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ABSTRACT

While active learning (AL) improves the labeling efficiency of machine learning
(by allowing models to query the labels of data samples), a major problem is that
compute efficiency is decreased since models are typically retrained from scratch
at each query round. In this work, we develop a new framework that circum-
vents this problem by biasing further training towards the recently labeled sets,
thereby complementing existing work on AL acceleration. We employ existing
and novel replay-based Continual Learning (CL) algorithms that are effective at
quickly learning new samples without forgetting previously learned information,
especially when data comes from a shifting or evolving distribution. We call this
compute-efficient active learning paradigm “Continual Active Learning” (CAL).
We demonstrate that standard AL with warm starting fails, both to accelerate
training, and that naive fine-tuning suffers from catastrophic forgetting due to distri-
bution shifts over query rounds. We then show CAL achieves significant speedups
using a plethora of replay schemes that use model distillation, and that select
diverse/uncertain points from the history, all while maintaining performance on par
with standard AL. We conduct experiments across many data domains, including
natural language, vision, medical imaging, and computational biology, each with
very different neural architectures (Transformers/CNNs/MLPs). CAL consistently
provides a 2–6x reduction in training time, thus showing its applicability across
differing modalities.

1 INTRODUCTION

While neural networks have been immensely successful in a variety of different supervised settings,
most deep learning approaches are data-hungry and require significant amounts of computational
resources. From a large pool of unlabeled data, active learning (AL) approaches select subsets of
points to label by imparting the learner with the ability to query a human annotator. Such methods
incrementally add points to the pool of labelled samples by 1) training a model from scratch on the
current labelled pool and 2) using some measure of model uncertainty and/or diversity to select a set
of points to query the annotator (Settles, 2009; 2011; Wei et al., 2015; Ash et al., 2020; Killamsetty
et al., 2021). AL has been shown to reduce the amount of data required for training, but can still be
computationally expensive to employ since it requires retraining the model, typically from scratch,
when new points are labelled at each round.

A simple way to tackle this problem is to warm start the model parameters between rounds to reduce
the convergence time. However, the observed speedups tend to still be limited since the model must
make several passes through an ever-increasing pool of data. Moreover, warm starting alone in some
cases can hurt generalization, as discussed in Ash & Adams (2020) and Beck et al. (2021). Another
extension to this is to solely train on the newly labeled batch of examples to avoid re-initialization.
However, as we show in Section 3.3, naive fine-tuning fails to retain accuracy on previously seen
examples since the distribution of the query pool may drastically change with each round.

This problem of catastrophic forgetting while incrementally learning from a series of new tasks
with shifting distribution is a central question in another paradigm called Continual Learning (CL)
(French, 1999; McCloskey & Cohen, 1989; McClelland et al., 1995; Kirkpatrick et al., 2017c). CL
has recently gained popularity, and many algorithms have been introduced to allow models to quickly
adapt to new tasks without forgetting (Riemer et al., 2018; Lopez-Paz & Ranzato, 2017; Chaudhry
et al., 2019; Aljundi et al., 2019b; Chaudhry et al., 2020; Kirkpatrick et al., 2017b).
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In this work, we propose Continual Active Learning (CAL), which applies continual learning
strategies to accelerate batch active learning. In CAL, we propose applying CL to enable the model to
learn the newly labeled points without forgetting previously labeled points while using past samples
efficiently using replay-based methods. As such, we observe that CAL methods attain significant
speedups over standard AL in terms of training time. Such speedups are beneficial for the following
reasons:

• As neural networks grow in size (Shoeybi et al., 2019), the environmental and financial
costs to train these models increase as well (Bender et al., 2021; Dhar, 2020; Schwartz et al.,
2020). Reducing the number of gradient updates required for AL will help mitigate such
costs, especially with large-scale models.

• Reducing the compute required for AL makes AL-based tools more accessible for de-
ployment on edge computing platforms, IoT, and other low-resource devices (Senzaki &
Hamelain, 2021).

• Developing new AL algorithms/acquisition functions, or searching for architectures as done
with NAS/AutoML, that are well-suited specifically for AL can require hundreds or even
thousands of runs. Since CAL’s speedups are agnostic to the AL algorithm and the neural
architecture, such experiments can be significantly sped up.

The importance of speeding up the training process in machine learning is well recognized and is
evidenced by the plethora of optimized machine learning training literature seen in the computing
systems community (Zhihao Jia & Aiken.; Zhang et al., 2017; Zheng et al., 2022).

In addition, CAL demonstrates a practical application for CL methods. Many of the settings used to
benchmark CL methods in recent works are somewhat contrived and unrealistic. Most CL works
consider the class/domain incremental setting, where only the samples that belong to a subset of the
set of classes/domains of the original dataset are available to the model at any given time. This setting
rarely occurs in practice, representing the worst-case scenario and therefore should not be the only
benchmark upon which CL methods are evaluated. We posit that the validity of future CL algorithms
may be determined based on their performance in the CAL setting in addition to their performance in
existing benchmarks.

To the best of our knowledge, this application of CL algorithms for batch AL has never been explored.
Our contributions can be summarized as follows: (1) We first demonstrate that active learning can
be viewed as a continual learning problem and propose the CAL framework; (2) we benchmark
several existing CL methods (CAL-ER, CAL-DER, CAL-MIR) as well as novel methods (CAL-SD,
CAL-SDS2) and evaluate them on several datasets based on the accuracy/speedup they can attain
over standard AL.

2 RELATED WORK

Active learning has demonstrated label efficiency (Wei et al., 2015; Killamsetty et al., 2021; Ash et al.,
2020) over passive learning. In addition to these empirical advances there has been extensive work
on theoretical aspects as well over the past decade (Hanneke, 2009; 2007; Balcan et al., 2010) where
Hanneke (2012) shows sample complexity advantages over passive learning in noise-free classifier
learning for VC classes. However, recently there has been an interest in speeding up active learning
because most deep learning involves networks with a huge numbers of parameters.

Kirsch et al. (2019); Pinsler et al. (2019); Sener & Savarese (2018) aim to reduce the number of
query iterations by having large query batch sizes. However, they do not exploit the learned models
from previous rounds for the subsequent ones and are therefore complementary to CAL. Works such
as Coleman et al. (2020a); Ertekin et al. (2007); Mayer & Timofte (2020); Zhu & Bento (2017)
speed up the selection of the new query set by appropriately restricting the search space or by using
generative methods. These works can be easily integrated into our framework because CAL works
on the training side of active learning, not on the query selection. On the other hand, Lewis &
Catlett (1994); Coleman et al. (2020b); Yoo & Kweon (2019) use a smaller proxy model to reduce
computation overhead, however, they still follow the standard active learning protocol, and therefore
can be accelerated when integrated with CAL.

2



Under review as a conference paper at ICLR 2023

Lastly, there exist a few prior works that explore continual/transfer learning and active learning in the
same context. Perkonigg et al. (2021) propose an approach that allows active learning algorithms to
be applied to data streams in the context of medical imaging, by introducing a module that detects
domain shifts. This differs from our work which uses algorithms that prevent catastrophic forgetting,
to accelerate active learning. Zhou et al. (2021) consider a setting in which standard active learning is
used to finetune a pre-trained model, and uses transfer learning to do so. Thus, this work does not
consider continual learning and active learning in the same setting and is therefore not related to our
work.

On preventing catastrophic forgetting, in this work, we mostly focus on the replay-based algorithms
that are currently state-of-the-art methods in continual learning. However, as demonstrated in
Section 3.3 on how active learning rounds can be seen as continual learning, one can apply other
methods such as EWC (Kirkpatrick et al., 2017a), structural regularization (Li et al., 2021) or
functional regularization based methods as well. (Titsias et al., 2020).

3 METHODS

3.1 BATCH ACTIVE LEARNING

Define [n] = {1, ..., n}, and let X and Y denote the input and output domains respectively. AL
typically starts with an unlabelled dataset U = {xi}i∈[n], where each xi ∈ X . The AL setting allows
the model f , with parameters θ, to query a user for labels for any x ∈ U , but the total number of
labels is limited to a budget b, where b < n. Throughout the work, we consider classification tasks so
the output of f(x; θ) is a probability distribution over classes. The goal of AL is to ensure that f can
attain low error when trained only on the set of b labelled points.

Algorithm 1 details the general AL procedure. Lines 3-6 construct the seed set D1, by randomly
sampling a subset of points from U and labelling them. Lines 7-14 iteratively expand the labelled set
for T rounds by training the model from a random initialization onDt until convergence and selecting
bt points (where

∑
t∈[T ] bt = b) from U based on some selection criteria that is dependent on θt. The

selection criteria generally selects samples based model uncertainty and/or diversity (Lewis & Gale,
1994; Dagan & Engelson, 1995; Settles; Killamsetty et al., 2021; Wei et al., 2015; Ash et al., 2020;
Sener & Savarese, 2017). In this work, we primarily consider uncertainty sampling Lewis & Gale
(1994); Dagan & Engelson (1995); Settles, though we also test other selection criteria in Section A in
the Appendix.

