i,j) |Ai,j |.
We follow this approach for two reasons. First, we avoid having to compute the max eigenvalue or
Frobenious norm for each matrix. Second, many of this matrices come in the sparse format, where
we only have access to the nonzero entries, and so grabbing the largest one is convenient and fast.
This normalization would not make the max eigenvalues approximately 1 but with some divergences
as seen in Figure 11.

1The matrix market is provided by the National Institute of Standards and Technology (NIST) as a service,
intended for public access and use. See https://www.nist.gov/open/copyright-fair-use-and-licensing-statements-
srd-data-software-and-technical-series-publications for further information about licensing.
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Figure 8: Eigenspectra of random matrices. We randomly sample 4 20 × 20 matrices from
the selected random matrix families (Gaussian, Laplace, Uniform, and Marchenko-Pastur) and
symmetrize them with the exception of Marchenko-Pastur which is symmetric by construction. We
plot their eigenvalues and observe that there is very little variance in the eigenspectra within any given
random matrix family. We can see how the eigenspectra of each of this families is highly regular and
predictible.
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B.3 SPECTRAL ANALYSIS

One glaring issue in the usage of random matrices as training data is the homogeneity of their
eigenspectra. While previous results such as Charton (2022a) train on up to 360 million random
matrices for eigenvalue tasks, there may be limited utility in doing so as almost all of those matrices
share very similar spectral properties. In this section, we visually examine the eigenspectra of
different distributions of matrices.

Figure 8 visualizes the eigenspectra of different random matrix families. We observe that within
any given random matrix family, the eigenspectra follow the same general pattern with very little
variation. In fact, the Gaussian, Laplace, and Uniform eigenspectra are all quite similar as well which
could explain results like those in Figure 12 where training on those different random matrix families
gives very similar results. The fact that the eigenspectra are homogeneous, implies that the neural
network can learn that type of pattern and not an algorithm to solve the task at hand.

Figure 9 visualizes the eigenspectra of various Einsums. We observe much greater variation in both
the overall shape of the eigenspectra and the values of the largest and smaller eigenvalues, even
though the factors of the einsum are also sampled from N (0, 1).

While Einsums may offer diverse eigenspectra by virtue of representing structured matrices, we can
directly control the properties of the eigenspectra by specifying various functional forms. Figure 10
shows the eigenspectra of various diagonal decays which are more varied than both the Einsums and
random matrices. By varying the α parameter, we can further control the rate of the decay and the
way in which the eigenspectra decays. Empirically, we observe that this richer distribution results in
strong performance improvements (see Figure 5 (Left)).

Finally, we visualize the eigenspectra of the matrix market matrices in 11 and see that they are
qualitatively different from the training distribution making them a good metric for OOD performance.
Since these matrices are collected from real-world engineering problems, we observe behavior which
is hard to capture through either structured matrices or functional forms such as the step decay in
Bcsstm26 and Bcsstm02. In essence, the matrix market spectrums are unpredictiable and erratic,
making them a great test case for our models.

C ARCHITECTURES

In this section we expand on the architectures of NumFormer and RangeFormer as well as
compare them. For a given input X ∈ RS×D, where S represents the sequence length and D
an embedding dimension, the main components of our core transformer backbone are to apply a
positional encoding X ← PosEnc(X) and then to iterate R times the following:

X ←X + Attn(NormA(X))

X ←X + MLP(NormM (X))
(3)

Here Norm(·) is a LayerNorm layer, Attn(·) refers to a attention mechanism, and MLP(·) is an
MLP applied to the embedding dimension. This last MLP consists of two layers with an expansion
factor of 4 similar to (Radford et al., 2018). We discuss below the types of attention mechanisms or
MLP activations used. Note that in contrast to equation 1, equation 3 eliminates the dependency on ℓ,
essentially then forcing the model to share weights across the layers.

NumFormer Given the input A, we embed each Ai,j into a D-dimensional space through a linear
layer W (I) ∈ R1×D to obtain X ∈ RN2×D = vec(A)W (I) and, after passing X through equation
3, we obtain Y = XW (O) ∈ RN2×1 through a final linear layer W (O) ∈ RD×1.

