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Abstract
When selecting data for training large-scale mod-
els, standard practice is to filter for examples that
match human notions of data quality. Such filter-
ing yields qualitatively clean datapoints that intu-
itively should improve model behavior. However,
in practice the opposite can often happen: we find
that selecting according to similarity with “high
quality” data sources may not increase (and can
even hurt) performance compared to randomly
selecting data. To develop better methods for se-
lecting data, we start by framing dataset selection
as an optimization problem that we can directly
solve for: given target tasks, a learning algorithm,
and candidate data, select the subset that maxi-
mizes model performance. This framework thus
avoids handpicked notions of data quality, and in-
stead models explicitly how the learning process
uses train datapoints to predict on the target tasks.
Our resulting method greatly improves language
model (LM) performance on both pre-specified
tasks and previously unseen tasks. Specifically,
choosing target tasks representative of standard
LM problems and evaluating on diverse held-out
benchmarks, our selected datasets provide a 2×
compute multiplier over baseline methods.

1. Introduction
Suppose we want to train a large-scale machine learning
model. What data should we train on? The simple answer is:
as much data as possible. For example, we train language
and vision models on vast quantities of text (Radford et al.,
2019) and image-caption (Ramesh et al., 2021) data from
sources like internet crawls. This seemingly straightforward
recipe yields models that generalize remarkably well to a
broad range of tasks.

A closer look, however, reveals that choosing training data
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is not actually so straightforward. Indeed, not all data is
equally useful; for example, internet data sources frequently
contain “low quality” data like spam, poor writing, or non-
sense text. Therefore, in practice, we tend to filter training
data according to intuitive notions of quality, e.g., choos-
ing documents similar to a “high quality” data source like
Wikipedia or discarding documents with fewer than five sen-
tences. These steps choose (qualitatively) “clean” samples
that should intuitively improve performance. However, do
such samples improve performance in practice too?

Contributions. We find that the opposite can happen: se-
lecting data according to similarity with “high quality” data
sources may not improve (and, in fact, can even hurt)
model performance. Specifically, we train language models
with standard, similarity-based selection methods previously
used to select data for models like PaLM and GPT-3 (Brown
et al., 2020; Xie et al., 2023b), and find these methods do
not outperform (and can even underperform) selecting data
at random (cf. Section 4).

To develop better methods for selecting training data, we
start from first principles. That is, we avoid intuitive notions
of data quality, and instead frame dataset selection as an op-
timization problem where the goal is to—given target tasks,
a learning algorithm, and a candidate data pool—select the
data that maximizes model performance. However, actu-
ally finding the optimal solution to this problem is difficult.
While we can calculate the performance of a specific train-
ing set by training a model on that set (and then evaluating),
it is (generally) unclear how to calculate the best possible
training subset without examining every possible subset one
by one, a computationally infeasible procedure.

We instead approximate the optimal subset by (approxi-
mately) modeling how the learning algorithm actually uses
training data to predict. Specifically, in Section 2, we model
target task performance as a function of training subset
using datamodels (which efficiently approximate the map-
ping between training subset and model performance (Ilyas
et al., 2022)), and select the subset that maximizes our esti-
mate. Then, in Section 3, we demonstrate that our resulting
method, dataset selection with datamodels (DSDM), con-
sistently improves language model performance on diverse
target tasks (e.g., SQuAD (Rajpurkar et al., 2016) and LAM-
BADA (Paperno et al., 2016)), even when existing selection
methods do not.
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DSDM-selected data can improve performance on pre-
specified tasks. However, in practice we train large-scale
models to generalize to yet unseen tasks. Our framework
suggests a principled approach to selecting data in this sce-
nario too: choose target tasks similar to those we expect
at deployment time, then select the optimal dataset subset
for these target tasks. Following this strategy, in Section 4,
we choose target tasks that cover a range of natural lan-
guage problem categories (SQuAD, Jeopardy (MosaicML,
2023), and LAMBADA), and select data from C4, a canoni-
cal web crawl (Raffel et al., 2020). Our selections deliver a
2× compute multiplier on a diverse set of test benchmarks:
DSDM-selected datasets yield LMs that perform as well
as those trained with 2× the compute budget on randomly
selected data (we train up to 1.8B parameter models). In con-
trast, no baseline method outperforms randomly selecting
data—even at the same compute budget.

2. Estimating the Optimal Dataset Selection
To select better data for training large-scale models, we start
by defining the optimal dataset selection as an optimization
problem. We then select data by finding a train subset that is
approximately the best solution to that problem. Specifically,
we use datamodels (Ilyas et al., 2022) to approximate how
the learning algorithm uses data to predict on the tasks of
interest. We describe the resulting framework in more detail
below.

2.1. Task-Optimal Dataset Selection

We frame dataset selection as an optimization problem
where the goal is to minimize trained model loss on a set
of target tasks with respect to training data choice. Given
a learning algorithm A (e.g., SGD on a neural network)
that maps train set to trained model, and a target distri-
bution Dtarg (e.g., a language modeling task), the size-k
task-optimal dataset selection over the set S of available
data (e.g., documents from an internet scrape) is the subset

S∗ := argmin
S⊂S,|S|=k

LDtarg(S), (1)

where LD(S) := Ex∼D [ℓ(x;A(S))] ,

that minimizes the trained model population loss LDtarg(S),
where ℓ(x; g) denotes the loss (e.g., cross-entropy loss) for
model g on example x. Note the expectation in the popula-
tion loss is over both target dataset and learning algorithm
randomness (as, e.g., SGD is a non-deterministic algorithm).

In our setting, minimizing (1) is difficult. Indeed, we do
not have an easy-to-optimize, closed-form expression for
trained model loss in terms of training set choice S for large-
scale model learning algorithms. 1 While we can directly

1Depending on the setup, we may have such a form for other

calculate the trained model loss for a given S by actually
training on S with A (and then evaluating loss), using this
method to find the best subset is generally computationally
infeasible: we would need to train (and evaluate) a model
for each of the

(|S|
k

)
possible size-k train subsets.

2.2. Estimating Model Loss Efficiently with Datamodels

To circumvent this computational challenge, we trade op-
timality for feasibility, and instead estimate the best train
subset. Specifically, we approximate the trained model loss
in place of calculating it directly, then select the subset that
minimizes our approximation.

The core primitive we use to approximate the trained model
loss is datamodeling (Ilyas et al., 2022), a framework origi-
nally designed to predict how choice of training set changes
model predictions. More precisely, a datamodel for a fixed
sample x approximates the mapping from train subset choice
S (out of the available dataset S) to resulting trained model
loss on a sample x, i.e., the function:

Lx(S) := E [ℓ(x;A(S))] .

Previous work used datamodels primarily for reliability pur-
poses, e.g., to detect data poisoning (Khaddaj et al., 2022) or
train-test leakage (Ilyas et al., 2022). In contrast, we lever-
age datamodels to cheaply approximate the trained model
loss Lx. Formally, given a candidate data subset S ⊂ S,
datamodels take as input the corresponding characteristic
vector

1S ∈ {0, 1}|S| such that (1S)i =

{
1 if Si ∈ S

0 otherwise
, (2)

instead of the subset S directly. Then, the datamodel τθx for
x is the parameterized function that optimally predicts Lx

over a (chosen) distribution of train subsets DS , i.e.,

τθx : {0, 1}|S| → R, where

θx = argmin
θ

Ê(m)
Si∼DS

[Lreg (τθ(1Si
), Lx(Si))] , (3)

where Lreg(·, ·) is a regression loss function (e.g., mean
squared error), and Ê(m) is an m-sample empirical expec-
tation. Note that in practice, we estimate the datamodel pa-
rameters that minimize (3) (i.e., we estimate the parameters
of the function we use to approximate model loss).

