
Training Normalizing Flows from Dependent Data

Matthias Kirchler 1 2 Christoph Lippert 1 3 Marius Kloft 2

Abstract

Normalizing flows are powerful non-parametric
statistical models that function as a hybrid be-
tween density estimators and generative models.
Current learning algorithms for normalizing flows
assume that data points are sampled indepen-
dently, an assumption that is frequently violated
in practice, which may lead to erroneous density
estimation and data generation. We propose a
likelihood objective of normalizing flows incor-
porating dependencies between the data points,
for which we derive a flexible and efficient learn-
ing algorithm suitable for different dependency
structures. We show that respecting dependencies
between observations can improve empirical re-
sults on both synthetic and real-world data, and
leads to higher statistical power in a downstream
application to genome-wide association studies.

1. Introduction
Density estimation and generative modeling of complex
distributions are fundamental problems in statistics and ma-
chine learning and significant in various application do-
mains. Remarkably, normalizing flows (Rezende & Mo-
hamed, 2015; Papamakarios et al., 2021) can solve both of
these tasks at the same time. Furthermore, their neural archi-
tecture allows them to capture even very high-dimensional
and complex structured data (such as images and time se-
ries). In contrast to other deep generative models such as
variational autoencoders (VAEs), which only optimize a
lower bound on the likelihood objective, normalizing flows
optimize the likelihood directly.

Previous work on both generative models and density es-
timation with deep learning assumes that data points are

1Hasso Plattner Institute for Digital Engineering, University
of Potsdam, Germany 2University of Kaiserslautern-Landau, Ger-
many 3Hasso Plattner Institute for Digital Health at the Icahn
School of Medicine at Mount Sinai, New York. Correspondence
to: Matthias Kirchler <matthias.kirchler@hpi.de>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

sampled independently from the underlying distribution.
However, this modelling assumption is oftentimes heavily
violated in practice. Figure 1 illustrates why this can be
problematic. A standard normalizing flow trained on de-
pendent data will misinterpret the sampling distortions in
the training data as true signal (Figure 1c). Our proposed
method, on the other hand, can correct for the data depen-
dencies and reconstruct the original density more faithfully
(Figure 1d).

The problem of correlated data is very common and occurs
in many applications. Consider the ubiquitous task of image
modeling. The Labeled Faces in the Wild (LFW, (Huang
et al., 2008)) data set consists of facial images of celebrities,
but some individuals in the data set are grossly overrepre-
sented. For example, George W. Bush is depicted on 530
images, while around 70% of the individuals in the data
set only appear once. A generative model trained naively
on these data will put considerably more probability mass
on images similar to George W. Bush, compared to the
less represented individuals. Arguably, most downstream
tasks, such as image generation and outlier detection, would
benefit from a model that is less biased towards these over-
represented individuals.

In the biomedical domain, large cohort studies involve par-
ticipants that oftentimes are directly related (such as par-
ents and children) or indirectly related (by sharing genetic
material due to a shared ancestry)—a phenomenon called
population stratification (Cardon & Palmer, 2003). These
dependencies between individuals play a major role in the
traditional analyses of these data and require sophisticated
statistical treatment (Lippert et al., 2011), but current deep-
learning based non-parametric models lack the required
methodology to do so. This can have considerable nega-
tive impact on downstream tasks, as we will show in our
experiments.

In finance, accurate density estimation and modeling of
assets (e.g., stock market data) is essential for risk manage-
ment and modern trading strategies. Data points are often
heavily correlated with one another, due to time, sector, or
other relations. Traditionally, financial analysts often use
copulas for the modeling of non-parametric data, which
themselves can be interpreted as a simplified version of
normalizing flows (Papamakarios et al., 2021). Copulas

1

Training Normalizing Flows from Dependent Data

(a) True distribution, sampled in-
dependently

(b) True distribution, sampled
with dependencies

(c) Distribution learned by stan-
dard normalizing flow, trained on
dependent data

(d) Distribution learned by nor-
malizing flow adjusted for de-
pendencies, trained on dependent
data

Figure 1: Example setting on synthetic data sampled with inter-instance dependencies. Training a standard normalizing flow
on these data biases the model. Adjusting for the dependencies during training with our modified objective recovers the true
underlying distribution.

commonly in use, however, are limited in their expressiv-
ity, which has led some authors even to blame the 2007-
2008 global financial crisis on the use of inadequate copulas
(Salmon, 2009). Many more examples appear in other set-
tings, such as data with geospatial dependencies, as well as
in time series and video data.

In certain settings from classical parametric statistics, direct
modeling of the dependencies in maximum likelihood mod-
els is analytically feasible. For linear and generalized lin-
ear models, dependencies are usually addressed either with
random effects in linear mixed models (Jiang & Nguyen,
2007) or sometimes only by the inclusion of fixed-effects
covariates (Price et al., 2006). Recent work in deep learn-
ing introduced concepts from random effects linear models
into deep learning for prediction tasks such as regression
and classification (Simchoni & Rosset, 2021; Xiong et al.,
2019; Tran et al., 2020). In federated learning of gener-
ative models, researchers usually deal with the break of
the non-i.i.d. assumptions with ad hoc methods and with-
out consideration of the statistical implications (Augenstein
et al., 2020; Rasouli et al., 2020). These methods also only
consider block-type, repeat-measurement dependencies for
multi-source integration. To the best of our knowledge, both
deep generative models and deep density estimation so far
lack the tools to address violations against the independence
assumption in the general setting and in a well-founded
statistical framework.

In this work we show that the likelihood objective of normal-
izing flows naturally allows for the explicit incorporation of
data dependencies. We investigate several modes of mod-
eling the dependency between data points, appropriate in
different settings. We also propose efficient optimization
procedures for this objective. We then apply our proposed
method to three high-impact real-world settings. First, we
model a set of complex biomedical phenotypes and show
that adjusting for the genetic relatedness of individuals leads
to a considerable increase in statistical testing power in a
downstream genome-wide association analysis. Next, we
consider two image data sets, one with facial images, the

other from the biomedical domain, leading to less biased
generative image models. In the last application, we use
normalizing flows to better model the return correlations
between financial assets. In all experiments, we find that
adjustment for dependencies can significantly improve the
model fit of normalizing flows.

2. Methods
In this section we describe our methodology for training nor-
malizing flows from dependent data. First, we will derive a
general formulation of the likelihood under weak assump-
tions on the dependencies among observations. Afterwards,
we will investigate two common settings in more detail.

2.1. Background: Likelihood with Independent
Observations

A normalizing flow is an invertible function t : Rp →
Rp that maps a p-dimensional noise variable u to a p-
dimensional synthetic data variable x. The noise variable u
is usually distributed following a simple distribution (such
as a Np(0, Ip)), for which the density is explicitly known
and efficiently computable. By using the change of variables
formula, the log-density can be explicitly computed as

log(px(x)) = log(pu(u))− log(|det Jt(u)|),

where u := t−1(x) and Jt(u) is the Jacobian matrix of t in
u.

Given a data set x1, . . . , xn, if the observations are inde-
pendent and identically distributed, the full log-likelihood
function readily factorizes into its respective marginal den-
sities:

log(px(x1, . . . , xn)) =

n∑
i=1

log(px(xi))

=

n∑
i=1

log(pu(ui))− log(|det Jt(ui)|).

2

Training Normalizing Flows from Dependent Data

The function t is usually chosen in such a way that both the
inverse t−1 and the determinant of the Jacobian Jt can be
efficiently evaluated, e.g. using coupling layers (Dinh et al.,
2017). Therefore, all of the terms in the likelihood can be
explicitly and efficiently computed and the likelihood serves
as the direct objective for optimization.

