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ABSTRACT

The advent of Internet of Things (IoT) technology has generated massive inter-
est in voice-controlled smart homes. While many voice-controlled smart home
systems are designed to understand and support widely spoken languages like
English, speakers of low-resource languages like Luganda may need more sup-
port. This research project aimed to develop a Luganda speech intent classifi-
cation system for IoT applications to integrate local languages into smart home
environments. The project uses hardware components such as Raspberry Pi, Wio
Terminal, and ESP32 nodes as microcontrollers. The Raspberry Pi processes Lu-
ganda voice commands, the Wio Terminal is a display device, and the ESP32
nodes control the IoT devices. The ultimate objective of this work was to enable
voice control using Luganda, which was accomplished through a natural language
processing (NLP) model deployed on the Raspberry Pi. The NLP model utilized
Mel Frequency Cepstral Coefficients (MFCCs) as acoustic features and a Convo-
lutional Neural Network (Conv2D) architecture for speech intent classification. A
dataset of Luganda voice commands was curated for this purpose and this has been
made open-source. This work addresses the localization challenges and linguistic
diversity in IoT applications by incorporating Luganda voice commands, enabling
users to interact with smart home devices without English proficiency, especially
in regions where local languages are predominant.

1 INTRODUCTION

Rapid technological advancements have led to the proliferation of smart devices and the Internet of
Things (IoT) in various domains. Smart homes, in particular, have gained significant popularity, of-
fering convenience, efficiency, and enhanced control over home appliances and systems (Dinushika
et al., 2019). Voice-controlled smart home systems have emerged as a convenient and intuitive way
to interact with these devices using voice commands (McTear et al., 2016). These systems respond
to voice commands and must extract the user’s intent from the command to be effective, known
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as intent recognition. The intent is something the user wants to do, which may be something like
turning on the lights, decreasing the volume, or increasing the fan’s speed. Intent recognition, a sub-
task of Spoken Language Understanding, aims to extract the user’s aim in a voice command(Desot
et al., 2019). However, most existing voice-controlled smart home systems are primarily designed to
support notable languages such as English, leaving users of low-resource languages disadvantaged.
In countries like Uganda, where English is not widely spoken, the existing systems fail to cater to
the needs and preferences of the local population (Babirye et al., 2022), (Murindanyi et al., 2023).
This work addresses this language barrier by developing a speech intent classification system for
Luganda, a prominent Bantu language and the mother tongue of Uganda’s largest ethnic group, the
Baganda (Kobusingye et al., 2023). Additionally, it leverages the power of artificial intelligence and
machine learning techniques to enable Ugandan users to interact with smart home devices using a
local language, enhancing user experience and accessibility. We recognize the importance of data
collection, preprocessing, and model development to achieve accurate and reliable speech intent
classification. By collecting a substantial amount of data from diverse participants and employing
techniques such as the use of convolutional neural networks (CNNs), the work aims to develop a
robust and efficient model capable of accurately classifying spoken commands related to various
smart home devices and functions. The work explores post-training model quantization techniques
to choose an appropriate model size for deployment on edge devices. Furthermore, the work extends
its scope to include integrating IoT devices, allowing the classified speech intents to be translated
into actionable commands that control the corresponding smart devices. This integration involves
using the MQTT1 (Message Queuing Telemetry Transport) protocol, which enables seamless com-
munication between the Raspberry Pi and other IoT devices, such as the Wio terminal2 and ESP32
boards. By empowering users to interact with their smart devices in their native language, the work
aims to improve accessibility, usability, and overall user satisfaction in smart home automation.

The remaining sections are organized as follows: Section Two discusses related work presented
in private resources, Section Three discusses paper contributions, and Section Four outlines the
methodologies and approaches used. Section five presents the results and the discussions, and sec-
tion six concludes the paper and suggests future work.

2 RELATED WORK

This section explores speech intent recognition in IoT applications, focusing on two key method-
ologies: direct speech-to-intent and speech-to-text-to-intent. The direct method, highlighted by
the work of Buddhika et al. (Buddhika et al., 2018), utilizes Mel-Frequency Cepstral Coefficients
(MFCCs) and Mel spectrograms to accurately classify speech intent in Sinhala using a neural net-
work, demonstrating the importance of audio feature engineering. Complementary research by Yang
et al. (Yang et al., 2020) shows that CNNs excel in speech command classification, outperform-
ing traditional neural network models by effectively processing varied speech commands. Alterna-
tively, the speech-to-text-to-intent approach, as improved by multiple pre-trained Automatic Speech
Recognition (ASR) models presented in different papers, for example, the work done by Mohamed
& Thayasivam (Mohamed & Thayasivam, 2022), transcribes speech-to-text before intent extraction,
addressing the challenge of error propagation from ASR to Natural Language Understanding (NLU).
This method enhances recognition in limited-resource settings, showcasing advancements in speech
intent recognition technology that cater to diverse IoT applications. The end-to-end method, pro-
posed by Lugosch et al. (Lugosch et al., 2019), aims for direct speech-to-intent mapping, requiring
significant domain-specific data but offering a unified solution that circumvents ASR inaccuracies.
The choice between these approaches depends on the specific application and available resources.