Linear datamodels. So far we have only defined the data-
modeling framework; we have not actually defined the pa-
rameterized function τθ or described how to estimate the

classes of learning algorithms, like linear regression (with influ-
ence functions (Cook, 1977; Giordano et al., 2019)) or kernel
regression (Bierens, 1988).
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parameters θ. In this work, we instantiate datamodels as a
linear function of the characteristic vector 1S (a standard
choice (Ilyas et al., 2022; Saunshi et al., 2023)), such that

τθx(1S) := θ⊤x 1S .

Note that, being a linear model, τθx treats the inclusion of
an example Si in the train set as having a fixed effect on
Lx(S) irrespective of the other examples in S (this fixed
effect is exactly the value of index i of θx).

In this work, to estimate linear datamodel parameters θx we
largely follow the procedures of previous work (Park et al.,
2023; Ilyas et al., 2022)—in particular, we use the TRAK
estimator—but make changes needed for the language mod-
eling domain (see Appendix B for full details).

2.3. DSDM: Dataset Selection with Datamodels

Recall that our goal is to estimate the candidate data subset
that minimizes trained model loss on the target task (cf. (1)).
To do so, we approximate the mapping between training
subset S and target distribution loss

(
i.e., LDtarg(S)

)
with

datamodels as a primitive, then select the candidate data
subset that minimizes our approximation of the target loss.

Specifically, given a train subset S, we estimate the corre-
sponding target distribution loss with an n-sample empirical
expectation of datamodel loss estimates over Dtarg samples:

L̂Dtarg(S) = Ê
(n)

xi∼Dtarg

[
τθxi

(1S)
]

=
1

n

n∑
i=1

θ⊤xi
1S

= 1⊤
S

(
1

n

n∑
i=1

θxi

)
.

Then, our size-k dataset selection with datamodels (DSDM)
estimate of the optimal dataset selection is the subset that
minimizes the approximated target loss L̂Dtarg

(S) with re-
spect to training set choice:

ŜDM := argmin
S⊂S,|S|=k

L̂Dtarg
(S)

= argmin
S⊂S,|S|=k

1⊤
S

(
1

n

n∑
i=1

θxi

)

= arg bot-k

(
1

n

n∑
i=1

θxi

)
.

In our instantiation, the considered datamodels are linear, so
DSDM selects the examples corresponding to the smallest
k indices of 1

n

∑n
i=1 θxi

. (Note that linear datamodels are a
design choice: DSDM can use any datamodel parameteriza-
tion that can be optimized over.)

3. Evaluating DSDM

To what extent does DSDM actually minimize trained model
target task loss? In this section, we demonstrate that DSDM
consistently reduces LM target task loss in practice. In con-
trast, baseline targeted dataset selection methods—all of
which ignore the model training process and instead select
data according to textual similarity with target task samples—
often do not outperform randomly selecting data. Below, we
describe our experimental setup, then discuss results.

3.1. Setup

To capture the effectiveness of a given data selection method,
we measure the extent to which it reduces the optimal dataset
selection objective of (1),

LDtarg
(S) := Ex∼D [ℓ(x;A(S))] ,

across varying target tasks. For each considered target task,
we split samples into a target set and a separate test set,
and only use the target set to select training subsets. We
then train an LM on the resulting dataset, and inspect target
task performance (using the test set). Below, we describe
the experimental setup as well as the baselines we use (see
Appendix C for more setup details).

Target tasks, candidate dataset, and model training.
We consider four separate LM target tasks: LAMBADA (Pa-
perno et al., 2016), CS-Algorithms (Srivastava et al., 2022),
SQuAD (Rajpurkar et al., 2016), and Jeopardy (Tunguz,
2019); see Appendix C.1 for more details on each task. Our
candidate dataset S is the English subset of the Colossal
Cleaned Common Crawl (C4), a standard web scrape (Raf-
fel et al., 2020).2 On each selected train dataset, we train a
125M parameter GPT-2 style model on 6 billion tokens.

Baselines. We compare DSDM with two standard targeted
dataset selection methods, both of which select according
to textual similarity between candidate training samples
and Dtarg samples: CLASSIFIER (selects the top examples
in S given by a logistic model trained to classify, on Fast-
Text features, between S and Dtarg samples; used by GPT-
3/PaLM/The Pile (Chowdhery et al., 2022; Gao et al., 2020))
and DSIR (Data Selection with Importance Resampling
chooses train samples with n-grams that distributionally
match those of Dtarg (Xie et al., 2023b)). We also compare
with randomly selecting data (RANDOM).

3.2. Results

In Figure 1 we display the mean log-probability (of the
label given the context, across task samples; larger is bet-
ter) achieved on each target task by training a model with

2Each candidate example Si is a sequence-length (1024 token)
corpus slice; |S| ≈ 217,000,000 (cf. Appendix A.1).
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Figure 1: Target task performance by selection method, varying dataset selection size. We train a 125M models on a fixed
number of tokens for each selection, adjusting epochs accordingly. DSDM consistently improves performance, even when
baselines do not outperform randomly selecting data (e.g., on SQuAD and CS-Algorithms). DSDM models also consistently
match a larger model trained with 10× the compute budget on random data (a Chinchilla-optimal 1.3B model). DSDM
performance decreases with larger selection fraction, indicating that higher ranked DSDM samples (i.e., data in the smallest
selections) tend to improve performance more than less highly ranked samples (i.e., data only present in larger selections).
We measure the average log-probability of the label across samples. The “random” shaded area is the range of values
achieved by 10 RANDOM models trained on one epoch of data (RANDOM performance is not x-axis dependent). Measuring
accuracy in place of log-probability yields similar conclusions (cf. Figure 9).

each selection method (varying dataset selection size). Each
model was trained on the same number of total tokens, with
models trained on smaller fractions of C4 traversing more
epochs. We find that DSDM most improves target task per-
formance on all tasks. Models trained with DSDM even
outperform a larger model trained with 10× the compute on
randomly selected data. Additionally, DSDM performance
decreases with larger selection fraction, indicating that the
samples predicted by DSDM to most improve performance
actually do so in practice. After all, smaller selections will
contain more useful data (as predicted by DSDM) on aver-
age compared to larger selections (e.g., all methods select
the same subset for selection fraction 1).

In contrast, baselines that select according to textual simi-
larity with the target task, CLASSIFIER and DSIR, do not
consistently beat randomly selecting data (e.g., on SQuAD
and CS-Algorithms). These results suggest that similarity
with the target task does not suffice to find useful samples.
Note that baselines only match DSDM on LAMBADA (a
passage completion task), which is also the only task with-
out in-context instructions. We hypothesize that n-gram
similarity may not capture how instructions define tasks.