2.2. Likelihood with Dependencies

Assuming the data points are identically distributed, but not
independently distributed, the joint density does not factor-
ize anymore. A model trained on non-independent data but
under independence assumptions will hence yield biased
results for both density estimation and data generation.

We can derive the non-independent setting as follows. Let
T : Rn×p → Rn×p be the normalizing flow applied on all
data points together, i.e.,

U = T−1(X) = T−1(x1, . . . , xn) =

 t−1(x1)
⊤

. . .
t−1(xn)

⊤

 .

X, U ∈ Rn×p are now matrix-variate random variables. We
can still apply the change of variable formula, but on the
n × p → n × p transformation T , instead of the p → p
transformation t:

log(pX(X)) = log(pU (U))− log(|det JT (U)|).

If T is understood on Rnp instead of Rn×p (i.e., we simply
vectorize T), it becomes clear that the Jacobian JT is a
block-diagonal matrix,

JT (U) =


Jt(u1) 0 . . . 0

0 Jt(u2)
. . .
0 . . . Jt(un)

 ,

for which the determinant is readily available: det JT (U) =∏n
i=1 Jt(ui). In other words, the log-abs-det term in the

normalizing flow objective remains unchanged even under
arbitrary dependence structure.

The density pU (U), however, is challenging and generally
not tractable, and we will consider different assumptions on
the joint distribution of U .

In the most general case, we could assume that each ui is
marginally distributed as a U[0,1]p variable, with arbitrary
dependence structure across observations. This is a direct
extension of standard copulas to matrix-variate variables.
As learning general copulas is extremely challenging even
in relatively low dimensional settings (Jaworski et al., 2010),
we focus in this work only on the equivalent of a Gaussian
copula:

Assumption 2.1. We assume that the dependency within U
can be modeled by a matrix normal distribution MN with
independent columns (within observations), but correlated
rows (between observations):

U ∼ MNn,p(0, C, Ip) ≜ Nnp(0, Ip ⊗ C).

Here, ⊗ denotes the Kronecker product.

We can model the columns of U with a 0-mean vector and
Ip-covarianace, as the normalizing flow t is usually chosen
to be expressive enough to transform a Np(0, Ip) into the de-
sired data distribution. We note that this assumption means
that we cannot model all forms of latent dependencies so it
constitutes a trade-off between expressivity and tractability.

Now we can state the full likelihood in the non-i.i.d. setting:

log(pX(X))

=−
n∑

i=1

log(|det Jt(ui)|)−
np

2
log(2π)

− p

2
log(det(C))− 1

2
tr(U⊤C−1U). (1)

2.3. Specific Covariance Structures

We investigate different assumptions on the covariance struc-
ture in the latent dependency model. The most general case
is a fully unspecified covariance matrix, e.g. parametrized
as the lower-triangular Cholesky decomposition of its in-
verse, C = L−1L−⊤ with n(n + 1)/2 parameters. In
this case, the determinant can be efficiently computed, as
det(C) = det(L−1L−⊤) = det(L−1)2 =

∏n
i=1(L

−1)2i,i.
Matrix products with C−1 can also be evaluated reason-
ably fast. However, this parametrization requires optimizing
O(n2) additional parameters, which is unlikely to yield
useful estimates and may be prone to overfitting.

Instead, we consider two different assumptions on C that
are very common in practice and give a reasonable trade-off
between expressivity and statistical efficiency.

2.3.1. KNOWN AND FIXED COVARIANCE MATRIX

In many settings, side information can yield relationship
information, given in the form of a fixed relationship matrix
G. The covariance matrix then becomes C = λIn + (1−
λ)G with only parameter λ ∈ [0, 1] to be determined.

This setting is commonly assumed for confounding cor-
rection in genetic association studies, where G is a ge-
netic relationship matrix (where the entries are pairwise
genetic relationships computed from allele frequencies (Lip-
pert et al., 2011)) or based on pedigree information (e.g.,
a parent-child pair receives a relationship coefficient of
0.5 and a grandparent-grandchild pair of 0.25 (Visscher

3

Training Normalizing Flows from Dependent Data

et al., 2012)). Similarly, for time-related data, we can de-
fine relationship via, e.g., a negative exponential function:
Ci,j = exp(−γ(ti−tj)

2), where the hyperparameter γ > 0
is a time-decay factor and ti and tj are the measurement
time points of observations i and j, respectively.

More generally, G itself can again be a mixture of multiple
relationships G =

∑R
r=1 Gr, where Gr denote multiple

sources of relatedness. In this work, we consider G to be
fully specified and only estimate λ.

If the sample size is moderate (say, below 50k), an efficient
approach to optimizing λ (Lippert et al., 2011) consists of
first computing the spectral decomposition of G = QΛQ⊤

(with diagonal Λ and orthogonal Q) and noticing that
λIn + (1 − λ)G = Q(λIn + (1 − λ)Λ)Q⊤. Then, the
log-determinant and the trace are

log(det(C)) =

n∑
i=1

log(λ+ (1− λ)Λi,i)

and

tr(U⊤C−1U) = tr((Q⊤U)⊤(λIn + (1− λ)Λ)−1Q⊤U).

The rotation matrix Q makes mini-batch estimation of the
trace term inefficient, as Q will either mix U across batches
or requires a full re-evaluation of Q(λIn+(1−λ)Λ)−1Q⊤

after each update to λ, i.e., in every mini-batch. Instead, we
optimize the parameters of the normalizing flow and λ in
an alternating two-step procedure, see Section 2.4.2. Note
that the main additional cost of this procedure, the spectral
decomposition of G, is independent of λ and only needs to
be performed once for a given relationship matrix G.

For larger sample sizes, there still exist practical algorithms
for estimating the variance component (Loh et al., 2015).
In practice, G is also often sparse or can be approximated
sparsely (e.g., by setting all elements with absolute value
below a fixed threshold to 0). This can greatly accelerate
parameter estimation and is usually accurate enough in prac-
tice (Jiang et al., 2019). More generally, different matrix
structures may allow for additional speed-ups, but we defer
this investigation to future work.

2.3.2. BLOCK-DIAGONAL, EQUICORRELATED
COVARIANCE STRUCTURE

In the next setting, we consider a block-diagonal covariance
matrix C with equicorrelated correlation matrices Ci ∈
Rni×ni as blocks:

C =


C1 0 . . . 0
0 C2

. . .
0 . . . CN

 ,

where

Ci =


1 ρi . . . ρi
ρi 1
. . .
ρi . . . 1


with ρi ∈ (0, 1) (we ignore the case of potentially anti-
correlated blocks). In other words, there is no dependence
between blocks, and there is a constant dependence within
blocks. We assume that the block structure is known ahead
and we only need to find the parameters ρi. For each block
there is either no (ni = 1) or only one (ni > 1) parameter
to be learned.

The assumption of equicorrelated blocks is reasonable in
settings with repeat measurements of identical objects or
individuals. E.g., in a facial image data set, certain individu-
als may have multiple images. This setting is similar to the
setting of high-cardinality categorical features in prediction
models (Simchoni & Rosset, 2021).

Both the determinant and the inverse of each block can be
efficiently computed ((Tong, 2012), Prop. 5.2.1 & 5.2.3):

det(Ci) = (1 + (ni − 1)ρi)(1− ρi)
ni−1

and

(C−1
i)j,k =


1+(ni−2)ρi

(1−ρi)(1+(ni−1)ρi)
if j = k

−ρi

(1−ρi)(1+(ni−1)ρi)
otherwise.