Several valuable resources have emerged in the landscape of spoken language understanding (SLU)
datasets, each contributing to the development and evaluation of SLU systems. Among these is the
Air Travel Information System (ATIS) Hemphill et al. (1990), an audio dataset with 17 intents re-
lated to air travel planning. The Snips SLU Dataset is another publicly available asset encompassing
English and French languages with only about 7 intents. Recent efforts have been made to curate
more extensive datasets for end-to-end SLU tasks, such as the Fluent Speech Commands (FSC) Lu-
gosch et al. (2019) with 31 intents, A Spoken Language Understanding Resource Package (SLURP)

1https://mqtt.org/
2https://www.seeedstudio.com/Wio-Terminal-p-4509.html

2



AfricaNLP workshop at ICLR 2024

Bastianelli et al. (2020) with about 18 domains, and Spoken Task Oriented Semantic Parsing (STOP)
Tomasello et al. (2022) datasets. These datasets have significantly contributed to the advancement
of SLU technology, particularly in the personal assistant domain.

Work has also been done in the domain of Speech Intent recognition for Smart homes. In M.K.M
et al. (2018), M.K.M et al. introduce a smart home automation prototype that utilizes natural
language processing and machine learning, enabling voice-controlled device operation, including
lights, doors, and fans, through an interactive humanoid central processing unit. Kumar et al. Ku-
mar et al. (2019) present a Smart Home Automation system employing Natural Language Processing
(NLP) and IoT cloud solutions for remote and secure smart home control. This infrastructure uses
communication protocols to integrate user sound or voice commands transmitted to various appli-
ances. The paper provides a prototype illustrating voice-controlled devices and sensors, offering
an efficient and secure approach to smart home control through NLP and IoT cloud solutions. In
Reshamwala et al. (2021), Reshamwala et al. proposes an IoT-based Home Automation system
utilizing 2 hardware devices, sensors, and software applications like Google Firebase for compre-
hensive smart home control. This system allows remote appliance control via a mobile application
from anywhere globally and incorporates voice commands through Google’s Voice Assistant sys-
tem.

3 PAPER CONTRIBUTION

Our work addresses gaps in Luganda intent classification for IoT device control, including the ab-
sence of a Luganda voice command dataset and a preliminary classification model. We develop
an IoT application that accurately recognizes Luganda speech commands focusing on regions where
Luganda is widely spoken. Unlike existing papers that often focus on cloud-based IoT solutions, our
approach is localized, deploying NLP models on Raspberry Pi and Wio Terminal nodes for efficient
smart home automation, even in areas with limited internet connectivity. Furthermore, our work of-
fers a comprehensive IoT implementation, covering model design, deployment, and integration with
IoT devices, addressing gaps in prior literature. We have curated a Luganda voice command dataset
with 20 distinct intents, and this dataset has been made open source and can be accessed at this DOI.
Our integration of NLP and IoT technologies on Raspberry Pi and ESP32 nodes provides an intuitive
means of controlling devices using local language commands. While delivering cutting-edge perfor-
mance in spoken language understanding tasks, the speech-to-text-to-intent methodology employs
Automated Speech Recognition (ASR) models that demand substantial computational resources de-
spite being readily available. This requirement can pose significant challenges when deploying such
models on resource-constrained devices like the Raspberry Pi and Wio Terminal. This limitation
highlights the need for a tailored approach that considers both the computational constraints of the
hardware and the specific requirements of the Luganda language domain. Moreover, the perfor-
mance of these ASR models might not be optimal for applications within the Luganda speech intent
domain, particularly in the context of smart home automation. Therefore inspired by previous work,
we focused on the speech-to-intent approach, employing MFCCs as acoustic features and CNNs to
enhance the model’s performance in real-time IoT environments. Augmentation techniques improve
model robustness, and model quantization techniques optimize memory usage for successful edge
device deployment, aligning with our work’s objectives.