Algorithm 1
1: procedure ACTIVELEARNING(f , U , b1:T , T )
2: t← 1, L ← ∅ ▷ Initialize
3: Ut ∼ U ▷ Draw b1 samples from U
4: Dt ← {(xi, yi)|xi ∈ Ut} ▷ Provide labels
5: U ← U \ Ut
6: L ← L ∪Dt

7: while t ≤ T do
8: Randomly initialize θinit
9: θt ← Train(f, θinit,L)

10: Ut ← Select(f, θt,U , bt) ▷ Select bt points from U based on θt
11: Dt ← {(xi, yi)|xi ∈ Ut}
12: U ← U \ Ut; L ← L ∪Dt; t← t+ 1

13: return L

Uncertainty Sampling is a widely-used practical AL method that selects Ut = {x1, ..., xbt} to label
from U by choosing the samples that maximize a notion of model uncertainty. We consider entropy
(Dagan & Engelson, 1995) as the uncertainty metric, so if h(x) ≜ −

∑
i∈[k] f(x; θ)i log f(x; θ)i,

then Ut ∈ argmaxA:|A|=bt

∑
x∈A h(x).
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3.2 CONTINUAL LEARNING

We defineD1:n =
⋃

i∈[n]Di. In CL, the dataset consists of T tasks {D1, ...,DT } that are presented to
the model sequentially, where Dt = {(xi, yi)}i∈[nt] and nt is the cardinality of Dt. At time t ∈ [T ],
the data/label pairs are sampled from the current task (x, y) ∼ Dt, and the model generally has only
limited access to the history D1:t−1. The CL objective is to efficiently adapt the model to Dt while
ensuring that performance on previously learnt tasks D1:t−1 does not degrade appreciably. Ideally,
given a loss function ℓ : X × Y 7→ R, initial parameters θt−1, and a model f , θt can be obtained by
solving the CL optimization problem (Aljundi et al., 2019b; Chaudhry et al., 2019; Lopez-Paz &
Ranzato, 2017):

argmin
θ

E
(x,y)∼Dt

ℓ(y, f(x; θ))

s.t E
(x′,y′)∼D1:t−1

ℓ(y′, f(x′; θ)))≤ E
(x′,y′)∼D1:t−1

ℓ(y′, f(x′; θt−1)))

In this work, we focus on replay based CL techniques which attempt to approximately solve the CL
optimization problem by using samples from D1:t−1 to regularize the model while adapting to Dt.

Algorithm 2 outlines the general replay-based CL algorithm, in which the objective is to adapt f
parametrized by θ0 to D while using samples from the historyM. Inside the training loop, Bcurrent
consists of m points randomly sampled from D. Breplay consists of m′ points that are chosen based
on some customizable selection criteria fromM. In line 6, θt is computed based on some update rule
that utilizes both Breplay and Bcurrent. Note that many CL works also consider the problem of selecting
which samples should be retained inM, which is relevant in the scenario where D1:T is too large to
store in memory or when T is unknown (Aljundi et al., 2019b). However, this constraint does not
apply to the CAL setting, so in the subsequent sections we considerM = D1:t−1.

Algorithm 2
1: procedure CONTINUALTRAIN(f , θ0, D,M, m, m′)
2: t← 1
3: while not converged do
4: Bcurrent ← {(xi, yi)}mi=1 ∼ D ▷ Sample m points from current task
5: Breplay ← Select(f, θt−1,M,m′) ▷ Sample replay m′ points from history
6: θt ← Update(f, θt−1,Bcurrent,Breplay)
7: t← t+ 1
8: return θt

3.3 ACTIVE LEARNING AS CONTINUAL LEARNING

A clear inefficiency of standard AL stems from the fact that the model f must be retrained from
scratch on the labelled pool at every round. In this work, we employ CL-inspired techniques to adapt
to the newly labelled points, while significantly reducing the number of updates needed on samples
labelled in previous rounds.

We demonstrate that catastrophic forgetting indeed occurs in AL, when a model is fine-tuned only
on the newly labelled points at every round. In Figure 1, task t indicates the set of points from the
training dataset that were selected at the round t of querying based on entropy sampling. On the
y-axis, we report the accuracy of each set immediately after the model has been fine-tuned on the
points that were just labelled at a particular round.

It is evident that the model forgets old information from the precipitous drops in performance for task
t− 1 as soon as the model is adapted to new task t when points are added to the labelled set. Note
that task 1, after the initial drop, tends to increase in performance in the subsequent AL rounds since
the points belonging to the initial round are chosen uniformly at random (shown in Algorithm 1) and
thus is an unbiased estimate of the full dataset. This trend is generally not present in any of the later
tasks, which are sampled from distributions that are conditioned on the model parameters θt. It is
also interesting to note that the model performs considerably worse on all of the tasks (aside from
task 1) than it does on the test set, despite the fact that the model has been trained on the labelled
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pool. This experiment suggests that 1) the distribution of each task t > 1 is distinct from the true
data distribution and 2) techniques designed to combat catastrophic forgetting are necessary in order
to effectively incorporate new information between successive AL rounds.
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Figure 1: This figure shows the performance of a ResNet-18 on CIFAR-10, in the active learning
setting where the model is only trained on newly labelled points. At each round, 5% of the full dataset
is added to the labelled pool.

Algorithm 3
1: procedure CAL(f , U , b, T , m, m′)
2: t← 1, L ← ∅ ▷ Initialize
3: Ut ∼ U ▷ Draw b1 samples from U
4: Dt ← {(xi, yi)|xi ∈ Ut} ▷ Provide labels
5: U ← U \ Ut
6: L ← L ∪Dt

7: while t ≤ T do
8: θt← ContinualTrain(f , θt−1, Dt, D1:t−1, m, m′)
9: Ut+1 ← Select(f, θt,U , bt) ▷ Select bt points from U based on θt

10: Dt+1 ← {(xi, yi)|xi ∈ Ut+1}
11: U ← U \ Ut+1; L ← L ∪Dt+1; t← t+ 1

12: return L

To ameliorate the problem of catastrophic forgetting, we use CL techniques. The continual active
learning (CAL) approach is shown in Algorithm 3. The key difference of CAL from standard AL
(Algorithm 1) can be found in line 8. Instead of standard training, replay-based CL is used to adapt f
to Dt while retaining performance on D1:t−1. The speedup comes from two points: 1) the number of
gradient updates computed for samples from D1:t−1 is less than that of samples in Dt for reasonable
choices of m′ and 2) the model tends to converge faster since its parameters are warm-started. We
compare several CAL methods and assess their performance based on their performance on the test
set and the speedup they attain compared to standard AL. In the rest of the section

Lc ≜ E
(x,y)∼Bcurrent

[ℓ(y, f (x; θ))] (1)

Experience Replay (CAL-ER) is the simplest and oldest replay-based method (Ratcliff, 1990;
Robins, 1995). In this approach, Bcurrent and Breplay are interleaved to create a minibatch B of size
m+m′ and Breplay is chosen uniformly at random from D1:t−1. The parameters θ of model f are
updated based on the gradient computed on B.

Maximally Interferred Retrieval (CAL-MIR) addresses the problem of selecting samples from
D1:t−1, by choosing the m′ points that are most likely to be forgotten (Aljundi et al., 2019a). Given a
batch of m labelled samples Bcurrent sampled from Dt and model parameters θ, θv is computed by
taking a “virtual” gradient step i.e. θv = θ − η∇Lc where η is the learning rate. Then for every
example x in the history, sMIR(x) = ℓ(f(x; θ), y)− ℓ(f(x; θv), y) or the change in loss after taking
a single gradient step is computed. The m′ samples with the highest sMIR score are selected to form
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Breplay. Bcurent and Breplay are concatenated together to form the minibatch (as in CAL-ER), upon
which the gradient update is computed. In practice, selection is done on a random subset of D1:t−1

for speed.

Dark Experience Replay (CAL-DER) uses a distillation based approach to regularize updates
(Buzzega et al., 2020). Suppose g(x; θ) denotes the presoftmax logits of classifier f(x; θ) i.e
f(x; θ) = softmax(g(x; θ)). In DER, every x′ ∈ D1:t−1 has an associated z′ which corresponds to
the logits produced by the model at the end of the task when x was first observed. In other words, if
x′ ∈ Dt′ , then z′ ≜ g(x′; θ∗t′)) where t′ ∈ [t− 1] and θ∗t′ are the parameters obtained after round t′.
DER minimizes LDER as expressed below:

LDER ≜ Lc + E
(x′,y′,z′)∼Breplay

[
α ∥g(x′; θ)− z′∥22+β ℓ(y′, f(x′; θ))

]
, (2)

where Bcurrent is a batch sampled from Dt, Breplay is a batch sampled from D1:t−1, and α and β are
tuneable hyperparameters. The first term ensures that samples from the current task are classfied
correctly. The second term consists of a classification loss and a mean squared error (MSE) based
distillation loss that are applied on samples from the history.