For this architecture, Attn(·) is the standard quadratic attention mechanism (Vaswani et al., 2017)
and MLP(·) uses the standard GeLU activations.

RangeFormer Given the input A, we embed each Ai,j into a D-dimensional space through a
linear layer Γ ∈ RN×D to obtain X ∈ RN×D which ultimately capture the range of the operation
(where all the action happens). Then we pass X through equation 3 to obtain Y = XW (O) ∈ RN×1

through a final linear layer W (O) ∈ RD×1 which mixes the column dimension.
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Figure 9: Eigenspectra of Einsum matrices. We display the eigenspectra of 16 symmetrized Einsum
matrices and observe that the eigenspectra of structured matrices parameterized by Einsums are more
varied than the eigenspectra admitted by random matrices.
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Figure 10: Eigenspectra of diagonal decays. The eigenspectra of diagonal decay matrices vary
wildly by construction. The parameter α controls the rate and type of decay. For example, with
polynomial decay, a large α corresponds to a gentle decline that accelerates later on. With cosine
decay, α controls the smoothness of the decline.
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Figure 11: Eigenspectra of some matrix market examples. The eigenspectra of randomly selected
symmetric matrices drawn from structural engineering problems, finite discretizations and other
real-world applications are qualitatively different from synthetic random matrix eigenspectra. We
take 20× 20 slices from the top left corner of these matrices for this figure and normalize them by
their largest element.
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Figure 12: NumFormer learns particular eigenspectrum decays for different sampling distributions. In
all the top panels, we compare the full eigenspectrum of a random matrix A sampled from different distributions
(grey) to the eigenspectrum prediction for the same matrix for a NumFormer model trained on the same
distribution of random matrices (green). We see how the NumFormer learns a linear decay in the spectrum
that closely matches the training data. In all the bottom panels, we compare the eigenspectrum prediction of
a NumFormer but now for a symmetric Toepliz matrix with Gaussian bands Ai,j ∼ N (0, 1) (orange). We
see how the NumFormer fails to predict a different eigenspectrum decay. Left: Here Ai,j ∼ N (0, 1) with
Ai,j = Aj,i, that is A is a symmetric Gaussian matrix. Middle: Here Ai,j ∼ L(0, 1) with Ai,j = Aj,i, that is
A is a symmetric Laplacian matrix. Right: Here Ai,j ∼ U [−1, 1] with Ai,j = Aj,i, that is A is a symmetric
Uniform matrix.

For this architecture, Attn(·) is either the linear Taylor attention mechanism (Arora et al., 2023) or
the linear polynomial attention mechanism from (Liu et al., 2025). Here for MLP(·) we use ReLU
activations as we found that to be marginally better than GeLU.

However, now the layer Γ depends on N , which would not allow us to run matrices of different
sizes. We have two approaches to circumvent this problem. One approach is to define a Nmax (similar
to the positional encodings in a transformer that ultimately require a max sequence) and then slice
Γ to the input size N ≤ Nmax. The other approach is to not make Γ learnable but just a random
Gaussian embedding. This is an approached inspired by how the randomized linear algebra methods
operate. We found that the first approach yields the best results and ultimately used that one in our
experiments. Note that this is not a problem as we already have to define a max sequence length for
the positional encodings. However, if the user wants to train a model to work for all matrix sizes then
then can make Γ not learnable.

D EXPERIMENTAL DETAILS

D.1 ADDITIONAL EXPERIMENTS

In this section we expand our statistical analysis to show that the finding from section 3 applies also
when the matrices are sampled from a Lapacian distribution, that is Ai,j ∼ L(0, 1) or from a uniform
on, that is Ai,j ∼ U [−1, 1]. In Figure 12, we see how, regardless of the sampling distribution, the
NumFormer model simply learns the predictible behavior of the matrices and fails to generalize.
We also describe experiments on the scaling of the embedding size D with matrix size N as that
relationship affects the scalability of our method. Empirically, we do not observe that large N
drastically affects performance as long as D is moderately sized.

D.2 FIGURE DETAILS

Here, we provide experimental details for various figures referenced in the paper.

