Under review as submission to TMLR

On Representing Convex Quadratically Constrained
Quadratic Programs via Graph Neural Networks

Anonymous authors
Paper under double-blind review

Abstract

Convex quadratically constrained quadratic programs (QCQPs) involve finding a solution
within a convex feasible region defined by quadratic constraints while minimizing a convex
quadratic objective function. These problems arise in various industrial applications, including
power systems and signal processing. Traditional methods for solving convex QCQPs
primarily rely on matrix factorization, which quickly becomes computationally prohibitive as
the problem size increases. Recently, graph neural networks (GNNs) have gained attention
for their potential in representing and solving various optimization problems such as linear
programs and linearly constrained quadratic programs. In this work, we investigate the
representation power of GNNs in the context of QCQP tasks. Specifically, we propose a
new tripartite graph representation for general convex QCQPs and properly associate it
with message-passing GNNs. We demonstrate that there exist GNNs capable of reliably
representing key properties of convex QCQPs, including feasibility, optimal value, and optimal
solution. Our result deepens the understanding of the connection between QCQPs and GNNs,
paving the way for future machine learning approaches to efficiently solve QCQPs.

1 Introduction

Quadratic programs (QPs) are a pivotal class of optimization problems where the objective function is
quadratic, and the constraints are typically linear or quadratic. Based on the nature of constraints, QPs
can be further classified as linearly constrained quadratic programs (LCQPs) and quadratically constrained
quadratic programs (QCQPs). When the objective and constraint matrices are positive semi-definite, the
problem becomes a convex QCQP, making it both theoretically interesting and practically important. Convex
QCQPs arise in various critical applications such as robust optimization in uncertain environments (Ben-Tal &
Nemirovski, [2001; Boyd & Vandenberghe, [2004), power flow (Bienstock et al.,|2020)), and signal processing (Luol
et al., 2010).

Solving QPs, especially those with quadratic constraints, presents significant challenges. Traditional methods
often involve computationally intensive procedures that would struggle with scalability and real-time processing
requirements. For example, the interior-point method (Nocedal & Wright, [1999) for a general n-variable QP
involves solving a sequence of linear systems of equations, necessitating matrix decomposition with a runtime
complexity of O(n?). This leads to substantial computational burden in the large-scale case. Similarly,
active-set algorithms (Gill et al.l |2019)), which work by iteratively adjusting the set of active constraints, can
also become computationally demanding as the number of constraints and variables increase.

In recent years, advances in machine learning (ML) have opened new avenues for enhancing the solving
process of QPs. There are mainly two categories of ML-aided QP methods. The first category aims to learn
adaptive configurations of a specific QP algorithm or solver to accelerate the solving process (Bonami et al.,
2018} [Ichnowski et al., [2021; [Jung et al., |2022)), while the second focuses on predicting an initial solution
of QPs, which is either directly taken as a final solution or further refined by subsequent algorithms or
QP solvers (Bertsimas & Stellato, [2022; |Gao et al.l 2021; |Sambharya et al., 2023; |Tan et al., |2024; Wang
et al., 2020; Xiong et al.). Additionally, Xiong et al.| (2024]) proposes a hypergraph-based framework for
solving QCQPs. Most of these methods utilize graph neural networks (GNNs) to leverage the structural

Under review as submission to TMLR

properties of graph-structured data, making them particularly well-suited for representing the relationships
and dependencies inherent in QPs. By encoding QP instances into graphs, GNNs can capture intricate
features and provide adaptive guidance or approximate solutions efficiently.

In addition to these studies, theoretical research on the expressive power of GNNs (Zhang et al., |2024; |Li &
Leskoved, |2022) and their relation to optimization problems has further strengthened the understanding of
their capabilities. For instance, Chen et al.| (2023al) and |Chen et al.| (2023b) established theoretical foundations
for applying GNNs to solving linear programs (LPs) and mized-integer linear programs, respectively. Further,
such foundations are extended to LCQPs and their discrete variant, mixed-integer LCQPs in |Chen et al.
(2024)).

Previous studies have empirically and theoretically demonstrated the utility of GNNs in speeding up existing
QP solvers and directly approximating solutions for various QP instances. However, the question of whether
GNNs can accurately predict key properties of QCQPs, such as feasibility, optimal objective value, and optimal
solution, remains open. This paper aims to address the aforementioned gap by exploring both theoretical
foundations and practical implementation of using GNNs for solving convex QCQPs. Specifically, we propose
a tripartite graph representation for general convex QCQPs, and establish theoretical foundations of applying
GNNs to optimize QCQPs. The distinct contributions of this paper can be summarized as follows.

e« Graph Representation. We propose a novel tripartite graph representation for general QCQPs,
which divides a QCQP into three types of nodes: linear-term, quadratic-term, and constraint nodes,
with edges added between heterogeneous nodes to indicate problem parameters.

e Theoretical Foundation. We conduct analysis on the separation power as well as approximation
power of message-passing GNNs (MP-GNNs). We showed that MP-GNNs are capable of capturing
some key properties of convex QCQPs.

e Empirical Evidence. We conduct initial numerical tests of the tripartite MP-GNNs on small QCQP
instances. The results showed that MP-GNNs can be trained to approximate the key properties well.

Building on the theoretical insights of our work, we establish a deeper understanding of the equivalence
properties in convex QCQPs. By examining what key properties of QCQPs can be represented by GNNs, we
gain a clearer view of QCQPs’ intrinsic geometry and feasibility structure.

Although our work is primarily theoretical, it opens up interesting opportunities for future empirical
investigation. In particular, our insights can inform the design of practical GNN-based solvers that improve
efficiency in tackling convex QCQPs. Moreover, while our main focus is on convex QCQPs, many solvers for
more general, non-convex QCQPs rely on relaxation steps involving convex QCQPs at intermediate stages.
Consequently, our insights could help accelerate or guide the solving of these relaxation-based subproblems,
offering a pathway to enhanced performance even in non-convex scenarios.

Notations

Throughout this paper, scalars or vectors are denoted by lowercase letters (e.g., a), and matrices are denoted
by uppercase letters (e.g., A). For a vector a, we denote its i-th entry by a;. For a matrix A, the entry in the
i-th row and the j-th column is denoted by a; ;. We use 0 and 1 to denote vectors or matrices with all-zero and
all-one entries, respectively. For any positive integers m,n with m < n, we define [m,n] == {m,m+1,--- ,n}
to be the set of all integers ranging from m to n. For brevity, we define [n] :==[1:n] = {1,2,--- ,n}.

Under review as submission to TMLR

2 Graph Representation of QCQPs

2.1 Quadratically Constrained Quadratic Programs

In this work, we study QCQPs defined in the following form:

: oy LT T
Iin f(zx) =5 Qr+p'x

1 . , ,
s.t. ixTsz + @)z +b <0 Vie[m]

mLSxSmU

where Q, Q% € S™*", p,p' € R*, b € R, 2 € (RU {—o0})", and 2V € (R U {4+00})". The problem has n
optimization variables and m constraints. We refer to the tuple (m,n) as the problem size of QCQP. Both
the objective function and the constraints are associated with quadratic functions. The QCQP problem is
conver if Q and Q%’s are all positive semi-definite.

We denote the feasible set of Problem by X. If X # (), the QCQP is said to be feasible; otherwise, it
is said to be infeasible. A feasible QCQP is said to be bounded if the objective is bounded from below on
X, i,e., there exists z € R such that f(z) > z for every x € X; otherwise, it is said to be unbounded. For a
feasible and bounded QCQP, z* € X is said to be an optimal solution if f(z*) < f(z) for every x € X. We
remark that a QCQP always admits an optimal solution if it is feasible and bounded, but such an optimal
solution might not be unique.

2.2 Tripartite Representation of QCQPs

The first theoretical result demonstrating the representation power of GNNs in solving optimization problems
was provided by |Chen et al.|(2023a)). Their work employs a bipartite graph representation where variables
and constraints are modeled as nodes. In this encoding, the linear constraint coefficients are edge features, the
right-hand-side values are constraint node features, and the objective coefficients are variable node features.
They showed that GNNs based on this graph representation can universally approximate the optimal solution
of LPs, as well as properties of feasibility and boundedness. This bipartite graph modeling was later extended
by encoding quadratic objective terms as edge features between variable nodes to analyze the representation
power of GNNs for LCQPs (Chen et al., 2024).

Despite these advances, it remains challenging to develop graph representation to encode all information of
general QCQPs while maintaining simplicity for GNN processing. Due to the presence of quadratic terms, a
QCQP generally involves O(n? x m) coefficients. Consequently, a graph encoding all QCQP information
inherently exhibits a complexity of the same order, O(n? x m). There are two natural extensions of the
traditional bipartite representation of LPs/LCQPs to QCQPs.

— Hyperedge Representation. This approach adds hyperedges to the traditional bipartite graph to
represent quadratic coefficients, turning the graph into a hypergraph. However, to the best of our
knowledge, most of the current GNN architectures struggle to handle hyperedges.

— Vector Feature Representation. In this extension, all coeflicients are encoded as features
associated with the n variable nodes and the m constraint nodes, resulting in a graph with vector
features of varying sizes, depending on the problem. However, existing GNNs are generally incapable
of processing features of varying dimensions.