4 METHODOLOGY

4.1 DATA COLLECTION

The process of collecting data for this research project involved two main steps. First, a list of utter-
ances for each intent was gathered. Then, the dataset was collected through crowd-sourcing, which
involved recruiting multiple individuals to record the utterances. The intents were identified on 2
slots: action, device. The smart home devices and their associated intents considered during the
dataset collection are in the table 1.
Each of the 20 intents may have multiple transcriptions to account for variations in natural language
expressions. For instance, the ”lights on” intent in Luganda might include transcriptions like ”saako
ettaala,” ”ntelaako ettaala,” ”ettaala gyitekeeko,” and more. The data was collected using smart-
phones, capturing audio recordings in various formats such as .wav, .aac, and .m4a. All audio files
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Table 1: Intents and Actions for Home Automation Devices

Device Actions
Lights, Alarm, TV, Fridge, Camera - On, - Off
Door - open, - close
Fan - On, - Off, - Increase speed, - Decrease speed
Speaker - On, - Off, - Increase volume, - Decrease volume

were converted to the 16KHz .wav format for consistency using ffmpeg3, an audio processing tool.
A total of 10,200 audio files were collected from 81 participants (43 males and 38 females, aged 20
to 25), divided into three sets: 8,127 for training, 1,068 for testing, and 1,005 for validation. Special
attention was paid to the test set, ensuring that audio files used for this set were recorded from 7
(4 male and 3 female) speakers, and none appeared in the training set. This was done to simulate
real-world scenarios where the model may face unseen speakers during deployment, thus assessing
the model’s robustness. This dataset has been made publicly available on Havard Dataverse4 at this
DOI as the Luganda Voice Commands Dataset.

4.2 DATA PREPROCESSING

Data preprocessing involved audio signal processing, data augmentation, and feature extraction,
with separate experiments conducted for the Wio Terminal and Raspberry Pi. The data augmenta-
tion process was implemented to expand the training dataset, providing new variations and realistic
scenarios for the model to learn from. This function took the original signal as input and returned
the original signal along with two augmented versions: one with added white noise and another with
pitch scaling applied. MFCC features were then extracted from raw audio. Experiments involved
feature extraction from both augmented and unaugmented audio data. For the Wio Terminal, 10
features were extracted to assess the impact of feature dimensionality, while for the Raspberry Pi,
two feature sets were used: 10 MFCCs and 13 MFCCs.

4.3 MODEL DEVELOPMENT

This study employed CNNs to develop the Luganda speech intent classification model using the
extracted MFCC features. The model architecture, hyperparameters, and training process were fine-
tuned to maximize the validation accuracy using an EarlyCallback callback with a patience of 20.
The model architecture was as shown in figure 1.
Two variations of CNN model architectures were used. The first included multiple Conv2D lay-

Figure 1: Model Architecture

ers followed by BatchNormalization and Max-Pooling layers. It included a Global Max Pooling,
dropout, and dense layers. A softmax activation function was applied at the classification layer,
transforming the previous dense layer’s output into a probability distribution over the different
classes. In a modified architecture, the Flattening layer replaced the Global Max Pooling layer,
reshaping the output into a 1-dimensional vector before being fed into the subsequent layers. Both
architectures were trained and evaluated using the respective sets of audio features. The choice
of models for the Wio Terminal and Raspberry Pi was based on experiments detailed in the next
subsection (4.4).

4.4 EXPERIMENTS

We conducted experiments to identify the best model architecture and data augmentation techniques
for deployment on the Wio Terminal and Raspberry Pi. Four experiments (A-D) were carried out for

3https://ffmpeg.org/
4https://dataverse.harvard.edu/
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the Wio Terminal and eight (1-8) for the Raspberry Pi. Experiments A and B for the Wio Terminal
and 1 and 2 for the Raspberry Pi assessed models trained with and without data augmentation,
using 10 MFCCs with a Global Max Pooling layer. Experiments C and D for the Wio Terminal
and 3 and 4 for the Raspberry Pi replicated these but used a Flattening layer instead of Global Max
Pooling. Experiments 5 and 6 for the Raspberry Pi explored using 13 MFCCs, with and without
data augmentation. Finally, Experiments 7 and 8 were examined using a Flattening layer with 13
MFCCs, again with and without data augmentation. The optimal model was chosen for quantization
for each deployment mode.

4.5 MODEL DEPLOYMENT

The best models from the quantization process for deployment on the Wio Terminal and Raspberry
Pi were deployed on the corresponding devices.