• Figure 1 Data We utilize two distinct data distributions - random symmetric 20× 20 Gaus-
sian matrices which represent an easy way to obtain synthetic training data for transformers
and diagonal decays which contain more widely varying eigenspectra.
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D / N 20 50 100
8 6.6× 10−1 ± 2.2× 10−1 6.5× 10−1 ± 4.3× 10−1 8.7× 10−1 ± 1.4× 10−1

32 1.7× 10−1 ± 3.8× 10−2 5.0× 10−1 ± 3.6× 10−1 4.7× 10−1 ± 7.6× 10−2

128 1.9× 10−1 ± 2.9× 10−2 2.3× 10−1 ± 5.3× 10−2 2.6× 10−1 ± 1.5× 10−2

512 1.8× 10−1 ± 1.7× 10−2 2.6× 10−1 ± 2.4× 10−2 2.0× 10−1 ± 5.2× 10−2

1024 1.2× 10−1 ± 1.1× 10−1 2.4× 10−1 ± 3.2× 10−2 2.4× 10−1 ± 4.6× 10−2

Table 1: We observe how performance changes as embedding size D and matrix dimension N scale.
Small sizes like 8 and 32 limit performance as expected but with D ≥ 128, performance plateaus. If
we suppose that the matrices we work with have an exponentially decaying eigenspectrum or that
the majority of eigenvalues are close to 0, then it may be that D does not need to scale with N . Fast
decaying eigenspectra or small eigenvalues are common characteristics in matrices of interest and is
precisely why randomized linear algebra can achieve a good performance with a few vectors even for
very large matrices.

Op 20 100 1K
A−1 1.8× 10−6 2.3× 10−6 3.1× 10−4

Table 2: Error for solves as we increase matrix size. We follow the least square settings from (Liu
et al., 2025) and track the MSE error as we increase the problem size.

– Base Data. For our baseline Base on the Tr(A) and λmax(A) tasks, we train using
symmetric Gaussian matrices where each element Ai,j ∼ N (0, 1). For the log |A| and
A−1 tasks we use positive definite Gaussian matrices. We sample Ai,j ∼ N (0, 1) and
then compute A← AA⊺ + ϵI .

– Decay Data. For the Data and Arch. models, we use a uniform mixture over the
polynomial, cosine, inverse, and log decay distributions explained in B.1. These
matrices are symmetric by construction in the Tr(A) and λmax(A) tasks. For the
log |A| and A−1 tasks, we make these matrices positive-definite in a similar way as to
with the baseline Gaussian data.

• Figure 1 Hyperparameters. Different tasks perform better with a different selection of
hyperparameters for the architecture. For Figure 1 (c), we swept over a set hypers and
ultimately used the ones that we detail below. For Figure 1 (d), we did not sweep over hypers,
but grab the ones from Figure 1 (c) and use them to train models for different sizes. Arguably,
larger matrix sizes might require larger models. We now explain: Tr(A), λmax(A), log |A|,
and A−1 from Figure 1 (c).

– Tr(A). The trace is a control task as we do not usually employ an iterative algorithm
to compute the trace. With the NumFormer models we use 2 layers, an embedding
size of 256, 8 attention heads, and learned positional encodings. We train for 5, 000
iterations using the AdamW optimizer and a batch size of 100 with a step-wise decay
scheduler and an initial learning rate of 10−3. With the RangeFormer model, we
use 8 layers to achieve best performance. Empirically however, we find that we can
still out-perform the NumFormer models in Base or Data with only 2 layers.

– λmax(A). For the the NumFormer model, we use 4 layers, an embedding size of 256,
8 attention heads, and learned positional encodings. For the RangeFormermodel, we
use the same configuration but with 6 layers instead. Empirically, the RangeFormer
performs better with a few more layers while NumFormer performance begins to
deteriorate with more layers. We train using the AdamW optimizer for 10, 000 iterations
with a fixed learning rate of 10−3 and L2 as a loss function. The RangeFormer can
afford a much larger batch size of 512 due to its reduced memory footprint while we
used a batch size of 128 for NumFormer, else we would run out of memory in our
hardware.