2.4. Optimization

2.4.1. MINI-BATCH ESTIMATION

The full likelihood in Equation 1 can be computed explicitly
but does not lend itself easily to stochastic optimization with
mini-batches. Note that the log-abs-det term decomposes
nicely into independent observations and the next two terms
are independent of the observations. Only the trace term
is problematic for mini-batch estimation, so we propose an
unbiased stochastic estimator for it.
Proposition 2.2. Given a mini-batch of size b ≥ 2 and
ξ ∈ {0, 1}n a variable indicating batch inclusion (i.e., xi

is in batch iff ξi = 1;
∑n

i=1 ξi = b) and A := C−1, the
stochastic trace estimator

t̄rξ =
n

b

n∑
i=1

ξiAi,iu
⊤
i ui + 2

n(n− 1)

b(b− 1)

∑
i<j

ξiξjAi,ju
⊤
i uj

(2)

is unbiased, i.e., Eξ[t̄rξ] = tr(U⊤AU).

The proof can be found in Appendix A. The trace estimator
t̄rξ only depends on observations ui = t−1(xi) within
the batch and can be efficiently computed, assuming A =
C−1 can be efficiently evaluated, which is the case for the
parametrizations discussed in Section 2.3.

4

Training Normalizing Flows from Dependent Data

Table 1: Results in terms of the test-data negative log-likelihoods for synthetic data with equicorrelated blocks (top) and
fixed covariance (bottom), averaged over 10 random seeds (lower = better). Significantly better results are in bold (one-sided
paired t-test, α = 0.05). Baseline is the same model without taking dependencies into consideration.

Algorithm Abs Crescent CrescentCubed Sign SineWave

Equicorrelated Baseline 1.513 2.021 3.010 1.519 2.070
Blocks Grid Search 1.379 1.885 2.938 1.420 1.983

Joint 1.475 2.005 3.067 1.501 2.087

Fixed Baseline 1.898 2.070 3.253 1.748 2.130
Grid Search 1.454 1.886 2.983 1.490 1.980
Alternating 1.537 1.905 3.076 1.580 2.020

2.4.2. TRAINING SCHEDULES

From here on, we distinguish between the true parameters
λ and ρi, and the parameters estimated by our model, λ̂, ρ̂i.

Known & Fixed Covariance Joint optimization between
λ̂ and the parameters of the flow is possible, but would re-
quire in each step a full re-evaluation tr(U⊤C−1U) across
the full data set, instead of just the current mini-batch. This
makes this training scheme infeasible. Instead, we propose
two different methods to optimize both the flow parameters
and variance component λ̂. First, we can use a simple grid
search over different possible values for λ̂ and choose the
best according to performance on a validation set.

Second, we can use an alternating descent approach. In
this case, we alternate between optimizing only the param-
eters of the flow model for a number of epochs (with a
version of mini-batch stochastic gradient descent) and only
optimizing λ̂ for a number of epochs (with gradient descent).
At the beginning of every flow-parameter training stage, we
compute the current A = C−1 for the given λ̂ and can then
compute all mini-batch likelihood estimates using the trace
estimator in Equation 2 without the need for recomputation.
At the beginning of every λ̂ training stage, we only once
compute the rotated noise variables Q⊤U for the full data
set and can then optimize the derivative of the full objec-
tive with respect to λ̂ very efficiently. The trace can be
computed as tr((Q⊤U)⊤(λ̂In + (1− λ̂)Λ)−1Q⊤U) or as
tr(Q⊤U(Q⊤U)⊤(λ̂In + (1− λ̂)Λ)−1) due to the cyclical
trace property, but in our experiments we found that this
was not a bottleneck computation. To yield values in the
interval [0, 1], we chose to parametrize λ̂ as the output of
a sigmoid function λ̂ = σ(λ̂raw), where λ̂raw ∈ R is the
raw optimization parameter. We tried different sigmoidal
parametrizations, but those had little effect on the outcome.

Equicorrelated Blocks In the case of equicorrelated
blocks, we also propose two different training schemes.
First, we can again use a simple grid search over a single
joint parameter ρ̂ = ρ̂1 = . . . = ρ̂N . Alternatively, if there

are only very few blocks, a grid search for all ρ̂i is possible,
although the exploration space grows exponentially with the
number of blocks N .

Second, due to the simple computations of det(C) and C−1

in this case, we can also perform a joint optimization over
the flow parameters and all ρ̂i. We again parametrize ρ̂is
with raw parameters pushed through a sigmoid function as
for λ̂.

3. Experimental Evaluation
We validate on both synthetic and real-world data that our
novel training scheme can help alleviate sampling biases
when training normalizing flows. On real-world data with
non-independent data, the ground-truth dependency struc-
ture is usually not known, making the evaluation inherently
challenging. Therefore, we first investigate simulated set-
tings where we can explicitly control the dependencies. Our
evaluation metric in all settings is the negative log-likelihood
(NLL) on a holdout test set. For the imaging experiments,
we also report bits per dimension (bpd), a linear transforma-
tion of the negative log-likelihood. Additional details for all
experiments can be found in Appendix B.1

3.1. Synthetic Data Experiments

3.1.1. EQUICORRELATED DATA

In the first setting, we simulate a draw with repeat measure-
ments, inducing an equicorrelated dependency structure as
described in Section 2.3.2. For each block, we draw one
ρi ∼ Unif[0.5,0.99] and define the full covariance matrix as
in Section 2.3.2. Using this covariance matrix, we sample
from several non-parametric 2d distributions provided by
Durkan et al. (2019). An example for the Abs data set can
be seen in Figure 1. For modelling the equicorrelated blocks,
we choose both a grid search over fixed parameters and joint
gradient-based optimization of ρ̂i and the flow parameters.

1We release our code at https://github.com/
mkirchler/dependent_data_flows.

5

https://github.com/mkirchler/dependent_data_flows
https://github.com/mkirchler/dependent_data_flows

Training Normalizing Flows from Dependent Data

Table 2: Results on real-world data, negative log-likelihoods on test data set, averaged over 10 random seeds for UKB &
Stock Pair data (lower = better). P-values for one-sided paired t-test against baseline in parentheses. Baseline is same model
without taking dependencies into consideration. For image models (ADNI and LFW), bits per dimension (bpd) are also
reported.

Algorithm UKB Biomarkers Stock Pairs ADNI (bpd) LFW (bpd)

Baseline 24.50 -5.69 7794.8 (2.745) 6414.2 (3.012)
Grid Search 24.27 (p = 0.002) -5.72 (p = 0.002) 7763.6 (2.734) 6357.7 (2.986)
Joint -5.71 (p = 0.003) 7697.8 (2.705) 6352.1 (2.983)
Alternating 24.04 (p = 0.00003)

[0,0.2] [0.2,0.4] [0.4,0.6] [0.6,0.8] [0.8,1]
 range

1.85

1.90

1.95

2.00

2.05

2.10

NL
L

Baseline
Grid Search

Figure 2: Performance of baseline model versus model
adjusted for dependencies on synthetic data, for different
strengths of dependencies (ρ).

Table 1 (top part) shows the result. Surprisingly, while
the grid search clearly outperforms the baseline, the joint
optimization does not improve upon the model. For the
Crescent data set we also computed the distance of
learned ρ̂is to true ρis for the best models (each block is
counted only once, independent of size). The baseline model
had an average MSE of 0.57 (MAE: 0.74), while grid search
and joint optimization had MSEs of only 0.023 (MAE: 0.13)
and 0.08 (MAE: 0.25), respectively.

In an additional experiment, again only on the Crescent
data set, we investigate how sensitive our model is to the
strength of dependencies. In the data creation, we only
change the sampling of true dependency parameters ρi from
a UnifI distribution, with interval I ∈ {[0, 0.2], [0.2, 0.4],
[0.4, 0.6], [0.6, 0.8], [0.8, 1.0]}. The results are shown in
Figure 2. At each of the five data set settings, a one-sided
paired t-test shows that the normalizing flow incorporating
dependencies outperforms the baseline (significance level
α = 0.05). As expected, for small dependencies in the sam-
pled data, both models perform similarly, but our method

is very robust and barely decreases in performance up until
the highest range of sampling distortions (I = [0.8, 1.0]).