To fill this gap, we introduce an undirected tripartite graph representation Gqceqp = (V, E) that encodes
all elements of a QCQP . Compared to the traditional bipartite graph modeling for LPs and LCQPs,
our tripartite graph representation introduces an additional class of nodes to model the quadratic terms of
variables. This modification allows us to represent QCQPs without any loss of information. In this paper, we
will show that the tripartite representation enables GNNs to universally approximate solutions for convex

QCQPs.

Under review as submission to TMLR

) 1 n e - n =TT .~
min QZQ“ mf +Zij Wy +ij g N
j=1 i>k j=1
1SN . LI . RS
s.t. 52@% zf +ZQ;k By +Zp} z; +b° <0 Vie[m]
j=1 >k j=1

QCQP formulation Tripartite representation

Figure 1: A tripartite representation of QCQPs. It consists of three types of nodes: variable nodes, quadratic-
term nodes, and constraint nodes. All nodes and the edges connecting them are associated with coefficients
from the formulation as features.

Formally, we model a QCQP as a tripartite graph with node sets representing variables, quadratic terms,
and constraints.

e Variable nodes (V71): Let Vi := {u,...,u,}, where node u; corresponds to variable x; and is

associated with the feature tuple (p;, x?, xf)

+ Quadratic term nodes (V2): Let £ = {(j,k) € [n] x [n] : j <k, |gjx]+ 3212, |4} 1] > 0} be the set
of quadratic term indices with non-zero coefficients in either the objective or at least one constraint.
Then, V5 = {v;i : (j, k) € L}. The feature for node v;y, is 2q; if j > k, and ¢;; if j = k.

o Constraint nodes (V3): Let V3 :={cy,..., ¢y}, where node ¢; corresponds to the i-th constraint
and is associated with the feature b;.

The full node set is V = V; U Vo U V3. El The QCQP graph contains three edge sets, each with associated
weights:

o V-V, edges (E12): Connect variable node uj € Vi to quadratic node v;; € Vy if j=jorj =k.
The weight is defined as Wy v, = 1if j > k, and 2 otherwise.

o V4—V3 edges (E43): Connect u; € V4 to constraint node ¢; € Vs if the linear coefficient p;- # 0. The
weight is defined as wy, ¢, = p}.

o V5—V3 edges (Fa3): Connect v, € Vs to ¢; € V3 if the quadratic coefficient q;i’k # 0. The weight is
defined as wy, , ¢, = 2qji-’k if 7 > k, and q;'-ﬁj otherwise.

The full edge set is given by E := E1» U E13 U Es3. For any edge, we define w; ,, = wy,, for connected nodes
x and y.

We illustrate this representation in Figure[I] We remark that there is a one-to-one mapping between a QCQP
and its tripartite graph representation Ggcqp. Our representation has two major advantages:

— Our representation forms a simple graph, making it compatible with most existing GNNs. This
facilitates the development of more efficient and task-specific GNN architectures.

— Our representation can leverage the sparsity nature of QCQP problems. That is, the numbers of nodes
and edges are also controlled by the total number of nonzero coefficients. Thus, our representation
can be efficiently applied to large and sparse instances.

IThroughout, we use u for variable nodes, v for quadratic term nodes, and ¢ for constraint nodes. Indices i, j, and k refer to
constraints, variables, and quadratic terms, respectively.

Under review as submission to TMLR

Embedding Layer

ho¥ — g8(h")

Message-Passing Layer

RtV gf(ht'“ ht,v) htv

S_———--

ht,u ht,c ht,u t+1,c trptc ptu Rtu
hO,u - gi)(hu) ho,c — gg(hc) h Sy gz(h 'h 'h)

Sub-layer 1 Sub-layer 2
C T layers D

Readout Layer

@) i
@<—®
@) v

Yy« fuut(hT'u' hT’U, hT,c)

pttlv gg(ﬁt,u'hﬂ-l,C)

S_———--

LU gz(ht,u'ht-#l,c' ht+1,1;) pttlc htu htt+lc

Sub-layer 4 Sub-layer 3

Figure 2: An overview of the GNN architecture.

Definition 1 (Spaces of Convex QCQP-graphs). We denoted by gmgfgp the set of tripartite graph representa-
tions for all convex QCQPs with n variables and m constraints.%l

3 Theoretical Results

3.1 Tripartite MP-GNNs

To study the capability of GNNs in representing QCQPs, we tailor the general MP-GNNs for the tripartite
nature of the introduced QCQP graph representation. An overview is depicted in Figure

Specifically, we consider the family of tripartite MP-GNNs consisting of an embedding layer, T' message-passing
layers (each comprised of four sub-layers), and a readout layer, detailed as follows:

e Embedding Layer. The initial features for all nodes are obtained by projecting their input features
into a hidden space R using learnable embedding functions:

RO — g¥(RY) VYu € Vi,
ROV < g9(hY) Vv € Vs,
h%¢ < g3(h¢) Ve € Vs,

where h*, h¥, and h¢ are the input features of nodes in Vi, Vo, and V3, respectively, and ¢?, g9, g9
are the embedding functions for each node type.

o Message-Passing Layer. Each message-passing layer employs four distinct sub-layers to update
node features, using learnable functions f/ and gf. Each sub-layer updates the features of nodes in
one set by aggregating messages from a specific subset of neighboring nodes, as detailed below.

2For any QCQP graph in gg‘g&,, the associated convex QCQP can be characterized by its coefficient tuple
(Q,{Qi};’;pp, {pi};’él, {v* ;’él,xL,xU), where Q, Q" € ST. We define a topology on Gqcqp: for Q, Q" and p,pt we use
the topology induced by the norm of the linear mappings defined by the matrices and vectors, and for 2=, U, b* we use euclidean

topology on R and discrete topology on the infinite values. In numerical experiments, we represent the infinite values by
introducing an extra infinity indicator.

Under review as submission to TMLR

— Sub-layer 1: Update Quadratic Nodes from Variables (V; — V5):

Rt gt (ht’”, Z wuvvff(ht’“)) Vv € Va.

ueVy

This step computes an intermediate representation h*? for each quadratic node v based on
incoming messages from variable nodes u € V.
— Sub-layer 2: Update Constraint Nodes from Variables and Quadratic Nodes (V;+V5 —
V3):
RITLE — gh (RDC,mig,mby) Ve € Vi,

where miz = Y v Wuf3(h"") and mby = 37y, wy o f5(h"") denote the messages from
variable nodes and quadratic nodes, respectively. This sub-layer produces the updated constraint
node features for the next step.

— Sub-layer 3: Update Quadratic Nodes from Constraints (V3 — 153):

RHLY gt <ht’”7 > wc,vfi(ht+1’c)> Vv € V.

ceVs

Here, the intermediate representations h*V are updated using the new constraint node features
htt1:¢ to produce the final quadratic node features for this layer.
— Sub-layer 4: Update Variable Nodes from Constraints and Quadratic Nodes (V3+V, —
Vl):
e gfl (ht’“, mél, mél) Yu € Vi,

where mb; = Y oy, weu fE(WTH) and mby = 37 oy wy W fE(RTHY) are the messages from
constraint nodes and the updated quadratic nodes, respectively. This completes the update
cycle for the layer.

The four sub-layers implement a structured, alternating update scheme. The first two sub-layers
propagate information from variable nodes to constraint nodes, passing through the quadratic nodes
to incorporate information about quadratic terms. This allows the constraint node representations to
be informed by the current state of the variables and their quadratic interactions.

Conversely, the last two sub-layers propagate information in the reverse direction, from the updated
constraint nodes to the variable nodes. By again routing messages through the quadratic nodes, the
network learns the relationship between constraints and quadratic terms, using this to refine the
variable node representations. This bidirectional, structured message-passing is crucial for capturing
the complex dependencies when representing QCQPs.

e Readout Layer. The readout layer maps the final node features from the T-th message-passing
layer to an output y € R® using a learnable function f,,;. We consider two output types:

— Graph-level output (s = 1): The output is a scalar representing the entire graph. We compute
it as:
y - fout (G;l, ag, a/3) 9
where a1 = Y, oy, BT, ag = Y0 oy, BTV, and az = Y- .y, B¢ are the aggregated features
from variable, quadratic, and constraint nodes, respectively.

— Node-level output (s = n): The output is a vector where each component corresponds to a
variable node. For each node u; € Vi:

Yj = four (W1, a1,4,,a2,a3), Vj € [n]

where ay,,; = ZueVl\ {u;} hTv aggregates features from all other variable nodes, providing
contextual information about the graph excluding node u; itself.

Under review as submission to TMLR

Definition 2 (Spaces of GNNs). Let Fqcqp (R?) denote the collection of all tripartite MP-GNNs, parameterized
by continuous embedding functions g?, € {1,2,3}, continuous hidden functions in the message passing layers
gl with [€ {1,2,3,4}, h! with [€ {1,2,3,4,5,6}, and the continuous readout function fout. Specifically, for
a given problem size (m,n) of QCQP, there exists a subset of GNNs in Fgcqp(R®) that maps the input
space GGiqp to the output space R®. This subset of GNNs are denoted by F(gp(R?).

