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Abstract

Parameter-Efficient Fine-Tuning (PEFT) methods
have become crucial for rapidly adapting large
language models (LLMs) to downstream tasks.
Prefix-Tuning, an early and effective PEFT tech-
nique, demonstrated the ability to achieve perfor-
mance comparable to full fine-tuning with sig-
nificantly reduced computational and memory
overhead. However, despite it’s earlier success,
its effectiveness in training modern state-of-the-
art LLMs has been very limited. In this work,
we demonstrate empirically that Prefix-Tuning
performs badly on LLMs because of an inher-
ent tradeoff between input and prefix significance
within the attention head. This motivates us to in-
troduce Prefix-Tuning+, a novel architecture that
generalizes the principles of Prefix-Tuning while
addressing its shortcomings by shifting the prefix
module out of the attention head itself. We fur-
ther provide an overview of our construction pro-
cess to guide future users when constructing their
own context-based methods. Our experiments
show that, across a diverse set of benchmarks,
Prefix-Tuning+ consistently outperforms existing
Prefix-Tuning methods. Notably, it achieves per-
formance on par with the widely adopted LoRA
method on several general benchmarks, high-
lighting the potential modern extension of Prefix-
Tuning approaches. Our findings suggest that by
overcoming its inherent limitations, Prefix-Tuning
can remain a competitive research direction in the
landscape of parameter-efficient LLM adaptation.
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1. Introduction

Large Language Models (LLMs) have advanced at a remark-
able pace within recent years, driven primarily by larger
models and bigger training datasets [12; 27]. As a result,
training and fine-tuning LL.Ms has become prohibitively
expensive, with all but the biggest players unable to im-
plement full parameter fine-tuning on state-of-the-art mod-
els. To remedy this, parameter-efficient fine-tuning (PEFT)
methods have been introduced. One such approach is Prefix-
Tuning (PT) [17], a technique which prepends trainable
vectors to future inputs of each attention layer in the trans-
former. PT is extremely cheap to implement, while match-
ing and even surpassing other bulkier methods in a variety of
studies. However, as LLMs have grown to record sizes, PT
has failed to perform well on the largest models, gradually
losing popularity to other methods such as LoRA [11] and
Galore [38]. Earlier studies have primarily attributed this
behavior to PT’s failure to reshape attention patterns within
attention heads [26]. We show empirically that, while this
applies to more shallow transformers, it does not extend
to modern LL.Ms which tend to have a deep transformer
architecture. Prefix-Tuning large language models can in
fact result in a significant shift in the attention pattern. This
leads to our conclusion that an inability to alter attention
patterns is not the reason behind PT’s bad performance on
state-of-the-art LLMs.

In this work, we argue that the real reason PT performs
sub-optimally is its inherent tradeoff between prefix and
input significance. When the prefix is long relative to input
length, the model risks losing input specificity and being
dominated by the prefix. When the input is long relative to
prefix length, the impact of PT itself is greatly diminished.
This tradeoff is a result of prefixes being included in the
attention head itself. Motivated by this, we build on previous
work [4] to propose Prefix-Tuning+ (PT+), which relocates
the prefix outside the attention head and approximates it
with an external module consisting of a trainable matrix and
representation function. Diagnostic experiments suggest
that PT+ is substantially more expressive than standard PT,
reinforcing our choice of using the external module. We
also provide a unified overview to the choices we make
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when extending PT to PT+, discussing how readers can
potentially pick and choose what to keep when designing
future context-based methods.

To evaluate the performance of PT+, we run extensive ex-
periments in the few-shot data setting comparing it to other
popular training methods such as LoRA and PT. Our experi-
ments show that across multiple popular benchmarks, PT+
can compare directly with LoRA which is considered state-
of-the-art. In a few cases it can even exceed it. Regular PT
flounders in comparison. Our work presents the following
key contributions:

* We empirically demonstrate that Prefix-Tuning performs
poorly on modern LLMs due to an inherent tradeoff be-
tween input and prefix significance within attention heads.

¢ Introducing Prefix-Tuning+, an architecture based on
Prefix-Tuning that isolates the prefix module outside of
the attention head. We provide a unified overview of our
decision-making process in constructing PT+ to guide
future context-based method development.

* We perform experiments to show the efficacy of PT+.
Our experiments show that, in the few-shot setting, PT+
is competitive with state-of-the-art approaches such as
LoRA—achieving an average absolute improvement of
8.1% over LoRA and 29.4% over Prefix-Tuning across
all six evaluated settings.

We defer the discussion of related works to Appendix A.

2. Preliminaries
2.1. The Attention Mechanism

Consider inputs X = [x1,...,2,], where each X is a se-
quence of tokens X; where X; € R for all i € [n] such
that X € R™*<, Attention modules are a key component of
transformers which accepts the entire sequence as an input.
Typically, attention layers consist of multiple heads, each
with a separate set of parameters. For notational simplicity
we focus on single headed attention. A single attention head
takes the form:

Definition 2.1 (Single-headed Attention). Given input X €
RN>*d and trainable matrices W, Wi € R 45 Wy, €
R?*dv A single attention head takes the form:

QK"
Vdg
where O is the output, Q = XWgo, K = XWg and V =

XWy and M is a causal mask. Based on Katharopoulos
et al. [13], the attention head can be expressed as:

O = Attn(Q, K, V) = softmax < + M) vV, Q)

OT . ngi sim(qi, k‘j)v;—
’ ngi sim(gi, k;)

0; is the i-th output token whilst ¢; = z;Wq, k; = ; Wk,

€]

4
v; = ;Wy; sim(q, k) = exp(&%) is a similarity score.