3.1.2. KNOWN COVARIANCE

We next simulate the setting of a known covariance matrix
between different samples but with unknown variance com-
ponent λ. We use the covariance structure λI + (1− λ)G
as in the equicorrelated case to generate correlated bivariate
standard normal samples that again get non-linearly trans-
formed. In Table 1 (bottom part) we compare the results.
Both the simple grid search and the alternating descent ap-
proach perform considerably better than the naive baseline
algorithm that ignores the dependencies in the data.

3.2. Real-world Data

3.2.1. UKB BIOMARKERS

The UK Biobank (UKB, (Bycroft et al., 2018)) provides rich
phenotyping and genotyping for a large cross-section of the
UK population. We investigate a number of blood biomark-
ers, whose distribution starkly deviates from standard para-
metric distribution families. Usually, the data needs to be
quantile-transformed to match a normal distribution (Monti
et al., 2022), which, however, can decrease the statistical
power in downstream analysis (McCaw et al., 2020). These
biomarkers are well-known to be highly heritable and sub-
ject to population stratification, a type of confounding due to
joint ancestry of unrelated individuals (Sinnott-Armstrong
et al., 2021). In addition, individuals within the UKB also
exhibit different levels of recent familial relatedness. We
perform two experiments on this data set, building non-
parametric density models that can incorporate the distorting
genetic correlation between individuals.

Density Modeling In the first experiment, we select the
3,223 individuals for whom all 30 biomarkers are available.
Relatedness between two individuals is computed as the
correlation coefficients between the individuals’ first 40 (un-
normalized) genetic principal components (computed from
SNP microarray chip data provided by the UKB resource).
We use this Matrix as the fixed covariance structure and

6

Training Normalizing Flows from Dependent Data

optimize over λ̂. This way of measurement of genetic re-
latedness between individuals is very common in genetic
association studies and has been shown to reliably correct
for population stratification (Price et al., 2006). We inves-
tigate the density estimation on the test data. Due to the
relatively small data set size, we re-run the same experi-
ment 10 times with different random splits between train,
validation, and test set and also different network initial-
izations. The results in Table 2, first column, indicate that
incorporating the dependencies can significantly improve
model fit, both using a grid search and using the alternating
optimization scheme.

Application in Association Studies A genome-wide as-
sociation study (GWAS) is a frequentist hypothesis testing
procedure, in which a phenotype is tested for association
against a large number of individual genetic variants (typi-
cally on the order of hundreds of thousands or millions of
variants). GWAS are a fundamental tool within multiple
subdisciplines in the life sciences, such as in the medical
domain and in plant and lifestock breeding, and have con-
siderably contributed to the understanding of the genetic
architecture of complex traits (Visscher et al., 2017). State-
of-the-art GWAS algorithms model dependencies between
individuals with random effects in a linear mixed model
(LMM) framework and can effectively control for both pop-
ulation stratification and (known and cryptic) relatedness
between individuals (Yu et al., 2006). In this experiment, we
perform multivariate GWAS, testing for association between
individual genetic variants and joint vectors of multiple phe-
notypes together.

Due to the high computational cost of multivariate LMMs
(mvLMMs), we split the 30 available biomarkers into six dis-
joint organ-related groups of related biomarkers and subsam-
ple 10,000 individuals per group. Rank-based normal trans-
formations are insufficient to transform a vector of arbitrar-
ily distributed random variables into a multivariate normal
distribution, as would be necessary for mvLMMs. This is
due to the fact that not all random vectors whose marginals
are normally distributed are also multivariate normally dis-
tributed; see Figure 3 for an illustration on the biomarker
data. Hence, mvLMMs can not be applied to quantile-
transformed data. Instead, a standard method is to test
for association with each biomarker in the group indepen-
dently, take the minimum of the p-values over all biomarkers
in the group, and perform a Bonferroni-correction for the
number of biomarkers in the group (i.e., multiplying the
minimum p-value by the number of association tests). We
propose to instead use a normalizing flow to transform the
biomarker group into a multivariate normal vector and then
apply the mvLMM on this transformed data. We use both
a baseline normalizing flow without consideration of the
data dependencies, and our proposed method with the alter-

Table 3: Number of loci associated with biomarker groups
at genome-wide significance level, averaged over 3 ran-
dom seeds. Single: univariate, quantile-transformed LMMs;
Baseline: mvLMM on flow-transformed biomarkers; Al-
ternating: mvLMM on biomarkers transformed with flow
correcting for dependencies. Last row is sum over the previ-
ous rows.

Biomarker group
(# biomarkers)

Single Baseline Alternating

Bone and joint (4) 18.7 12.0 16.3
Cardiovascular (8) 55.0 58.0 61.0
Diabetes (2) 5.3 5.3 6.7
Hormonal (4) 6.7 5.7 7.0
Liver (6) 29.7 32.3 35.0
Renal (6) 18.3 19.0 18.7

All 133.7 132.3 144.7

nating optimization scheme. More details can be found in
Appendix B.2.1.

We report the number of indepedent loci significantly asso-
ciated with each group of biomarkers in Table 3. While the
baseline normalizing flow performs similarly to the naive
single-dimensional approach, our method of taking care of
the dependencies can boost the number of found loci by
more than 8%.

We believe these findings may also significantly increase
statistical power in the analysis of more complex endopheno-
types, such as in full-imaging GWA studies (Kirchler et al.,
2022). To the best of our knowledge, this is the first time that
normalizing flows have been used for GWAS in this style,
although Hansen et al. (2021) recently used normalizing
flows in a different GWAS setting.

3.2.2. IMAGE MODELING

Image modeling is a major research area for normaliz-
ing flows, with applications in image synthesis (Kingma
& Dhariwal, 2018), outlier detection (Schirrmeister et al.,
2020), and semi-supervised learning (Izmailov et al., 2020).
Repeat measurements are very common in image data sets,
and without adjusting for dependencies, overrepresentation
biases will translate into biased generative models, as well.
We investigate two prominent examples.

ADNI Brain Imaging The Alzheimer’s Disease Neu-
roimaging Initiative (ADNI, (Jack Jr et al., 2008)) is a lon-
gitudinal study of Alzheimer’s Disease (AD) progression,
so many of the individuals in the study are imaged multiple
times. Prior work on similar data has shown that causal
effects can be modeled in generative image models using ex-

7

Training Normalizing Flows from Dependent Data

plicit confounding factors such as age and sex (Pawlowski
et al., 2020). Here we show that we can also model the
i.i.d.-violations using our proposed method. The data set
comprises 1,820 individuals with each individual having be-
tween 1 and 35 images (mean: 7.03, median: 6) and a total
of 12,799 images. We model these repeat measurements
with the equicorrelated model and use a Glow-type image
normalizing flow (Kingma & Dhariwal, 2018) as our base
architecture.

LFW Face Images LFW (Huang et al., 2008) consists
of 13,233 facial images of 5,749 celebrities, where each
individual has between 1 and 530 images (mean: 2.3, me-
dian: 1). We again model these repeat measurements with
the equicorrelated block model and the same Glow-type
architecture as for the ADNI data set.

The results on both data sets show that incorporating depen-
dencies improves the likelihood fit on the holdout test data
set. We note that this does not necessarily translate into a
higher quality for individual images, but rather into a better
fit of the full distribution. We provide additional evaluations
on image quality and distribution fit in Appendix B.2.2,
Table 4, and Figures 4 and 5.