We define the following target functions, characterizing some key properties on learning an end-to-end network
to predict the optimal solutions of convex QCQPs:

Definition 3 (Target mappings). Let Gqoqp be a tripartite graph representation of a QCQP problem. We
define the following target mappings.

o Feasibility mapping: We define @feas(Gqooqrp) = 1 if the QCQP problem is feasible and
Dreas(Gqooqp) = 0 otherwise.

o Boundedness mapping: for a feasible QCQP problem, we define ®youna(Gqeqr) = 1 if the QCQP
problem is bounded and ®pouna(Ggcqr) = 0 otherwise.

o Optimal value mapping: for a feasible and bounded QCQP problem, we set ®opi(Gqeqr) to be its
optimal objective value.

e Optimal solution mapping: for a feasible, bounded QCQP problem, there must exist at least an
optimal solution, but the optimal solution might not be unique. However, if the QCQP is convex,
there exists a unique optimal solution z* with the smallest />-norm among all optimal solutions.
Therefore, for a convex QCQP we define the optimal solution mapping to be ®s01(Ggcqr) = z*.
Since the optimal solution with the smallest ¢o-norm may not be unique for non-convex QCQPs, we
do not define its optimal solution mappingﬂ

3.2 Universal approximation for convex QCQPs

Our theoretical analysis rests on the following key lemma, which establishes that the tripartite WL-test can
transfer solutions between equivalent QCQP instances.

Lemma 1. Let T,7 (with given sizes m,n, encoded by G,G € Goeap) be two QCQP instances. If the

tripartite WL-test cannot separate G' from G, then for any feasible solution z of Z, there exists a feasible
solution Z for Z such that:

(i) 227Qz+p 'z < 32" Qu+p
(i) lIz[l2 < [|][2.

Lemma [1] resolves a fundamental challenge. In LPs/LCQPs, solution transfer between equivalent instances
can be achieved through straightforward averaging of variable values within node color classes. For QCQPs,
this direct approach fails because the average of products does not equal the product of averages. Our
core contribution is proving that the stable colorings generated by the tripartite WL-test provide sufficient
structural information to overcome this limitation. The solution Z is constructed by averaging the values of
the original solution = across all variables belonging to the same color class in G. While this averaging does
not preserve individual quadratic terms, we prove that the collective quadratic forms—the weighted sums of
quadratic terms within each constraint—are appropriately controlled due to the color stability of the graph
representation. This ensures that feasibility is maintained in Z and the objective value is non-increasing. This
lemma establishes the fundamental separation power of the tripartite WL-test: it can distinguish between
QCQP instances that have different optimal values or solution structures.

Building on this foundation, we demonstrate that for convex QCQPs, any target function in Definition [3] can
be universally approximated by MP-GNNs. Formally, we have the following theorem.

3In fact, Section shows that there exists a pair of non-convex QCQPs that cannot be distinguished by any MP-GNNs
based on tripartite graph representation. Thus, even if an optimal solution mapping for non-convex QCQPs is defined, MP-GNNs
cannot universally approximate it.

Under review as submission to TMLR

Theorem 1. For any probability measure P on the space of convex QCQPs ggc’;ép and any d,¢ > 0, there
exists F' € Faqp(R?) such that for any target mapping ® : Goagp — R® defined in Definition (3} we have

P{|[F(Gqcqr) — ®(Gqcqp)|| > 6} <e. (3.1)

Theorem [I] highlights that sufficiently expressive GNNs can predict the feasibility, boundedness, optimal
value, and optimal solution for convex QCQP problems with an arbitrarily small error. The proof of Theorem
is provided in Appendix [A] The convexity requirement is essential for our theoretical results. Convexity
ensures that the averaged solution z constructed in Lemma [1| not only remains feasible but also satisfies
the critical objective value bound in condition (i). This property enables the translation of the WL-test’s
separation power into the GNN’s approximation capability for the target functions ®.

3.3 MP-GNNs can not represent general non-convex QCQPs

In contrast to convex QCQPs, MP-GNNs based on tripartite graph representation do not possess universal
representation power for non-convex QCQPs. Formally, we have the following propositions.

Proposition 1. There exists non-convex QCQP instances 7,7 encoded by tripartite graph representation G, G
respectively, such that ®(G)feas 7 Preas(G), but any GNN F € Facqr(R) gives F(G) = F(G).

Proposition 2. There exists non-convex QCQP instances 7,7 encoded by tripartite graph representation G, G
respectively, such that

(i) q)(G)OPt # q)oz)t(é);

(ii) the optimal solution sets of Z and Z do not intersect;

(i) any GNN F € Fqcqr(R) gives F(G) = F(G).

Proposition [T implies that GNNs cannot universally predict the feasibility of non-convex QCQPs. Proposition
implies that GNNs can neither universally predict the optimal value nor the optimal solution of non-convex
QCQPs. We prove both propositions by constructing counter-examples. Below we present the counter-example
for Proposition 2] We defer the formal proof of both propositions to Appendix [C]

Consider the following pair of non-convex QCQPs:

m%ﬁ T1T2 + ToXs + 3T + T4X5 + TsXe + Ty
S

3.2
sty a? <1 (3.2)
i

m%{a% T1T2 + o3 + 3Ty + T4X5 + T5Tg + Ty
xE

3.3
s.t. Zw? <1 (3.3)
i
For the former, the optimal objective value is ®p; = —%, and all optimal solutions are given by

{x€R6:x1+$2+x3:0,x4+x5+x6:072x?:1}.

(2

For the latter, the optimal objective value ®,,; = —1, and all optimal solutions are given by

6
{meRG:x1:x3:w5:—xgz—m:—m(;::t{}.

We see that the optimal values of Problem ([3.2) and Problem (3.3) are different, and their optimal solution
sets do not intersect. The tripartite graph representations of the two instances are illustrated in Figure [3] We

Under review as submission to TMLR

min x1x2 + Tox3 + T3x1 + T4T5 + Tsxg + Ty

s.t. me <1
i

min - 2129 + Tax3 + T3x4 + T4T5 + TsTe + TeT1

s.t. me <1
i

Figure 3: Left: two QCQP instances for proving Prop. |1} Right: Parts of the corresponding tripartite graph
representations to show the difference.

will further demonstrate in appendix [C] that any GNNs on the two tripartite graphs gives the same output.
Thus, Problem (3.2]) and Problem (3.3)) serve as a valid counter-example for proving Proposition

We remark that Propositions [I] and 2] demonstrate limitations specific to our proposed tripartite MP-GNN
architecture. They do not rule out the potential for other, more powerful graph representations or network
architectures to achieve universal approximation for non-convex QCQPs.

4 Computational Experiments

In this section, we present empirical experiments to validate the proposed theoretical results. The corresponding
source code is available at https://anonymous.4open.science/r/12qp-6B56 /.

4.1 Learning tasks

In Theorem |1} we established that there exists a function F' € FgégP(Rs) capable of approximating the target
mapping ® with an arbitrarily small error. To empirically confirm this claim, we design three supervised
learning tasks to find such functions Fieas, Fobj and Fyo1, which are responsible for predicting feasibility,
objective values, and optimal solutions, respectively. For each task, let {(G;,y;)}Y; be a given dataset, where
G; represents a QCQP instance and y; denotes its corresponding label. The function family Fgc’gp (R?)
is constructed using the tripartite MP-GNNs as defined in Definition [2] With all these ingredients ready,
the learned function is obtained by F' = arg minge g (re) + Zivzl L(f(G;),y:), where L(-,-) is the loss
function. Specifically, we use mean squared error for predicting objective values and optimal solutions, while
binary cross-entropy loss is employed for predicting feasibility. We chose cross-entropy loss for this binary
classification task as it is more suitable than a regression-based approach that would be needed if we were to
predict numerical degrees of constraint violation instead of a final feasibility state.

4.2 Data generation

To facilitate the supervised learning approach described above, we generate three datasets of convex QCQPs
by randomly sampling coefficients from normal distributions. These datasets consist of a general QCQP
(GP), a constrained least squares problem (CLS), and a trust-region subproblem (TRS). The formulation and
generation strategy for each dataset are outlined below.

GP: A general QCQP formulation is given in . All coefficients of Q, p, Q, p’, and b in the objective
and constraints are independently sampled from the normal distribution A'(0,1). The lower and upper
bounds z” and xV are set to be 0 and 1, respectively. The number of variables and constraints for instances
in this dataset are set to 30 and 5, respectively. We generate a small dataset for general QCQPs because
larger-scale instances with more constraints tend to be predominately infeasible.

https://anonymous.4open.science/r/l2qp-6B56/

Under review as submission to TMLR

CLS: Constrained least squares problems with quadratic constraints are common in various applications.
We examine the following CLS problem:
min ||Az — b))
z€R™ (41)
st. 2'Qr<ec

The elements in A, b and @ are sampled from the standard normal distribution A/(0, 1), while elements in
c are sampled from N'(1,1). For this dataset, the number of variables is set to 500, and the sparsity (the
proportion of zero elements) of @ is set to 0.95.

TRS: The trust-region subproblem is another form of convex QCQP, defined by the following formulation:

min z' Qz + 2¢' x
z€R™ (42)
st |lz))? < A?

