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Abstract
Large-scale, pre-trained neural networks have demonstrated
strong capabilities in various tasks, including zero-shot image
segmentation. To identify concrete objects in complex scenes,
humans instinctively rely on deictic descriptions in natural
language, i.e. , referring to something depending on the con-
text, e.g. ”The object that is on the desk and behind the cup.”.
However, deep learning approaches cannot reliably interpret
these deictic representations due to their lack of reasoning ca-
pabilities in complex scenarios. To remedy this issue, we pro-
pose DeiSAM, which integrates large pre-trained neural net-
works with differentiable logic reasoners. Given a complex,
textual segmentation description, DeiSAM leverages Large
Language Models (LLMs) to generate first-order logic rules
and performs differentiable forward reasoning on generated
scene graphs. Subsequently, DeiSAM segments objects by
matching them to the logically inferred image regions. As
part of our evaluation, we propose the Deictic Visual Genome
(DeiVG) dataset, containing paired visual input and complex,
deictic textual prompts. Our empirical results demonstrate
that DeiSAM is a substantial improvement over data-driven
neural baselines on deictic segmentation tasks.

Introdution
Recently, large-scale neural networks have achieved sub-
stantial advancements in various tasks at the intersection of
vision and language. One such challenge is grounded im-
age segmentation, wherein objects within a scene are iden-
tified through textual descriptions. For instance, Ground-
ing Dino (Liu et al. 2023b), combined with the Segment
Anything Model (Kirillov et al. 2023), excels at this task
if provided with appropriate prompts. However, a well-
documented limitation of data-driven neural approaches is
their lack of reasoning capabilities (Shi et al. 2023; Huang
et al. 2023). Consequently, they only perform well for tex-
tual prompts directly describing or naming the targets and
fail for complex prompts, as demonstrated in Fig. 1.

In contrast, humans identify objects through structured
descriptions of complex scenes referring to an object de-
pending on the context, e.g., ”An object that is on the boat
and holding an umbrella.”. These descriptions are referred
to as deictic representations and were introduced to artifi-
cial intelligence research motivated by linguistics (Agre and
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“An object that is on the boat and holding an umbrella.”

DeiSAMGroundedSAM, LLaVA

Figure 1: DeiSAM segments objects with deictic prompt-
ing. A segmentation result of DeiSAM (right), and that of
GroudedSAM1and LLaVA (Chen et al. 2023) (left) given a
visual scene and deictic representation as prompt.

Chapman 1987), and subsequently applied in reinforcement
learning (Finney et al. 2002). Although deictic representa-
tions play a central role in human comprehension of scenes,
current approaches fail to interpret them faithfully due to
their poor reasoning capabilities.

To remedy these issues, we propose DeiSAM, which com-
bines large-scale neural networks with logic reasoners to
segment objects with deictic representations. The DeiSAM
pipeline is highly modular and provides a sophisticated in-
tegration of large pre-trained networks and neuro-symbolic
reasoners. Specifically, we leverage Large Language Mod-
els (LLMs) to generate logic rules for a given deictic prompt
and perform differentiable forward reasoning (Shindo et al.
2023a,b) with scene graph generators (Zellers et al. 2018).
Our reasoner is efficiently combined with neural networks
and leverages forward propagation on computational graphs.
The result of this reasoning step is used to ground a seg-
mentation model that reliably identifies the objects that best
match the input.

Overall, we make the following contributions:

• We propose DeiSAM, a modular, neuro-symbolic rea-
soning pipeline on LLMs and scene graphs for object
segmentation with complex textual prompts.

• We demonstrate semantic unification, where similar en-
tities are unified using textual embeddings.

1https://github.com/IDEA-Research/Grounded-Segment-
Anything
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Figure 2: DeiSAM architecture. A pair of an image and a deictic prompt is given as input. A scene graph is generated out of
the image, and logic rules are generated out of the deictic prompt by a large language model. The generated scene graph and
rules are fed to the Semantic Unifier module, where similar terms are unified to perform reasoning jointly, e.g. boat in the
scene graph and barge in generated rules are regarded as the same term. Forward reasoner infers target objects specified by
the textual deictic prompt. To this end, the object segmentation is performed in extracted image crops. Since forward reasoners
can be differentiable (Shindo et al. 2023a), gradients could be propagated to learn each module. (Best viewed in color)

• For evaluation, we introduce a novel Deictic Visual
Genome (DeiVG) benchmark that contains visual scenes
paired with deictic representations, i.e. , complex textual
identifications of objects in the scene.