3.2.3. STOCK DATA PAIRS

A range of different stock trading and risk management
strategies require accurate modeling of the behavior of dif-
ferent stocks (Kole et al., 2007). We focus on modeling the
daily returns for two pairs of correlated stocks, which is
used, e.g., in pair trading strategies (Stander et al., 2013).
A pairs trading strategy can utilize a probabilistic model
of stock returns as follows: each day, one can assess if a
given stock pair lies outside of a high-confidence region
given the model. If the pair behaves anomalously and
one stock underperforms compared to the other stock, a
trader can hedge these two stocks against each other. The
trader would “buy long” the underperforming stock and
“sell short” the overperforming stock, with the implicit
assumption that in the future the two prices will revert
back to a high-confidence region. Here, we use the pairs
AAPL-MSFT (Apple & Microsoft) and MA-V (Mastercard
& Visa), each starting from initial public offering (IPO) of
the later of the pair, until late 2017, using publicly avail-
able data at close time. A single data point is the 2d daily
logarithmic return of one of the two pairs of stocks. For
example, MA closed on 2012/06/21 with a price of $40.737
and on 2012/06/22 at $42.080, while V closed at $28.661
and $29.976 for those two days. The associated data
point then is (log(42.08/40.737), log(29.976/28.661)) =
(0.0324, 0.0449), and a corresponding data point for the
same days for AAPL-MSFT is in the data set. We split data
into train (70%), validation (15%), and test (15%) data tem-
porally (non-randomly) to counteract information leakage.

Since Apple and Microsoft had their respective IPOs in
the 1980s and Visa and Mastercard theirs in the 2000s, the
AAPL-MSFT pair is overrepresented in the training data,
while both pairs are equally represented in the validation
and test data. We use the equicorrelated dependency model
with two blocks, one for AAPL-MSFT and one for MA-V.
The distribution fit for the equicorrelated model is slightly
improved using the data dependencies, but again shows that
a joint optimization appears to be inferior to a simple grid
search.

4. Conclusion
We have shown that through a simple adaptation in the like-
lihood loss of normalizing flows, we can integrate flexible
data dependencies into the training objective, which can also
be trained with mini-batch SGD. Experimental evaluation
of synthetic and real-world data showed that our method
can significantly improve the fit of probabilistic models. We
further demonstrated how this better model fit can translate
into higher statistical power in an application to genome-
wide association studies. In future work, we’re especially
interested how our method can be extended to other gener-
ative models such as VAEs and if it can be combined with
other debiasing methods such as causal DAGs as done by
Pawlowski et al. (2020). Additionally, our work could po-
tentially also be applied to improve the training efficiency
of Boltzmann generators (Noé et al., 2019).

Limitations & Societal Impact Our method is not with-
out limitations. The trace estimator in Equation 2 is unbi-
ased, but has a high variance due to the overweighting of
the off-diagonal terms. This can lead to unstable gradient
estimates, especially in the early stages of training. In ad-
dition, joint optimization of ρ̂is with the flow parameters
counterintuitively only sometimes leads to better results. We
believe further improvements to the optimization schemes
might alleviate these issues.

We also note that, if the goal is density estimation or gen-
erative modeling, incorporating dependencies into the nor-
malizing flow objective is not necessary in all cases with
dependent data. For example, in the case of equicorrelated
repeat measurements with identical block-sizes, no improve-
ments can be expected. This is because no region of the
sampling space is overrepresented relative to the other re-
gions. Only when some blocks are larger than others (or
with more general, unbalanced covariance matrices), ad-
justment for dependencies makes sense. However, if we
are interested in full likelihood evaluation over the whole
data set instead of just density estimation at individual data
points, the results will differ in all cases.

The general assumption of independently sampled training
data is an essential oversight in many applications that can

8

Training Normalizing Flows from Dependent Data

lead to severe biases in real-world applications. Especially
in the case of generative models, density estimation, and
representation learning, sampling distortions may exacer-
bate already existing biases against marginalized groups.
Our proposed method is a first step in addressing these is-
sues more generally, and we hope that in the future, other
generative models can profit from similar adjustments as
well.

ACKNOWLEDGMENTS

The authors would like to thank Philipp Liznerski and
Alexander Rakowski for helpful discussions, and Alexander
Rakowski for providing the MRI processing pipeline used
on ADNI data. We would also like to thank the anonymous
reviewers for helpful and insightful feedback. This work
was supported by the German Ministry of Research and
Education (Bundesministerium für Bildung und Forschung –
BMBF) in the SyReal project (project number 01|S21069A),
the DFG awards KL 2698/2-1, KL 2698/5-1, KL 2698/6-
1, and KL 2698/7-1, and the BMBF awards 01|S18051A,
03|B0770E, and 01|S21010C. Part of this work was con-
ducted within the DFG Emmy-Noether Award KL 2698/2-1.
MKloft acknowledges support by the Carl-Zeiss Founda-
tion.

This research has been conducted using the UK Biobank
Resource. Data collection and sharing for this project was
also funded by the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) (National Institutes of Health Grant U01
AG024904) and DOD ADNI (Department of Defense award
number W81XWH-12-2-0012). ADNI is funded by the Na-
tional Institute on Aging, the National Institute of Biomed-
ical Imaging and Bioengineering, and through generous
contributions from the following: AbbVie, Alzheimer’s As-
sociation; Alzheimer’s Drug Discovery Foundation; Araclon
Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb
Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Phar-
maceuticals, Inc.; Eli Lilly and Company; EuroImmun; F.
Hoffmann-La Roche Ltd and its affiliated company Genen-
tech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.;Janssen
Alzheimer Immunotherapy Research & Development, LLC.;
Johnson & Johnson Pharmaceutical Research & Develop-
ment LLC.; Lumosity; Lundbeck; Merck & Co., Inc.;Meso
Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack
Technologies; Novartis Pharmaceuticals Corporation; Pfizer
Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical
Company; and Transition Therapeutics. The Canadian In-
stitutes of Health Research is providing funds to support
ADNI clinical sites in Canada. Private sector contributions
are facilitated by the Foundation for the National Institutes
of Health (www.fnih.org). The grantee organization is the
Northern California Institute for Research and Education,
and the study is coordinated by the Alzheimer’s Therapeutic
Research Institute at the University of Southern California.

ADNI data are disseminated by the Laboratory for Neuro
Imaging at the University of Southern California.

References
Augenstein, S., McMahan, H. B., Ramage, D., Ramaswamy,

S., Kairouz, P., Chen, M., Mathews, R., and y Ar-
cas, B. A. Generative models for effective ml on pri-
vate, decentralized datasets. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=SJgaRA4FPH.

Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott,
L. T., Sharp, K., Motyer, A., Vukcevic, D., Delaneau,
O., O’Connell, J., et al. The uk biobank resource with
deep phenotyping and genomic data. Nature, 562(7726):
203–209, 2018.

Cardon, L. R. and Palmer, L. J. Population stratification
and spurious allelic association. The Lancet, 361(9357):
598–604, 2003.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density
estimation using real NVP. In International Confer-
ence on Learning Representations, 2017. URL https:
//openreview.net/forum?id=HkpbnH9lx.

Durkan, C., Bekasov, A., Murray, I., and Papamakarios,
G. Neural spline flows. Advances in neural information
processing systems, 32, 2019.

Hansen, D., Manzo, B., and Regier, J. Normalizing flows for
knockoff-free controlled feature selection. arXiv preprint
arXiv:2106.01528, 2021.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Huang, G. B., Mattar, M., Berg, T., and Learned-Miller, E.
Labeled faces in the wild: A database forstudying face
recognition in unconstrained environments. In Workshop
on faces in’Real-Life’Images: detection, alignment, and
recognition, 2008.

Izmailov, P., Kirichenko, P., Finzi, M., and Wilson, A. G.
Semi-supervised learning with normalizing flows. In
International Conference on Machine Learning, pp. 4615–
4630. PMLR, 2020.