The coefficients in @ and ¢ are independently sampled from the standard normal distribution N (0,1) and A
is sampled from A(1,1). Like the CLS dataset, the number of variables is set to 500, and the sparsity of Q is
set to 0.95.

To ensure that the generated instances remain convex, we adjust all sampled matrices () and @Q);s corresponding
to the quadratic terms in both the objective function and the constraints. Specifically, each matrix is modified
by replacing it with @ — o, where a < 0 is the minimal eigenvalue of). This adjustment ensures that the
matrices are positive semi-definite, thus guaranteeing the convexity of the corresponding QCQP instances.

For each dataset, we generate 1,000 instances for training and 300 instances for validation. All instances are
solved using the IPOPT solver (Wachter & Biegler} 2006). The resulting feasibility, objective values, and
optimal solutions are collected as labels.

4.3 GNN architecture and training settings

For the GNN described in Section there are three classes of functions {g!,..., gt} 1, {h}, ..., hE}L
and R remain unspecified. The first class, {g},...,gi}1 ;, are two-layer MLPs with layer widths of [d, d],
and ReLU as activations, where the inputs of each function are concatenated together. The second class,
{ht,... h§}L |, are linear transformations with output dimension d followed by ReLU activations. The last
one, R, is also a two-layer MLP with ReL.U activation, with widths of [d, 1] for predicting feasibility and
objective values, and [d, n] for predicting solutions. The hyper-parameter T is set to 2. For training, we
utilized the Adam optimizer with a learning rate of 0.0001 and a batch size of 16.

4.4 Main results

In this section, we present the main results for tasks with different learning targets. For the GP dataset, we
perform tasks to predict the feasibility, objective value, and optimal solution. However, the feasibility task is
omitted for the CLS and TRS datasets, as their sampled instances are predominantly feasible.

Training loss vs. numbers of parameters. The results from Table [I| show the training loss for models
with different numbers of parameters. Generally, the losses are small across all models, validating the claim
in Theorem [3.1] Moreover, we observe a consistent trend: as the number of parameters increases, the training
loss decreases.

For the GP dataset, the feasibility, objective, and solution losses all decrease as the number of parameters
increases, with the loss for the largest model (6.7M parameters) being particularly small, especially for the
objective and feasibility targets. For the CLS dataset, similar trends are observed, with the loss for the
objective function decreasing substantially from 0.0994 (15K parameters) to 0.0016 (6.7M parameters). The
solution loss in CLS remains relatively stable but still decreases as the number of parameters increases.
Finally, in the TRS dataset, both the objective and solution losses follow a similar pattern, with the objective
loss improving significantly from 2.1098 (15K parameters) to 0.0171 (6.7M parameters).

10

Under review as submission to TMLR

Table 1: Training loss vs. numbers of parameters.

Parameters
15K 21K 42K 126K 1.7M 6.7TM

feasibility 0.2114 0.0992 0.0883 0.0779 0.0254 0.0044
GP objective 0.0853 0.0293 0.0218 0.0185 0.0110 0.0034
solution 0.0604 0.0419 0.0413 0.0407 0.0397 0.0350

objective 0.0994 0.0196 0.0135 0.0096 0.0020 0.0016
solution 0.2333 0.1454 0.0175 0.0173 0.0171 0.0169

objective 2.1098 0.1979 0.1089 0.0996 0.0265 0.0171
solution 1.2004 0.4294 0.4035 0.4022 0.4017 0.4010

Dataset Target

CLS

TRS

Validation loss vs. number of samples. The validation loss results presented in Table [2] indicate that
the validation loss remains small across all configurations, highlighting the generalization capability of the
models. Additionally, as the number of training samples increases, the validation loss decreases, reflecting the
benefit of having more data for model training.

Table 2: Validation loss vs. numbers of training samples.

Samples
100 300 500 700 1,000

feasibility 0.5857 0.3167 0.1940 0.1885 0.1004
GP objective 0.1067 0.0577 0.0514 0.0421 0.0296
solution 0.1149 0.0439 0.0438 0.0434 0.0427

objective 0.0136 0.0121 0.0107 0.0086 0.0049
solution 0.0181 0.0179 0.0178 0.0177 0.0177

objective 0.2131 0.0933 0.0834 0.0792 0.0596
solution 0.4081 0.4055 0.4054 0.4054 0.4054

Dataset Target

CLS

TRS

For the GP dataset, the validation loss for feasibility, objective, and solution all decrease as the number of
samples increases. Notably, the solution loss stabilizes after 500 samples, while the objective and feasibility
losses continue to improve as the number of samples grows, with the best performance observed at 1,000
samples. The CLS dataset shows a clear reduction in the objective loss as the number of samples increases,
with the loss dropping from 0.0136 for 100 samples to 0.0049 for 1,000 samples. The solution loss in CLS
remains relatively stable across different sample sizes. Finally, for the TRS dataset, the objective loss improves
from 0.2131 at 100 samples to 0.0596 at 1,000 samples, while the solution loss remains nearly constant across
all sample sizes.

In conclusion, both the training and validation loss results highlight the effectiveness of the models, showing
that increasing the number of parameters and training samples leads to improved performance in terms of
both training and generalization.

4.5 Additional comparative results

Runtime comparison. Table 3| reports the average solving time (in seconds) and standard deviation
across the validation instances for several QCQP solvers—IPOPT (Wiachter & Biegler, 2006), Gurobi (Gurobi
Optimization, LLC}|2025), MOSEK (ApS}, |2025), SCS (O’Donoghue et al.,[2016), and ECOS (Domahidi et al.,
2013)—together with the inference time of our GNN. The results demonstrate that our GNN-based approach
delivers a substantial speedup, often by orders of magnitude, compared to all baseline solvers. However, it is
important to note that the accuracy of these baseline solvers (< 1079) significantly surpasses that of the

11

Under review as submission to TMLR

GNN, as reported in Section (with a minimal level of 1073), indicating a trade-off between speed and
precision.

Table 3: Comparison of runtime (in seconds) with solvers having a tolerance of 107°.

Method GP GLS TRS

IPOPT 0.0374(+ 0.0044) 0.0602(& 0.0115) 0.0670(% 0.0158)
GUROBI 0.0054(+ 0.0004) 0.1091(+ 0.0138) 1.8921(=+ 0.2751)
MOSEK 0.0300(+ 0.0033) 0.4014(+ 0.0274) 0.2264(£ 0.0079)
SCS 0.0311(4 0.0058) 0.6799(+ 1.0300) 0.1466(+ 0.8167)
ECOS 0.0314(4 0.0040) 4.4056(+ 0.4668) 1.6713(+ 0.5785)
GNN 0.0024(4 0.0032) 0.0022(+ 0.0030) 0.0023(+ 0.0031)

Impact of sparsity. We conducted an ablation study on datasets CLS and TRS by varying sparsity
(fraction of zero coefficients) from 0.95 to 0.8. Table EI reports the training losses. As sparsity decreases,

Table 4: Training loss on different levels of sparsity.

Sparsity
0.95 0.9 0.85 0.8

objective 0.0020 0.0036 0.0058 0.0096
solution ~ 0.0171 0.0217 0.0279 0.0323

objective 0.0265 0.0497 0.1084 0.1844
solution 0.4017 0.5338 0.7415 0.9042

Dataset Target

CLS

TRS

losses increase consistently, reflecting the added difficulty of denser problems with more complex interactions.
Our focus on highly sparse cases (e.g., 0.95) is motivated by their prevalence in practice—for example, over
35% of QPLib (Furini et al., 2019) instances exhibit sparsity above 0.95.

In addition to comparisons on runtime and sparsity, we also provide evaluations on a real-world dataset,
QPLIB, and on a task of predicting boundedness, which can be found in Appendix

4.6 Discussions

The computational efficiency of our tripartite GNN stems from two key design choices. First, the graph
structure naturally exploits problem sparsity, as edges correspond directly to non-zero parameters, ensuring
high efficiency for real-world, sparse instances. Second, the architecture uses simple message-passing layers
where the split-layer design organizes computations without increasing the total number of matrix operations,
incurring minimal overhead. We remark that our universal approximation theorem establishes expressive
power but does not quantify the parameters required for a given approximation error; deriving such bounds
remains an important direction for future work.

5 Conclusions

This paper introduces a new tripartite graph representation specifically designed for QCQPs. By leveraging
the capabilities of MP-GNNs, this approach shows theoretical promise in predicting key properties of QCQPs
with arbitrary desired accuracy, including feasibility, boundedness, optimal values, and solutions. Initial
numerical experiments validate the effectiveness of our framework. This work advances learning-to-optimize by
extending GNNs to QCQP problems, which have been challenging for traditional graph-based L20 methods.
Our findings may inspire future research into more specialized GNN architectures and principled approaches
to controlling GNN sizes for practical QCQP applications, going beyond the basic GCN structure used here.

12

Under review as submission to TMLR

References

MOSEK ApS. The MOSEK Python Fusion API manual. Version 11.0., 2025. URL https://docs.mosek|
com/latest/pythonfusion/index.html.

Waiss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural networks. In
International Conference on Learning Representations, 2020.