– log |A| . For both the NumFormer and RangeFormer models, we use 4 layers, an
embedding size of 256, 4 attention heads, and learned positional encodings. We use
a batch size of 128 and train for 5, 000 iterations using the AdamW optimizer with a
learning rate of 10−3 and a step-wise decay scheduler. For the log-determinant task
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specifically, we empirically found that the L1 loss function or MAE out-performed
standard MSE.

– A−1. For the NumFormer model, we use 4 transformer blocks, an embedding size of
256, 8 attention heads and learned positional encodings. We train all of the models using
a learning rate of 10−3 and the AdamW optimizer with a step-wise decay scheduler for
10, 000 iterations using a batch size of 128. For the RangeFormer model, we use
the same hyperparameters except we use a larger batch size of 256 as looping reduces
the memory footprint of the model. We find this task to be difficult as practically, both
the train and test set matrices can be relatively poorly conditioned, on the order of 104
when using ϵ = 10−4. Interestingly, we also find that RangeFormer performance
does not drop even when we use up to 14 layers.

• Figure 5 Data (Left). For the Base, Loop, Range, and Attn interventions, we train with
random positive-definite Gaussian matrices. The Dist. intervention involves training on a
uniform mixture over positive definite decay matrices, explained in Appendix B.1.

• Figure 5 Hyperparameters (Left). We fix the hyperparameters over all models to isolate
the impact of each individual intervention when learning A−1. Specifically, we use 4 layers,
an embedding size of 256, and 8 attention heads (although this last change does not apply
to the Attn and Dist interventions which use the BaseConv alternative to attention). We
train for 5, 000 iterations using the nuclear loss ||NNθ(A)A− I||∗ with a batch size of 128,
with the AdamW optimizer, an initial learning rate of 10−3 and a step-wise decay learning
rate scheduler. In the interest of controlling compute, we enforce a limit of GPU time. To
get the error bars we loop over 3 random seeds. In contrast to Figure 1 (c) we did not run a
sweep over hyperparameters on each intervention. We simply used hypers detailed above
and introduce changes one step at a time.

• Figure 5 Data (Right). We use a different training distribution than Figure 5 (Left) in order
to analyze the impact of training on structured matrices. For the NumFormer models, we
simply use a uniform mixture of 5 × 5, 10 × 10 and 20 × 20 Gaussian random matrices.
For the RangeFormer models, we similarly use a uniform mixture of 5× 5, 10× 10 and
20× 20 random Einsums. For the λmax(A) and Tr(A) tasks, we symmetrize these matrices
to ensure that we have real eigenvalues. For the log |A| and A−1 tasks, we ensure that these
matrices are positive definite. We also observe that for the log |A| task, additionally training
on polynomial decays can help improve performance for the RangeFormer method.

• Figure 5 Hyperparameters (Right). We train one model per task that is able to interpolate
between observed matrix sizes during training (see appendix C). The RangeFormer
models all use the BaseConv attention alternative, looping, and a learned projection.
Empirically, we also find that a L1 loss function may result in marginal performance gains.
The NumFormer models use standard quadratic attention with 4 attention heads.

– Tr(A). For the trace task, the RangeFormer uses 4 layers, an embedding size of
128 and RoPE. We train for 2000 iterations using the AdamW optimizer with a step-
wise decay scheduler, an initial learning rate of 10−3, and a batch size of 100. The
NumFormer possesses similar hyperparameters but uses only 2 layers.

– λmax(A). For the maximum eigenvalue task, the RangeFormer model uses 4 layers,
an embedding size of 256 and RoPE. We train for only 1000 iterations using a batch
size of 100 with the AdamW optimizer, an initial learning rate of 10−3 and a step-wise
decay scheduler. The NumFormer possesses similar hyperparameters but uses only 2
layers.

– log |A|. For the log-determinant task, the RangeFormer model uses 4 layers, an
embedding size of 256, and RoPE. We train for 5000 iterations with a batch size of
100, an initial learning rate of 10−3, and a step-wise decay scheduler. We observe
that for the log-determinant task specifically, the GrokFast optimizer seems to offer
performance improvements albeit inconsistently. The NumFormer uses the exact
same hyperparameters.