Jack Jr, C. R., Bernstein, M. A., Fox, N. C., Thompson, P.,
Alexander, G., Harvey, D., Borowski, B., Britson, P. J.,
L. Whitwell, J., Ward, C., et al. The alzheimer’s disease
neuroimaging initiative (adni): Mri methods. Journal
of Magnetic Resonance Imaging: An Official Journal
of the International Society for Magnetic Resonance in
Medicine, 27(4):685–691, 2008.

9

https://openreview.net/forum?id=SJgaRA4FPH
https://openreview.net/forum?id=SJgaRA4FPH
https://openreview.net/forum?id=HkpbnH9lx
https://openreview.net/forum?id=HkpbnH9lx

Training Normalizing Flows from Dependent Data

Jaworski, P., Durante, F., Hardle, W. K., and Rychlik, T.
Copula theory and its applications, volume 198. Springer,
2010.

Jiang, J. and Nguyen, T. Linear and generalized linear
mixed models and their applications, volume 1. Springer,
2007.

Jiang, L., Zheng, Z., Qi, T., Kemper, K. E., Wray, N. R.,
Visscher, P. M., and Yang, J. A resource-efficient tool
for mixed model association analysis of large-scale data.
Nature genetics, 51(12):1749–1755, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2015.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow
with invertible 1x1 convolutions. Advances in neural
information processing systems, 31, 2018.

Kirchler, M., Konigorski, S., Norden, M., Meltendorf, C.,
Kloft, M., Schurmann, C., and Lippert, C. transfergwas:
Gwas of images using deep transfer learning. Bioinfor-
matics, 38(14):3621–3628, 2022.

Kole, E., Koedijk, K., and Verbeek, M. Selecting copulas
for risk management. Journal of Banking & Finance, 31
(8):2405–2423, 2007.

Lippert, C., Listgarten, J., Liu, Y., Kadie, C. M., Davidson,
R. I., and Heckerman, D. Fast linear mixed models for
genome-wide association studies. Nature methods, 8(10):
833–835, 2011.

Loh, P.-R., Tucker, G., Bulik-Sullivan, B. K., Vilhjalms-
son, B. J., Finucane, H. K., Salem, R. M., Chasman,
D. I., Ridker, P. M., Neale, B. M., Berger, B., et al. Ef-
ficient bayesian mixed-model analysis increases associ-
ation power in large cohorts. Nature genetics, 47(3):
284–290, 2015.

McCaw, Z. R., Lane, J. M., Saxena, R., Redline, S., and
Lin, X. Operating characteristics of the rank-based in-
verse normal transformation for quantitative trait analysis
in genome-wide association studies. Biometrics, 76(4):
1262–1272, 2020.

Monti, R., Rautenstrauch, P., Ghanbari, M., James, A. R.,
Kirchler, M., Ohler, U., Konigorski, S., and Lippert,
C. Identifying interpretable gene-biomarker associations
with functionally informed kernel-based tests in 190,000
exomes. Nature communications, 13(1):1–16, 2022.

Nielsen, D., Jaini, P., Hoogeboom, E., Winther, O., and
Welling, M. Survae flows: Surjections to bridge the gap
between vaes and flows. Advances in Neural Information
Processing Systems, 33:12685–12696, 2020.

Noé, F., Olsson, S., Köhler, J., and Wu, H. Boltzmann gener-
ators: Sampling equilibrium states of many-body systems
with deep learning. Science, 365(6457):eaaw1147, 2019.

Papamakarios, G., Nalisnick, E. T., Rezende, D. J., Mo-
hamed, S., and Lakshminarayanan, B. Normalizing flows
for probabilistic modeling and inference. J. Mach. Learn.
Res., 22(57):1–64, 2021.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,
F., Fox, E., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Pawlowski, N., Coelho de Castro, D., and Glocker, B. Deep
structural causal models for tractable counterfactual in-
ference. Advances in Neural Information Processing
Systems, 33:857–869, 2020.

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E.,
Shadick, N. A., and Reich, D. Principal components anal-
ysis corrects for stratification in genome-wide association
studies. Nature genetics, 38(8):904–909, 2006.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Fer-
reira, M. A., Bender, D., Maller, J., Sklar, P., De Bakker,
P. I., Daly, M. J., et al. Plink: a tool set for whole-
genome association and population-based linkage anal-
yses. The American journal of human genetics, 81(3):
559–575, 2007.

Rasouli, M., Sun, T., and Rajagopal, R. Fedgan: Federated
generative adversarial networks for distributed data. arXiv
preprint arXiv:2006.07228, 2020.

Rezende, D. and Mohamed, S. Variational inference with
normalizing flows. In International conference on ma-
chine learning, pp. 1530–1538. PMLR, 2015.

Sajjadi, M. S., Bachem, O., Lucic, M., Bousquet, O., and
Gelly, S. Assessing generative models via precision and
recall. Advances in neural information processing sys-
tems, 31, 2018.

Salmon, F. Recipe for disaster: the formula that killed wall
street. Wired Magazine, 17(3):17–03, 2009.

Schirrmeister, R., Zhou, Y., Ball, T., and Zhang, D. Under-
standing anomaly detection with deep invertible networks
through hierarchies of distributions and features. Ad-
vances in Neural Information Processing Systems, 33:
21038–21049, 2020.

10

Training Normalizing Flows from Dependent Data

Simchoni, G. and Rosset, S. Using random effects to ac-
count for high-cardinality categorical features and re-
peated measures in deep neural networks. Advances in
Neural Information Processing Systems, 34, 2021.

Sinnott-Armstrong, N., Tanigawa, Y., Amar, D., Mars, N.,
Benner, C., Aguirre, M., Venkataraman, G. R., Wainberg,
M., Ollila, H. M., Kiiskinen, T., et al. Genetics of 35
blood and urine biomarkers in the uk biobank. Nature
genetics, 53(2):185–194, 2021.

Stander, Y., Marais, D., and Botha, I. Trading strategies with
copulas. Journal of Economic and Financial Sciences, 6
(1):83–107, 2013.

Tong, Y. L. The multivariate normal distribution. Springer
Science & Business Media, 2012.

Tran, M.-N., Nguyen, N., Nott, D., and Kohn, R. Bayesian
deep net glm and glmm. Journal of Computational and
Graphical Statistics, 29(1):97–113, 2020.

Visscher, P. M., Brown, M. A., McCarthy, M. I., and Yang,
J. Five years of gwas discovery. The American Journal
of Human Genetics, 90(1):7–24, 2012.

Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy,
M. I., Brown, M. A., and Yang, J. 10 years of gwas dis-
covery: biology, function, and translation. The American
Journal of Human Genetics, 101(1):5–22, 2017.

Xiong, Y., Kim, H. J., and Singh, V. Mixed effects neural
networks (menets) with applications to gaze estimation.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 7743–7752,
2019.

Yu, J., Pressoir, G., Briggs, W. H., Vroh Bi, I., Yamasaki, M.,
Doebley, J. F., McMullen, M. D., Gaut, B. S., Nielsen,
D. M., Holland, J. B., et al. A unified mixed-model
method for association mapping that accounts for multi-
ple levels of relatedness. Nature genetics, 38(2):203–208,
2006.

Zhou, X. and Stephens, M. Genome-wide efficient mixed-
model analysis for association studies. Nature genetics,
44(7):821–824, 2012.

11

Training Normalizing Flows from Dependent Data

A. Proof of Proposition 2.2
We have

Eξ[t̄rξ] =
n

b

n∑
i=1

Eξ[ξi]Ai,iu
⊤
i ui + 2

n(n− 1)

b(b− 1)

∑
i<j

Eξ[ξiξj]Ai,ju
⊤
i uj .