To better understand how dataset choice relates to perfor-
mance, we inspect the datapoints that each method is most
and least likely to select (for SQuAD: in Figure 2, for all
other targets: in Appendix C.3). We find that:

Useful data is not necessarily similar to the target task
(or intuitively helpful at all). Looking at selected data for

SQuAD in Figure 2, DSIR and CLASSIFIER select data that
is more qualitatively similar to SQuAD samples (which are
Wikipedia excerpts with questions, cf. Appendix Figure 5)
than DSDM. Instead, DSDM samples often contain question
answering-related text that does not match the SQuAD for-
mat; DSDM performance shows that qualitatively similar
data is not necessarily the best data. However, helpful data
is not always intuitively useful. Indeed, the DSDM examples
for CS-Algorithms and Jeopardy (cf. Appendix Figures 21
and 15) often contain seemingly nonsense text. Yet, DSDM
yields the best models for these tasks.

DSDM discards “mislabeled” data. Samples that DSIR
and CLASSIFIER are least likely to select are qualitatively
different from those of DSDM. Inspecting Appendix Fig-
ure 11 for data selected for SQuAD: least likely samples for
all methods are incoherent/malformed, but those of DSDM
also often contain QA text. Despite this, such DSDM sam-
ples examples hurt model performance: training on them
is worse than selecting randomly (cf. Appendix Figure 10).
We liken these samples to “mislabeled” examples from su-
pervised learning, and conjecture excluding such data could
(in part) explain DSDM performance.

4. Selecting Data for Broad Model Capabilities
So far, we have shown that DSDM consistently reduces loss
on pre-specified target tasks. However, when we train large-
scale models in practice our hope is that they will perform
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(1) s, forms, and modification alternative can be overwhelming.
So save the time, chance, money, budget, energy, also effort and
implement these tips to acquire a obvious concept of what you
would like and things you need before you start the quest and think
about the right variations and pick right decoration, here are some
recommendations and photos on deciding on the best leather
sectional sofas toronto.\nThe design need to create impact to your
sofa. Could it be modern, luxury, minimalist, or traditional? Co

(2) ises; soldier of fortune.\n3. a person who undertakes great
commercial risk; speculator.\n4. a person who seeks power, wealth,
or social rank by unscrupulous or questionable means: They thought
John was an adventurer and after their daughter’s money.\n"There
can be adventurer souls."\n"There can be adventurer sirs."\n"There
can be adventurer reflexes."\n"There can be adventurer
realises."\n"There can be adventurer profiles."\n"There can be
adventurer problems."\n"There can be adventurer paths."\n"There
can be

(a) DSDM samples

(1) in Alexandria, where it was begun; and the Greek Bible of
the Hellenistic Jews and the Catholic Church may rightly be
styled the Alexandrian Greek version of the Old Testament.\nIn
the early days of the Church the Septuagint was widely used
among the Jews; as a rule, though there are exceptions, when the
Old Testament is quoted in the New Testament it is from the
Greek, not the Hebrew Bible that the quotation is made. The early
Jewish-Christians and the great majority of the Jews had the same
Bible, and Gent

(2) the Central Committee of the Party, that is, by the Politburo,
the Orgburo (Organizational Bureau), and the Secretariat. The
decisions made were implemented through the Presidium of the
Supreme Soviet of the USSR, the Council of People’s
Commissars of the USSR, the GKO, and the General
Headquarters of the Supreme Command, which had been
established on August 8. Strategic direction of the armed forces
was carried out by the General Headquarters through its working
body, the General Staff. Major questions as

(b) DSIR samples

(1) ris and St Gleb, dating from the mid-12th century, was
much rebuilt in succeeding periods, before being restored to its
original shape in the 20th century. The crowning achievement of
Chernigov masters was the exquisite Church of St Paraskeba
(Pyatnitskaya), constructed at the turn of the 12th and 13th
centuries. This graceful building was seriously damaged in the
Second World War; its original medieval outlook was
reconstructed. The earliest residential buildings in the
downtown date from the late 17th cen

(2) their professional careers.\nDr Simpson’s first line is
classic.\nlatest date in the year it’s been that cold in 50 years of
record keeping.\nBack in March, 2007, Al Gore told Congress
that "the science is settled."\nscience is settled. The Sun
revolves around the Earth, not vice versa.\nscience," spent the
rest of his life under house arrest.\n& Tax Bill (its actual name)
through the House? Hopefully, some "cooler"\nseem, may have
nothing to do with global warming.\nPaul, let me give you a
little advice.\nYou migh

(c) CLASSIFIER samples

Figure 2: Samples selected by each method for SQuAD. Selected CLASSIFIER and DSIR samples are intuitively “high
quality” text, and more similar to SQuAD examples (which are Wikipedia excerpts with questions) than DSDM samples
are. DSDM samples do not match SQuAD, but do contain QA-style text, e.g., (1) left (a question in an ad) or (2) left (a
dictionary definition). We display random samples from each method’s selected subset (cf. Appendix C.3). “\n” is a newline.

well on yet unseen tasks too. Our framework suggests a
straightforward approach to improving this kind of perfor-
mance: choose target tasks that match those we expect to
see at model deployment time, then estimate the optimal
dataset selection for these “proxy” target tasks.

In this section, we demonstrate that this approach to se-
lecting data can greatly improve held-out task performance
compared to baselines. Specifically, we consider three tar-
get tasks that cover a broad range of language modeling
problem categories—LAMBADA (language understanding
problems), SQuAD (reading comprehension problems), and
Jeopardy (world knowledge problems)—and estimate the
optimal training dataset selection for these tasks (all to-
gether) via DSDM. We then compare models trained on
this data with models trained via existing dataset selection
baselines. Overall, evaluating on a diverse set of held-out
benchmarks (meant to model “yet unseen tasks”), we find
that: (a) randomly selecting data is a surprisingly strong
baseline—no baseline selection method outperforms select-
ing data at random—and (b) our approach yields models
that match those trained with 2× the training compute on
randomly selected data. In particular, models trained with
our approach reliably improve performance on benchmarks
that are qualitatively related to the target tasks. We describe
our setup below, and defer additional details to Appendix D.

Model training, scaling DSDM, selection baselines, and
evaluation. We train GPT-2 style LMs with varying com-
pute budgets. To train the best possible model for a given
compute budget, we use Chinchilla-optimal parameter-to-
train-tokens ratios (Hoffmann et al., 2022) and train up to
1.8B parameter models. To select with DSDM, we use 125M
proxy models: we calculate DSDM subsets for 125M mod-
els, then train on these selections at each compute budget

(instead of computing DSDM separately for each model
class). DSDM cost scales linearly with model size, so this
procedure greatly reduces overhead (cf. Appendix B.5). For
baselines, we compare with two methods that select via tex-
tual similarity with a specified “high quality” data source
(DSIR and CLASSIFIER, the baselines of Section 3), a data
deduplication method (SemDeDup (Abbas et al., 2023)),
and selecting data randomly. We evaluate on 15 standard
benchmarks (cf. Table 1).

Target tasks. We execute each targeted dataset selec-
tion method using its originally proposed target task. For
DSDM, we apply the framework described above: we select
three target tasks that cover a broad range of LM problem
categories—LAMBADA, SQuAD, and Jeopardy—then es-
timate the optimal dataset selection for these tasks together
(i.e., Dtarg as an equal mix of these tasks). For CLASSI-
FIER and DSIR, we target a replication of the “high quality”
target distribution proposed by these methods (a mix of
Wikipedia (Foundation, 2022), Books1 (Presser, 2021), and
OpenWebText (Gokaslan et al., 2019), cf. Appendix D.1).