Aharon Ben-Tal and Arkadi Nemirovski. Lectures on modern convex optimization: analysis, algorithms, and
engineering applications. STAM, 2001.

Dimitris Bertsimas and Bartolomeo Stellato. Online mixed-integer optimization in milliseconds. INFORMS
Journal on Computing, 34(4):2229-2248, 2022.

Dan Bienstock, Mauro Escobar, Claudio Gentile, and Leo Liberti. Mathematical programming formulations
for the alternating current optimal power flow problem. /OR, 18(3):249-292, 2020.

Pierre Bonami, Andrea Lodi, and Giulia Zarpellon. Learning a classification of mixed-integer quadratic
programming problems. In Integration of Constraint Programming, Artificial Intelligence, and Operations
Research: 15th International Conference, CPAIOR 2018, Delft, The Netherlands, June 26-29, 2018,
Proceedings 15, pp. 595—604. Springer, 2018.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing linear programs by
graph neural networks. In The FEleventh International Conference on Learning Representations, 2023a.

Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing mixed-integer linear
programs by graph neural networks. In The Eleventh International Conference on Learning Representations,
2023b.

Ziang Chen, Xiaohan Chen, Jialin Liu, Xinshang Wang, and Wotao Yin. Expressive power of graph neural
networks for (mixed-integer) quadratic programs. arXiv preprint arXiv:2406.05938, 2024.

Alexander Domahidi, Eric Chu, and Stephen Boyd. Ecos: An socp solver for embedded systems. In 2013
European control conference (ECC), pp. 3071-3076. IEEE, 2013.

Fabio Furini, Emiliano Traversi, Pietro Belotti, Antonio Frangioni, Ambros Gleixner, Nick Gould, Leo Liberti,
Andrea Lodi, Ruth Misener, Hans Mittelmann, et al. Qplib: a library of quadratic programming instances.
Mathematical Programming Computation, 11:237-265, 2019.

Quankai Gao, Fudong Wang, Nan Xue, Jin-Gang Yu, and Gui-Song Xia. Deep graph matching under
quadratic constraint. In Proceedings of the IEEE/CVFE Conference on Computer Vision and Pattern
Recognition, pp. 5069-5078, 2021.

Philip E Gill, Walter Murray, and Margaret H Wright. Practical optimization. STAM, 2019.
Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2025. URL https://www.gurobi. com.

Jeffrey Ichnowski, Paras Jain, Bartolomeo Stellato, Goran Banjac, Michael Luo, Francesco Borrelli, Joseph E
Gonzalez, Ton Stoica, and Ken Goldberg. Accelerating quadratic optimization with reinforcement learning.
Advances in Neural Information Processing Systems, 34:21043-21055, 2021.

Haewon Jung, Junyoung Park, and Jinkyoo Park. Learning context-aware adaptive solvers to accelerate
quadratic programming. arXiv preprint arXiv:2211.12443, 2022.

Pan Li and Jure Leskovec. The expressive power of graph neural networks. Graph Neural Networks:
Foundations, Frontiers, and Applications, pp. 63-98, 2022.

Zhi-Quan Luo, Wing-Kin Ma, Anthony Man-Cho So, Yinyu Ye, and Shuzhong Zhang. Semidefinite relaxation
of quadratic optimization problems. IEEE Signal Processing Magazine, 27(3):20-34, 2010.

13

https://docs.mosek.com/latest/pythonfusion/index.html
https://docs.mosek.com/latest/pythonfusion/index.html
https://www.gurobi.com

Under review as submission to TMLR

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

Brendan O’Donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. Conic optimization via operator splitting
and homogeneous self-dual embedding. Journal of Optimization Theory and Applications, 169(3):1042-1068,
June 2016. URL http://stanford.edu/~boyd/papers/scs.html.

Rajiv Sambharya, Georgina Hall, Brandon Amos, and Bartolomeo Stellato. End-to-end learning to warm-start
for real-time quadratic optimization. In Learning for Dynamics and Control Conference, pp. 220-234.
PMLR, 2023.

Haoru Tan, Chuang Wang, Sitong Wu, Xu-Yao Zhang, Fei Yin, and Cheng-Lin Liu. Ensemble quadratic
assignment network for graph matching. International Journal of Computer Vision, pp. 1-23, 2024.

Andreas Wichter and Lorenz T Biegler. On the implementation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical programming, 106:25-57, 2006.

Tao Wang, He Liu, Yidong Li, Yi Jin, Xiaohui Hou, and Haibin Ling. Learning combinatorial solver for
graph matching. in 2020 ieee. In CVF Conference on Computer Vision and Pattern Recognition, CVPR,
pp. 13-19, 2020.

Jinxin Xiong, Xi Gao, Linxin Yang, Jiang Xue, Xiaodong Luo, and Akang Wang. Solving quadratic programs
via deep unrolled douglas-rachford splitting. Transactions on Machine Learning Research.

Zhixiao Xiong, Fangyu Zong, Huigen Ye, and Hua Xu. Neuralqp: A general hypergraph-based optimization
framework for large-scale qcqps. arXiv preprint arXiv:2410.03720, 2024.

Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Small relu networks are powerful memorizers: a tight analysis
of memorization capacity. Advances in Neural Information Processing Systems, 32, 2019.

Bingxu Zhang, Changjun Fan, Shixuan Liu, Kuihua Huang, Xiang Zhao, Jincai Huang, and Zhong Liu.
The expressive power of graph neural networks: A survey. IEEE Transactions on Knowledge and Data
Engineering, 2024.

14

http://stanford.edu/~boyd/papers/scs.html

Under review as submission to TMLR

A Detailed proof of main theorem

A.1 Sketch of the proof

We provide a brief outline of this proof:

(1)

(if)

(iii)

Separation Power of WL-Test: We first establish that the WL-test has sufficient separation
power on the defined target functions.

Connection to tripartite MP-GNNs: We then demonstrate the relationship between the
separation power of tripartite MP-GNNs and that of the Tripartite WL-tests, showing that the GNNs
can separate our target functions. This result, combined with the generalized Weierstrass theorem,
leads to our approximation power conclusions.

Universal Approximation: Assuming the target functions are continuous and have compact
support, we prove universal approximation. In this step, we also specify the problem size and apply
the Generalized Weierstrass Theorem (Theorem 22 of |Azizian & Lelarge] (2020))).

(iv) Addressing Discontinuities: Since the target functions are neither continuous nor compactly

supported, particularly at the boundary of the convex QCQPs universe gggép, we construct
a continuous approximation of the target function to apply universal approximation, ensuring
convergence in measure.

A.2 W.L-test on tripartite graph representation

Here we describe our Tripartite WL-test, which is the WL-test counterpart of the tripartite MP-GNNs:

Embedding. Initial colors C%%, C%?, and C%¢ are assigned based on their corresponding features
and node types (e.g., from Vi, Va, or V3):

— C%% +— HASH; (f(u)) for u € V1,
— C% <~ HASH,(f(v)) for v € V4,
— C%¢ + HASH3(f(c)) for c € V3.

Here, we refer to the color of a node after the ¢-th message-passing layer as C?".

Update quadratic nodes via variable nodes (V; — V3):

C"" « HASH (cf’v, > wu,vHASH(O““)> Vv € Va

ueVy

Update constraint nodes via variable and quadratic nodes (Vi, Vo — V3):

Cttle « HASH <Ct76, Z wy, JHAASH(C™), Z wmcHASH(Ct’q’)) Ve e Vs
u€eVy vEVs

Update quadratic nodes again via constraint nodes (V5 — V%):

CH_I’U +— HASH <ét’U7 Z wc,vHASH(Ct_'_l,C)) ,V’U € ‘/2

ceVs

Update variable nodes via constraint and quadratic nodes (V3,15 — V}):

Ct+1’u <+ HASH (Ct’u, Z ’ZUC7UHASH(Ct+LC)7 Z wv,uHASH(Ct+1’U)> ,VU S ‘/1

cEV3 veEVy

15

Under review as submission to TMLR

e Termination and Readout. Once a termination condition is met, we return the color collection
(CT7U>’U/EV1) (CT?U)UEVQ) (OT7C)C€V3 H

o All hash functions are real-valued and assumed to be collision-free.

In this paper, we terminate the Tripartite WL-test only when the algorithm stabilizesﬂ7 i.e., when the number
of distinct colors no longer changes in an iteration (after all four color updates). Despite not imposing a
forced iteration limit, the WL-test is guaranteed to terminate in a finite number of iterations, denoted by T

Proposition 3 (Tripartite WL-test terminates in finite iterations). The Tripartite WL-test stabilizes in a finite
number of iterations.

Proof. Tt is straightforward to observe from the formulation that if two nodes have different colors, they will
continue to have different colors after an (sub-)iteration. Therefore, the number of iterations required for
stabilization is capped by the number of distinct nodes, which is finite. O

We say that the Tripartite WL-test separates two graphs if the resulting collection of colors differs between the
two graphs. We claim that the Tripartite WL-test has the same separation power as its network counterpart,
specifically the tripartite MP-GNNis:

Proposition 4 (Tripartite MP-GNNs have equal separation power as the Tripartite WL-Test). Given two
instances Z and Z (correspondingly encoded by graphs G and G), the following holds:

(i) For graph-level output cases, the two instances are separated by Fap(R), ie.,

F(G) = F(G),VF € Faeap(R)
if and only if the two instances are also separated by the Tripartite WL-test.