For the first term, we know that Eξ[ξi] = b/n, so

n

b

n∑
i=1

Eξ[ξi]Ai,iu
⊤
i ui =

n∑
i=1

Ai,iu
⊤
i ui.

For the second term, we first note that

Eξ[ξiξj] = Eξ[ξiEξ[ξj |ξi]] =
b

n
Eξ[ξj |ξi = 1] =

b(b− 1)

n(n− 1)
.

Then we get

2
n(n− 1)

b(b− 1)

∑
i<j

Eξ[ξiξj]Ai,ju
⊤
i uj = 2

∑
i<j

Ai,ju
⊤
i uj .

Adding the two terms back together, we get the trace term.

B. Experimental details
All experiments were implemented in PyTorch (Paszke et al., 2019) and PyTorch Lightning, using the normalizing flow
implementations provided by Nielsen et al. (2020). In all settings, we use the Adamax optimizer (Kingma & Ba, 2015) and
reduce the learning rate with an exponential decay. Weight decay (chosen as described below) is always only applied to the
weights of the normalizing flows, not on the dependency parameters λ̂ and ρ̂i.

B.1. Synthetic data

During training, we assume that the whole dataset is sampled non-i.i.d. with a partially given covariance structure (as
described below) and compute likelihoods dataset-wide (or with our mini-batch estimator). However, our approach aims to
estimate the (marginal) density of a single data point. Therefore, during evaluation (i.e., on validation & test sets), we use
the i.i.d. likelihood instead. We also sampled the evaluation sets i.i.d. to evaluate whether our method could recover the
underlying distribution.

B.1.1. EQUICORRELATED DATA

We sample block-sizes from a Pareto II distribution with shape parameter α = 0.5 and minimum value 1, rounded to integer
values. We clip block-sizes to a maximum of 1,000 and draw new blocks until all blocks together sum to n = 10, 000
samples. For each block, we draw one ρi ∼ Unif[0.5,0.99] and define the full covariance matrix as in Section 2.3.2. Using this
covariance matrix, we sample non-independently from a bivariate standard normal distribution. We non-linearly transform
these data into complex shapes (Abs, Crescent, CrescentCubed, Sign, and SineWave) provided by Durkan et al.
(2019), for a more challenging density estimation task. We repeat all experiments 10 times with different random seeds.

As a base flow model, we choose rational quadratic spline flows (Durkan et al., 2019), which are state-of-the-art for
these challenging data sets. For modelling the equicorrelated blocks, we choose both a grid search over fixed parameters
ρ̂ ∈ {0.01, 0.025, 0.05, 0.1, 0.175, 0.25, 0.375, 0.5, 0.6, 0.67, 0.75, 0.9} and joint gradient-based optimization of ρ̂i and
the flow parameters, with starting values for ρ̂i ∈ {0.01, 0.1, 0.25, 0.5}. We train all models for 100 epochs, perform a
small hyperparameter sweep over learning rate (in {0.001, 0.003, 0.01, 0.03}) and weight decay (in {0.001, 0.01, 0.1}), and
choose the best model for each setting based on early stopping and validation set performance (which is sampled without
dependencies).

12

Training Normalizing Flows from Dependent Data

B.1.2. KNOWN COVARIANCE

In this setting, we simulate a known covariance matrix between n = 5, 000 different samples but with unknown variance
component λ. We first draw a lower-triangular matrix L, with diagonals all set to 1 and all elements below the diagonal
drawn independently from Unif[0.5,0.99]. We use G = norm(LL⊤) as our covariance structure, where norm normalizes the
covariance matrix to a correlation matrix (with all-1s on the diagonal). We then use the covariance structure λI + (1− λ)G
as in the equicorrelated case to generate correlated bivariate standard normal samples that again get non-linearly transformed.
We sample λ ∼ U[0,1], and experiments are again repeated 10 times.

For the grid search, we choose λ̂ ∈ {0.99, 0.975, 0.95, 0.9, 0.825, 0.75, 0.625, 0.5, 0.4, 0.33, 0.25, 0.1} (note that λ
corresponds to 1− ρ) and for the alternating optimization scheme, we initialize λ̂ from {0.99, 0.9, 0.75, 0.5}. We train for
100 epochs in the baseline and in grid search; for the alternating optimization, we train for 5 stages of 25 epochs for the flow
optimization, with 4 stages of 100 gradient descent updates of λ̂ inbetween. Remaining parameters are chosen as in the
equicorrelated simulations.

B.2. Real-world data

In real-world experiments, validation & test data are non-i.i.d.. We still evaluate data in an i.i.d. model, as this is the only
fair comparison between the baseline and adjusted method: we only know the covariance structure partially. E.g., in the
fixed-covariance case, if we were to evaluate the test data with non-i.i.d. likelihood and use the parameter from the training
stage, we would be fitting an evaluation parameter to the training stage. Also, we would have different evaluation metrics for
the baseline setting (λ = 1) versus our setting (λ < 1), giving our method an unfair advantage. For the equicorrelated block
structure, even this suboptimal evaluation setting is impossible, as each ρi is fitted to one individual, and we have no way of
selecting ρi for new individuals. However, in the equicorrelated block setting, one can also evaluate on a reduced data set
containing only one instance per individual, see Section B.2.2.

B.2.1. UKB BIOMARKERS

We used an architecture with 16 affine coupling layers, where the fully connected networks have layers
input-128-128-output for each block, Swish activation functions, and a batch-size of 256, as well as a step-wise
exponentially-decaying learning rate schedule.

As in the synthetic experiment, for grid searches we search over λ̂ ∈ {0.99, 0.975, 0.95, 0.9, 0.825, 0.75, 0.625, 0.5, 0.4,
0.33, 0.25, 0.1} and for the alternating optimization scheme, we initialize λ̂ from {0.99, 0.9, 0.75, 0.5}. For both grid
search and baseline, we do a hyperparameter sweep over the learning rate (in {0.001, 0.003, 0.01, 0.03}), weight decay (in
{0.001, 0.01, 0.1}), and number of epochs (25 or 50; in a preliminary exploratory sweep we found that more epochs only
lead to overfitting). For the alternating optimization, we chose the same learning rate & weight decay grid, and additionally
optimized over the learning rate for λ̂ (in {0.03, 0.1, 0.3}) and the number of epochs in the main stages (5 or 25). We
alternated for 4 stages, and λ̂-optimization stages went for 100 steps each.

GWAS experiment For each biomarker group, we selected 10,000 individuals at random from those individuals that had
values for the corresponding biomarkers. For flow training, we used the same architecture and training as for the previous
Biomarker experiment. Based on the results from the previous experiment, we fixed learning rates at 0.03 (learning rate for
λ = 0.1) and weight-decay on the weights at 0.01. To adjust for fixed covariate effects (age, sex, and genotyping batch), we
projected out covariates from the raw phenotypes with a standard linear regression. For the baseline model, we trained for
250 epochs (this performed considerably better than the fewer epochs in the prior experiment). For the alternating flow, we
again trained for 4 alternating steps with 25 (flow-stage) and 100 (λ-stage) epochs each. We performed each experiment
three times with random seeds for both the selection of individuals and for flow initialization & data loading.

Figure 3 shows the pairwise joint distributions for the Biomarker group “Hormonal” (after covariates were projected out).
Figure 3a shows the original data; Figure 3b shows this data after marginals were transformed using a quantile transformation
to standard normal values - it is clearly visible that although the marginals are normally distributed, the joint distribution is
far from multivariate normal. Figures 3c & 3d show the data after being transformed with normalizing flows, without and
with correcting for dependencies.