Scaled Distillation (CAL-SD) is a new CL approach we propose in this work specifically tailored
towards the CAL setting. SD addresses the stability-plasticity dilemma that is commonly found in
both biological and artificial neural networks (Abraham & Robins, 2005; Mermillod et al., 2013). A
network is stable if it can effectively retain past information but cannot adapt to new tasks efficiently,
whereas a network that is plastic can quickly learn new tasks but is prone to forgetting. The trade-off
between stability and plasticity is a well-known constraint in CL (Mermillod et al., 2013). In the
context of CAL, we would like the model to be plastic during the early rounds and stable during
the later rounds. We apply this intuition to develop SD, which minimizes LSD at round t as shown
below:

Lreplay ≜ E
(x′,y′,z′)∼Breplay

[αDKL (softmax(z′) || f(x′; θ)) + (1− α) ℓ (y′, f(x′; θ))] , (3)

LSD ≜ λt Lc + (1− λt)Lreplay, (4)
where,

λt ≜
1

1 + |D1:t−1|
|Dt|

(5)

Similar to CAL-DER, Lreplay is a sum of two losses: a distillation loss and a classification loss. The
distillation loss in Lreplay minimizes the KL divergence between the posterior probabilities produced
by f and softmax(z′), where z′ is defined in the DER section. We use a KL divergence term instead
of a MSE loss on the logits, so that the distillation loss and the classification losses are on the same
scale. α ∈ [0, 1] is a tuneable hyperparameter.

LSD is a convex combination of the classification loss on the current task and Lreplay. The weight of
each term is determined adaptively by the stability/plasticity trade-off term λt. Higher values of λt

indicate higher model plasticity, since minimizing the classification error of samples from the current
task is prioritized. D1:t−1 increases with t, λt decreases and the model becomes more stable in the
later rounds of training.

Scaled Distillation w/ Submodular Sampling (CAL-SDS2) CAL-SDS2 is another a new CL
approach we introduce in this work. CAL-SDS2 uses CAL-SD to regularize the model and utilizes
submodular sampling to select a diverse set of points from the history to replay. Submodular functions
are well suited to capture notions of diversity and representativeness (Lin & Bilmes, 2011; Wei et al.,
2015; Bilmes, 2022), and the greedy algorithm can approximately maximize a monotone submodular
function up to a 1− e−1 factor guarantee (Fisher et al., 1978; Minoux, 1978; Mirzasoleiman et al.,
2015). We define a submodular function G below:

G(S) ≜
∑
xi∈A

max
xj∈S

wij + λ log

(
1 +

∑
xi∈S

h(xi)

)
, (6)
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The first term of G is the facility location function, where wij is a similarity score between samples
xi and xj . In our experiments, wij = exp (−∥zi − zj∥2/2σ2) where zi is the penultimate layer
representation of model f for xi and σ is a hyperparameter. The second term is a a concave over
modular function (Liu et al., 2013) and h(xi) is some measure of model uncertainty. In order to speed
up SDS2, we randomly subsample from the history before performing submodular maximization so
S ⊂ A ⊂ D1:t−1. The objective of CAL-SDS2 is to ensure that the set of samples that are replayed
are both difficult and diverse, similar to the motivation of the heuristic employed in Wei et al. (2015).

4 RESULTS

In this section, we evaluate the validation performance of the model when we train on different
fractions (b/n) of the full dataset. We compute the factor speedup attained by a CAL method by
dividing the runtime of AL over the runtime of the CAL method. We test the CAL methods on
a variety of different datasets spanning multiple modalities. The two methods that do not utilize
CAL are AL w/ WS (Active Learning with Warm Starting) and AL. We plot speedup vs mean test
accuracy (computed over three random seeds) at different labelling budgets (b/n) for each of the
five datasets we consider in this work. Qualitatively, methods that are plotted towards the top right
corners are preferable. The results are also available in tabular form in Appendix A. We adapt the
AL framework proposed in Beck et al. (2021) for all experiments presented in this section. In the
main paper, we show results for uncertainty sampling based acquisition function, but provide results
on other acquisition functions as well in Appendix B. Our objective is to demonstrate 1) at least
one CAL method exists that can match or outperform a standard active learning technique while
achieving a significant speedup for every budget and dataset and 2) models that have been trained
using a CAL method behave no differently than standard models.

4.1 EXPERIMENTAL SETUP

FMNIST The FMNIST dataset is a dataset consisting of 70,000 28×28 grayscale images of fashion
items belonging to 10 classes (Xiao et al., 2017). A ResNet-18 architecture (He et al., 2016) and
SGD is used. We apply data augmentations, as in Beck et al. (2021), consisting of random horizontal
flips and random croppings. On this dataset, we find that a CAL method matches or outperforms the
performance of standard AL in every setting we test 2.

CIFAR-10 CIFAR-10 consists of 60,000 32×32 color images with 10 different categories
(Krizhevsky, 2009). We use a ResNet-18 and use the SGD optimizer for all CIFAR-10 experi-
ments. We apply data augmentations consisting of random horizontal flips and random croppings.
From the results shown in Figure 3, there is at least one CAL method that outperforms standard AL
for every budget that we examine.

MedMNIST We use the DermaMNIST dataset within the MedMNIST database (Yang et al.,
2021a;b) for performance evaluation of CAL on medical imaging modalities. DermaMNIST consists
of 3-color channel dermatoscope images of 7 different skin diseases, originally obtained from
Codella et al. (2019); Tschandl et al. (2018). A ResNet-18 architecture is used for all DermaMNIST
experiemnts. All results are shown in Figure 4.
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Figure 2: FMNIST Results
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Figure 3: CIFAR-10 Results
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Figure 4: MedMNIST Results

Amazon Polarity Similar to Coleman et al. (2020b), we use Amazon Polarity Review (Zhang et al.,
2015) dataset, which is an NLP dataset consisting of reviews from Amazon and their corresponding
star-ratings (5 classes). We consider total unlabelled pool of size 2M sentences and use VDCNN-9
Schwenk et al. (2017) architecture, trained with Adam optimizer. As observed from Figure 5, CAL
methods achieve speedups while having competitive performance with standard AL procedure.

COLA (Warstadt et al., 2018) is an another commonly used NLP dataset, which was recently
considered in Active Learning setting (Ein-Dor et al., 2020). It aims to check linguistic acceptibility
of a sentence, that is, binary classification. We use BERT (Devlin et al., 2019) backbone trained with
Adam optimizer. We consider an unlabled pool of size 7000 and remaining as test; similar to Ein-Dor
et al. (2020) we use entropy sampling for the acquisition function and report accuracy. Figure 6
reports the performance and speedup of CAL methods with increasing budget, which shows their
competitive performance with standard AL procedure.

Single-Cell Cell Type Identity Classification Recent single-cell RNA sequencing (scRNA-seq)
technologies has enabled large-scale characterization of hundreds of thousands to millions of cells in
complex tissues, and accurate cell type annotation is a crucial step in the study of such datasets. To
this end, several deep learning models have been proposed to automatically label new scRNA-seq
datasets (Xie et al., 2021). The HCL dataset is a highly class-imbalanced dataset that consists
of scRNA-seq data for 562,977 cells across 63 cell types represented in 56 human tissues. (Han
et al., 2020). The data is divided into training, validation and test sets via an 80/10/10 split whilst
ensuring similar class proportions across splits. We use the ACTINN model (Ma & Pellegrini, 2019),
a four-layer multi-layer perceptron that predicts the cell-type for each cell given its expression of
28832 genes, and use the SGD optimizer for all experiments. From the results shown in Figure 7, the
majority of the CAL methods outperforms standard AL for every subset size that we examine.
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Figure 5: Amazon Polarity Results
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Figure 7: Single-Cell Cell-Type Identity Classification Results

4.2 SCORE CORRELATION BETWEEN STANDARD AND CAL MODELS

We test whether or not CAL models behave the same way as models that have been trained using
standard AL. Specifically, we assess the degree to which the uncertainty scores of CAL models
are correlated with standard models. In Figure 8, we show the pairwise correlation between all the
entropy scores of the models we used in the FMNIST and CIFAR-10 experiments at the end of
training (after training on 50% of the data). From the results, it is evident that the all the entropy
scores are positively correlated, providing an explanation as to why CAL models are able to perform
on par with standard models.

Figure 8: The correlation of entropy scores on the test set between models trained using AL/CAL at
the end of FMNIST and CIFAR-10 experiments is shown.