4.1. Results

In Figure 3, we display the mean benchmark performance
of models trained with each selection method, varying train-
ing compute budget. Randomly selecting data is a strong
baseline: all baseline methods generally match or perform
worse than random selection across training compute bud-
gets (Figure 3 left). In the case of CLASSIFIER and DSIR,
we hypothesize that data selected via similarity with a fixed
source hurts model performance by trading off data diversity
for (qualitatively) “cleaner” data.

In contrast, DSDM is a 2× compute multiplier: DSDM yields
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Figure 3: Left: mean benchmark performance, varying training compute budget. Right: mean performance for 1.3B models.
Randomly selecting data is a strong baseline: no active selection baseline outperforms random selection. In contrast, DSDM
outperforms all baselines across compute budgets (left panel), and even matches training with 2× the compute on randomly
selected data (when training 1.3B models, right panel). Our train budgets correspond to training 125M, 356M, 760M, and
1.3B parameter Chinchilla-optimal LMs. To contextualize 1.3B results, we show the performance of a model trained on
randomly selected data with 2× the 1.3B compute budget (i.e., a 1.8B Chinchilla-optimal model).

1.3B models that match models trained with 2× the com-
pute budget on randomly selected data (Figure 3, right).
Furthermore, across compute budgets, DSDM consistently
outperforms all selection baselines (Figure 3, left).

Going beyond aggregate performance, we find that DSDM
greatly improves on benchmarks related to the target tasks,
while simultaneously not reducing performance on unrelated
categories (on average). More precisely, inspecting individ-
ual benchmark performance in Table 1, DSDM most im-
proves reading comprehension and world knowledge bench-
marks compared to selecting randomly. We hypothesize that
our choice of target tasks leads to improved performance
on these benchmarks (which are qualitatively similar to
SQuAD, a reading comprehension task, and Jeopardy, a
world knowledge task). Furthermore, in these categories
DSDM consistently matches or outperforms training with
2× the compute budget on randomly selected data (i.e., the
1.8B model in Table 1). Crucially, DSDM improves on these
categories while also not reducing performance in other
categories. As a comparison, DSIR—which targets mostly
formal text—performs well on language understanding tasks
but poorly on other categories (e.g., world knowledge and
symbolic problem solving).

Target tasks improve performance on qualitatively sim-
ilar benchmarks. So far, we have only targeted DSDM
with a mix of LAMBADA, Jeopardy and SQuAD. How
does target task choice change model behavior? We find that
targeting a specific task generally improves performance
on qualitatively related tasks. To demonstrate, in Figure 4
we display accuracy by benchmark category while varying
target task across LAMBADA, Jeopardy, SQuAD, and all

at once. Here, targeting a task generally improves accuracy
on related tasks, e.g., SQuAD most improves reading com-
prehension, and Jeopardy most improves world knowledge.
Furthermore, targeting all tasks at once improves overall
accuracy the most. However, targeting can also decrease
accuracy on unrelated tasks. For example, targeting LAM-
BADA, a language understanding task, reduces world knowl-
edge accuracy compared to randomly selecting data. Our
results suggest that we can tailor target tasks to improve
deployment-time performance, but also that we need to be
careful to choose targets that are diverse enough to capture
a range of downstream problems.

DSDM is necessary to improve performance (with the
targeted tasks). DSDM selections yield much better mod-
els than CLASSIFIER and DSIR selections. However, we
have not yet compared these selection methods head-to-head
with the same target task. CLASSIFIER and DSIR target a
mix of “high quality” sources, while DSDM targets three
LM tasks (Jeopardy, SQuAD, and LAMBADA). To what ex-
tent does selecting with DSDM drive performance compared
to the difference in target tasks? We demonstrate that select-
ing with DSDM is necessary to improve performance on
the considered target tasks. Specifically, we train models on
data selected with DSIR and CLASSIFIER targeting LAM-
BADA, Jeopardy and SQuAD, and find that (just as when
targeting “high quality text”) neither outperforms randomly
selecting data (cf. Appendix Figure 25).

5. Discussion
Ostensibly, the sole goal of our dataset selection frame-
work is improve model performance by better selecting
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Table 1: Accuracies on the considered benchmarks for 1.3B models trained with each selection method, along with a model
trained with 2× the 1.3B compute budget on randomly selected data (a 1.8B model; Chinchilla-optimal models with larger
parameter counts train with more tokens as well). In parentheses, we contextualize accuracy with the difference compared to
a 1.3B model trained on randomly selected data.

Accuracy (%)
Model Parameters 1.3B 1.8B
Method DsDm Random Classifier DSIR SeDeDup Random

Category Benchmark

Commonsense
Reasoning

copa 63.0 (+1) 62.0 (+0) 66.0 (+4) 67.0 (+5) 68.0 (+6) 64.0 (+2)
openbook_qa 31.2 (–2) 33.4 (+0) 32.0 (–1) 32.0 (–1) 32.2 (–1) 33.6 (+0)
piqa 69.0 (+0) 68.9 (+0) 69.4 (+1) 65.7 (–3) 69.7 (+1) 71.5 (+3)

Language
Understanding

cbt 88.2 (+2) 86.4 (+0) 85.1 (–1) 92.4 (+6) 86.2 (+0) 88.4 (+2)
hellaswag 42.3 (–3) 44.9 (+0) 42.7 (–2) 40.4 (–5) 44.9 (+0) 50.1 (+5)
winogrande 51.1 (–1) 52.2 (+0) 50.5 (–2) 55.3 (+3) 50.3 (–2) 50.9 (–1)

Reading
Comprehension

boolq 58.0 (+3) 54.9 (+0) 60.9 (+6) 61.0 (+6) 49.9 (–5) 53.4 (–2)
coqa 25.5 (+7) 18.8 (+0) 16.7 (–2) 16.5 (–2) 22.9 (+4) 24.9 (+6)
news_qa 15.6 (+8) 7.5 (+0) 5.1 (–2) 5.5 (–2) 8.6 (+1) 9.5 (+2)

Symbolic
Problem
Solving

bb_copy_logic 3.1 (+0) 3.1 (+0) 0.0 (–3) 0.0 (–3) 3.1 (+0) 3.1 (+0)
bb_dyck_lang 11.9 (–2) 13.5 (+0) 3.4 (–10) 1.0 (–13) 7.3 (–6) 8.9 (–5)
bb_operators 13.3 (+3) 10.5 (+0) 6.7 (–4) 10.5 (+0) 11.4 (+1) 9.5 (–1)

World
Knowledge

arc_easy 47.6 (+3) 44.8 (+0) 44.7 (+0) 39.6 (–5) 43.5 (–1) 48.5 (+4)
bb_qa_wikidata 48.1 (+8) 40.6 (+0) 48.3 (+8) 37.7 (–3) 45.5 (+5) 53.6 (+13)
trivia_qa 7.1 (+3) 3.7 (+0) 2.5 (–1) 3.5 (+0) 2.4 (–1) 4.1 (+0)

training data. However, one can view our framework more
broadly. That is, one can also use our framework to se-
lect data that boosts any chosen downstream property of our
trained models—not just performance on a given benchmark.
In this sense, our framework (and accompanying method)
unlocks data curation as another stage of the model training
pipeline that we can intervene on to control the downstream
model behavior in a fine-grained manner. Below, we discuss
in more detail the broader opportunities this view opens up
as well as the other aspects of the framework, such as proxy
modeling and computational efficiency.