2.2. Prefix-Tuning

Prefix-tuning was initially motivated by the phenomenon of
prompting and in-context learning (ICL):

Definition 2.2 (In-Context Learning). ICL allows large lan-
guage models to adapt to new tasks by prepending demon-
stration prompts to the input based on a specified criteria.
Given context prompt [z1, ...,;,] and input X, the new
prompt becomes: X'CL = [2, .., xl, 21, ..., 2]

Given the broad success of ICL, prefix tuning was intro-
duced as a natural generalization. Soft-tokens (i.e trainable
vectors) are prepended to future model inputs:

Definition 2.3 (Prefix-Tuning). Prefix-Tuning (PT) is a
form of parameter-efficient fine-tuning that prepends a se-
quence of vectors to the inputs. Given prefix [s1, ..., Sp),
where s; € R? for all 4, and input X, the new prompt be-
comes XP* = [s1,..., $p, T1, ..., T,). The vectors {s;}¥_;
are then trained based on traditional gradient based methods
while the rest of the model weights are frozen.

Referring to Equation (2), the inclusion of prefix [s1, ..., sp]
yields the following output:

ptT ngi sim(g;, kj)v]-'r + ngp sim(gs, WKSj)(WVSj)T
’ ngiSim(%kj) +Zj§p sim(gi, Wi s;)

3)
Any form of ICL is a special instance of prefix-tuning but
not vice-versa, making prefix-tuning a more flexible and
expressive form of fine-tuning compared with prompting
and ICL methods.

Compared with full parameter fine-tuning and even most
other PeFTs, prefix-tuning offers an extremely light-weight
training approach. Research shows that prefix-tuning excels
in low-data or few-shot settings and when guiding the model
to leverage a mix of its pretrained tasks, rather than learning
entirely new tasks from scratch.

3. Limitations of prefix-tuning in LLMs

In the previous section, we noted that PT is particularly ef-
fective when leveraging pretrained tasks. With the continual
increase in the size and capability of large language models
(LLMs), supported by an expanding pretraining corpus, one
might anticipate a corresponding rise in the prominence and
effectiveness of PT. However, contrary to expectations, the
adoption of prefix-tuning has significantly declined in recent
years, as evidenced by its sparse implementation on state-
of-the-art models available in repositories such as Hugging
Face. This diminished popularity is primarily due to PT’s
underwhelming performance with larger and more complex
models, which manifests in reduced accuracy and insta-
bility. As depicted in Figure 1, Prefix-Tuning consistently
under performs compared to LoRA on three commonly used
generative classification benchmarks, despite introducing
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Figure 1. The performance comparison between PT and LoRA.

a similar number of new parameters (leave the setting de-
tails B). With the advent of LoRA—a Parameter-Efficient
Fine-Tuning (PEFT) method that consistently outperforms
Prefix-Tuning on established benchmarks—the overall rele-
vance and applicability of Prefix-Tuning methods have been
increasingly questioned.

3.1. Does Prefix-Tuning alter the attention pattern?

Why does Prefix-Tuning struggle on state-of-the-art LLMs?
A common explanation is that PT fails to modify attention
distributions, merely biasing attention activations instead—a
limitation highlighted in prior work [26], particularly for
single-layer and shallow transformers. However, we argue
this does not generalize to deep, multi-layer LLMs. As
shown in Figure 5 (Appendix E.2), PT can significantly alter
attention patterns in LLMs, despite its poor performance.
This suggests that PT’s limitations stem from factors beyond
just its ability to influence attention.

3.2. Tradeoff between prefix and input significance

In this section, we argue that the fundamental limitation of
Prefix-Tuning is the inherent tradeoff between the signifi-
cance of the prefix and the input. This can be observed by
rewriting equation (3) based on the work by Petrov et al.
[26] as follows:

t T T 1T
o =1 —-a)o; + Zaij'l}j , €))
i<p
T sim(qi,Wks;) R
where aij = RS, <, smla W) % =

' T /
> j<p@ijand v = Wys.

Equation (4) shows that the output with prefix-tuning can
be represented as a linear combination between the atten-
tion from the input o; and the attention from each pre-
fix v; with weights ;. Prefix-Tuning mainly does two
things: reweighs the original attention output and adds
query-dependent bias vectors.

When the prefix is long relative to input length: In this
case, we can expect the value of « to be large, which results
in a greater change in the attention pattern since the base
model’s attention pattern is mainly dependent on o;; this
explains our observations in Figure 5. To further verify, we

have conducted experiments with different prefix lengths
and measured the attention pattern changes using the REEF
framework [37]. Our results in Table 4 confirms that as
prefix length increases, the deviation from the base attention
pattern grows. Details can be found in Appendix E.3. What
happens with a large « is a smaller contribution from the in-
put itself. The model then has reduced specificity regarding
each input and risks being dominated by the prefixes. Too
little significance may be placed upon the input itself.

This is further exacerbated by the fact that, as the length
of the prefix increases, prefix-tuning is unable to make full
use of the space spanned by the vectors {Wy s;}*_;. This
phenomenon is also noticed by [26] and is attributed to the
competing optimization goals for the prefix s;. The prefix
both needs to grab attention through Wy s; and determine
direction through Wy s;.

When the input is long relative to prefix length: the value
of « tends to be small, reducing the influence of the prefix
term. As LLMs increasingly rely on long sequences—e.g.,
through chain-of-thought reasoning [34]—the impact of
prefix-tuning diminishes. In such settings, prefix-tuning
receives too little attention to remain effective.