5 CONCLUSION

In this work, we proposed the framework of CAL and demonstrated its efficacy in speeding up AL
across multiple datasets by applying techniques adapted from CL. Across vision, natural language,
medical imaging, and biological datasets, we observe that there is always a CAL method that
either matches or outperforms standard AL while achieving considerable speedups. Since CAL is
independent of model architecture and AL strategy, this framework is applicable to a broad range
of settings. Furthermore, CAL provides a novel application for CL so future CL algorithms can be
assessed based on their performance on CAL as well as other existing CL benchmarks.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Wickliffe C Abraham and Anthony Robins. Memory retention–the synaptic stability versus plasticity
dilemma. Trends Neurosci, 28(2):73–78, February 2005.

Rahaf Aljundi, Lucas Caccia, Eugene Belilovsky, Massimo Caccia, Min Lin, Laurent Charlin,
and Tinne Tuytelaars. Online continual learning with maximally interfered retrieval. CoRR,
abs/1908.04742, 2019a. URL http://arxiv.org/abs/1908.04742.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for
online continual learning. arXiv preprint arXiv:1903.08671, 2019b.

Jordan Ash and Ryan P Adams. On warm-starting neural network training. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 3884–3894. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
288cd2567953f06e460a33951f55daaf-Paper.pdf.

Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep
batch active learning by diverse, uncertain gradient lower bounds. ArXiv, abs/1906.03671, 2020.

Maria-Florina Balcan, Steve Hanneke, and Jennifer Wortman Vaughan. The true sample com-
plexity of active learning. Machine Learning, 80(2-3):111–139, April 2010. doi: 10.1007/
s10994-010-5174-y. URL https://doi.org/10.1007/s10994-010-5174-y.

Nathan Beck, Durga Sivasubramanian, Apurva Dani, Ganesh Ramakrishnan, and Rishabh K. Iyer.
Effective evaluation of deep active learning on image classification tasks. CoRR, abs/2106.15324,
2021. URL https://arxiv.org/abs/2106.15324.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? . In Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency, FAccT ’21, pp. 610–623, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383097. doi:
10.1145/3442188.3445922. URL https://doi.org/10.1145/3442188.3445922.

Jeff A. Bilmes. Submodularity in machine learning and artificial intelligence. CoRR, abs/2202.00132,
2022. URL https://arxiv.org/abs/2202.00132.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and SIMONE CALDERARA. Dark
experience for general continual learning: a strong, simple baseline. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 15920–15930. Curran Associates, Inc., 2020.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. In ICLR, 2019.

Arslan Chaudhry, Albert Gordo, David Lopez-Paz, Puneet K. Dokania, and Philip Torr. Using
hindsight to anchor past knowledge in continual learning, 2020. URL https://openreview.
net/forum?id=Hke12T4KPS.

Noel Codella, Veronica Rotemberg, Philipp Tschandl, M. Emre Celebi, Stephen Dusza, David
Gutman, Brian Helba, Aadi Kalloo, Konstantinos Liopyris, Michael Marchetti, Harald Kittler, and
Allan Halpern. Skin lesion analysis toward melanoma detection 2018: A challenge hosted by
the international skin imaging collaboration (isic), 2019. URL https://arxiv.org/abs/
1902.03368.

Cody Coleman, Edward Chou, Sean Culatana, Peter Bailis, Alexander C. Berg, Roshan Sumbaly,
Matei Zaharia, and I. Zeki Yalniz. Similarity search for efficient active learning and search of rare
concepts. CoRR, abs/2007.00077, 2020a. URL https://arxiv.org/abs/2007.00077.

Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy
Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for
deep learning. In International Conference on Learning Representations, 2020b. URL https:
//openreview.net/forum?id=HJg2b0VYDr.

10

http://arxiv.org/abs/1908.04742
https://proceedings.neurips.cc/paper/2020/file/288cd2567953f06e460a33951f55daaf-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/288cd2567953f06e460a33951f55daaf-Paper.pdf
https://doi.org/10.1007/s10994-010-5174-y
https://arxiv.org/abs/2106.15324
https://doi.org/10.1145/3442188.3445922
https://arxiv.org/abs/2202.00132
https://openreview.net/forum?id=Hke12T4KPS
https://openreview.net/forum?id=Hke12T4KPS
https://arxiv.org/abs/1902.03368
https://arxiv.org/abs/1902.03368
https://arxiv.org/abs/2007.00077
https://openreview.net/forum?id=HJg2b0VYDr
https://openreview.net/forum?id=HJg2b0VYDr


Under review as a conference paper at ICLR 2023

Ido Dagan and Sean P. Engelson. Committee-based sampling for training probabilistic classifiers.
In Proceedings of the Twelfth International Conference on International Conference on Machine
Learning, ICML’95, pp. 150–157, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers
Inc. ISBN 1558603778.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. ArXiv, abs/1810.04805, 2019.

Payal Dhar. The carbon impact of artificial intelligence. Nature Machine Intelligence, 2(8):423–425,
Aug 2020. ISSN 2522-5839. doi: 10.1038/s42256-020-0219-9. URL https://doi.org/10.
1038/s42256-020-0219-9.

Liat Ein-Dor, Alon Halfon, Ariel Gera, Eyal Shnarch, Lena Dankin, Leshem Choshen, Marina
Danilevsky, Ranit Aharonov, Yoav Katz, and Noam Slonim. Active Learning for BERT: An Em-
pirical Study. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 7949–7962, Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-main.638. URL https://aclanthology.org/
2020.emnlp-main.638.

Seyda Ertekin, Jian Huang, Leon Bottou, and Lee Giles. Learning on the border: Active learning in
imbalanced data classification. In Proceedings of the Sixteenth ACM Conference on Conference on
Information and Knowledge Management, CIKM ’07, pp. 127–136, New York, NY, USA, 2007.
Association for Computing Machinery. ISBN 9781595938039. doi: 10.1145/1321440.1321461.
URL https://doi.org/10.1145/1321440.1321461.

M.L. Fisher, G.L. Nemhauser, and L.A. Wolsey. An analysis of approximations for maximizing
submodular set functions—II. In Polyhedral combinatorics, 1978.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3
(4):128–135, 1999.

Xiaoping Han, Ziming Zhou, Lijiang Fei, Huiyu Sun, Renying Wang, Yao Chen, Haide Chen, Jingjing
Wang, Huanna Tang, Wenhao Ge, Yincong Zhou, Fang Ye, Mengmeng Jiang, Junqing Wu, Yanyu
Xiao, Xiaoning Jia, Tingyue Zhang, Xiaojie Ma, Qi Zhang, Xueli Bai, Shujing Lai, Chengxuan Yu,
Lijun Zhu, Rui Lin, Yuchi Gao, Min Wang, Yiqing Wu, Jianming Zhang, Renya Zhan, Saiyong
Zhu, Hailan Hu, Changchun Wang, Ming Chen, He Huang, Tingbo Liang, Jianghua Chen, Weilin
Wang, Dan Zhang, and Guoji Guo. Construction of a human cell landscape at single-cell level.
Nature, 581(7808):303–309, March 2020.

Steve Hanneke. A bound on the label complexity of agnostic active learning. In Proceedings of the
24th International Conference on Machine Learning, ICML ’07, pp. 353–360, New York, NY,
USA, 2007. Association for Computing Machinery. ISBN 9781595937933. doi: 10.1145/1273496.
1273541. URL https://doi.org/10.1145/1273496.1273541.

Steve Hanneke. Theoretical foundations of active learning. Carnegie Mellon University, 2009.

Steve Hanneke. Activized learning: Transforming passive to active with improved label complexity.
Journal of Machine Learning Research, 13(49):1469–1587, 2012. URL http://jmlr.org/
papers/v13/hanneke12a.html.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

KrishnaTeja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh K. Iyer. GLIS-
TER: generalization based data subset selection for efficient and robust learning. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innova-
tive Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational
Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pp. 8110–
8118. AAAI Press, 2021. URL https://ojs.aaai.org/index.php/AAAI/article/
view/16988.

11

https://doi.org/10.1038/s42256-020-0219-9
https://doi.org/10.1038/s42256-020-0219-9
https://aclanthology.org/2020.emnlp-main.638
https://aclanthology.org/2020.emnlp-main.638
https://doi.org/10.1145/1321440.1321461
https://doi.org/10.1145/1273496.1273541
http://jmlr.org/papers/v13/hanneke12a.html
http://jmlr.org/papers/v13/hanneke12a.html
https://ojs.aaai.org/index.php/AAAI/article/view/16988
https://ojs.aaai.org/index.php/AAAI/article/view/16988


Under review as a conference paper at ICLR 2023

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis,
Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in
neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526, 2017a. doi:
10.1073/pnas.1611835114. URL https://www.pnas.org/doi/abs/10.1073/pnas.
1611835114.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis,
Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in
neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526, 2017b.
doi: 10.1073/pnas.1611835114.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017c.

Andreas Kirsch, Joost van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch
acquisition for deep bayesian active learning. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/
paper/2019/file/95323660ed2124450caaac2c46b5ed90-Paper.pdf.