Applications and broader opportunities. DSDM can
optimize for any specified downstream model behavior. In-
deed, by an appropriate choice of the target tasks, we can
use our framework to improve a wide range of model be-
haviors, including: “aligning” models at pretraining time (in
addition to or in place of existing methods, which typically
operate post model training (Bai et al., 2022; Ziegler et al.,
2019; Taori et al., 2023)); optimizing for notions of fairness;
and improving performance on specific domains of interest
(such as low-resource languages or programming).

Training stronger models with weaker proxy models.
We select data for large models by using smaller models
to proxy large model behavior (recall that we use DSDM
to select data for smaller proxy models, then train large
models on these selections). Despite that these proxy mod-
els are much worse than larger models on benchmarks (cf.

Appendix Table 2), the corresponding selections nonethe-
less greatly improve performance. Furthermore, training on
proxy models’ selections is the simplest possible approach
to scaling. Therefore, we suspect that scaling to larger mod-
els less naïvely could yield even better results. More broadly,
our findings are in line with previous work showing that
smaller models can still be leveraged to determine better
training hyperparameters for larger models (Kaplan et al.,
2020; Coleman et al., 2020; Hoffmann et al., 2022; Yang
et al., 2022; Xie et al., 2023a).

Computational cost. DSDM is relatively inexpensive to
compute in practical model training scenarios. At a high
level, the most expensive part of estimating DSDM is com-
puting the gradient for each training example on a handful
of small proxy models (in our case, four 125M parameter
LMs—see Appendix B.5 for a full cost breakdown). To
contextualize DSDM cost with model training: computing
gradients also dominates the cost of training LMs. Since
the cost of computing a 125M model gradient is orders of
magnitude lower than the cost of computing gradients for
standard model sizes,3 even a small compute multiplier (let
alone the 2× improvement DSDM seems to offer) quickly
makes the overhead of DSDM worthwhile. Additionally,
after computing DSDM on a set of datapoints once, the cost

3For reference: models trained today generally range from 3B
to 175B parameters. The cost of a gradient is (roughly) linear in
model size, so it is 24× to 1400× more expensive to compute
gradients for these models vs. 125M models.
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Figure 4: Per-category performance for 760M models trained with DSDM-selected data, varying target task. DSDM
target tasks generally improve performance on (qualitatively) related benchmark task categories. Specifically, models
targeted towards SQuAD/Jeopardy/LAMBADA improve accuracy on reading comprehension/world knowledge/language
understanding, respectively. Targeting all three tasks at once improves overall accuracy. However, target tasks can also reduce
performance on (qualitatively) unrelated tasks. For example, targeting with LAMBADA (a language understanding task)
reduces performance on world knowledge tasks compared to randomly selecting. See each category’s constituent benchmarks
in Table 1. We plot improvement compared to randomly guessing answers (e.g., some benchmarks are multiple-choice).

of computing DSDM on those datapoints again is essentially
negligible (as the required computations are easy to cache).
Therefore, we can amortize DSDM’s computational cost
over the entire “lifetime” of training on the given dataset.

6. Related Work
Current methods for selecting LM pretraining datasets tend
to follow a two-step framework: (a) choose an intuitively
“high quality” reference corpus, like Wikipedia (Founda-
tion, 2022), then (b) select data that matches it. There are
two standard methods that adhere to this framework: DSIR
(Dataset Selection with Importance Reweighting (Xie et al.,
2023b)) and CLASSIFIER (originally introduced in Brown
et al. (2020) and used by other work (Gao et al., 2020;
Chowdhery et al., 2022; Du et al., 2022)). Other work on
selecting data for LM pretraining has included deduplicating
examples in LM activation space (Abbas et al., 2023), and se-
lecting examples with the largest difference in loss between
LMs trained on the candidate and reference sets (Moore and
Lewis, 2010; Axelrod, 2017; Feng et al., 2022). Simpler
methods for selecting data are also commonplace. These
include removing documents that are too short or contain
too many special characters (Raffel et al., 2020; Computer,
2023; Xie et al., 2023b). In the LM domain, a related (but
different) task to dataset selection is choosing weights for
sampling from mixtures of data sources (Chen et al., 2023b;
Xie et al., 2023a; Albalak et al., 2023).

Beyond LM pre-training, previous work also selects data
in other domains. These works aim to: improve the per-
formance on a given task (Wei et al., 2015; Kaushal et al.,
2019; Wang et al., 2020; Killamsetty et al., 2021a; Chitta
et al., 2021; Mindermann et al., 2022), identify core-sets of
large training datasets (Sener and Savarese, 2017; Phillips,
2017; Coleman et al., 2020; Mirzasoleiman et al., 2020;

Paul et al., 2021; Killamsetty et al., 2021b; Okanovic et al.,
2023), and fine-tune LMs (Antonello et al., 2022; Chen
et al., 2023a; Cao et al., 2023). Broadly, such methods select
by prompting pretrained models, discriminating on proxies
for model uncertainty like loss or gradient norm, matching
on gradients, or deduplicating in model output space.

DSDM uses TRAK to estimate datamodel weights, which
calculates influences using model gradients. We therefore ad-
ditionally overview gradient-based methods for LM dataset
selection in machine learning more broadly (Bejan et al.,
2023; Wang et al., 2023; Xia et al., 2024). These methods
estimate the effect of including a given train sample on a
given test example by calculating the inner product between
the two examples’ gradients. Through this lens, all methods
can be seen as applying a variant of TracIn (Pruthi et al.,
2020) to compute influences that are then used to select data.
In comparison, TRAK estimates the effect of including a
given train sample on a given test sample by calculating
influences on a linearized version of the model of interest
(cf. Appendix B.2 for more details).

7. Conclusion
In this work, we cast dataset selection as an optimization
problem: given target tasks, a learning algorithm, and a
candidate training dataset, choose the training maximizes
performance. We then propose a method for approximating
the solution to this optimization problem, DSDM, that se-
lects by modeling how the learning algorithm uses training
data to predict on the target tasks. We show that our method
reliably improves target task performance in the LM set-
ting, and furthermore use our framework to improve broader
model generalization. By choosing target tasks similar to
those we expect to see at deployment time, we can greatly
improve model performance on yet unseen tasks.
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Our findings prompt us to take on a much broader view of
the role of dataset selection stage in model training. In partic-
ular, our framework demonstrates that dataset selection can
be an effective tool for fine-grain control of model behavior.
Indeed, we hypothesize that carefully choosing data can not
only improve downstream task performance, but also other
downstream properties of trained models, such as notions
of predictor fairness, alignment with human preferences, or
capabilities in specific domains like low-resource languages
or programming. We also suspect that current methods for
datamodeling only scratch the surface of understanding how
models learn from data—and that we can greatly improve
our ability to manipulate model behavior through training
data by developing better datamodeling techniques.

Impact Statement
We introduce a new method for selecting data for improv-
ing model performance. Narrowly considering the direct
use of our method, selecting certain data can unpredictably
change fine-grained notions of model behavior. Therefore,
as a method for selecting data, DSDM data could cause un-
intended changes to model behavior. More broadly, DSDM
is a method meant to improve machine learning models,
and there are many potential consequences associated with
advancing machine learning.
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A. Experimental Setup
In this section we discuss general experimental setup, including candidate data pool, considered target tasks, baselines,
evaluation metrics, and model training choices.