4. Prefix-Tuning+: Method and Framework

4.1. Motivation and Construction

A key insight from section 3.2 is that the trade-off between
prefix and input importance stems from the prefix’s con-
finement within the attention head. This motivates Prefix-
Tuning+, a novel architecture based on PT which seeks to
bring the prefix information out of the attention head itself.
We first approximate regular PT found in Equation (3) by:

T S i<isim(ai, ko) +(gi) T 3, d(Wies;)(Wys;)

' 2 i< sim(gi k) + ¢(qi) T 225, d(Wies;)

This is done by approximating the similarity metric sim(-, -)
with a kernel such that sim(-,-) ~ ¢(-)T¢(.). A similar
approach is used in past work to approximate in-context
learning prompts [4]. Their work has shown that the bias
term by = > ., d(Wis;)(Wys;)T is capable of cap-
turing contextual prompt/prefix information. The natural
generalization of this step is to replace the bias b; by a
more expressive, trainable matrix M, and the analogous
term by = Zj<p ¢»(Wgs;) by a trainable matrix N. This
resembles how Prefix-Tuning arose from in-context learning
and yields: )
ot T _ > i<isim(gi, kj)v) + ¢(qi) "M 5
’ Z.jgi sim(qi, k;) + ¢(q:) TN

Last but not least, we draw the terms containing the prefix
information (i.e. ¢(g;)M out of the attention head, remov-
ing the term in the denominator altogether to prevent an
incorrect regularization term. The final attention output of
the prefix-tuning+ architecture has the following form:

. T
pt+ T Z]SZ SIm(qiv kj)’uj T
ot T = : o@) M ©
ngi sim(qs, k;) (@)
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Choice of feature map. Regarding the choice of ¢ there are
several viable options which represent a tradeoff between
expressivity and cost. A few from existing literature include
¢(x) = elu(x) from [13] and ¢ () = ReLU(Wzx + b)
from [23]. In this study, we conduct all experiments with
¢(x) = elu(x). This is because it is the easiest to implement
and offers a good proof of concept regarding the viability
of our approach. Other choices may offer more expressive-
ness and better performance but would require significantly
more detailed tuning so we leave it to future work. Further
details on construction of the Prefix-Tuning+ modules are
in appendix.

Remark 4.1 (Expressiveness). By choosing ¢w (z) =
ReLU(Wzx + b), the term ¢y (g;) M becomes effectively
a single-layer MLP. Depending on future choices for ¢(-),
Prefix-Tuning+ has the ability to be extremely expressive,
matching methods such as full fine-tuning and LoRA.

4.2. A Unified View for Context Based Methods

This section details the design evolution of PT and PT+, pro-
viding insights into their intermediate stages and rationale
to inform future implementations. Initially, we introduce
ICL (Equation (4)), where each vector v; represents a to-
ken from the input vocabulary prepended to the transformer
input. Prompt-tuning enhances expressivity by replacing
v;- with trainable soft prompts, accommodating increased
training requirements. PT further boosts expressivity at
the expense of computational and memory resources by
prepending these soft prompts to the inputs of individual
attention heads. Moving towards PT+, two subsequent deci-
sions are pivotal:

1. Shift the prefix module out of the attention head
2. Approximate . sim(., Wik s;) by d()TM

Choice 1: Shifting the prefix module out of the attention
head is to avoid the limitations highlighted in section 3.2.
By doing so we avoid the « scaling on both the input and
prefixes so there is no longer a tradeoff between input con-
tribution and prefix significance/contribution.

Choice 2: Replacing the original similarity metric by
#(-)T M shifts the output from equation (3) to equation
(5). By doing so, we lose some of the inherent structure of
the attention mechanism. In return, we have an increase in
model expressivity from the flexibility of a training matrix
M. Since both PT and PT+ can be viewed as adding query-
dependent d-dimensional bias terms to the transformer, we
calculate the covariate output matrices of the bias from each
and find the respective eigenvalue decay. From Figure 2,
we see that with PT+, the top eigenvalues corresponding to
the main principle components are large and decay slowly
compared to PT. This indicates that the output bias spans
many principal components rather than collapsing onto a
handful of axes. In other words, Prefix-Tuning+ adds a bias

Comparison of Top-50 Attention Output Feature Values
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Figure 2. Spectrum of prefix representations.

from a more diverse, high-dimensional subspace. This is an
intuitive proxy which indicates higher expressivity.

In Prefix-Tuning+, both choices are used in conjunction.
This does not have to be the case. Users can choose to keep
the prefix term within the attention head and only apply
choice 2. The resulting output is found in equation (5). The
opposite is also true, and prefix information can be brought
out of the attention head through another module. In this
work we choose to combine the two because we consider it
expressive, easy to implement and a good proof of concept.
However, in future research, what choices to implement for
the optimal architecture is an interesting direction.

Remark 4.2 (The Memory Perspective). We can view our
method as explicitly treating the learnable matrix M as an
internal memory store. Traditional context-based PEFTsS,
such as Prefix-Tuning, incorporate context memory by ex-
tending the KV inputs, tying the memory capacity to the
prefix length. By linearizing attention and summing over the
KV circuit, our approach decouples the memory capacity
from sequence length and instead makes it proportional to
the dimensionality of M, enabling more flexible storage of
attention patterns. In practice, M allows the model to record
and retrieve token interactions without altering the core at-
tention weights by acting as an external memory module.
This memory interface is both more direct and parameter-
efficient than auxiliary MLP-based memory modules, which
require deep architectural changes, incurring higher costs.