– A−1. For the RangeFormer, we find that we can attain strong performance with
8 layers, an embedding size of 256, and RoPE. We train for 10, 000 iterations, an
initial learning rate of 10−3, and a batch size of 256. We use the nuclear norm of the
difference between NNθ(A)A and I as a loss function. For the NumFormer, we use
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Figure 13: Performance for different positional encodings. We observe that the presence of learned,
sinusoidal and rotary positional encodings each improve performance on the Tr(A) task for matrices
taken from the matrix market. Here, we use RangeFormer models with 4 layers and an embedding
size of 128. We use the BaseConv attention alternative and train for 1000 iterations using the
AdamW optimizer with an initial learning rate of 10−3, a step-wise decay scheduler, a batch size of
128, and MSE as the loss function. Error bars indicate ± standard deviation around the mean from
running 3 different seeds.

the same hyperparameters but with 4 layers and 8 attention heads. We also find that a
batch size of 256 practically may substantially slow down training so we recommend a
smaller batch size on the order of 128 or 64.

• Figure 6 (Left). Here we use a RangeFormer model to fit the A−1 task on 50 × 50
matrices. For the RangeFormer, we use with 8 layers, an embedding size of 256, 8 heads,
and learned embeddings. We train for 10, 000 iterations, an initial learning rate of 10−3, and
a batch size of 256. We use the nuclear norm of the difference between NNθ(A)A and I as
a loss function.

• Figure 6 (Middle). Here we use a RangeFormer model to fit the Tr(A) task on varying
sizes of matrices: 10× 10, 30× 30 and 50× 50 matrices. For the RangeFormer, we use
with 4 layers, an embedding size of 128, 4 heads, and learned embeddings. We train for
10, 000 iterations, an initial learning rate of 10−3, and a batch size of 256. We use the L1
loss.

• Figure 6 (Right). Here we use a RangeFormer model to fit the A−1 task on 50 × 50
matrices. For the RangeFormer, we use with 8 layers, an embedding size of 256, 8
heads,and learned embeddings. We train for 10, 000 iterations, an initial learning rate of
10−3, and a batch size of 256. We use the nuclear norm of the difference between NNθ(A)A
and I as a loss function.

See Appendix D.3 for ablations on the effect of different positional encodings on our models.

D.3 POSITIONAL ENCODINGS

In Figure 13, we show the impact of different positional encodings on the performance of
RangeFormer for the Tr(A) task. Different tasks exhibit different behaviors with the positional en-
codings. For example, in the inverse task A−1, the performance across different positional encodings
does not significantly change.

D.4 WARM-STARTING KRYLOV SOLVERS

In this section we explain how we trained our RangeFormermodels for this downstream application
as well as present some additional results. For both CG and GMRES, we created a 20 × 20 dataset
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consisting of our spectrum decays. The RangeFormer model, for this case, uses Taylor attention,
embedding of D = 128, looping of R = 8 and a step-wise exponentially decreasing scheduler
starting the with learning rate of 5× 10−3.
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Figure 14: Warm-start performance for CG and GMRES on matrix market. For some cases our
RangeFormer approximation improves converge and, for others, it at least does not harm it. We now
detail the matrix used per plot. For (a) we used nos3, for (b) we used bcsstk09, for (c) we used gr3030, for (d)
we used bcsstk02, for (e) we used bcsstm13, for (f) we used bcsstm06, for (g) we used bcsstm24, and, finally, for
(h) we used bcsstk15.

In Figure 14, we provide an initial solution to CG or GMRES based on our trained RangeFormer
model. We cap CG at 12 iterations and display the convergence behavior. The goal of the experiment
is to show how neural network and classical method can interact. As seen in the plots, a neural
network trained on many problem could provide some useful information to classical methods. In
principle, improvements on the performance of RangeFormer would result in faster convergence
for the cases shown. Finally, since the matrix market contains a wide variety of matrices from diverse
applications, it is understandable that our RangeFormer models would perform better in some
cases and not in others.