Alex Krizhevsky. Learning multiple layers of features from tiny images. pp. 32–33, 2009. URL
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

David D. Lewis and Jason Catlett. Heterogeneous uncertainty sampling for supervised learning.
In William W. Cohen and Haym Hirsh (eds.), Machine Learning Proceedings 1994, pp. 148–
156. Morgan Kaufmann, San Francisco (CA), 1994. ISBN 978-1-55860-335-6. doi: https:
//doi.org/10.1016/B978-1-55860-335-6.50026-X. URL https://www.sciencedirect.
com/science/article/pii/B978155860335650026X.

David D. Lewis and William A. Gale. A sequential algorithm for training text classifiers, 1994. URL
http://arxiv.org/abs/cmp-lg/9407020. active learning roots.

Haoran Li, Aditya Krishnan, Jingfeng Wu, Soheil Kolouri, Praveen K. Pilly, and Vladimir Braverman.
Lifelong learning with sketched structural regularization. CoRR, abs/2104.08604, 2021. URL
https://arxiv.org/abs/2104.08604.

Hui Lin and Jeff Bilmes. A class of submodular functions for document summarization. In Pro-
ceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, pp. 510–520, Portland, Oregon, USA, June 2011. Association for Compu-
tational Linguistics. URL https://aclanthology.org/P11-1052.

Yuzong Liu, Kai Wei, Katrin Kirchhoff, Yisong Song, and Jeff Bilmes. Submodular feature selection
for high-dimensional acoustic score spaces. In 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 7184–7188, 2013. doi: 10.1109/ICASSP.2013.6639057.

David Lopez-Paz and Marc' Aurelio Ranzato. Gradient episodic memory for continual learning. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Feiyang Ma and Matteo Pellegrini. ACTINN: automated identification of cell types in single cell
RNA sequencing. Bioinformatics, 36(2):533–538, 07 2019. ISSN 1367-4803. doi: 10.1093/
bioinformatics/btz592. URL https://doi.org/10.1093/bioinformatics/btz592.

C. Mayer and R. Timofte. Adversarial sampling for active learning. In 2020 IEEE Winter Conference
on Applications of Computer Vision (WACV), pp. 3060–3068, Los Alamitos, CA, USA, mar
2020. IEEE Computer Society. doi: 10.1109/WACV45572.2020.9093556. URL https://doi.
ieeecomputersociety.org/10.1109/WACV45572.2020.9093556.

12

https://www.pnas.org/doi/abs/10.1073/pnas.1611835114
https://www.pnas.org/doi/abs/10.1073/pnas.1611835114
https://proceedings.neurips.cc/paper/2019/file/95323660ed2124450caaac2c46b5ed90-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/95323660ed2124450caaac2c46b5ed90-Paper.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.sciencedirect.com/science/article/pii/B978155860335650026X
https://www.sciencedirect.com/science/article/pii/B978155860335650026X
http://arxiv.org/abs/cmp-lg/9407020
https://arxiv.org/abs/2104.08604
https://aclanthology.org/P11-1052
https://doi.org/10.1093/bioinformatics/btz592
https://doi.ieeecomputersociety.org/10.1109/WACV45572.2020.9093556
https://doi.ieeecomputersociety.org/10.1109/WACV45572.2020.9093556


Under review as a conference paper at ICLR 2023

James L McClelland, Bruce L McNaughton, and Randall C O’Reilly. Why there are complementary
learning systems in the hippocampus and neocortex: insights from the successes and failures of
connectionist models of learning and memory. Psychological review, 102(3):419, 1995.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Martial Mermillod, Aurélia Bugaiska, and Patrick BONIN. The stability-plasticity dilemma: in-
vestigating the continuum from catastrophic forgetting to age-limited learning effects. Fron-
tiers in Psychology, 4, 2013. ISSN 1664-1078. doi: 10.3389/fpsyg.2013.00504. URL
https://www.frontiersin.org/article/10.3389/fpsyg.2013.00504.

M. Minoux. Accelerated greedy algorithms for maximizing submodular set functions. In Optimization
Techniques, 1978.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and Andreas
Krause. Lazier than lazy greedy. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 29, 2015.

Matthias Perkonigg, Johannes Hofmanninger, and Georg Langs. Continual active learning for
efficient adaptation of machine learning models to changing image acquisition. In Lecture Notes
in Computer Science, Lecture notes in computer science, pp. 649–660. Springer International
Publishing, Cham, 2021.

Robert Pinsler, Jonathan Gordon, Eric Nalisnick, and José Miguel Hernández-Lobato. Bayesian batch
active learning as sparse subset approximation. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/
paper/2019/file/84c2d4860a0fc27bcf854c444fb8b400-Paper.pdf.

R Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and
forgetting functions. Psychol Rev, 97(2):285–308, April 1990.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro.
Learning to learn without forgetting by maximizing transfer and minimizing interference. CoRR,
abs/1810.11910, 2018.

Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 7
(2):123–146, 1995. doi: 10.1080/09540099550039318. URL https://doi.org/10.1080/
09540099550039318.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green ai. Commun. ACM, 63(12):
54–63, nov 2020. ISSN 0001-0782. doi: 10.1145/3381831. URL https://doi.org/10.
1145/3381831.

Holger Schwenk, Loïc Barrault, Alexis Conneau, and Yann LeCun. Very deep convolutional networks
for text classification. In EACL, 2017.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach, 2017. URL https://arxiv.org/abs/1708.00489.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In International Conference on Learning Representations, 2018. URL https://
openreview.net/forum?id=H1aIuk-RW.

Yuya Senzaki and Christian Hamelain. Active learning for deep neural networks on edge devices,
2021. URL https://arxiv.org/abs/2106.10836.

Burr Settles. Active learning. Morgan & Claypool Publishers, 2012.

Burr Settles. Active learning literature survey. Computer Sciences Technical Report 1648, University
of Wisconsin–Madison, 2009. URL http://axon.cs.byu.edu/~martinez/classes/
778/Papers/settles.activelearning.pdf.

13

https://www.frontiersin.org/article/10.3389/fpsyg.2013.00504
https://proceedings.neurips.cc/paper/2019/file/84c2d4860a0fc27bcf854c444fb8b400-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/84c2d4860a0fc27bcf854c444fb8b400-Paper.pdf
https://doi.org/10.1080/09540099550039318
https://doi.org/10.1080/09540099550039318
https://doi.org/10.1145/3381831
https://doi.org/10.1145/3381831
https://arxiv.org/abs/1708.00489
https://openreview.net/forum?id=H1aIuk-RW
https://openreview.net/forum?id=H1aIuk-RW
https://arxiv.org/abs/2106.10836
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf


Under review as a conference paper at ICLR 2023

Burr Settles. From theories to queries: Active learning in practice. In Isabelle Guyon, Gavin
Cawley, Gideon Dror, Vincent Lemaire, and Alexander Statnikov (eds.), Active Learning and
Experimental Design workshop In conjunction with AISTATS 2010, volume 16 of Proceedings
of Machine Learning Research, pp. 1–18, Sardinia, Italy, 16 May 2011. PMLR. URL https:
//proceedings.mlr.press/v16/settles11a.html.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
CoRR, abs/1909.08053, 2019. URL http://arxiv.org/abs/1909.08053.

Michalis K. Titsias, Jonathan Schwarz, Alexander G. de G. Matthews, Razvan Pascanu, and Yee Whye
Teh. Functional regularisation for continual learning with gaussian processes. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=HkxCzeHFDB.

Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The ham10000 dataset, a large collection of
multi-source dermatoscopic images of common pigmented skin lesions. Scientific Data, 5, 2018.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
arXiv preprint arXiv:1805.12471, 2018.

Kai Wei, Rishabh Iyer, and Jeff Bilmes. Submodularity in data subset selection and active learning.
In Proceedings of the 32nd International Conference on International Conference on Machine
Learning - Volume 37, ICML’15, pp. 1954–1963. JMLR.org, 2015.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38–45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. CoRR, abs/1708.07747, 2017. URL http://arxiv.org/abs/
1708.07747.

Bingbing Xie, Qin Jiang, Antonio Mora, and Xuri Li. Automatic cell type identification methods
for single-cell rna sequencing. Computational and Structural Biotechnology Journal, 19:5874–
5887, 2021. ISSN 2001-0370. doi: https://doi.org/10.1016/j.csbj.2021.10.027. URL https:
//www.sciencedirect.com/science/article/pii/S2001037021004499.

Jiancheng Yang, Rui Shi, and Bingbing Ni. Medmnist classification decathlon: A lightweight automl
benchmark for medical image analysis. In IEEE 18th International Symposium on Biomedical
Imaging (ISBI), pp. 191–195, 2021a.

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and
Bingbing Ni. Medmnist v2: A large-scale lightweight benchmark for 2d and 3d biomedical image
classification. arXiv preprint arXiv:2110.14795, 2021b.