Experiments. We evaluate Prefix-Tuning+ across four gen-
erative text classification tasks using LLaMA?2 and Qwen2.5,
emphasizing rapid adaptation, IID accuracy, and OOD gen-
eralization. We also examine attention mechanism impacts
and practical human preference alignment scenarios. Full
experimental details are provided in the Appendix B.

5. Discussion

In this work we argue Prefix-Tuning has been ineffective
on modern LLLMs because prefixes are "trapped” within the
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attention head. We introduce a novel architecture that gen-
eralizes upon existing PT methods by approximating the
prefix module and shifting it out of the attention head. Sur-
prisingly, even with this naive implementation, our model
is able to match SOTA methods such as LoRA on popular
benchmarks in a few-shot setting, far outpacing previous
Prefix-Tuning methods. We treat this as proof of concept
that, if approached correctly, prefix-tuning methods are com-
petitive and an exciting future avenue of research.
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A. Appendix: Related Work

Parameter-efficient fine-tuning (PEFT) [21; 8] adapts large
language models (LLMs) by optimizing only a limited
set of parameters while freezing the majority of pre-
trained weights, reducing computational and memory
demands. This approach enables rapid model adap-
tation to downstream tasks, facilitating deployment in
resource-constrained environments without sacrificing per-
formance [9].

Weight-Based PEFT Methods. LoRA [11] represents the
most widely adopted weight-based PEFT method, intro-
ducing small, trainable low-rank matrices into transformer
layers while freezing the original weight matrices. Variants
such as QLoRA [7] and LoRA+ [10] refine this concept fur-
ther, projecting the model’s weights onto low-dimensional
subspaces to achieve efficiency comparable to full fine-
tuning at significantly reduced computational cost. How-
ever, these methods primarily adjust linear layers within
transformer blocks, indirectly affecting internal attention
patterns, and potentially limiting their flexibility in adapting
attention patterns and behaviors explicitly.

Context-Based PEFT Methods. In contrast to weight-
based methods, context-based PEFT methods directly alter
the input context provided to LLMs without modifying the
model’s weights. Prominent examples include P-Tuning [18;
19], Prompt Tuning [15], and Prefix-Tuning [17]. Among
these, Prefix-Tuning has been recognized for its excep-
tional parameter efficiency, achieving performance close
to full fine-tuning on generation tasks. Nevertheless, Prefix-
Tuning faces significant scalability issues, as performance
quickly saturates or even declines with increasing prefix
length [25; 26], thereby limiting its effectiveness in learn-
ing novel tasks that substantially differ from the pretraining
distributions. Addressing these limitations is crucial for
enhancing the versatility and applicability of context-based
PEFT approaches. In this work, we present a unified view to
better understand context-based PEFT methods and propose
advancements that extend beyond traditional prefix-tuning.

B. Appendix: Experiments

In this section, we evaluate Prefix-Tuning+ across diverse
tasks, models, and training settings, focusing on rapid adap-
tation, IID accuracy, and OOD generalization. We also
investigate the impact of attention mechanisms and extend
evaluations to practical alignment scenarios.

B.1. Experimental Setup

Datasets. We evaluate on four generative QA
tasks:BigBench [30; 31], GoEmotions [6], DBpedia [14]
and Banking77 [3]. We leave the detailed description of
those dataset in Appendix D.2.
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Table 1. Fine-Tuning Method Performance Comparison (Accuracy %). Results across datasets and models; best-performing results are in

boldface, highlighting the effectiveness of Prefix-Tuning+.

LLaMA2-7B-Chat

Qwen2.5-3B-Instruct

Dataset
Prefix-Tuning+ Full LoRA Prefix Prefix-Tuning+ Full LoRA Prefix
Goemotion 45.2 32.7 36.2 5.6 37.3 37.8 26.8 21.2
Dbpedia 92.7 92.6 90.1 61.3 96.9 94.4 89.5 82.0
Bigbench 71.2 38.8 67.4 21.3 76.6 67.4 61.4 52.0
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Figure 3. Pareto plots illustrating the trade-off between IID performance (on Bigbench) and OOD performance (on Banking77) for

checkpoints of LLaMA2 and Qwen2.5 during training.

Training and Evaluation Protocol. We assess each
method’s ability to quickly adapt to downstream tasks in a
few-shot setting by fine-tuning on up to five independent
rounds of minimal data. In each round, we randomly sample
one example per class (6 examples for BIG-bench, 28 for
GoEmotions, and 14 for DBpedia) to form the entire train-
ing set. After fine-tuning, we report in-distribution (IID)
accuracy on each dataset’s standard test split, averaging
results over the five rounds to mitigate sampling variabil-
ity. Since the ability to quickly adapt to new tasks often
comes at the cost of generalization, we also evaluate out-
of-distribution (OOD) performance using the Banking77
intent-classification dataset without additional fine-tuning.
During inference, models receive a multiple-choice prompt
listing all 77 Banking77 intents and must select the most
appropriate label for each query. OOD accuracy is com-
puted as the proportion of test queries correctly classified,
measuring how effectively learned features generalize to
unseen domains. We perform this evaluation independently
for each of the five models fine-tuned on different source
datasets.