A.1. Candidate dataset

Our candidate dataset is the full English subset of C4 (Raffel et al., 2020). We use the train split of the en.noblocklist
subset of the C4 version prepared by AllenAI at https://huggingface.co/datasets/c4. The subset name
noblocklist signifies that curse words were not filtered in the subset.

To split the text from the documents into examples, we tokenize all the documents, concatenate them together (separated by
end-of-text tokens), and then slice the result into 1024 token chunks. These 1024 token examples generally contain between
3,000 and 6,000 characters (roughly a thousand words). The final candidate dataset has 216,948,746 examples. We tokenize
with the Pythia tokenizer (Black et al., 2022; Biderman et al., 2023).

As a public internet crawl, C4 contains diverse text. To contextualize the dataset, we show (excerpts) of random C4 samples
in Figure 24.

A.2. Target tasks

We describe each of the considered target tasks below. We both describe the tasks, and how we split samples into distinct
sets of “target samples” (to select datasets for a target task) and “holdout samples” (to evaluate models on the target task):

• SQuAD. The Stanford Question-Answering Dataset (SQuAD (Rajpurkar et al., 2016)) is an open book, reading
comprehension dataset of questions about Wikipedia articles. The goal is to answer questions using the corresponding
article as context. Our target set is 25% of the SQuAD train set (23107 examples), our holdout set is the SQuAD
validation set (10557 examples).

• Jeopardy. Jeopardy (Tunguz, 2019) is a set of trivia questions taken directly from the show “Jeopardy!” We use the
version of Jeopardy published by MosaicML (MosaicML, 2023).4 We include all the samples save for the “Word
Origins” subset.5 We randomly partition the remaining samples into 876 target samples and 876 holdout samples.

• LAMBADA. LAnguage Modeling Broadened to Account for Discourse Aspects (LAMBADA (Paperno et al., 2016))
is an open-ended cloze task measuring broad context text understanding. The goal is to predict the last word of curated
passages from BooksCorpus (Zhu et al., 2015) given the rest of the passage as context. The task is meant to be
challenging: Paperno et al. (2016) only select passages such that crowdworkers could not guess the final word given
the final sentence alone (up until the final word), but could guess the final word given the entire passage. We use the
LAMBADA version curated by EleutherAI.6 Finally, we split the LAMBADA test set into separate target and holdout
sets, then remove 6 samples from the LAMBADA holdout set due to overlap with samples in our candidate train dataset
(cf. Subsection A.2.1 for details on this procedure). We conclude with 2570 holdout samples and 2577 target samples.

• CS-Algorithms. BIG-bench CS Algorithms (Srivastava et al., 2022) measures the ability of models to solve basic
algorithmic problems. In particular, this benchmark contains two kinds of problems: testing for balanced parentheses,
and finding the longest common subsequence of multiple strings. For each considered example, the goal is to directly
output the answer to the posed algorithmic question. We randomly split the test set into 660 target samples and 660
holdout samples.

We include samples of each benchmark in Figure 5 (SQuAD), Figure 6 (Jeopardy), Figure 7 (LAMBADA), and Figure 8
(CS-Algorithms). We evaluate in the 0-shot (for LAMBADA and CS-Algorithms) and 3-shot (for SQuAD and Jeopardy)
regimes. In the 3-shot setting, we separate each example with a single newline. We use standard prompts for each task (see
the samples for details).

4Located at: https://github.com/mosaicml/llm-foundry/blob/v0.2.0/scripts/eval/local_data/
world_knowledge/jeopardy_all.jsonl

5We originally intended this subset as a hold-out set for our broader evaluation, but decided not to use the subset as we deemed it
unfairly close to the original task to serve as a true hold-out set.

6Located at https://huggingface.co/datasets/EleutherAI/lambada_openai/viewer/en.
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1. Context: The chloroplasts of some hornworts and algae contain structures called pyrenoids. They are not found in higher plants.
Pyrenoids are roughly spherical and highly refractive bodies which are a site of starch accumulation in plants that contain them.
They consist of a matrix opaque to electrons, surrounded by two hemispherical starch plates. The starch is accumulated as the
pyrenoids mature. In algae with carbon concentrating mechanisms, the enzyme rubisco is found in the pyrenoids. Starch can also
accumulate around the pyrenoids when CO2 is scarce. Pyrenoids can divide to form new pyrenoids, or be produced “de novo”.
Question: What shape are pyrenoids?
Answer: roughly spherical

2. Context: In this dioxygen, the two oxygen atoms are chemically bonded to each other. The bond can be variously described based on
level of theory, but is reasonably and simply described as a covalent double bond that results from the filling of molecular orbitals
formed from the atomic orbitals of the individual oxygen atoms, the filling of which results in a bond order of two. More specifically,
the double bond is the result of sequential, low-to-high energy, or Aufbau, filling of orbitals, and the resulting cancellation of
contributions from the 2s electrons, after sequential filling of the low σ and σ∗ orbitals; σ overlap of the two atomic 2p orbitals that
lie along the O-O molecular axis and π overlap of two pairs of atomic 2p orbitals perpendicular to the O-O molecular axis, and then
cancellation of contributions from the remaining two of the six 2p electrons after their partial filling of the lowest π and π∗ orbitals.
Question: What is a descriptive term for a low-to-high energy bond?
Answer: Aufbau

Figure 5: Random SQuAD samples. Context is normal text, and the continuation label is hightlighted.

1. WORLD HISTORY: In 1191 this Lion-Hearted king of England captured Cyprus & Acre during the Crusades
Answer: Richard I

2. LITERATURE: 1719 novel about a mariner who lived 8 & 20 years all alone in an uninhabited island
Answer: Robinson Crusoe

Figure 6: Random Jeopardy samples. Context is normal text, and the continuation label is hightlighted.

1. The Simplification Movement wasn’t really an organized movement. It was more of an ideological shift by a large number of
believers. There were quite a few Simpletons among the Mother Assembly denomination, but the High Sire had never recognized
their movement as an order or organization. However, some other denominations were founded on the principles of the
Simplification Movement

2. “Here,” said Jacob, handing them what was a rope attached to the ground next to them, the other end at the bottom of the well. “You
first.”
Will stood there. Why am I doing this? he thought.
“Come on, let’s go!” ordered Jacob.
Will took the rope and began to climb down the well.
“Thatta boy, you’ve got this,” said Jacob

Figure 7: Random LAMBADA samples. We show the context as normal text, and the continuation label as hightlighted.

1. Given two strings, determine the length of the longest common subsequence.

Strings: REFVJLZIV PJIQB
Length of longest common subsequence: 2

2. Determine whether the given sequence of parentheses is properly matched.

Sequence: [ ] ( ) ( ( ( ) ) )
Valid/Invalid? Valid

Figure 8: Random CS-Algorithms samples. We show the context as normal text, and the continuation label as hightlighted.
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A.2.1. MITIGATING TRAIN-TEST LEAKAGE

We mitigate train-test leakage by filtering out test examples that overlap with our candidate data samples. Specifically,
we define a test example as “leaked” if both its context and continuation are present in a single C4 example. To upper-
bound train-test leakage, we test for the context and continuation separately (i.e., for a given test sample, the context and
continuation do not have to be contiguous in a train sample to count as leaked) We investigate train-test leakage for all the
test examples in each of the test sets (i.e., LAMBADA, SQuAD, Jeopardy, and CS-Algorithms) across the entire candidate
train set (i.e., the C4 English subset). Note that we match strings after lowercasing and removing whitespace.