• We empirically show that DeiSAM outperforms neural
baselines such as GroundedSAM and LLaVA on the pro-
posed task.

DeiSAM
Let us now devise the DeiSAM pipeline, by giving a brief
overview of its modules before describing essential compo-
nents in more detail. Fig. 2 shows a schematic overview of
the proposed workflow.

First, an input image is transferred into a graphical repre-
sentation using a (1) scene graph generator. Specifically, a
scene graph comprises a set of triplets (n1, e, n2), where en-
tities n1 and n2 have relation e. For example, a person (n1) is
holding (e) an umbrella (n2). Consequently, each triplet can
be interpreted as a logic atom, or simply a fact, e(n1, n2).
To perform reasoning on these facts, the paired textual de-
ictic prompt needs to be interpreted as a structured logical
expression. For this processing step, DeiSAM leverages (2)
large language models, which can generate logic rules for
deictic descriptions, given sufficiently restrictive prompts. In
our example, the LLM would translate the prompt ”An ob-
ject that is on the barge and holding an umbrella.” to the
following rules:

target(X):-on(X,Y),type(Y,barge),
holding(X,Z),type(Z,umbrella).

However, users often use terminology different from that of
the scene graph generator. For example, barge and boat tar-
get the same concept but will not be trivially matched. To

bridge the semantic gap, we introduce a (3) semantic uni-
fier. This module leverages word embeddings of labels, en-
tities, and relations in the generated scene graphs and rules
to match synonymous terms by modifying rules accord-
ingly. The semantically unified rules are then compiled to
a (4) forward reasoner, which computes logical entailment
using forward chaining (Shindo et al. 2023a). The reasoner
identifies the targeted objects and corresponding bounding
boxes from the scene graph. Lastly, we segment the object
by feeding the cropped images to a (5) segmentation model.

Now, let us investigate the two core modules of DeiSAM
in detail. Specifically, we look into how DeiSAM generates
logic rules and performs reasoning.

LLMs as Logic Generators
To perform reasoning on textual deictic prompts, we need
to identify corresponding rules. For this translation, we use
LLMs to parse textual descriptions to logic rules by using a
system prompt like:
1 Given a deictic representation and

available predicates, generate rules
in the format.

2 The rule’s format is either
3 target(X):-pred(X,Y),type(Y,const).
4 or
5 target(X):-pred1(X,Y),type(Y,const1),

pred2(X,Z),type(Z,const2).
6 Use predicates and constants that appear

in the given sentence.
7 Capitalize variables: X, Y, Z, etc.

DeiSAM uses a specific rule format that describes
the relations of objects and attributes. For exam-
ple, a fact on(person,boat) in a scene graph is
decomposed into multiple facts on(obj1,obj2),



Mean Average Precision (%) ↑
Method DeiVG2 DeiVG1

GroundedSAM 19.27 8.82
DeiSAM (ours) 81.42 78.18

Table 1: DeiSAM handles deictic prompting. Mean Av-
erage Precision (mAP) of DeiSAM and GroundedSAM on
Deictic VG datasets are shown. Subscript numbers indicated
the complexity (hops on scene graph) of prompts.

type(obj1,person), and type(obj2,boat) to
account for several entities with the same name in the scene.

Reasoning with Deictic Prompting
We build a reasoning function freason : G × R → T where
G is a set of facts that represent a scene graph, R is a set
of rules generated by an LLM, and T is a set of facts that
represent identified target objects in the scene.

(Differentiable) Forward Reasoning. For a given set G,
a valuation vector v ∈ [0, 1]|G| maps each fact to a cor-
responding confidence score. DeiSAM incorporates graph
neural networks, which pass messages on reasoning graphs
that represent a set of rules and update valuation vectors,
inferring new facts (Shindo et al. 2023b). To complete ob-
ject segmentation, DeiSAM identifies target objects as facts,
e.g. target(obj1), and subsequently extracts the bound-
ing box of the targets from the scene graph. We provide more
details in the appendix.