(ii) For node-level output cases, i.e., R® = R™, the two instances are separated by fg%gp (R), i.e.,
F(G) = F(G),YF € Faop(R")

if and only if the two instances are separated by the Tripartite WL-test, and additionally, the variables
are correspondingly indexed. Specifically, CT>% = CT"% must hold for all j € [n].

For the detailed proof of this proposition, see Appendix

A.3 Proof of main theorem

Now we can prove the main theorem. First, we the following proposition.
Proposition 5. Let T,7 (encoded by G,G € QS&QP) be two QCQP instances. If the tripartite WL-test fails

to separate the two instances, then the following holds:

(i) If one is feasible, the other is also feasible, i.e., Pgeas(G) = Prens(G).

)

(if) Assume both instances are feasible. If one is unbounded, the other is also unbounded.

(iii) Assume both instances are bounded. Then they have equal optimal values, i.e., ®op;i(G) = Popi(G).
)

(iv) Assume both instances are bounded and that the variables and constraints are indexed such that
CT’“J'_: CT'% | Then they have the same optimal solution, with the least fy-norm, i.e., @4, (G) =
D01 (G).

4Multiple occurrences of members are counted instead of rejected.
5For simplicity, we exclude the final iteration showing that the algorithm has stabilized and return the last iteration in which
stabilization occurred.

16

Under review as submission to TMLR

Proof. Passing feasibility. Assume that 7 is feasible, and let x be a feasible solution. By Lemma [I} we
obtain another solution & for instance Z, which implies the feasibility of Z. By switching the roles of Z and Z,
we prove the reverse claim.

Passing unboundedness. Assume that 7 is unbounded, i.e., for any M > 0, there exists a solution x s such
that the objective f(x) < —M. For each xjs, we can construct a solution z; for 7 such that the objective
f(zar) < flzpr) < —M, implying that Z is also unbounded. Again, by switching the roles of Z and Z, we
prove the reverse claim.

Passing optimal values. Assume that 7 is feasible and bounded, and let = be its optimal solution. By
Lemma we construct a solution x for Z such that:

F(@) < f(z) = oy (G)

implying that ®op;(G) < Popi(G). Similarly, we can show that @,,;j(G) < Pop;(G), and thus Pop;(G) =
D01 (G).
Passing optimal solutions. To prove the last claim, we need the construction of z from the detailed proof

of Lemma 1] (see Appendix [B.2). Assume that Z is feasible and bounded, and let = be its optimal solution
(with the least fo-norm). By Lemma |1} we construct y for Z and z for Z by switching the roles of Z and Z.

We have f(z) < f(y) < f(z) and ||z|| < ||ly|| < ||z||, which implies that z is not worse than the given optimal
solution z, and thus z = x. By the construction of the averaged solution (and the assumption CT-% = CT'%),
we have y = z. Combining the two equalities, we conclude that z = y.

Let Z be the optimal solution of G, and we have ||| < ||y|| = ||z[|. By switching the roles of Z and Z, we
obtain |lz| < ||z||, and thus [|Z|| = [|z||. Similarly, we have f(z) < f(y) < f(z), and by switching the roles,
f(@) = f(x).

Since ||y| = ||z|| = ||z|| and f(y) = f(z) = f(Z), by uniqueness, we conclude that y = #, proving the fourth
claim. O

The next step is to extend this separation power to approximation power, which leads to our main theorem.
We utilize the generalized Weierstrass-Stone theorem (Theorem 22 and Lemma 36 of |Azizian & Lelarge
(2020)) and Lusin’s theorem.

By applying the generalized Weierstrass-Stone theorem, we establish the following proposition, which
demonstrates the approximation power on equivariant functions with compact support.

Proposition 6 (Uniform Approximation on Continuous Equivariant Functions with Compact Support). Let
d. : G — R?® be a general continuous target function defined on a compact subset G, C Qéngép, such that:
e If s =1, the output remains unchanged if the input graph is re-indexed.

e If s = n, the output re-indexes accordingly if the input graph is re-indexed.

If the following holds:

(F(G) = F(G),YF € Fiitp(R®) = (Q) = @(G)) VG, G e gmn (A1)

i.e., the family fggép(Rs) separates the target function ®, then for any § > 0, there exists a function
Fs € FQqp(R?) such that:
1F5(9) — (G)| <0 (A.2)

For the detailed proof, see Appendix [B.4]

However, the requirement for the target function to apply the proposition is too strong. In fact, all target
functions defined in [3| are non-continuous and not defined on a compact subset, although equivariance
naturally holds. Therefore, we seek a continuous approximation with compact support that can be uniformly
approximated. By applying Lusin’s theorem, we construct the following continuous approximation:

17

Under review as submission to TMLR

Proposition 7 (Continuous Approximation with Compact Support). Let @ : ggc’;ép — R® be a general target
function that is measurable under the probability measure P. For any € > 0, there exists a compact subset

G C Googps such that P{G € G} > 1 — ¢, and ®[gm is continuous.

By combining all the lemmas and propositions, we can now prove the main theorem.

Proof of Theorem[] Let ® be any target function defined in Definition

By Proposition [7) ® is continuous on a compact subset "™ C G(\&p, With P(G € GI"") > 1 — =

We construct Gzl = Ng,r)ex (0, 7)(Ge™™). This subset is continuous with compact support, ensuring that
<I>|ggngg remains an equivariant function, with the following measure control:

P(GegGll)>1—¢ (A.3)

¢,eq

Since by Proposition[5land the fact that the Tripartite WL-test has equal separation power as the tripartite MP-

T, M

GNNs, the target functions are equivariant and separated by]-'QéQP(RS). Thus, we may apply Proposition |§|
and obtain F € Fjp (R®) such that:

|F(G) —®(Q)| < §,VG € Gvl

c,eq

This implies that P{||F(G) — ®(G)|| < 6} > 1 —¢. 0

B Proof of propositions in Section [A]
This section provides complete proofs of several propositions in Section [A] that were not immediately proven.

B.1 Equivariance

We begin by describing equivariance, a key tool used to capture the fact that the indexing of variables and
constraints is irrelevant:
Definition 4. Given a function f: X — Y, where X and Y are subsets of Euclidean spaces, and a group X
that acts continuously on X and Y, the function f is called equivariant (with respect to the group %) if the
following holds:

oo f(x)=foo(x), Vxe X, o€l

Since the indexing of variables and constraints does not affect the problem, we take > = S,, x S,,, which
represents all possible re-indexings of variables and constraints. When applied to both the input and output
spaces, we re-index the variables, constraints, and possible solutions (in cases where the output is a solution
x € R™). Specifically, we have:

In(j),m(k) = Qjik
Pr(j) = Pj

Pr(j) = Pj
br(iy = bs
~L L
Tr(j) = 5
~U U
Trg) = %5

where the tilde symbols Q, P, b, 7%, 7Y denote the re-indexed vectors and matrices.

For R®* = R, the action on the output space is the identity map: (m,7)(-) = id. For R® = R", we
correspondingly re-index the output, i.e., (7, 7)(y)x(;) = ¥j-

18

Under review as submission to TMLR

We can also apply the permutations to:

« A point in R™ (such as a solution), by (7, 7)(2)(;) = z;.

e A subset of R", by applying the permutation to each element in the subset, or to its indicator function
by permuting the underlying set.

Equivariance allows us to show that the indices do not matter, while the inputs (in the form of coefficient
tuples) necessarily carry these indices.

Remark: Given the group ¥ and its action on both the input and output, all message-passing layers are
automatically equivariant. Thus, requiring F' € gé?égP (R?) to be equivariant is equivalent to requiring the
readout layer R to be equivariant. This is why the readout function must take specific forms in the two cases.
While the defined forms do not cover all possible equivariant readout functions, they are general enough to
capture the separation power.

B.2 Proof of Lemmalll

For simplicity of proof, we extend the definitions of ®.p; and @1 to the entire space Goagp by assigning a
default value of 0 (or 0, depending on the output dimension s) when the target function is not defined at a
graph G. This occurs when the corresponding instance is either infeasible or unbounded, and the optimal
value or optimal solution does not exist. By doing so, all target functions are defined on the same space
Qg’g&zp. Moreover, since we approximate feasibility and boundedness, we can distinguish whether the output
is the default value or genuinely happens to be 0 (or 0).

Let Z and Z be two instances (with Tripartite graph representations G and G C Goeqgp) that are not
separated by the Tripartite WL-test. Without loss of generality, we assume that the variables and constraints
are correspondingly indexed, i.e., CT% = CT% and CT¢ = CT"% hold for all 4, j.

We first introduce the following notations. Let I be any color, and we collect all nodes of a graph G with
color I, denoting this collection as G(I). Throughout this paper, we use J for the colors of variable nodes, K
for quadratic nodes, and I for constraint nodes.