We find 6 LAMBADA test examples with overlap in C4, and remove them from our LAMBADA test split. We do not find
any train-test leakage for SQuAD, Jeopardy, or CS-Algorithms.

A.3. Data selection baselines

We consider four baselines for selecting language modeling data. These fall into two categories: targeted data selection
methods (which select data according to a target distribution), and untargeted data selection methods (which do not take in a
target distribution).

A.3.1. TARGETED BASELINES

The two targeted dataset selection methods we consider, CLASSIFIER (originally used to select the GPT-3 dataset (Brown
et al., 2020)) and DSIR, both select according to textual similarity with a target distribution. We describe the details of these
methods below:

CLASSIFIER. The dataset selection method originally developed to select data for GPT-3, and additionally used to select
data for PaLM (Chowdhery et al., 2022) and The Pile (Gao et al., 2020). The method trains a logistic regression model on
FastText (Joulin et al., 2016) features to classify between (held-out) samples of the candidate dataset (in our case, C4) and
the target distribution, then chooses training data according to how likely the model predicts the data as being sampled
from the target distribution. To more specifically describe CLASSIFIER: the method keeps a given document if the scored
document satisfies:

ϵ > 1− document_score, ϵ ∼ Lomax(α),

where a Lomax sample is drawn for each considered document, and where document_score is the classifier-given
probability that the given sample is in the target distribution. Sampling a threshold according to the Lomax distribution
is meant to improve diversity of the selected data. In this work, we learn the classifier on the C4 en.noblocklist
validation set, and choose α = 12 via the parameter selection procedure described in Brown et al. (2020) (score each
document in C4 with the classifier, then fit the parameters of a Lomax distribution via maximum likelihood estimation
according to these scores).

DSIR. Dataset Selection with Importance Resampling (Xie et al., 2023b) aims to select a data subset with a similar
distribution as the target task in terms of n-gram counts. DSIR comprises two steps: (a) find the (hashed) n-gram counts
for each train set example (each example is represented as a vector of counts, with n-grams hashed into buckets to
reduce dimensionality), then (b) importance sample to select candidate train set examples that are distributed similarly to
target distribution samples in terms of n-gram counts. DSIR calculates importance weights by modeling the distribution
of examples (in feature space) under the target distribution and under the candidate data distribution separately, using
bag-of-words style models. In greater detail, DSIR consists of the following steps:

1. Fit p̂feat and q̂feat, estimates of the distributions of target examples and candidate training examples in hashed n-gram
space (respectively). DSIR parameterizes p̂feat and qfeat through the following general procedure for estimating the
distribution of hashed n-grams7 for a given set of documents. First, calculate the hashed n-gram counts (with d hash
buckets) across the documents as the vector γ ∈ Rd, where γk corresponds to the number of n-grams that hash to k in
the documents. Then, normalize γ so that its values sum to 1, forming a probability distribution over buckets. Finally,
parameterize the distribution of hashed n-grams for this set of documents as a bag-of-words style model (Zhang et al.,

7For example, if we wanted to make a d dimensional hashed n-gram feature vector for a document, we would find all the n-grams in
the document, hash the n-grams into integers up to size d, then go through each integer and increment the corresponding feature vector
index.
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2010) such that the probability of a document with hashed n-gram counts c is
∏d

i=1 γ
ci
d (here, the bag-of-words model

is over hashed n-grams instead of words).

2. Calculate importance weights for each example in the candidate training set, such that example i with counts c has
weight wi =

p̂feat(c)
q̂feat(c)

.

3. Sample examples without replacement according to the categorical distribution with (unscaled) weights wi.

For more details on DSIR, see Section 4 of Xie et al. (2023b). We adapt implementations of both DSIR and CLASSIFIER
from https://github.com/p-lambda/dsir.

Considered target distributions. We apply targeted dataset selection methods with different target distributions depending
on the context. In Section 3, we measure the extent to which different selection methods can reduce loss on individual target
tasks, so we select data for individual tasks (i.e., Jeopardy, SQuAD, CS-Algorithms, and LAMBADA). In Section 4 we use
these targeted baselines to select data for general purpose language modeling, so we use the recommended target task from
each work (intuitively high-quality data sources; see Appendix D.1 for more details).

A.3.2. UNTARGETED BASELINES

The two untargeted dataset selection methods we consider are: RANDOM (select data randomly) and SemDeDup (Semantic
Deduplication (Abbas et al., 2023)). SemDeDup selects by clustering data according to the last layer activations for the
last token in the given document, then choosing only the examples in each cluster that have the lowest cosine similarity
with the cluster centroid. We follow the hyperparameters from the original work (11,000 clusters, deduplicating down
to 20% of the dataset for optimal model performance). We use the implementation from https://github.com/
facebookresearch/SemDeDup/.

A.4. LM training details

We train GPT-2 family decoder-only transformer models (Radford et al., 2019; Liu et al., 2018) using LLM-Foundry (Mo-
saicML, 2023). To train models, we use ADAM (β1 = 0.9, β2 = 0.95, ϵ = 10−8), sequence length 1024, batch size 1024,
a cosine learning rate schedule (with 200 warm up batches and α = 0.1), and ℓ2 gradient clipping with threshold 1. We
train on A100s (with BF16 precision) and H100s (with FP8 precision), and tokenize text with the BPE tokenizer used by
Pythia (Biderman et al., 2023).

We summarize the remaining hyperparameter choices used to train the models in this work in Table 2 (including weight
decay, learning rate, model architecture, and training token count). We select all hyperparameters to minimize 125M held-out
perplexity on C4. The only exception: we increase the weight decay for the Section 4 models to ensure that larger parameter
model training runs converge (with smaller weight decay, larger models diverge in loss). Model parameterization choices
(i.e., number of heads or layers), optimizer hyperparameters, and learning rate schedule generally chosen according to the
default LM training configurations in LLM-Foundry.

Chinchilla-optimal compute ratios. To train the best possible LM for a given compute budget, one must trade off
two hyperparameters that control used compute: model size and number of training tokens. We use Chinchilla-optimal
parameter-to-training-token ratios to trade these parameters off (Hoffmann et al., 2022). In our compute regime, this
(roughly) amounts to training on a number of tokens equal to 20× the number of parameters.

A.5. Evaluation metrics

In this work, we measure model performance using two different metrics: log-probability (in Section 3, to compare model
performance on target tasks) and accuracy (in Section 4, to compare model performance on a broad set of yet unseen tasks).
Below, we describe how we measure both metrics.

A.5.1. LOG-PROBABILITY

To calculate mean log-probability, we compute the log-probability of the model generating the correct label, then aggregate
the mean across benchmark samples. More specifically, all the tasks we evaluate with log-probability are open-ended LM
tasks (e.g., LAMBADA), where the goal is to generate a desired continuation from the context (e.g., for LAMBADA,
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Table 2: Training configurations for models trained across this work. Accuracy measured as the mean accuracy across the
benchmarks considered in Section 4 for a model trained with randomly selected data with the corresponding configuration.
The Chinchilla-optimal (760M, 1.3B, 1.8B) models (Hoffmann et al., 2022) of Section 4 are much more accurate than the
125M models used to calculate datamodels. Following previous work, we approximate FLOPs (Floating Point OPerations)
via parameters× tokens× 6 (Kaplan et al., 2020; Hoffmann et al., 2022); FLOPs proxy the computational cost of
training a given model. LR is learning rate, WD is weight decay. Each batch contains 1024 samples of 1024 tokens each.