Semantic Unifier. DeiSAM unifies diverging semantics
in the generated rules and scene graph using concept em-
beddings similar to neural theorem provers (Rocktäschel and
Riedel 2017). We rewrite the corresponding rules R of a
prompt by identifying the most similar terms in the scene
graph for each predicate and constant. If rule R ∈ R con-
tains a term x, which does not appear in scene graph G, we
compute the similarity score by

argmax
y∈G

encoder(x)⊤ · encoder(y), (1)

where encoder is an embedding model for texts.

Experiments
With the methodology of DeiSAM established, we subse-
quently provide empirical and qualitative evidence of its
benefits over purely neural approaches.

Experimental Setup
To assess deictic object segmentation, we propose a novel
benchmark, the Deictic Visual Genome (DeiVG), which is
an extension of the Visual Genome dataset (Krishna et al.
2017). DeiVG consists of visual scenes paired with deictic
prompts targeting one or multiple objects in the image. We
automatically synthesize prompts from scene graphs in Vi-
sual Genome using textual templates. For example, the rela-
tions on(cable,table) and behind(cable,mug),
would yield a prompt ”An object on the table and behind
the mug.” targeting the cable. Entries in the DeiVG dataset

An object on 
the large chair 
and wears a tie.

An object in front of 
the cart and has a 
shadow.

An object on the 
animal and has a 
label.

teddy
bear

bench
on

horse carriage

in_front_of 

hat cat
on

Figure 3: DeiSAM can reason on ambiguous prompts.
Segmentation results (middle) on prompts (top) that contain
entities not appearing in the scene graphs (bottom). DeiSAM
successfully identified objects given two different semantics.

can be categorized by the number of relations they use in
their object description. Overall, we generate 3k pairs of a
visual scene and a deictic prompt with one relation and 10k
pairs of them with two relations that we denote as DeiVG1

and DeiVG2, respectively.
As an evaluation metric, we use mean average pre-

cision (mAP) over object classes. Since the object seg-
mentation quality largely depends on the used segmenta-
tion model, we focus on assessing the object identifica-
tion preceding the segmentation step. The DeiSAM con-
figuration for the subsequent experiments uses the ground
truth scene graphs from the Visual Genome (Krishna et al.
2017), gpt-3.5-turbo2 as LLM for rule generation,
ada-0023 as embedding model for semantic unification,
and SAM for object segmentation. Additionally, we provide
few-shot examples of deictic prompts and paired rules in the
input context of the LLM, which improves performance.

Empirical Evidence
We compare DeiSAM on DeiVG datasets with Grounded-
SAM, which combines SAM (Kirillov et al. 2023) with
Grounding DINO (Liu et al. 2023b). We report the scores
for both methods in Tab. 1. DeiSAM outperforms the purely
neural approach by a large margin on both DeiVG1 and
DeiVG2. Interestingly, both methods achieve better scores
for the seemingly more complex task, a phenomenon that
we explore in more detail in the next section.

Qualitative Evaluation
After empirically demonstrating DeiSAM’s capabilities, we
look into some qualitative examples. In Fig. 3, we demon-
strate the efficacy of the semantic unifier. All examples use
terminology in the deictic prompt diverging from the scene
graph entity names. Nonetheless, the unification step suc-
cessfully maps synonymous terms and still produces the cor-

2https://openai.com/blog/introducing-chatgpt-and-whisper-
apis

3https://openai.com/blog/new-and-improved-embedding-
model
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Figure 4: DeiSAM segments objects with deictic prompts. Segmentation results on the DeiVG dataset using DeiSAM,
GroundedSAM, and LLaVA are shown with deictic prompts on the top. DeiSAM correctly identifies and segments objects
given deictic prompts (top row), while GroundedSAM and LLaVA often segment a wrong object or fail to identify an object
(bottom rows). More results are available in Fig. 6 in the Appendix. (Best viewed in color)

rect segmentation masks, overcoming the limitation of off-
the-shelf symbolic logic reasoners.