D.5 RNLA

We now explain the details of our RFSVD method. For this task, we train a RangeFormer model
consisting of embedding dimension of D = 16, with H = 1 number of heads and L = 2 layers.
However, now the input for the RangeFormer model is Gaussian noise Ω0 ∼ N (0, I16) and the
output is Ω = NNθ(Ω0) ∈ RN×16. Then Ω is fed into the RSVD algorithm and then the approximate
spectrum is compared against that of the training matrices (and we backpropagate through the L1
loss). We train the models on 50× 50 matrices using all of our spectral decays.

In Figure 15 we see how we achieve better rank 16 approximations. Additionally, we observe that the
learned distribution Ω ∼ NNθ (Figure 15 (e)) is distinct from Gaussian noise (Figure 15 (d)).

D.6 GPS

For this application, we train a RangeFormer model with H = 8 heads, R = 8 loops, embedding
size of D = 512, using the AdamW optimizer with learning rate of 10−3. In contrast to other
applications, here we created a specialized training dataset for this application. Let N denote the
number of data points used per kernel and B the total number of kernel matrices present in our
dataset. For every b = 1, . . . , B, we sample xn,b ∼ U [0, 10], for all n = 1, . . . , N , ℓb ∼ U [0, 10],
and σ2

b ∼ U [0.1, 1]. Then, we construct Kb[i, j] = exp
(

|xi,b−xj,b|2
ℓ2b

)
+ σ2

bδi,j where δi,j = 1 if

i = j and 0 otherwise. The set of kernels (Kb)
B
b=1, where each Kb ∈ RN×N , constitutes our training

dataset. Indeed, the motivation for the training dataset is to ensure that the RangeFormer model
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Figure 15: Impact of learning the sampling distribution. In (a), (b) and (c) RFSVD, a RangeFormer
model trained to learn a sampling distribution outpeforms RSVD using the same rank of D = 16. The matrices
per plot are: (a) 1138 bus, (b) bcsstk04, and, finally, (c) nos6. In (d), we show the contour of the first two PCA
directions of the sampling distribution for RSVD. As expected, each direction is decoupled. In (e), we show the
contour of the first two PCA directions of the learned sampling distribution. Now the directions are coupled.

performs on a wide range of RBF kernels, where the range is motivated by the bounds in the sampling
uniform distributions above.

For the experiment discussed in Figure 7 (Right), we follow a similar procedure as above but we only
create one kernel K1 ∈ RN×N (B = 1) and then we sample yn ∼ N (0,K1) for n = 1, . . . , N .
After that, then we provide the data set (xn, yn)Nn=1 to then find ϕ = (ℓ, σ2) that minimized the loss
L (ϕ) = log |Kϕ|+ yTKϕy discussed in section 5.3. We then compared the train hyperparameters
ℓ⋆ to then ones sampled ℓ1 (Figure 7 (Right)). This procedure is a common check done in probabilistic
modeling, as we want to ensure that our training procedure can recover the parameters of the data
generating process.

For the experiment discussed at the end of section 5.3, we follow the same procedure from the
previous paragraph but now with the data (xn, yn)

N
n=1 where xn ∼ U [0, 1], ϵn ∼ N (0, 0.04) and

yn = sin(2πxn) + ϵn for n = 1, . . . , N . In contrast to the previous experiments, there is no ground
truth ℓ1 that we should recover. However, we note that the learned hypers ℓ⋆RF are approximately the
same as those that would be learned when using Cholesky ℓ⋆Chol, that is ℓ⋆RF ≈ ℓ⋆Chol.

Overall, the main goal of these experiments is to test how would a RangeFormer model would
perform when substituting linear algebra routines, not to advocate that GP kernels should now be
trained with transformers. It is a challenging task, at at every iteration t, the hypers change ϕ(t) and
so now the RangeFormer model has to perform linear algebra operations against Kϕ(t) and, worse,
the trajectory of ϕ(t) is determined by how accurate the linear algebra operations compute the loss.