4.5.1 DEPLOYMENT ON THE WIO TERMINAL

The model was converted to TensorFlow Lite format with int8 quantization and transformed into
a .h file for Arduino sketches. The Wio Terminal’s microphone captured the audio, and MFCC
calculation was applied to extract relevant features. Inference was done on the features and results
were displayed on the screen. However, due to the board’s processing limitations, it could not
support both the model and WiFi capabilities, so we turned to Raspberry Pi to proceed with IoT
integration goals.

4.5.2 DEPLOYMENT ON RASPBERRY PI

We deployed the intent classification model on a Raspberry Pi for real-time inference and integration
into the smart home system. Audio snippets were captured at 16000KHz using reSpeaker 2-Mics
Pi HAT, followed by extraction of features for speech intent classification. Upon classification,
commands were broadcast to IoT devices, enabling voice-controlled device operation in Luganda.

4.6 IOT INTEGRATION

The Luganda speech intent classification system was integrated with the IoT devices in the smart
home environment. The process involved connecting multiple devices through a Wi-Fi connection
provided by a smartphone. The Raspberry Pi was the central hub for processing and distributing the
inferred commands to the respective IoT devices. The MQTT protocol was utilized for efficient and
reliable message transmission. Upon inferring the speech intent, the Raspberry Pi sent the corre-
sponding command to the IoT devices using the MQTT protocol. It published the command to the
topic called rpi/broadcast, to which the ESP32 boards and the Wio Terminal subscribed. The Rasp-
berry Pi also inferred the confidence level with which the prediction was made. If the confidence
level is less than 75%, it uses a unique client ID to identify itself on the network and uses callbacks
to receive MQTT messages. Upon receiving a command, the respective board interprets the mes-
sage and executes commands on its screen, providing real-time feedback to the user. Each ESP32

Figure 2: Wio Terminal display of inference

board uses a unique client ID to identify itself on the network and uses callbacks to receive MQTT
messages. Upon receiving a command, the respective board interprets the message and executes the
corresponding action on the IoT device. During the demonstration of the smart home, we used some
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simple devices to showcase all of the items in the house. These devices included an alarm: buzzer,
a door:servo motor, fan: dc motor, lights: solar bulbs, camera:blue LED, television:yellow LED and
fridge:red LED.
An evaluation was done to assess the performance of the Luganda speech intent classification sys-
tem. The system performed well in low-noise environments, with the model’s accurate predictions
and higher confidence levels. It demonstrated fairness in accuracy across different speakers’ gen-
ders. However, it faced challenges with non-fluent speakers due to variations in pronunciation and
accents.

5 RESULTS

5.1 WIO TERMINAL

The methodology involved training the model to deploy it on the Wio Terminal, which involved 4
experiments as presented in section 4.4. The results of this training phase are presented in Table
2, which showcases the outcomes of Experiments A to D. Table 3 shows results obtained after
quantizing the model for deployment on the Wio Terminal.

Table 2: Results of Data Extraction and Model Development Experiments for the Wio Terminal

Exp MFCCs Augmentation Architecture Accuracy(%) Test Loss Parameters
A 10 Without Global Max Pooling 84.64 0.6105 45,524
B 10 With Global Max Pooling 87.08 0.5252 45,524
C 10 Without Flattening 72.10 1.2226 324,052
D 10 With Flattening 82.02 0.8250 324,052

Table 3: Results of Model Quantisation: Wio Terminal

Experiment size(KB) Model Accuracy Accuarcy Tradeoff Reduction%
.h5 model 654.75 87.08 0 0
Default 183.762 87.08 0 71.94
Float 16 99.051 87.08 0 84.88
Int 8 59.242 84.55 - 2.53 90.954
Size 58.703 87.36 +0.28 91.035

Experiment B, which utilized augmentation with 10 MFCCs and the Global Max Pooling archi-
tecture, achieved the highest accuracy of 87.08% and a low loss value of 0.5252. These results
demonstrated that this configuration effectively captured and generalized data patterns, making it
suitable for real-world scenarios. Consequently, we selected the model from Experiment B for
quantization, expecting it to maintain high accuracy while reducing model size and computational
requirements. The quantization experiments on the Wio Terminal revealed a promising trade-off
between model size and accuracy. The int8 quantization method was particularly effective, reducing
the model size by 90.954% while maintaining reasonable accuracy at 84.55%. This method allowed
efficient resource management, making it a suitable choice for deployment on the Wio Terminal.