In Fig. 4, we further compare DeiSAM with Grounded-
SAM and interactive LLaVA (Liu et al. 2023a; Chen et al.
2023). DeiSAM produces the correct segmentation mask
even for complicated shapes (e.g. partially occluded cable)
or complex scenarios (e.g. multiple people, only some hold-
ing umbrellas). GroundedSAM and LLaVA, however, regu-
larly fail to identify the correct object. More results are avail-
able in the Appendix. Overall, the examples further high-
light DeiSAM’s capability of complex reasoning for object
segmentation, outperforming pure neural approaches.

Discussion
In our experiments, we observed degraded performance on
DeiVG1 compared to DeiVG2 for both models. This result
may seem counterintuitive since DeiVG1 contains the sim-
pler prompts. We attribute the gap to inconsistencies in the
original Visual Genome dataset itself. For example, only one
of multiple objects in an image might be labeled correctly in
the scene graph. Consequently, our derived DeiVG bench-
mark can contain prompts with ambiguous target objects.
Simple prompts are generally more ambiguous (e.g., ”an ob-
ject on the table”) thus, they are disproportionally affected
by this issue. For future work, we aim to improve the DeiVG
benchmark by cleaning up inconsistent prompts.

Moreover, we observed that neural baselines are easily
confounded by objects mentioned in the prompt, e.g. given
”An object that is on the car”, the car itself is segmented,
discarding the intended relation. In contrast, DeiSAM suc-
cessfully segments objects given prompts requiring rela-

tional reasoning since it embraces logic reasoners and en-
codes relations of objects explicitly.

While DeiSAM achieves impressive results, it is worth
considering some of the limitations of this work. Our current
experimental setup uses ground-truth scene graphs from Vi-
sual Genome, whereas the errors of an actual scene graph
generator may result in a worse performance. However,
DeiSAM’s modularity accommodates recent advances in
scene graph generations, e.g. unbiased scene graph gener-
ators (Sudhakaran et al. 2023).

Finally, DeiSAM may be leveraged for gradient-based
learning approaches, since the reasoning is differentiable.
For future work, we plan to pass gradients through DeiSAM
to the scene generator and LLM submodules. Such a setup
would allow for fine-tuning neural modules to generate high-
quality scene graphs and logic rules with reasoning explic-
itly modeled in the training pipeline. Additionally, our setup
allows for structure learning of logic rules from segmenta-
tion examples, which is a promising research direction.

Conclusion
We proposed DeiSAM to perform deictic image segmen-
tation. DeiSAM embraces large-scale neural networks to
understand complex prompts with visual scenes and per-
forms differentiable forward reasoning to identify objects.
DeiSAM allows users to describe a target using relations
of objects flexibly. Moreover, we proposed the novel De-
ictic Visual Genome (DeiVG) benchmark for segmentation
with complex deictic prompts. In our extensive experiments,
we demonstrated that DeiSAM outperforms neural base-
lines highlighting its strong reasoning capabilities on visual
scenes with complex textual prompts.
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Details of Forward Reasoning
DeiSAM employs a graph neural network-based differ-
entiable forward reasoner (Shindo et al. 2023b), and we
briefly explain the reasoning process. We represent a set of
(weighted) rules as a bipartite graph as shown in Fig. 5.
Definition 1. A Forward Reasoning Graph is a bipartite di-
rected graph (VG ,V∧, EG→∧, E∧→G), where VG is a set of
nodes representing ground atoms (atom nodes), V∧ is set of
nodes representing conjunctions (conjunction nodes), EG→∧
is set of edges from atom to conjunction nodes and E∧→G is
a set of edges from conjunction to atom nodes.

DeiSAM performs forward-chaining reasoning by pass-
ing messages on the reasoning graph. Essentially, forward
reasoning consists of two steps: (1) computing conjunctions
of body atoms for each rule and (2) computing disjunc-
tions for head atoms deduced by different rules. These two
steps can be efficiently computed on bi-directional message-
passing on the forward reasoning graph.