Genotype filtering was performed with Plink (Purcell et al., 2007), setting minimum minor allele frequency MAF ≥ 0.1%
and Hardy-Weinberg equilibrium p-value p = 0.001; and linkage-disequilibrium (LD) pruning with R2 = 0.8 and 500kb

13

Training Normalizing Flows from Dependent Data

(a) Original data. (b) Data after marginal quantile-transformation.

(c) Data after transformation with standard normalizing
flow.

(d) Data after transformation with normalizing flow
correcting for dependencies.

Figure 3: Marginal histograms (diagonals) and 2-d histograms of pairwise joint distributions for the group of “Hormonal”
biomarkers.

14

Training Normalizing Flows from Dependent Data

window. Both univariate (“Single”) and multivariate (“Baseline”, “Alternating”) GWAS were performed using the GEMMA
software version 0.98.5 (Zhou & Stephens, 2012) with score tests (option -lmm 3) and centered relatedness matrix (option
-gk 1). For other GEMMA options we used the defaults, hence, final results were further pruned for MAF ≥ 5%. This
resulted in approximately 500,000 genotypes per experiment, but slightly varying between different random seeds and
different biomarker groups, and a resulting genome-wide significance threshold of α = 0.05/num geno ≈ 10−7.

Loci were identified using the Plink clumping utility, defining a locus as a group of significantly associated SNPs (single-
nucleotide polymorphisms) that were both close spatially (within a 250kb window) and in LD with R2 ≥ 0.1.

B.2.2. IMAGE MODELING

For both data sets we used a Glow-like architecture with 2 scales and 12 steps per scale, as implemented by Nielsen et al.
(2020). We grid-searched for ρi ∈ {0.01, 0.025, 0.05, 0.075, 0.1, 0.15} and for joint optimization we initialized with the
same parameters. ADNI models were trained for 200 and LFW models for 400 epochs. All models were trained with a
batch-size of 64 and learning rate and weight decay of 0.001 on a single A100 GPU. Due to compute constraints, no further
hyperparameter exploration was performed.

Figure 4: Precision-Recall curves for
ADNI.

Figure 5: Precision-Recall curves for LFW.

Additional analyses In addition to the NLL evaluation given in Table 2,
we also evaluate the FID scores (Heusel et al., 2017) in Table 4 and show
precision & recall curves for distributions (PRD) (Sajjadi et al., 2018). PRD
is a natural extension to standard precision and recall. In contrast to other
image-quality metrics such as the FID score, PRD gives a two-dimensional
metric describing both how much of the original distribution is covered
by the approximating distribution, and how much of the approximating
distribution actually is covered by the original distribution. Figures 4 and
5 show the PRD curves for both image data sets. As proposed by Sajjadi
et al. (2018), we also list the Fβ and F1/β scores for β ∈ {4, 8} in Table 4,
which are single-number summaries of the PRD curves.

Finally, we also report evaluation scores for a reduced test set (denoted by
“indiv”), in which we only select a single image per individual to evaluate
the NLL and FID. These datapoints are i.i.d. by design, in contrast to the
full test set that still has multiple images per individual. Note that this kind
of evaluation is only possible for the equicorrelated block design, but not
in other cases, such as the fixed-covariance model.

ADNI brain imaging The data are T1-weighted MRI, preprocessed and
standardized with a brain atlas registration pipeline, using brain extraction,
linear alignment, non-linear alignment, and debiasing. The resulting images
are more homogeneous than the raw images and thus easier to model. We
select the axial-view centered slices and resize them to 64× 64 grayscale
images. The ρ̂i chosen by the best final model with joint optimization ranged
between 0.066 and 0.081.

LFW Here, we used 32 × 32 RGB images. The ρ̂i chosen by the best
final model with joint optimization ranged between 0.052 and 0.15, while
the best model with grid optimization was with ρ̂i = 0.15.

B.2.3. STOCK DATA PAIRS

For the stock data, we used an affine coupling normalizing flow with 8 layers
of input-64-64-output dimensions and swish activation function.
Grid search and joint search were initialized with the same values as in the
synthetic experiment. We performed a hyperparameter sweep over learning
rate ({0.001, 0.003, 0.01, 0.03}), weight decay ({0.001, 0.01, 0.1}) and ran
all models for 100 epochs and a batch size of 256.

15

Training Normalizing Flows from Dependent Data

Table 4: Additional evaluation metrics for ADNI and LFW data sets. Fβ scores are single-point summaries of the PRD
curves; “(indiv)” denotes evaluation on a reduced data set with only a single image per individual.

F8 ↑ F1/8 ↑ F4 ↑ F1/4 ↑ NLL ↓ NLL (indiv) ↓ FID ↓ FID (indiv) ↓
LFW Baseline 0.577 0.609 0.391 0.426 6414.2 6443.3 85.6 96.6

Grid Search 0.570 0.655 0.391 0.456 6357.7 6389.9 80.1 92.1
Joint 0.608 0.671 0.405 0.480 6352.1 6379.9 76.8 89.0

ADNI Baseline 0.844 0.921 0.721 0.820 7794.8 7763.6 9.3 13.7
Grid Search 0.820 0.914 0.740 0.801 7763.6 7665.2 8.0 10.8
Joint 0.861 0.943 0.796 0.849 7697.8 7669.2 7.0 10.4

C. Computational Considerations
Additional compute & memory requirements for incorporating dependencies
depend mostly on the type of dependencies and on the optimization scheme. In our implementation, baseline runs were
implemented as special cases of the flow with dependencies (i.e., ρi = 0 or λ = 1), which makes fair empirical comparison
challenging.

C.1. Equicorrelated blocks

Grid optimization A single run with fixed dependency parameter ρi > 0 will have almost identical run times as the
baseline method with ρi = 0, as the base distribution likelihood evaluation is not a bottleneck. Since all ρi are identical,
there is virtually no additional memory requirement. However, as the full network needs to be trained for each of the Mgrid
grid values tested, the grid evaluation scheme takes roughly Mgridtbaseline

Joint optimization In this setting, N (number of blocks) parameters ρi need to additionally be estimated and stored in
memory, but in all cases considered in this paper this was strongly dominated by the number of parameters in the model (e.g.,
in LFW, the normalizing flow model had ∼ 90M parameters, but only a few thousand extra parameters for the individuals.
For very slim models and a very large number of blocks, this relationship may change.

C.2. Fixed Covariance

For the fixed-covariance case, a full spectral decomposition is necessary prior to training, which is (in practice) an O(n3)
operation. It also requires storing the full spectral decomposition in memory. Standard linear algebra libraries used in
PyTorch or Numpy & SciPy only support spectral decompositions up to several 10k and oftentimes become unreliable
beyond that. Therefore, using fixed covariance schemes is infeasible for larger-scale problems using out-of-the-box software.

Grid optimization For the fixed grid schedule, mini-batch estimation requires quadratic time in the size of the mini-batch,
due to the stochastic trace estimator in Equation 2. However, for batch-sizes used in our settings, this was still dominated by
the neural architecture shared with the baseline flow architecture. The log-det-Jacobian can be cached and the remaining
parts are identical to the baseline flow, so each individual epoch has very similar time requirements to the baseline model.
Analogously to the equicorrelated blocks grid optimization, we still need to perform Mgrid runs, although the same spectral
decomposition can be used for all those runs.

Alternating optimization The main training stage for the flow parameters has identical computational considerations
as the grid optimization procedure. However, for optimizing λ̂ in every other training stage, first the full data set needs to
pushed through the normalizing flow and then rotated with the orthogonal matrix Q⊤ from the spectral decomposition.
Despite this, the alternating training procedure was dominated by the original spectral decomposition and the main training
stage of the flow.

D. ADNI Images

16

Training Normalizing Flows from Dependent Data

(a) Train images (b) Baseline (c) Grid Search (d) Joint

Figure 6: Random samples of ADNI train images and images generated by the normalizing flow models.

17