Models and Training Configuration. We experiment
with two pre-trained language models to assess architec-
tural effects: LLaMA2-7B-Chat and Qwen2.5-3B-Instruct.
The LLaMAZ2 series models employ the multi-head atten-
tion (MHA) [33] and Qwen2.5 use grouped-query atten-

tion (GQA) [1]. GQA ties together query heads by sharing
key/value projections, offering faster inference and lower
memory usage, which allows us to examine if such architec-
tural differences impact adaptation efficacy. Both models
are used in their instruction version in order to test the
OOD performance. We fine-tune these models using the
AdamW [20] optimizer with a small learning rate and a
fixed number of training steps (4000 steps). All methods
use same small batch size (batch size 2).

Baselines. We compare Prefix-Tuning+ against several
baseline approaches for adapting large language models,
covering both parameter-efficient and traditional full fine-
tuning, as well as a training-free prompt-based baseline:

* Full Fine-Tuning: All model parameters are fine-tuned
on the minimal training set for each round. This rep-
resents the conventional approach where all weights of
models are updated.

* Low-rank adaptation (LoRA [11]): LoRA freezes orig-
inal model parameters and introduces trainable low-rank
update matrices into each Transformer layer. Only these
small rank-r matrices are learned, substantially reducing
the number of trainable parameters. We set r = 64 to
approximately match the parameter count introduced by
Prefix-Tuning+.
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¢ Prefix-Tuning (PT [17]): Standard prefix-tuning keeps
all model weights fixed, learning only a continuous prefix
vector that is prepended to the input at each Transformer
layer. We follow the original implementation and set the
prefix length m = 32.

¢ In-Context Learning (ICL [2]): Unlike the previous
methods, ICL involves no parameter updates. Instead,
the training examples are directly provided as demonstra-
tions in the context at inference.

B.2. Supervised Fine-Tuning Performance Across Tasks

PEFT techniques aim to rapidly adapt large pre-trained
language models (LLMs) to downstream tasks by updat-
ing a limited number of parameters. To study the effec-
tiveness and adaptability of our proposed Prefix-Tuning+
across diverse classification scenarios, we conduct exper-
iments on several tasks with the five round data setting.
We summarize the accuracy results in Table 1, compar-
ing Prefix-Tuning+ with various baseline approaches across
the evaluated datasets. Our Prefix-Tuning+ consistently
demonstrates superior or highly competitive performance
compared to all baseline methods. Specifically, on BIG-
bench, Prefix-Tuning+ achieves an accuracy of 71.2% with
LLaMA2-7B-Chat and 76.6% with Qwen2.5-3B-Instruct,
significantly outperforming LoRA, Prefix-Tuning, and full
fine-tuning. On DBpedia, Prefix-Tuning+ also achieves top
results (92.7% for LLaMA2, 96.9% for Qwen2.5), match-
ing or exceeding the performance of the strongest baselines.
For GoEmotions, Prefix-Tuning+ remains robust, reaching
45.2% accuracy with LLaMA2-7B-Chat and achieving a
competitive 37.3% with Qwen2.5-3B-Instruct. These out-
comes underscore Prefix-Tuning+ ’s capability to effectively
generalize and perform across varied classification tasks and
model architectures.

B.3. Balancing In-Distribution Accuracys and
Out-of-Distribution Generalization

An inherent IID-OOD performance trade-off typically
emerges when models are trained to optimize for specific
downstream tasks. In this section, we aims to study robust-
ness of various fine-tuning approaches in effectively bal-
ancing IID performance with OOD resilience. Specifically,
we examine the performance of the LLaMA2-7B-Chat and
Qwen2.5-3B-Instruct models trained on the three datasets
(BigBench, GoEmotions, and DBpedia). IID performance
is measured directly on the hold-out part of those datasets,
while OOD performance is evaluated using the Banking77
dataset. To provide a clear visualization, we present Pareto
plots that depict the trade-off between IID (x-axis) and OOD
(y-axis) performance. Each point on these plots represents
the performance throughout training (from various check-
points saved in different steps), with points of the same color
corresponding to checkpoints from the same fine-tuning ap-

Table 2. Performance improvements of Prefix-Tuning+ over LoORA
on alignment tasks using SFT, DPO, and SimPO objectives (evalu-
ated with AlpacaEval 2).

Method SFT DPO SimPO
LoRA +0.49 +3.52  +1.24
Prefix-Tuning+ +0.76 +4.66 +1.74

proach. The results of two models on BigBench are shown
in Figure 3. These plots clearly demonstrate the perfor-
mance trade-offs and highlight the differences in how each
model generalizes from IID conditions to OOD scenarios.
Notably, our proposed method consistently appears on the
Pareto front, indicating that it achieves an optimal balance
between IID and OOD performance. We leave results on
more datasets in Appendix D.3.

B.4. Performance Across Varying Data Sizes and
Attention Mechanisms

To evaluate how effectively Prefix-Tuning+ scales with train-
ing set size and different attention mechanisms, we con-
ducted experiments using the BigBench dataset, incremen-
tally increasing dataset size over five rounds. We fine-tuned
two distinct models, LLaMA-2-7B-Chat with standard at-
tention and Qwen-2.5-3B-Instruct with grouped-query atten-
tion (GQA)—using Prefix-Tuning+, Prefix-Tuning, LoRA,
and full-parameter fine-tuning. Figure 4 illustrates the av-
erage performance across these rounds. Our analysis high-
lights two points: first, Prefix-Tuning+ maintains strong
and consistent performance across different data scales and
attention mechanisms, effectively matching or surpassing
all baseline methods. Second, Prefix-Tuning+ shows par-
ticularly notable improvements when combined with GQA,
outperforming both LoRA and full-parameter fine-tuning.
These results indicates that Prefix-Tuning+ is effective when
paired with the widely adopted grouped-query attention
(GQA) mechanism, yielding superior performance com-
pared to existing approaches. Additional results can be
found in Appendix D.4.