(Direction→) From Atom to Conjunction. First, mes-
sages are passed to the conjunction nodes from atom nodes.
For conjunction node vi ∈ V∧, the node features are updated:

v
(t+1)
i =

∨(
v
(t)
i ,

∧
j∈N (i)

v
(t)
j

)
, (2)

where
∧

is a soft implementation of conjunction, and
∨

is
a soft implementation of disjunction. Intuitively, probabilis-
tic truth values for bodies of all ground rules are computed
softly by Eq. 2.

(Direction ←) From Conjunction to Atom. Following
the first message passing, the atom nodes are then updated
using the messages from conjunction nodes. For atom node
vi ∈ VG , the node features are updated:

v
(t+1)
i =

∨(
v
(t)
i ,

∨
j∈N (i)

wji · v(t)j

)
, (3)

where wji is a weight of edge ej→i. We assume that each
rule Ck ∈ C has its weight θk, and wji = θk if edge ej→i

on the reasoning graph is produced by rule Ck. Intuitively,
in Eq. 3, new atoms are deduced by gathering values from
different ground rules and from the previous step.

We used product for conjunction, and log-sum-exp func-
tion for disjunction:

softorγ(x1, . . . , xn) = γ log
∑

1≤i≤n

exp(xi/γ), (4)

where γ > 0 is a smooth parameter. Eq. 4 approximates the
maximum value given input x1, . . . , xn.

Prediction. The probabilistic logical entailment is com-
puted by the bi-directional message-passing. Let x(0)

atoms ∈
[0, 1]|G| be input node features, which map a fact to a scalar
value, RG be the reasoning graph, w be the rule weights, B
be background knowledge, and T ∈ N be the infer step. For
fact Gi ∈ G, DeiSAM computes the probability as:

p(Gi | x(0)
atoms ,RG,w,B, T ) = x

(T )
atoms [i], (5)

where x
(T )
atoms ∈ [0, 1]|G| is the node features of atom nodes

after T -steps of the bi-directional message-passing.

target(X):-on(X,Y),type(Y,boat),

           holding(X,Z),type(Z,umbrella).

target(obj1)

atom nodes conjunction nodes

on(obj1,obj2)

type(obj1,person)

type(obj2,boat)

type(obj3,umbrella)

holding(obj1,obj3)

1.0

Figure 5: A partial reasoning graph (top) and a correspond-
ing rule (bottom). Blue nodes represent facts, red nodes
represent conjunctions, and edges represent a ground rule.
DeiSAM performs differentiable forward reasoning by per-
forming bi-directional message passing on the reasoning
graph using soft-logic operations to aggregate messages.
Only relevant nodes are shown. (Best viewed in color)

Details of Experiments
We provide details of the models used in the evaluation.

DeiSAM. We used NEUMANN (Shindo et al. 2023b)
with γ = 0.01 for soft-logic operations, and the number
of inference steps is set to 2. We used a publicly available
checkpoint4 for the SAM model. We set the box threshold
to 0.3 and the text threshold to 0.25 for the SAM model. All
generated rules are assigned a weight of 1.0.

For LLMs, we provided few-shot examples of deictic
prompts and desired outputs in the input context, e.g.
1 Example:
2 An object that is next to the cup.
3 available predicates: next_to
4 target(X):-next_to(X,Y),type(Y,cup).

These few-shot examples improved the quality of the rule
generation that follows a certain format.

GroundedSAM. We used a pre-trained and publicly
available checkpoint4 for the SAM model and a public
checkpoint5 for Grounding DINO. We set the box threshold
to 0.3 and the text threshold to 0.25 for the SAM model.

Evaluation Metric. We used mean average precision
(mAP) to evaluate segmentation models. Segmentation
masks are converted to corresponding bounding boxes by
computing their contours, and then mAP is computed by
comparing them with the ground truth bounding boxes pro-
vided by Visual Genome.

Additional Segmentation Results
We provide supplementary results of the segmentation on
the DeiVG dataset in Fig. 6.

4https://huggingface.co/spaces/abhishek/StableSAM/blob/
main/sam vit h 4b8939.pth

5https://github.com/IDEA-Research/GroundingDINO/
releases/download/v0.1.0-alpha2/groundingdino swinb cogcoor.
pth
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Figure 6: Segmentation results on the DeiVG dataset using DeiSAM and GroundedSAM are shown with deictic prompts.