Donggeun Yoo and In So Kweon. Learning loss for active learning. CoRR, abs/1905.03677, 2019.
URL http://arxiv.org/abs/1905.03677.

Haoyu Zhang, Logan Stafman, Andrew Or, and Michael J. Freedman. Slaq: Quality-driven scheduling
for distributed machine learning. SoCC ’17, pp. 390–404, New York, NY, USA, 2017. Association
for Computing Machinery. ISBN 9781450350280. doi: 10.1145/3127479.3127490. URL
https://doi.org/10.1145/3127479.3127490.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. CoRR, abs/1509.01626, 2015. URL http://arxiv.org/abs/1509.01626.

14

https://proceedings.mlr.press/v16/settles11a.html
https://proceedings.mlr.press/v16/settles11a.html
http://arxiv.org/abs/1909.08053
https://openreview.net/forum?id=HkxCzeHFDB
https://openreview.net/forum?id=HkxCzeHFDB
https://www.aclweb.org/anthology/2020.emnlp-demos.6
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
https://www.sciencedirect.com/science/article/pii/S2001037021004499
https://www.sciencedirect.com/science/article/pii/S2001037021004499
http://arxiv.org/abs/1905.03677
https://doi.org/10.1145/3127479.3127490
http://arxiv.org/abs/1509.01626


Under review as a conference paper at ICLR 2023

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang, Yida
Wang, Yuanzhong Xu, Danyang Zhuo, Joseph E. Gonzalez, and Ion Stoica. Alpa: Automating
inter- and intra-operator parallelism for distributed deep learning. CoRR, abs/2201.12023, 2022.
URL https://arxiv.org/abs/2201.12023.

Wei Wu Sina Lin Mandeep Baines Vinay Ramakrishnaiah Carlos Efrain Nirmal Prajapati Pat Mc-
Cormick Jamaludin Mohd-Yusof Xi Luo Dheevatsa Mudigere Jongsoo Park Misha Smelyanskiy
Zhihao Jia, Colin Unger and Alex Aiken.

Zongwei Zhou, Jae Y. Shin, Suryakanth R. Gurudu, Michael B. Gotway, and Jianming Liang.
Active, continual fine tuning of convolutional neural networks for reducing annotation efforts.
Medical Image Analysis, 71:101997, 2021. ISSN 1361-8415. doi: https://doi.org/10.1016/j.
media.2021.101997. URL https://www.sciencedirect.com/science/article/
pii/S1361841521000438.

Jia-Jie Zhu and José Bento. Generative adversarial active learning. CoRR, abs/1702.07956, 2017.
URL http://arxiv.org/abs/1702.07956.

A ADDITIONAL EXPERIMENTAL DETAILS ON MAIN RESULTS

A.1 RESULTS IN TABULAR FORM

In this section, we report all results presented in Section 3.1 and Section 3.2 in tabular form. All
methods highlighted in blue are methods that use CAL.

Test Accuracy (%) Factor Speedup
Method 10% 15% 20% 25% 30% 10% 15% 20% 25% 30%
CAL-ER 92.6 ± 0.1 93.9 ± 0.2 94.5 ± 0.1 94.9 ± 0.2 94.9 ± 0.2 1.5× 1.4× 2.0× 2.4× 2.8 ×

CAL-MIR 92.6 ± 0.3 93.9 ± 0.2 94.5 ± 0.0 94.9 ± 0.1 94.9 ± 0.0 0.9 × 1.2× 1.3× 1.5× 1.7×
CAL-DER 92.7 ± 0.1 93.9 ± 0.1 94.5 ± 0.1 94.8 ± 0.2 94.9 ± 0.1 1.4 × 2.0× 2.4× 2.7× 3.1×
CAL-SD 92.6 ± 0.1 94.0 ± 0.2 94.5 ± 0.1 94.8 ± 0.2 94.9 ± 0.1 1.4 × 2.0× 2.4× 2.7× 3.1×

CAL-SDS2 92.6 ± 0.1 94.0 ± 0.2 94.6 ± 0.2 94.9 ± 0.1 94.9 ± 0.1 1.1× 1.5× 1.7× 1.9× 2.1×
AL w/ WS 92.7 ± 0.3 93.8 ± 0.2 94.4 ± 0.1 94.6 ± 0.1 94.4 ± 0.2 1.1× 1.4× 1.5× 1.5× 1.5×

AL 92.6 ± 0.3 93.8 ± 0.0 94.4 ± 0.1 94.9 ± 0.2 94.9 ± 0.1 1.0× 1.0× 1.0× 1.0× 1.0×

Table 1: FMNIST Results

Test Accuracy (%) Factor Speedup
Method 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
CAL-ER 82.1 ± 0.5 89.9 ± 0.3 92.4 ± 0.1 93.5 ± 0.1 93.7 ± 0.3 1.6× 2.8× 4.0× 5.3× 6.5×

CAL-MIR 82.4 ± 0.4 89.5 ± 0.3 92.6 ± 0.3 93.6 ± 0.1 93.8 ± 0.2 0.7 × 1.0× 1.4× 1.8× 2.2×
CAL-DER 83.5 ± 0.1 90.0 ± 0.4 92.3 ± 0.1 93.1 ± 0.2 93.4 ± 0.1 1.4× 2.3× 3.2× 4.2× 5.2×
CAL-SD 83.0 ± 0.0 90.0 ± 0.4 92.7 ± 0.2 93.3 ± 0.3 93.9 ± 0.3 1.4× 2.2× 3.2× 4.1× 5.1×

CAL-SDS2 82.5 ± 0.1 90.1 ± 0.2 92.9 ± 0.4 94.0 ± 0.2 94.4 ± 0.1 1.1× 1.6× 2.1× 2.7× 3.4×
AL w/ WS 81.9 ± 0.4 89.6 ± 0.5 92.4 ± 0.2 93.5 ± 0.1 94.1 ± 0.1 1.2× 1.1× 1.1× 1.1× 1.1×

AL 82.0 ± 0.3 89.1 ± 0.2 92.1 ± 0.4 93.5 ± 0.3 93.8 ± 0.2 1.0× 1.0× 1.0× 1.0× 1.0×

Table 2: CIFAR-10 Results
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Test Accuracy (%) Factor Speedup
Method 10% 15% 20% 25% 30% 10% 15% 20% 25% 30%
CAL-ER 56.8 ± 10.1 62.6 ± 2.9 64.3 ± 3.9 63.8 ± 8.1 62.6 ± 3.0 1.5× 2.3× 2.8× 3.3× 3.9×

CAL-MIR 60.8 ± 4.5 66.0 ± 3.8 64.3 ± 8.6 68.3 ± 2.1 69.5 ± 1.7 1.1× 1.3× 1.3× 1.5× 1.7×
CAL-DER 65.5 ± 3.7 69.1 ± 0.8 69.9 ± 0.3 70.1 ± 0.8 71.9 ± 0.5 1.3× 1.9× 2.2× 2.6× 3.0×
CAL-SD 62.9 ± 3.2 68.5 ± 0.5 69.3 ± 0.7 70.8 ± 0.6 70.7 ± 1.3 1.3× 1.9× 2.2× 2.6× 3.0×

CAL-SDS2 61.3 ± 10.5 69.1± 2.5 69.4 ± 1.7 70.2± 0.8 70.7± 1.2 1.1× 1.5× 1.7× 2.0× 2.2×
AL w/ WS 66.0 ± 0.9 65.6 ± 0.4 69.4 ± 0.9 69.7 ± 0.7 70.7 ± 0.4 1.1× 1.4× 1.6× 2.1× 2.2×

AL 66.2 ± 3.4 70.2 ± 0.6 68.7 ± 2.5 69.4 ± 3.2 71.4 ± 1.2 1.0× 1.0× 1.0× 1.0× 1.0×

Table 3: MedMNIST Results

Test Accuracy (%) Factor Speedup
Method 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
CAL-ER 90.7 ± 3.1 92.4 ± 1.2 93.5 ± 0.1 93.7 ± 0.2 93.8 ± 0.2 1.5x 3.5x 3.3x 4.1x 4.9x

CAL-MIR 92.0 ± 0.9 92.9 ± 0.1 93.3 ± 0.3 93.7 ± 0.1 93.7 ± 0.2 0.9x 1.3x 1.8x 2.3x 2.7x
CAL-DER 92.9 ± 0.3 94.1 ± 0.3 94.0 ± 0.7 93.6 ± 0.8 94.2 ± 0.3 1.5x 2.4x 3.2x 4.0x 4.7x
CAL-SD 92.1 ± 0.3 92.6 ± 0.4 93.7 ± 0.1 93.8 ± 0.1 94.1 ± 0.1 1.5x 2.4x 3.2x 4.0x 4.7x