B.5. Practical Alignment Tasks across Larger Datasets
and Diverse Optimization Objectives

To study the effectiveness of our proposed Prefix-Tuning+
beyond generative text classification, we performed exper-
iments aimed at aligning large language models (LLMs)
more closely with human values and intentions. Specif-
ically, we evaluated how well Prefix-Tuning+ performs
when integrated with different preference optimization
strategies. We employed the Qwen2.5-3B model opti-
mized with Prefix-Tuning+ and compared its performance
against LoRA, using three different training approaches:
supervised fine-tuning (SFT)[24] on the Magpie-Ultra v0.1
dataset[35], and two preference-based methods—Direct
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Figure 4. Performance over five incremental rounds of training data on BigBench. Prefix-Tuning+ consistently matches or exceeds
baselines, with the largest gains observed on Qwen-2.5-3B-Instruct.

Preference Optimization (DPO)[28] and Simple Preference
Optimization (SimPO)[22]—using the binarized UltraFeed-
back dataset [5]. For each training method, we used a con-
sistent dataset size of 10,000 samples to ensure fairness
and comparability of results. Following training, we eval-
uated the models using AlpacaEval 2 [16], a standardized
benchmark for alignment tasks. All experiments were im-
plemented and executed using the LLaMAFactory frame-
work [39]. Table 2 summarizes the improvement in win-
rates achieved by each method. Prefix-Tuning+ consistently
delivered higher win-rate increases compared to LoRA
across all training objectives, highlighting its robustness
and versatility. The advantage of Prefix-Tuning+ was par-
ticularly pronounced in preference-based settings (DPO and
SimPO), where it notably outperformed LoRA. Interestingly,
our experiments revealed a slight but consistent advantage
of DPO over SimPO, contrary to prior findings [22]. We hy-
pothesize that SimPO’s comparatively weaker performance
in our setup may stem from its sensitivity to hyperparameter
configurations [29].

C. Appendix: Discussion

To conclude, in this work we argue that the reason why
prefix-tuning has been ineffective when applied to mod-
ern large language models is that prefixes are "trapped"
within the attention head. To remedy this, we introduce
a novel architecture that generalizes upon existing prefix-
tuning methods by approximating the prefix module and
shifting it out of the attention head. Surprisingly, even with
this slightly naive implementation, our model is able to
match state-of-the-art methods such as LoRA on popular
benchmarks in a few-shot setting, far outpacing previous
prefix-tuning methods. We treat this as proof of concept
that, if approached correctly, prefix-tuning methods can be
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competitive and are an exciting future avenue of research.

We also acknowledge the existing limitations of our work.
Rather than presenting a clear alternative to existing PEFTs,
Prefix-Tuning+ is primarily a proof of concept. The design
of our method has yet to be thoroughly ablated. For instance,
this line of work can potentially be improved utilizing a
more power choice of feature map ¢ such as a learnable one.
Further studies are needed to test the limits of our method
in more tasks and with more training objectives.

D. Appendix: More Experiment Results
D.1. Attention Map of Three Different Methods
D.2. Datasets

We use four generative classification datasets:

¢ (1) BigBench [30; 31]: A comprehensive evaluation
suite consisting of 23 challenging tasks. We focus on
the Date Understanding task, formulated as a 6-class
QA problem in which the model must choose one of
six answer categories. For simplicity, we refer to this
setting as BigBench.

* (2) GoEmotions [6]: A fine-grained emotion classifica-
tion dataset containing 58K Reddit comments labeled
with 27 emotion categories plus neutral (28 classes
total). As the largest human-annotated English emo-
tion dataset, GoEmotions covers a broad taxonomy of
emotions. We cast this as a generative QA task: the
model reads a comment and generates the correspond-
ing emotion label.

* (3) DBpedia [14]: A widely used ontology classifica-
tion dataset consisting of Wikipedia abstracts assigned
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Figure 5. Attention Map of LLaMA2-7B-Chat, and its LoRA and Prefix-Tuning fine-tuned versions.

to 14 top-level classes. We formulate this as a genera-
tive QA task where the model must output the correct
class name given an abstract.

* (4) Banking77 [3]: A challenging intent classification
dataset designed for conversational systems, consisting
of 13,083 customer service queries annotated across
77 categories. We formulate this as a generative QA
task where the model must generate the correct label
given a customer query.

D.3. In-Distribution Accuracys and Qut-of-Distribution
Generalization

In this appendix, we provide additional Pareto plots to
complement the analysis presented in expriments section.
Specifically, Figures6 and 7 illustrate the trade-offs between
in-distribution (IID) and out-of-distribution (OOD) perfor-
mances for fine-tuned LLaMA2-7B-Chat and Qwen2.5-3B-
Instruct models across two additional datasets: GoEmotions
and DBPedia.

Each plot shows the IID accuracy (x-axis) evaluated directly
on the respective dataset’s held-out test set, and the OOD
accuracy (y-axis) evaluated on the Banking77 dataset with-
out further fine-tuning. Points within each plot represent
model checkpoints captured at different training intervals,
with colors indicating the respective fine-tuning methods
used.

Consistent with our observations in the main text, the pro-
posed method frequently occupies positions near the Pareto
front. This indicates its effectiveness in maintaining a bal-
anced performance between achieving high accuracy on IID
tasks and exhibiting strong generalization to OOD scenarios.