D.7 LOSS DETAILS

The different tasks illustrated in 5 require a variety of loss functions and model configurations.
Basically, we have two sets of losses. The losses that apply to vectors of size N or scalars and the
losses that apply to matrices of size N ×N . For the first category we have the L1 loss ∥x− y∥1 =
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∑
i |xi − yi| and the L2 loss ∥x− y∥2 =

√∑
i(xi − yi)2, which if required we could report

as ∥x− y∥22. We mostly use the L1 as a default as we find that to be better performing, though
marginally, than the L2 loss. We use the L1 loss for the following tasks: A−1b ∈ RN , log |A|,
λ(A) ∈ RN , λmax(A) ∈ R, and, Tr(A).

For the matrices, we use the nuclear norm ∥A∥∗ =
∑

i σi where σi are the singular values of A.
In our experiments, we only use matrix losses for the inverse task, and actually, our loss for this
task would take the form of ||NNθ(A)A− I||∗. Intuitively, we are asking that the neural network
approximation NNθ(A) behaves like the identity but not that it matches its entries ||NNθ(A)−A−1||∗.
Our choice of loss also has the added benefit of not requiring to compute the inverse A−1 for the
training task.

E RUNTIME ANALYSIS

We provide a formal analysis of the time complexity of a forward pass through a single attention head
in a vanilla transformer (NumFormer) against the proposed RangeFormer.

For the following analysis, we denote W (I) as the input projection layer, and
WQ(1),WK(1),WV (1) as the query, key, and value projections. Here, the 1 indicates that
we do this analysis for a single attention head. Additionally, let D be the embedding dimension of
the model.

Suppose we have some input matrix A ∈ RN×N . The NumFormer then flattens A into a sequence
vector of length N2. Each element of the sequence Ai,j is embedded into a D-dimensional space
resulting in X ∈ RN2×D = vec(A)W (I).

A single attention head then constructs Q(1) = XWQ(1),K(1) = XWK(1) and V (1) = XWV (1)

where WQ(1),WK(1),WV (1) ∈ RD×D. Thus, the construction of Q(1),K(1),V (1) ∈ RN2×D

runs in O(N2D2)

The attention matrix is then constructed as σ(Q(1)K(1)⊺)V (1) where σ is the softmax function.
The matrix multiplication Q(1)K(1)⊺ runs in O(N4D) and constructs a matrix of size N2 × N2,
incurring a space complexity of O(N4). The final matrix-multiply with V (1) incurs the same time
complexity so the total time complexity of a single forward pass of an attention head with batch size
1 is O(N4D +N2D2).

The major change proposed by the RangeFormer architecture is to avoid flattening the matrix and
instead directly embed the range of the operator through a learnable projection. Given A ∈ RN×N ,
RangeFormer computes X ∈ RN×D = AW (I).

The construction of the key, query, and value matrices is functionally the same but the sequence
length is now N instead of N2. Thus, Q(1),K(1) and V (1) ∈ RN×D incur a time complexity of
O(ND2).

If a practitioner chooses to use RangeFormer with the standard attention mechanism, then the total
time complexity of a forward pass for one attention head would be O(N2D +ND2) with a space
complexity of O(N2). However, replacing the standard attention mechanism with a subquadratic
alternative can offer an even more scalable architecture. We review two alternatives: linear attention
and BaseConv.

Linear attention replaces the softmax function σ with two feature maps σ′ separately applied to the
key and query matrices. Concretely,

LinAttn(Q(1),K(1),V (1)) = σ′(Q(1))σ′(K(1)⊺)V (1) (4)

The first matrix multiplication σ′(K(1)⊺)V (1) has a time complexity of O(ND2) resulting in a
matrix of size D ×D. The additional matrix multiply against Q(1) incurs the same time complexity
resulting in a total time complexity of O(ND2).

Another subquadratic alternative to the attention mechanism is BaseConv introduced in Arora et al.
(2023), meant to simulate gating and convolutions. Where X(l) ∈ RN×D is the output of the l’th
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layer of the transformer, we compute linear projections.

U (A) = XW (A) (5)

U (B) = XW (B) (6)

Where K represents the kernel of a 1-dimensional convolution, we compute the depth-wise convolu-
tion:

U conv = K ∗U (A) (7)

Finally, we compute:
X(l+1) = U conv ⊙U (B) (8)

Equations 5 and 6 run in O(ND2) resulting in the same time complexity as linear attention.
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