We now present the following lemma:

Lemma 2. Given the graph G, let the Tripartite WL-test stabilize after 7" > 0 iterations. The sum of weights
from a certain node of one color to all nodes of another color depends only on the color of the given node.
Specifically, the sum (taking J for variable nodes and K for quadratic nodes as an example) is:

S(J,K,G) = Z Wy, v

CTw=K
and is well-defined with v € G(J) arbitrarily chosen.

Similarly, for any color of constraints I, color of variables J, and color of quadratic terms K, the following
sums are well-defined:

S(J,I;G) = Z Wy chu =7
CTie=]

SILK;G) = > we,, CTe=1I
CTw=K

S(K,I;G) = > wye, C""=K
CTie=]

S(LK;G) = Y wy,, CTU=1J
CTv=K

E Wy ,uy CTW =K
CTu=j

S(K,J;G) :

19

Under review as submission to TMLR

Proof. Let v,v’ be two nodes with color K = CT"¥ = CTv'" . Since the Tripartite WL-test has stabilized,
further iterations do not separate additional node pairs, i.e.,

> w, HASH(CT") =) " w, HASH(CT™).

Rearranging according to J = CT"%, we get:
> Y wuu-HASH() =" > wy. - HASH(J).
J CT u—J J CT s u—J
Assuming that the hash function is collision-free, we conclude that:
Z Wy v = Z Way,v'
CTu=J CTu=J
ie, S(K,J;G) =Y cru_; Wy, CTY =K is well-defined.

The other claims follow similarly. O

By summing all weights between two colors I and J, we derive the following lemma:
Lemma 3. Let J and K be arbitrary node colors. Then, the following holds:

IG(NIS(J, K; G) = [G(K)|S(K, J; G),

and similar equalities hold between I and J, and between I and K.

Proof. Summing all edges between all nodes with CT'* = J and C™¥ = K, and re-arranging the sum
according to u and v, by Lemma [2] we have:

|G(N)IS(J, K G) = |G(K)|S(K, J; G).
The other two claims are similar. O

We are now ready to proceed. We construct z; = Wlf)l Zj/.c’l‘,uj/ T8, _ oy, where J = CT®i. We claim

=C =J

that z satisfies all the required conditions.

First, we analyze the linear part of the constraints and the objective. Let f{i (z) := p’- x represent the
linear part of the i-th constraint. For a certain color I of constraint nodes, we have:

fhn ijl‘]
_Z Z ﬁ;@

J u;€G(J)
=> S, J)z
J
1
= & Z (J,1)|G(J (B.1)
1
“lem 25D 2w
J uJEG(])
1
e 2, 5 T i
eGI) J jeG(J)

1
|G(I ; fhn

20

Under review as submission to TMLR

Here, Z; is the average over the nodes with color J, so it is determined by J, and we denote its value as Z ;.

We define fiin(x) = p - . For the objective part, we have:
Zﬁjfj = ZPJ\G(J)VUJ
j J
=2 X @ (B.2)
J

quG(J)

:ijxﬁ
J

where pj, p; are the features of the variables, which are determined by the color J = CT:% = CT-%i. We
denote this value by p; = p; =p;.

Quadratic part. We define féuad (z) = %xTQix as the quadratic part of the ¢-th constraint.
For a certain color I of constraint nodes, we have the following;:

ﬂ‘ I
§ 95, k%jiTk

v k€V2(G)

1 .
252 Y Dk

K 9;,eG(K)

5 > SUL KGR i
K

zluad (i) =

N =

Since all ;5 € V2(G) have u;, ux as neighbors in V1 (G), Tx 1= T;7;, is well-defined. This equation shows
that the value féuad (%) depends only on the color I = CT¢ and not on the specific selection of ¢; € G(I).
Therefore, f2..q(Z) reduces to the sum, and we claim that fi4(Z) = fZ,.q(Z) holds.

Next, we consider the partial derivative. Let J := CT>% and we have:

0 Y fawaa@ = Y > wluy, v) w(vj ks)T

c;€G(I) ceGU) k

DX D wluyuk)w(vk ek

¢, €G(I) K ki r€G(K)

=Y S(K.D) > wluy, vk
K

kv €G(K)

— ZS(K, NS(J,K)xk,.
K

Since u; is one of the neighbors in v; 1, and v; ; € G(K) has exactly two neighbors in V4 (G), we know that
the color of uj depends only on the colors K = CT"%:# and J = CT"%. This makes Zg,j =), well-defined,
with u; € G(J) and v;, € G(K).

Thus, the derivative 0; ZcieG(I) depends only on J = CT% | i.e.,

CcTwin = 0Twia = 8j1 Z foiluad(j) = ajz Z féuad(j)' (B4)

¢ €G(I) ¢, €G(I)

By equation [B:4] we know that Z is a local optimal point within the linear space:

{y e R": Z Yj = Z xj}.

u; €G,0T =g u; €G,0T =g

21

Under review as submission to TMLR

With the convexity assumption, the local optimal point is a global minimum. Since x is in this linear space,

we claim that:

Z fquad Z féudd

c,€G(I cleG(I)

(B.5)

Combining equation with the fact that f! uad(z) and f} uad(z) are equal for all ¢; € G(I), we can control

the quadratic parts:

féuad(i) = f(’iuad (j)
1 .
= m) fquad(‘r)

For the objective part, we define fquaa(z) = 1xTQx. Similarly, we have:

fquad Zf U]k Ty

'UJk

= %Z Z fo(’ljjyk).’fj{fk

K 9, ,eG(K)

= %Z Z fo(vj7k)i‘jik

K v; ,€G(K)
= fquad(f)-
We also have:

0j fquad Z f Uy, k u]a ’Uj,k):i'k

= Z Z SO (v w(ug, vj 1) Tk

K k"'l}j kEG(K)

72.]0 JKIKJa

(B.6)

which depends only on J = CT%. Here, fO(K) = f%(v; 1), and v;; € G(K) is well-defined by the stable

color assumption.

Combination of the two parts.

The color CT¢i = CT:% = [determines the RHS by := b;. Defining fi (7) = e uaa(©) 4 fiiy (x), and similarly

for Z, we have:

For the objective, we similarly have:

fquad() + flln() S fquad(l') + flin(x)-

This completes the proof that is the solution for Z, satisfying the condition given in Proposition

22

Under review as submission to TMLR

B.3 Proof of Proposition [4]

We prove the separation power by simulating the tripartite WL-test using tripartite MP-GNNs. We define
the hidden representation ht", produced by some network, as a one-hot representation of the colors C*" if
all h* are one-hot vectors, and they take the same value if and only if they have the same color C?.

First, we consider the color initialization. We collect all the features paired with the node types (i.e., variable
nodes, quadratic nodes, and constraint nodes). Then we select 9?7273 to map the features to one-hot vectors,
where the enumeration serves as the only index with the value 1.0. For example, if the feature h*% of a
variable node is enumerated by r, then g9 maps h% to h%% = e,.

It’s easy to see that the embedded hidden feature h? is a one-hot representation of the initial color C? .

Next, we consider the first refinement. Assuming that k%" is a one-hot representation of C* and gt =id is a
simple and proper hash function, the concatenated vector

ht,v, Z wu,vff(ht’u)

ueVy

is a representation of the colors C*’, which is generally not one-hot. The same holds for the other three
concatenated vectors from the remaining three sub-layers. By Theorem 3.2 of [Yun et al.l 2019 a network
with four fully connected layers and ReLU activation maps these values back to one-hot. Therefore, we select
ft to concatenate the inputs and then pass them through a 4-layered MLP with ReLU activation, so that the
aggregated hidden representation h®" is once again one-hot.

Similarly, we get hj 5 4 and g5 5 4 5 ¢ and simulate an iteration of the Tripartite WL-test with a round of four
message-passing sub-layers.

In the case of graph-level output, the readout function takes the following form:

R() = fout Z hT’uj , Z hT’Uj,k , Z hT’Ci
J gk i

Since the hidden representation is a one-hot representation of C7, if two instances are not separated by the
tripartite message-passing GNN, they are not separated by this subset of GNNs (given a fixed initialization
and a free readout function). Consequently, all entries must be equal, and the two instances are not separated
by the Tripartite WL-test.

Similarly, in the case of node-level output, all equivariant readout functions take the form:

R(')j = fout RT) Z R , Z pTvik , Z hTci

j gk i
Thus, all entries must be equal, and the two instances are not separated. Moreover, the variables are

correspondingly indexed.

Conversely, we use induction to prove that for all t € N, the colors C*" separate more than the hidden features
ht) ie.,
Cht =P = pM =AM Vu,u' € Vi UL F e Faagp(R), (B.7)

and similar claims hold for the other three sub-iterations.

For t = 0 (i.e., right after embedding), the statement is obviously true. Now, assume that after some
sub-iteration (say, before the first sub-iteration of iteration ¢ > 1, with the other sub-iterations following
similarly), the statement holds.

Let v, v’ satisfy:

> wy HASH(C™) =Y " w, HASH(C™™).