D.4. Performance Across Varying Data Sizes and
Attention Mechanisms

To further validate the robustness and adaptability of
Prefix-Tuning+ across different tasks and attention mech-
anisms, we provide additional experiment results on
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two more datasets: GoEmotions and DBpedia. Simi-
lar to the main experiment, we incrementally increased
the training set size across five rounds, fine-tuning
two models—LLaMA-2-7B-Chat (multi-head attention,
MHA) and Qwen-2.5-3B-Instruct (grouped-query attention,
GQA)—using Prefix-Tuning+, Prefix-Tuning, LoRA, full-
parameter fine-tuning, and the In-context Learning (ICL)
baseline. Figure 8 and 9 illustrates the results across these
additional datasets. Overall, these supplementary results
reinforce our primary findings that Prefix-Tuning+ scales
effectively with data size and adapts particularly well to the
grouped-query attention mechanism, outperforming existing
parameter-efficient methods.

E. Appendix: Verification Experiment Setup

To better understand how different methods affect model
behavior, we design three comprehension-oriented experi-
ments that focus on analyzing attention patterns and internal
representations. These experiments aim to shed light on
the mechanisms and effects of each approach. For consis-
tency and comparability, we use the GoEmotions dataset as
the in-distribution (IID) dataset and the Banking77 dataset
as the out-of-distribution (OOD) dataset across all experi-
ments. The following subsections detail the setup of each
experiment.

E.1. Spectrum Analysis of Prefix Representations

In this experiment, we use Qwen2.5-3B-Instruct as the base
model. We fine-tune two variants—prefix_tuning (with a
prefix length of 32) and prefix_tuning+—on the GoEmo-
tions dataset using identical training configurations and a
consistent sampling strategy (5 rounds).

Let F, € R™*? denote the base model’s final layer atten-
tion outputs for n input tokens in total with representation
dimension d, and F; € R™*% represent the corresponding
fine-tuned model outputs. The representation effect (bias)
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Figure 6. Pareto plots illustrating the trade-off between IID perfor-
mance (on GoEmotions) and OOD performance (on Banking77)
for checkpoints of LLaMA2-7B-Chat and Qwen2.5-3B-Instruct
during training.

matrix is computed as:
AF =F, — F,

After normalization, we perform eigenvalue decomposition
on the covariance matrix of representation effects:

1
Y= ﬁAFTAF =VAVT
_

where A = diag(\q, ..., Ag) contains eigenvalues (A; >
... > Aq), and V is the orthogonal eigenvector matrix.

We concatenate examples from the GoEmotions test split
into the input sequences and extract the self_attn.attn_output
from the final layer. We then compute the corresponding
attention outputs bias from the two fine-tuned variants, ana-
lyze their eigenvalue spectra, and visualize the top 50 eigen-
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Figure 7. Pareto plots illustrating the trade-off between IID per-
formance (on DBPedia) and OOD performance (on Banking77)
for checkpoints of LLaMA2-7B-Chat and Qwen2.5-3B-Instruct
during training.

values to quantify how prefix tuning and our method alters
the representation space geometry.

E.2. Attention Pattern Visualization

This experiment examines how different fine-tuning meth-
ods impact attention behavior. We use LLaMA?2_7B_Chat
and Qwen2.5_3B_Instruct as base models, and fine-tune
their respective prefix_tuning and prefix_tuning+ variants
using the same data and settings as in the previous experi-
ment. We select one example each from the IID (GoEmo-
tions) and OOD (Banking77) datasets as test inputs. For
each model, we extract the self.attn.attn_weight from the
final layer and visualize it as a heatmap to reveal atten-
tion patterns. For the prefix_tuning variants, we isolate the
attention weights corresponding only to real tokens (exclud-
ing prefix tokens), normalize them, and then produce the
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Figure 9. Performance comparison over five incremental rounds of training data on DBpedia dataset.

heatmap visualization.

E.3. Representation Similarity via CKA

Inspired by the REEF framework [37], which utilizes cen-
tered kernel alignment (CKA) to quantify representation-
level differences, we evaluate the similarity between base
and fine-tuned models. The CKA similarity between two
sets of representations X (base model) and Y (fine-tuned
model) is computed as:

HSIC(X,Y)

CKAMX,Y) = VHSIC(X, X) - HSIC(Y,Y)’

where the Hilbert-Schmidt Independence Criterion (HSIC)
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is defined as:

HSIC(X,Y) = tr(Kx HKy H).

1
(m—1)?
Here, H = I — EHT is the centering matrix, and K,
Ky are Gram matrices with (Kx);; = k(X;,X,) and
(Ky)i; = k(Y;,Y;), where k is a kernel function (we use
linear kernel in our experiments). X; denotes the i-th repre-
sentation vector from layer outputs.

We use Qwen2.5_3B_Instruct as the base model, and obtain
its prefix_tuning and prefix_tuning+ variants using the same
training data and setup. The Truthful QA dataset is used
for evaluation. Following the sampling and CKA compu-
tation protocol from the REEF paper, we extract decoder
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representations from the 18" layer of each model and com-
pute the CKA similarity with the base model. This allows
us to quantitatively assess how each method alters the in-
ternal representations while controlling for computational
variance.

Table 3. CKA Similarity Between Different Methods And Base
Model

Method CKA Similarity
Base Model 1.0000
LoRA 0.9978
Prefix Tuning+ 0.9432
Prefix Tuning (32) 0.8242

As shown in Table 3, we present the CKA similarity be-
tween the base model and the models fine-tuned using three
PEFT methods: LoRA, prefix_tuning+, and prefix_tuning.
It is evident that prefix_tuning+ and LoRA exhibit notably
different effects on the model’s internal representations.
Our proposed prefix_tuning+ method induces more sub-
stantial shifts in the model’s representation space, indicating
a stronger impact on the model’s expressive capacity. On
the other hand, although prefix_tuning causes significant
changes in the attention patterns, this also leads to much
larger representation shifts, which may partly explain its
relatively weaker downstream performance.