5.2 RASPBERRY PI

The Raspberry Pi model training results, comprising Experiments 1 to 8, are summarized in Table
4. Additionally, Table 5 illustrates the effects of various quantization techniques on both model size
and accuracy.
The results show that models with Global Max Pooling consistently outperformed those with Flat-
tening layers, with Experiment 2 achieving 87.08% accuracy compared to Experiment 4’s 80.43%
with the same number of features. Data augmentation also consistently improved accuracy. For
instance, Experiment 2 with augmentation achieved 87.08% accuracy, while Experiment 1 without
reached 84.64% on the same set of features. It is also observed that models with 13 MFCCs gener-
ally outperformed those with 10. Experiment 6, with 13 MFCCs and augmentation, scored 87.36%,
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whereas Experiment 2, with 10 MFCCs and augmentation, reached 87.08%. It can, therefore, be
concluded that models with Global Max Pooling, data augmentation, and 13 MFCCs give the best
configuration for a good performance.
These insights guided our approach to Slot filling, where the Global Max Pooling layer and 13
MFCCs with data augmentation were used to classify the model performance based on the action
and object slots. The model achieved 94.29% accuracy for the Action slot and 91.85% for the Object
slot, demonstrating high accuracy in classifying actions and objects.

Table 4: Results of Data Extraction and Model Development Experiments: Raspberry Pi

Exp. MFCCs Augmentation Architecture Accuracy(%) Test Loss Parameters
1 10 Without Global Max Pooling 84.64 0.7150 45,524
2 10 With Global Max Pooling 87.08 0.4709 45,524
3 10 Without Flattening 80.15 0.7582 274,900
4 10 With Flattening 80.43 0.9648 274,900

5 13 Without Global Max Pooling 83.80 0.7144 45,524
6 13 With Global Max Pooling 87.36 0.6486 45,524
7 13 Without Flattening 83.05 0.8888 274,900
8 13 With Flattening 80.99 1.1151 274,900

Figure 3: Confusion Matrix for Experiment 6

Consequently, the model from Experiment 6 and the slot-filling model were selected for further
analysis. In real-time, slot filling can create new intent combinations, such as “lights decrease” from
the object and slot outputs, ”lights” and ”decrease,” respectively, which may not exist in the original
dataset or be catered for in hardware integration. Experiment 6, on the other hand, used a single
output approach, achieving an accuracy of 87.36% and a low loss value of 0.6486. It allowed for
effective monitoring of confidence levels, ensuring consistency and reliability in real-time applica-
tions, and prevented the creation of new intents at deployment. Given its strong performance and
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Table 5: Results of Model Quantisation for Raspberry Pi

Experiment Model size(KB) Accuracy Accuracy change Reduction%
.h5 model 647.5 87.36 0 0
Default 183.859 87.36 0 71.60
Float 16 99.211 87.36 0 84.67
Size 58.805 87.73 +0.37 90.91

advantages, Experiment 6 was chosen for further analysis in the context of model quantization, and
results are shown in Table 5. The default quantization technique reduced the model size to 183.859
KB, maintaining an accuracy of 87.36%. The Float16 technique further reduced the size to 99.211
KB without accuracy loss. The size optimization technique resulted in the smallest model size of
58.805 KB, a 90.91% reduction, and slightly improved accuracy to 87.73%. Given the Raspberry
Pi’s resource and memory constraints, the size-optimized model was chosen for deployment due to
its balance of size reduction and accuracy improvement. This model was deployed for real-time
inference on the Raspberry Pi, ensuring efficient and reliable predictions with reasonable accuracy.

CONCLUSION

This research significantly advances Luganda speech intent recognition for IoT applications. It in-
troduces a crucial dataset of Luganda voice commands and employs MFCCs for effective feature
extraction. Various CNN architectures and data augmentation techniques enhance the model’s ac-
curacy. Furthermore, the model was optimized for deployment on resource-constrained devices
through quantization, ensuring high accuracy and reliability for seamless integration with IoT de-
vices. However, our ongoing efforts are focused on developing a real-time hot word detection sys-
tem. This addition will enhance user interactions by enabling hands-free voice commands, making
IoT devices even more accessible and user-friendly. This work contributes to the IoT experience for
Luganda-speaking users, enhancing user experiences and accessibility in smart homes. It bridges
language barriers, enabling integrated IoT in diverse contexts. We have made our Luganda voice
command dataset open source, which could significantly aid in developing similar technologies
and ensure the reproducibility of results. Future work can explore multi-language support and ad-
vanced machine-learning techniques for further improvements. We also plan to integrate our work
with established frameworks for low-resource Spoken Language Understanding, such as the ESP-
Net framework, to ensure that our research on Luganda does not remain an isolated endeavour but
becomes part of a broader, community-driven initiative.
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