23

Under review as submission to TMLR

Organizing the sum by C** = .J, and assuming the hash function is collision-free, we have:

Yo wuw= Y wuw, VI (B.8)

u:Ctu=J w:Ctu=J

Next, we organize the sum Y., wy . fi(h"") by the value of h**. By the induction assumption, the set
{u : k" = h} is the union of {u : C** = J;} for some colors J;. Summing the equality in equation over

the colors, we have:
E Wy,p = g Wy,p's V.
htu=h htu=h
Thus, we conclude:

Z wu,vff(ht’u) = Z Z wu,vff(h) = Z Z wu,v’ff(h) = Z wu,v’ff(ht’u)a
U h whtv=h h whtv=h u
which completes the induction.

For the case of graph-level output, this means that all entries of the input to the readout function are equal
for the two graphs, i.e.,

Z hT’uj 7 Z hT’vj’k , Z hT,ci _ Z hT,ﬁj’ Z hT’ﬁj'k 7 Z hT,Ei ,

J Jik i J Jik (
and the GNNs give the same output for all possible readout functions.

For the case of node-level output, we again have:

hT,uJ , Z hT"uj , Z hT’vj‘k , Z hT,c,; — hT,ﬂj , Z hT,ﬁj , Z hT’ﬁj‘k , Z hT,E,;

J Jk i J Jk i
Here, we use the assumption that the variables are correspondingly indexed to guarantee h7"% = hT"%

B.4 Proof of Proposition [6]

The requirement for the general target function ®. is simply equivariance under re-indexing. Thus, we need
to verify the conditions required by the generalized Weierstrass theorem (Theorem 22 of |Azizian & Lelarge
(2020)) to apply.

First, we verify that F = F¢iop(R?) is a sub-algebra. By multiplying the readout function by A, we construct

m,n

AF € Foegp(R®). Now, we construct the sum and product of two functions Fy, > € Fiqp(R?).

Given F} and F5, we proceed as follows:

» We construct
9(1),F(h0’u) = [gg,Fl(ho’u)agg,Fz(ho’u)] .
We give similar constructions for g9 , and gj.

o After initialization, all hidden features take the form h*% = [h’;{t, h};‘] (considering variable nodes as
an example, and similarly for quadratic nodes). We construct

gi,F(htu) = [gi,Fl (hil'?)7g;tlF2 (h%‘:)])
and

t, t, t, t,
flt,F(htwa § wuvht’u) = ff,Fl (hFT’ E wuth?)vff,Fg (hF:7 E :wuth:)
u

u u

We give similar constructions for other g,t’ I ft - Using this construction, we compute both hidden
representations in one concatenated network.

24

Under review as submission to TMLR

o Finally, we obtain F' = F; + F, by constructing R(-) = R1(-p,)+ Ra(-F,), and similarly for F' = F} x Fy.

Thus, we conclude that Fy + Fy, F} x Fy € fénégp(Rs).
Next, we verify the inclusion p(Fycal) C p(7s 0 F):

Graph-level output case. In this case, we have Fy.a1 = F and nx, = id, so the two sides are exactly the
same.

Node-level output case. Given any R; that maps the final hidden representation to a graph-level output,
Ry -1, = (R1,Ry,...,Ry) is a valid equivariant readout function in the node-level case. Thus, given any
F € Fooap(R), we can construct F € Folqp(R™) using Ry - 1,,, along with all the f and g functions, and
conclude that any pair (G1,G2) € p(Fscal) is not separated by the Tripartite WL-test.

For any pair of graphs (G, G) that is not separated by the Tripartite WL-test, after re-indexing variables and
constraints, all F' € F map them to the same output. This means that, without re-indexing, all F € F map
the two graphs to outputs that differ at most by a re-indexing. Thus, (G, G) is contained in p(ms o F). This
completes our verification.

Applying the Generalized Weierstrass-Stone theorem to the sub-algebra F = fgérép (R®) completes the proof.

C Proof of propositions in Section 3.3
The two instances are QCQP instances. Both graphs G and G consist of the following:

6 variable nodes, i.e., u; or u;, where j € [6]. All nodes carry the feature h"s = (0, —1,1). here we
assume that —1 < x; < 1 by the unit ball constraint.

o 12 effective quadratic nodes. The squared nodes carry h'# = (0), while others carry the feature
hvik = (1).

o 1 constraint node ¢ representing the unit ball constraint. The node carries feature (—1) for both
graphs.
We now verify that the Tripartite WL-test does not separate the two graphs:
o After initialization, we have hy := h%* = RO% = HASH;((0,—1,1)), hY = hOvii = 0¥ =
HASH;((0)), h§ := h%¥» = HASH,((1)) and hY := h%¢ = h%¢ = HASH5((—1)).
o After the first sub-iteration, we have
RS := hOvik = HASH(RY,2hY),
and
hY := K%Yk = HASH(RS, 2hY),
which remains equal for all v € V5(G) and v € Va(G).
e After the second sub-iteration, we have
hy = h'© = hY* = HASH(hY,0,1 - h9),
which remains equal for both graphs.
o After the third sub-iteration, we have
hy := hYvi = HASH(hI, 1- hi),

and -
hj = h'vik = HASH(hS, 0),

which remains equal for both graphs.

25

Under review as submission to TMLR

e After the final sub-iteration, we have
hi:=hb = pb% = HASH(KY,0,2-hl 4+ 1-hd),
which remains equal for both graphs.
e The Tripartite WL-test terminates after one iteration since no further node pairs are separated.
The Tripartite WL-test returns C%, which is the same for both instances. Thus, we conclude that the two
graphs are not separated, with variables and constraints correspondingly indexed. By Proposition [, we

conclude that, in both the node-level and graph-level cases, tripartite MP-GNNs cannot separate the two
instances.

Therefore, we conclude that tripartite MP-GNNs cannot approximate the optimal solution or optimal value
for non-convex QCQP instances (even QP instances). To demonstrate that tripartite MP-GNNs cannot
accurately predict feasibility, we slightly modify the two instances:

Proof of Proposition[l. We reconstruct the objective as a constraint. Specifically, consider the following two
instances:

min 0

T€RS

S.t + + + + + < 3

.t. 1T ToX 3T Tax T5T Tex ——
122 273 371 45 5%6 674 =~y (C.1)
6
>et<
i=1

and

min 0

rERS

t + + + + + < 5

s.t. 1T Tox3 + T3T T4 T5T Tex ——
122 273 324 475 526 6T1 S~ (C.2)

6
me <1
i=1

Clearly, instance is not feasible, while instance is feasible.

In the graph generated by the Tripartite graph representation, we change the objective to another special
constraint and add a new dummy objective. Similarly, we see that tripartite MP-GNNs fail to separate 7
and 7. O

D Additional experiments

Evaluation on the QPLIB dataset. We incorporated a dataset derived from real-world instances in
QPLib. Due to computational constraints, we used all instances in QPLIB that are convex and have no more
than 5,000 nonzeros as training sets, and augmented these instances by perturbations. Below, we report the
training and validation losses in Table [5] and Table [6] respectively.

Table 5: Training loss vs. numbers of parameters on QPLIB.

Parameters
15K 42K 126K 450K 1.7M

objective 4.3306 0.9986 0.8679 0.7999 0.6614
solution 19.2789 18.9083 18.8303 18.7472 18.6495

Target

As shown, both training and validation losses improve consistently with increased model capacity and training
samples. Such a trend supports the method’s effectiveness on real-world QCQP instances.

26

Under review as submission to TMLR

Table 6: Validation loss vs. numbers of training samples on QPLIB.

Samples
100 300 500 700 1000

objective 1.5414 0.8922 0.8564 0.6176 0.5598
solution 19.9106 19.7552 19.6981 19.6788 19.6165

Target

Evaluation on boundedness. We further evaluated performance on the task of predicting the boundedness
of convex QCQPs. Specifically, unbounded cases arise when there exists a direction d such that Qd = 0 and
p'd < 0 for both the objective and constraints. To examine performance under these challenging edge cases,
we generated a dedicated dataset by randomly enforcing such conditions. Using the same training setup as in
Section [I.4] the corresponding training and validation losses are reported in Tables [7] and

Table 7: Training loss vs. number of parameters on predicting boundedness.

#Params 21k 42k 126k 1.7M 6.7M
Train loss 0.6933 0.2504 0.1241 0.0470 0.0427

Table 8: Validation loss vs. number of training samples on predicting boundedness.

#Samples 100 300 500 700 1000
Valid loss 0.6876 0.3495 0.2786 0.2360 0.1285

The results show a clear trend: training loss decreases with larger model sizes, and validation loss improves
with more training data. These results suggest that our approach is capable of learning effectively on
unbounded problem instances.

27

	Introduction
	Graph Representation of QCQPs
	Quadratically Constrained Quadratic Programs
	Tripartite Representation of QCQPs

	Theoretical Results
	Tripartite MP-GNNs
	Universal approximation for convex QCQPs
	MP-GNNs can not represent general non-convex QCQPs

	Computational Experiments
	Learning tasks
	Data generation
	GNN architecture and training settings
	Main results
	Additional comparative results
	Discussions

	Conclusions
	Detailed proof of main theorem
	Sketch of the proof
	WL-test on tripartite graph representation
	Proof of main theorem

	Proof of propositions in Section A
	Equivariance
	Proof of Lemma 1
	Proof of Proposition 4
	Proof of Proposition 6

	Proof of propositions in Section 3.3
	Additional experiments