Table 4. CKA Similarity Between Prefix Tuning And Base Model

Method CKA Similarity
Base Model 1.0000
Prefix Tuning (16) 0.8802
Prefix Tuning (32) 0.8242
Prefix Tuning (64) 0.7957

As shown in Table 4, we further examine how the prefix
length affects the representation similarity between the pre-
fix fine-tuned model and the base model under the same
dataset and training settings. It is clear that as the prefix
length increases from 16 to 64, the model’s internal rep-
resentations deviate more significantly from those of the
base model, indicating that longer prefixes introduce more
substantial changes in representation space.

In our experiments, since both Prefix-Tuning and
Prefix-Tuning+ only modify parameters within the self-
attention mechanism—without affecting other components
of the decoder layers—the resulting changes in representa-
tions can be regarded as a close approximation of changes
in the attention pattern.
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F. Appendix: Implementation Details

We implemented our experiments using PyTorch and trained
our models utilizing the DeepSpeed optimization library
with ZeRO Stage 3 to efficiently manage memory usage
during training. To further optimize memory and compu-
tational efficiency, we offloaded both optimizer states and
model parameters to CPU with pinned memory enabled,
facilitating faster data transfers. Gradient communication
and computation were overlapped, and contiguous gradients
were enforced to enhance training throughput.

The AdamW optimizer was employed with a weight decay
of 0.1, momentum terms set as f; = 0.9, [ = 0.95,
and epsilon of 1 x 10~8. Training was executed using auto-
matic precision selection between FP16 and BF16 modes
for optimal balance between performance and stability. The
learning rate was held constant at 2 x 10~° throughout the
training process. Each GPU processed a micro-batch size
of one sample per step, while gradient accumulation was
automatically managed to simulate larger batch sizes effec-
tively. Gradient clipping was automatically controlled by
DeepSpeed to maintain stable training dynamics.

For supervised fine-tuning (SFT) experiments, training was
conducted using 2 GPUs, whereas human preference align-
ment experiments utilized 8 GPUs.

G. Appendix: Limitation

Despite the promising results demonstrated by
Prefix-Tuning+, several areas remain open for explo-
ration. Firstly, our implementation utilizes the kernel
approximation for simulating attention, specifically the
exponential linear unit (ELU). While this choice enabled
efficient experimentation and a clear proof-of-concept
demonstration, other feature mappings or kernel func-
tions could potentially yield improved performance.
Exploring more sophisticated kernel approximations or
trainable kernel designs remains an exciting area for
further enhancement of expressivity and effectiveness.
Secondly, althoughPrefix-Tuning+ effectively addresses
the trade-off between prefix length and input specificity
within attention heads, our experiments did not extensively
explore the effects of varying internal dimensionalities or
architectures of the externalized prefix module. Further
studies investigating these architectural choices and their
optimization could unlock additional performance gains.
Lastly, our evaluations were primarily conducted in super-
vised fine-tuning (SFT) and human alignment scenarios.
Extending evaluations to contexts involving abundant
data would provide deeper insights into Prefix-Tuning+’s
maximum capacity to acquire new knowledge. However,
due to computational resource constraints at our institution,
such comprehensive studies were beyond our current
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capabilities. We acknowledge this limitation and leave
extensive evaluations to future research.

H. Appendix: Broader Impacts

The introduction of Prefix-Tuning+ offers significant pos-
itive impacts by making large language model (LLM)
adaptation more efficient and accessible, thus enabling
broader participation in Al research and application, par-
ticularly for resource-constrained communities and organi-
zations. Additionally, by reducing computational require-
ments, Prefix-Tuning+ contributes positively to sustainabil-
ity efforts in Al development. On the other hand, the en-
hanced ease of adapting powerful LLMs also carries risks,
such as potential misuse in generating misinformation or
biased content. It is essential for researchers and practition-
ers to incorporate ethical practices, robust monitoring, and
mitigation strategies to address these risks, ensuring that the
societal benefits of Prefix-Tuning+ significantly outweigh
its potential negative impacts.

I. Licenses

We use standard licenses from the community. We include
the following licenses for the codes, datasets and models we
used in this paper.

Datasets & Benchmarks:

BigBench [30]: MIT

* GoEmotions [6]: Apache License 2.0

DBPedia [14]: Creative Commons 3.0

Banking77 [3]: MIT
Codes:

* LLaMA-Factory [39]: Apache License 2.0

* Alpaca-eval [39]: Apache License 2.0
Models:

e Qwen2.5-3B-Instruct [36]: Apache License 2.0

e LLaMA2-7B-Chat [32]: LLaMA2 Community Li-
cense
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https://github.com/suzgunmirac/BIG-Bench-Hard/blob/main/LICENSE
https://github.com/google-research/google-research/blob/master/LICENSE
https://github.com/hiyouga/LLaMA-Factory/blob/main/LICENSE
https://github.com/tatsu-lab/alpaca_eval/blob/main/LICENSE 
https://github.com/QwenLM/Qwen2.5-VL/blob/main/LICENSE
https://github.com/meta-llama/llama-models/blob/main/models/llama2/LICENSE
https://github.com/meta-llama/llama-models/blob/main/models/llama2/LICENSE