CAL-SDS2 92.6 ± 0.3 93.2 ± 0.1 93.6 ± 0.1 93.8 ± 0.4 94.1 ± 0.0 1.2x 1.9x 2.5x 3.1x 3.7x

AL w/ WS 92.6 ± 0.5 93.0 ± 0.2 93.0 ± 0.1 93.2 ± 0.3 93.1 ± 0.1 1.0x 1.0x 1.0x 1.0x 1.0x
AL 92.8 ± 0.2 93.1 ± 0.7 93.3 ± 1.1 93.8 ± 0.5 94.1 ± 0.2 1.0x 1.0x 1.0x 1.0x 1.0x

Table 4: Amazon Polarity Results

Test Accuracy (%) Factor Speedup
Method 2.9% 5.7% 8.6% 11.4% 14.3% 2.9% 5.7% 8.6% 11.4% 14.3%
CAL-ER 73.2 ± 1.7 75.4 ± 0.8 76.4 ± 1.0 77.0 ± 2.0 77.3 ± 1.4 1.7x 2.8x 3.9x 5.0x 6.1x

CAL-MIR 75.1 ± 0.2 75.5 ± 1.2 76.6 ± 1.0 76.5 ± 0.4 77.0 ± 0.3 0.8x 1.2x 1.6x 2.0x 2.4x
CAL-DER 71.5 ± 2.7 74.9 ± 3.2 75.7 ± 1.5 76.9 ± 1.6 78.3 ± 0.8 1.7x 2.7x 3.7x 4.8x 5.8x
CAL-SD 73.6 ± 1.9 74.9 ± 1.1 77.7 ± 1.3 76.4 ± 0.3 78.0 ± 0.9 1.7x 2.7x 3.7x 4.8x 5.8x

CAL-SDS2 74.7 ± 2.8 75.5 ± 1.0 77.2 ± 0.9 78.1 ± 0.8 79.2 ± 0.5 1.4x 2.1x 2.9x 3.7x 4.5x

AL w/ WS 74.6 ± 0.7 76.1 ± 0.4 76.3 ± 1.0 76.3 ± 1.5 77.2 ± 0.9 1.2x 1.7x 1.6x 1.8x 1.8x
AL 73.9 ± 2.9 75.5 ± 0.5 76.6 ± 2.0 76.3 ± 0.9 77.3 ± 1.6 1.0x 1.0x 1.0x 1.0x 1.0x

Table 5: COLA Results.

Test Accuracy (%) Factor Speedup
Method 10% 15% 20% 25% 30% 10% 15% 20% 25% 30%
CAL-ER 86.3 ± 0.1 88.3 ± 0.1 89.7 ± 0.3 90.6 ± 0.2 91.0 ± 0.1 1.5× 2.0× 2.4× 2.9× 3.4×

CAL-MIR 86.3 ± 0.1 88.3 ± 0.1 89.7 ± 0.2 90.5 ± 0.2 90.9 ± 0.2 1.2× 1.6× 1.9× 2.2× 2.6×
CAL-DER 86.9 ± 0.3 88.8 ± 0.3 89.9 ± 0.3 90.7 ± 0.2 91.2 ± 0.1 1.4× 1.9× 2.3× 2.8× 3.3×
CAL-SD 86.3 ± 0.1 88.3 ± 0.1 89.5 ± 0.2 90.3 ± 0.2 90.8 ± 0.2 1.4× 1.9× 2.3× 2.8× 3.3×

CAL-SDS2 86.3 ± 0.1 88.2± 0.1 89.2 ± 0.3 90.1± 0.2 90.6± 0.1 1.4× 1.9× 2.3× 2.8× 3.3×
AL w/ WS 86.3 ± 0.1 88.3 ± 0.1 88.4 ± 0.8 88.2 ± 0.8 88.1 ± 0.8 1.0× 1.0× 1.2× 1.6× 1.9×

AL 83.6 ± 1.0 87.0 ± 0.3 88.6 ± 0.1 89.5 ± 0.2 89.9 ± 0.3 1.0× 1.0× 1.0× 1.0× 1.0×

Table 6: Single-Cell Cell-Type Identity Classification Results

A.2 HYPERPARAMETERS

For every dataset and every CAL/AL strategy, learning rate (lr) and batch size (m) are chosen based
on whichever setting achieves highest performance on standard AL. For all CAL methods, replay size
m′ ∈ {m, 2m} (used in all CAL methods), α ∈ {0.1, 0.25, 0.5, 0.75} (used in CAL-DER, CAL-SD,
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and CAL-SDS2), β ∈ {0.75, 1} (used in CAL-DER), σ ∈ {0.1, 1} (used in CAL-SDS2), and
λ ∈ {0.1, 1, 10} (used in CAL-SDS2). C is the hyperparameter used in CAL-MIR and CAL-SDS2
to subsample the history before finding the m′ samples to replay, but this parameter is not tuned
for any of the presented results. We list the specific set of hyperparameters we use for all the main
experimental results in this section.

A.2.1 FMNIST

All experiments for FMNIST used a ResNet-18 with an SGD optimizer, with learning rate of 0.01
and batch size of 64. For all the CAL methods, we fix m′ = 128. A NVIDIA GeForce RTX 1080
GPU was used to run all the reported experiments.

CAL-MIR C = 256

CAL-DER α = .1, β = 1

CAL-SD α = .25

CAL-SDS2 C = 256, α = .25, σ = 0.1, λ = 1

A.2.2 CIFAR-10

All experiments for CIFAR-10 used a ResNet-18 with an SGD optimizer, with learning rate of 0.02
and a batch size of 20. For all the CAL methods, we fix m′ = 40. Training is done on an NVIDIA
GeForce RTX 2080.

CAL-MIR C = 100

CAL-DER α = .1, β = 1

CAL-SD α = .25

CAL-SDS2 C = 100, α = .25, σ = 0.1, λ = 0.1

A.2.3 MEDMNIST

All experiments for MedMNIST used a ResNet-18 with an Adam optimizer, with learning rate of
0.001 and a batch size of 128. For all CAL methods, we fix m′ = 128. All reported models were
trained on an NVIDIA GeForce RTX 2080.

CAL-MIR C = 270, m′ = 128

CAL-DER m′ = 128, α = .1, β = 1

CAL-SD m′ = 128, α = .5

CAL-SDS2 C = 270, m′ = 128, α = .5, σ = 0.1, λ = 10

A.2.4 AMAZON POLARITY REVIEW

Throughout our experiments, we sample 2M sentences, and use them as the total training set instead.
We use Adam optimizer with standard parameters with learening rate of 0.001 and a batch size
128. For all the CAL methods, we fix m′ = 128. All reported models were trained on an NVIDIA
GeForce 1080 Ti.

CAL-MIR C = 256,
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CAL-DER α = .25, β = 0.75

CAL-SD α = .5

CAL-SDS2 C = 256, α = .75, σ = 1, λ = 1

A.2.5 COLA

For all of our experiments we use Huggingface’s transformer library Wolf et al. (2020) and use a
maximum sentence length of 100. We use Adam optimizer and a learning rate of 5 · 10−5, use a batch
size of 25 and m′ = 25. Models were trained on a single NVIDIA GeForce 1080 Ti.

CAL-MIR C = 50

CAL-DER α = 0.25, β = 0.75

CAL-SDS α = 0.75, β = 0.25

CAL-SDS2 C = 50, α = 0.5, β = 0.5, σ = 1, λ = 1.

A.2.6 SINGLE-CELL CELL-TYPE IDENTITY CLASSIFICATION

All experiments use SGD optimizer with standard parameters with learning rate of 0.001 and a
batch size 128. For all the CAL methods, we fix m′ = 128. Training is done on an NVIDIA
A100-PCIE-40GB.

CAL-MIR C = 200,

CAL-DER α = .1, β = 1

CAL-SD α = 1

CAL-SDS2 C = 100, α = .25, σ = 0.1, λ = 1

B RESULTS FOR ADDITIONAL ACTIVE LEARNING STRATEGIES

In this section, we demonstrate that CAL methods are able to accelerate AL strategies other than
entropy sampling without incurring any significant performance drops. We test multiple AL strategies
on and FMNIST Xiao et al. (2017) and CIFAR-10 Krizhevsky (2009). Note that the speedups
are approximately the same as the ones reported in Section A since the training time is generally
independent of the selected AL strategy.

B.1 OVERVIEW OF STRATEGIES

Margin Score Sampling This strategy is another form of uncertainty sampling Settles (2009) as
described in the main paper. Instead of the entropy of f(x; θ), the margin score is used as the entropy
score i.e. h(x) ≜ 1− (f(x; θ)i− f(x; θ)j) where i and j are the indices corresponding to the highest
and second highest values of f(x; θ) respectively.

FASS FASS Wei et al. (2015) is a two-staged selection method that uses both uncertainty sampling
and submodular maximization. Initially, a set of samples A of cardinality c ∗ bt is chosen from U
using uncertainty sampling, where c > 1 is a tuneable hyperparameter. Next, Ut is constructed by
greedily selecting samples that maximize a submodular set function G : 2A → R+ defined on ground
set A. Entropy is once again used as the uncertainty metric for the initial stage. For the second stage,
G is defined to be the facility location function Wei et al. (2015) expressed below:
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G(S) =
∑
xi∈A

max
xj∈S

wij , (7)

where S ⊆ A and wij is a similarity score between samples xi and xj . In our experiments,
wij = exp (−∥zi − zj∥2/2σ2) where zi is the penultimate layer representation of model f for xi

and σ is a hyperparameter.

GLISTER GLISTER Killamsetty et al. (2021) solves a bi-level optimization problem in order to
select samples to label. Specifically, GLISTER solves

argmax
S⊆Ut,|S|≤bt

LLV (argmax
θ

LLT (θ,S),V) (8)

where LLV is the log-likelihood on the validation set V , and LLT is the log-likelihood on the subset
S.

B.2 RESULTS

Test Accuracy (%)
Method 10% 15% 20% 25% 30%
CAL-ER 92.8 ± 0.1 94.1 ± 0.1 94.8 ± 0.1 95.1 ± 0.3 95.2 ± 0.2

CAL-MIR 92.6 ± 0.2 94.1 ± 0.4 94.9 ± 0.2 95.0 ± 0.2 95.2 ± 0.2

CAL-DER 91.8 ± 0.5 93.1 ± 0.1 94.3 ± 0.3 94.6 ± 0.1 94.8 ± 0.2

CAL-SD 92.5 ± 0.1 93.8 ± 0.1 94.8 ± 0.0 95.1 ± 0.2 95.2 ± 0.0

CAL-SDS2 87.8 ± 1.1 93.4 ± 0.1 94.6 ± 0.1 95.0 ± 0.2 95.2 ± 0.1

AL w/ WS 92.8 ± 0.0 94.0 ± 0.3 94.6 ± 0.1 94.8 ± 0.1 95.0 ± 0.2

AL 92.7 ± 0.1 94.1 ± 0.3 94.9 ± 0.1 95.0 ± 0.2 95.2 ± 0.1

Table 7: FMNIST with Margin Score Sampling

Test Accuracy (%)
Method 10% 20% 30% 40% 50%
CAL-ER 81.5 ± 0.1 89.3 ± 0.1 92.2± 0.2 93.4± 0.1 93.8 ± 0.0

CAL-MIR 81.9 ± 0.1 89.6 ± 0.2 92.2 ± 0.4 93.6 ± 0.0 94.0 ± 0.2

CAL-DER 83.0 ± 0.2 89.5 ± 0.2 92.2 ± 0.2 93.2 ± 0.2 93.6 ± 0.0

CAL-SD 82.6 ± 0.4 89.9 ± 0.4 92.4 ± 0.2 93.5 ± 0.1 93.8 ± 0.2

CAL-SDS2 82.5 ± 0.2 90.2 ± 0.2 92.5 ± 0.2 93.8 ± 0.2 94.1 ± 0.1

AL w/ WS 83.1 ± 0.1 90.3 ± 0.3 93.0 ± 0.2 93.5 ± 0.3 93.6 ± 0.2

AL 75.1 ± 1.2 87.1 ± 1.0 90.2± 0.5 92.0± 0.0 92.8 ± 0.5

Table 8: CIFAR-10 with Margin Score Sampling
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Test Accuracy (%)
Method 10% 15% 20% 25% 30%
CAL-ER 92.6 ± 0.1 93.9 ± 0.2 94.6 ± 0.2 95.0 ± 0.1 94.9 ± 0.0

CAL-MIR 92.5 ± 0.1 93.8 ± 0.3 94.6 ± 0.1 94.8 ± 0.1 94.9 ± 0.2

CAL-DER 92.7 ± 0.1 93.8 ± 0.1 94.5 ± 0.1 94.7 ± 0.1 95.0 ± 0.2

CAL-SD 92.8 ± 0.1 93.9 ± 0.1 94.7 ± 0.1 94.8 ± 0.3 94.9 ± 0.1

CAL-SDS2 92.8 ± 0.0 93.8 ± 0.2 94.5 ± 0.1 94.8 ± 0.2 94.9 ± 0.1

AL w/ WS 92.5 ± 0.1 93.8 ± 0.3 94.0 ± 0.2 94.3 ± 0.2 94.3 ± 0.0

AL 92.7 ± 0.4 93.9 ± 0.1 94.5 ± 0.1 94.7 ± 0.3 94.8 ± 0.1

Table 9: FMNIST with FASS

Test Accuracy (%)
Method 10% 20% 30% 40% 50%
CAL-ER 82.2 ± 0.2 89.8 ± 0.2 92.5± 0.2 93.4± 0.4 93.7 ± 0.2

CAL-MIR 82.2 ± 0.3 89.4 ± 0.2 92.3 ± 0.1 93.4 ± 0.0 93.5 ± 0.1

CAL-DER 83.1 ± 0.3 89.7 ± 0.2 91.9 ± 0.1 93.1 ± 0.2 93.5 ± 0.1

CAL-SD 83.0 ± 0.3 90.0 ± 0.3 92.5 ± 0.1 93.5 ± 0.1 94.0 ± 0.1

CAL-SDS2 83.0 ± 0.1 90.1 ± 0.1 92.7 ± 0.2 93.5 ± 0.2 94.0 ± 0.0

AL w/ WS 82.8 ± 0.4 90.3 ± 0.1 92.8 ± 0.2 93.6 ± 0.1 93.7 ± 0.3

AL 72.5 ± 2.0 86.6 ± 0.4 90.1± 0.4 91.7± 0.2 92.9 ± 0.2

Table 10: CIFAR-10 with FASS

Test Accuracy (%)
Method 10% 15% 20% 25% 30%
CAL-ER 92.6 ± 0.0 93.9 ± 0.2 94.3 ± 0.1 94.7 ± 0.1 94.7 ± 0.2

CAL-MIR 92.5 ± 0.0 93.9 ± 0.4 94.3 ± 0.2 94.4 ± 0.2 94.6 ± 0.1

CAL-DER 92.7 ± 0.1 93.9 ± 0.2 94.3 ± 0.3 94.7 ± 0.2 94.9 ± 0.3

CAL-SD 92.6 ± 0.1 93.8 ± 0.1 94.4 ± 0.3 94.6 ± 0.1 94.7 ± 0.1

CAL-SDS2 92.6 ± 0.1 93.9 ± 0.2 94.4 ± 0.2 94.6 ± 0.3 94.7 ± 0.2

AL w/ WS 92.5 ± 0.1 93.6 ± 0.1 93.9 ± 0.1 94.1 ± 0.1 94.3 ± 0.1

AL 92.5 ± 0.2 93.8 ± 0.1 94.2 ± 0.1 94.6 ± 0.2 94.7 ± 0.2

Table 11: FMNIST with GLISTER

Test Accuracy (%)
Method 10% 20% 30% 40% 50%
CAL-ER 81.7 ± 0.3 89.2 ± 0.2 91.9 ± 0.2 93.0 ± 0.1 93.3 ± 0.1

CAL-MIR 81.6 ± 0.3 89.3 ± 0.4 91.7 ± 0.2 92.9 ± 0.1 93.5 ± 0.2

CAL-DER 82.8 ± 0.4 89.5 ± 0.4 91.7 ± 0.4 92.8± 0.6 93.1 ± 0.2

CAL-SD 82.5 ± 0.3 89.6 ± 0.2 92.1 ± 0.2 93.1 ± 0.2 93.8 ± 0.1

CAL-SDS2 81.4 ± 0.4 89.1 ± 0.2 92.1 ± 0.2 93.2 ± 0.3 93.9 ± 0.1

AL w/ WS 81.7 ± 0.4 89.3 ± 0.4 92.1 ± 0.3 93.0 ± 0.1 93.3 ± 0.4

AL 81.0 ± 0.6 88.5 ± 0.5 91.5 ± 0.3 93.0 ± 0.2 93.4 ± 0.3

Table 12: CIFAR-10 with GLISTER
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C ADDITIONAL DETAILS ON SINGLE-CELL CELL-TYPE IDENTITY
CLASSIFICATION DATASET

The human cell landscape (HCL) dataset consists of scRNA-seq data for 562,977 cells across 63 cell
types represented in 56 human tissues. Each cell type may be present in multiple tissues. The cell type
classes are highly imbalanced, with the rarest cell type, human embryonic stem cell, accounting for
0.00006 % of the total dataset and the most common, fibroblast, accounting for 0.06%. The raw data
is first normalized for library-size and scaled to 10000 reads in total, followed by log-transformation.
We visualize the dataset using UMAP 9.

Figure 9: UMAP embedding of single cells in HCL annotated by their cell type.
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