Hyperparameters

Parameters LR WD dmodel Heads Layers Tokens Batches Train FLOPs Accuracy

Estimating datamodels
125M 6× 10−4 2× 10−4 768 12 12 8.4× 1010 80000 6.3× 1019 31.8%

Section 3: Evaluating optimal dataset selection estimators
125M 6× 10−4 2× 10−4 768 12 12 2.6× 1010 25000 2.0× 1019 −
Section 4: Evaluating unseen-task generalization (chosen as ~Chinchilla-optimal)
125M 6× 10−4 4× 10−4 768 12 12 2.5× 109 2400 1.9× 1018 26.6%
356M 6× 10−4 4× 10−4 1024 16 24 7.0× 109 6700 1.5× 1019 29.2%
760M 6× 10−4 4× 10−4 1536 12 24 1.5× 1010 14400 6.9× 1019 32.9%
1.3B 6× 10−4 4× 10−4 2048 16 24 2.6× 1010 24700 2.0× 1020 36.3%
1.8B 6× 10−4 4× 10−4 2432 19 24 3.7× 1010 34931 4.0× 1020 38.3%

generate the last word of a paragraph, given the rest of the paragraph as context). Therefore, the log-probability of the model
answering correctly is the log-probability that the model generates the label, given the context. This is, for a sample x with k
continuation tokens starting at index C,

Log_Probability(x; gw) =
C+k∑
i=C

log(pi), where pi is the correct-label probability given by model gw at index i. (4)

A.5.2. ACCURACY

To evaluate accuracy, we use one of three separate accuracy procedures depending on the considered benchmark: (a) multiple
choice accuracy, (b) exact text match, or (c) fuzzy text match. These are:

• Multiple choice accuracy: For multiple choice question benchmarks, we choose the answer with the maximal predicted
probability out of the possible choices, then measure the accuracy as the fraction of correct answers.

• Exact match: We mark an example as correct if the generated tokens for the context exactly match the label tokens,
then measure the accuracy as the fraction of correct answers.

• Fuzzy match: For open-ended benchmarks like TriviaQA whose questions have multiple textually different but correct
answers, we measure whether our model is correct on a given example through the following procedure. We generate
text for the example context, then normalize this text with the standard TriviaQA text normalizer8 (which removes
articles/extraneous white space/punctuation and normalizes underscores/casing), and finally count the example as
correct if the resulting normalized text exactly matches any of the (normalized) labels. We then measure accuracy as
the fraction of correct answers.

Table 4 lists the exact accuracy procedure used for each considered benchmark.

8Default choice for this procedure accuracy measurement in the MosaicML Composer (MosaicML, 2021), see https://github.
com/mandarjoshi90/triviaqa/blob/master/evaluation/triviaqa_evaluation.py
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B. Datamodel estimation
In this section, we describe how we estimate datamodels for GPT-2 style LMs. We start by briefly giving an overview
of datamodels (cf. Appendix B.1), then describe the datamodel estimator we use, TRAK (cf. Appendix B.2). Finally, we
conclude by instantiating datamodels for language modeling (cf. Appendix B.3), and analyzing the computational cost
of our procedure (cf. Appendix B.5). For the impatient reader, we include a standalone section on how to mechanically
compute datamodel estimates with TRAK (without background) in Appendix B.4.

B.1. Datamodels refresher

The goal of datamodeling is to approximate the mapping from choice of training subset to trained model loss on a given,
fixed sample. Datamodels frame this problem as a supervised learning problem: datamodels learn an approximation from
the former to the latter. Recall from Section 2.2 that the datamodel τθ for an example x is a parameterized function that,
given a candidate training dataset S , learning algorithm A (mapping train set to trained model), and model output function
f (in the main text, we simplify by refering to this quantity as the loss ℓ; but in reality f can capture any function of the
trained model) that maps test example and model to resulting loss, optimally predicts the model output on x over a (chosen)
distribution of train subsets DS , i.e.,

τθx : {0, 1}|S| → R, where θx = argmin
θ

Ê(m)
Si∼DS

[Lreg (τθ(1Si
), f(x;A(S)))] , (5)

where Lreg(·, ·) is a regression loss function (e.g., mean squared error), and Ê(m) is an m-sample empirical expectation.
Note that datamodels operate on the characteristic vector 1S of each subset (cf. Equation 2), not the subset directly.

In this work, we parameterize τθx as linear in the choice of training data, i.e., such that

τθx(1S) = 1⊤
S θx.

Intuitively, such linear datamodels model each datapoint Si as having a constant effect on the loss when included in the
training set (this effect is exactly the value of θx in index i).

B.1.1. ESTIMATING DATAMODELS WITH DATA REGRESSION

So far we have only defined linear datamodels. How do we actually estimate the linear parameters θx? When introducing
datamodels, Ilyas et al. (2022) originally did so with a linear regression predicting loss from training subset—i.e., directly
minimizing Equation 5 by collecting a large amount of “training data”—pairs of (randomly chosen training data subset,
corresponding trained model output on x)—then learning the mapping from train subset to output on the collected training
data.

This estimator, which we refer to as data regression, proceeds in two steps. The first step is to collect regression data. Here,
we repeatedly: sample a random train subset Si (from a chosen distribution Si ∼ DS

9), train a model A(Si) on the subset,
then evaluate the model output on x (and record the train subset, model output pairs). This step yields “training data” for
the regression in the form of m train subset, loss pairs: {(1Si

, ℓ(x;A (Si)))}mi=1 (recall that our datamodel takes as input
the characteristic vector of subsets rather than subsets directly). Then, the second step is to actually estimate the linear
datamodel parameters with linear regression. Here, the regression minimizes the (empirical) squared error over datamodel
parameters:

θx = argmin
θ

Ê(m)
Si∼DS

[Lreg (τθ(1Si
), ℓ(x;A(S)))]

= argmin
θ

Ê(m)
Si∼DS

[(
1⊤
Si
θ − ℓ(x;A(S))

)2]
.

Linear regression estimates the datamodel parameters directly, and asymptotically yields the true datamodel parameters
(with enough “training data,” or pairs of training subset, corresponding trained model output).

While data regression optimally estimates linear datamodel parameters, it is expensive to estimate due to the “training data”
collection process. Obtaining a single training datapoint for the regression—i.e., a single train set, corresponding loss on x

9A standard choice is uniformly random subsets of a fixed size.
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pair—is expensive because training even a single model can be expensive (particularly for the large-scale model setting),
and in practice, previous work has found that we need to train at (at least) thousands of models to collect enough regression
datapoints (Ilyas et al., 2022).

B.2. Estimating datamodels with TRAK

Rather than estimating with data regression, we estimate linear datamodel parameters with a more computationally efficient
linear datamodel estimator: TRAK (Park et al., 2023). TRAK estimates datamodels more efficiently by exploiting the fact
that datamodels are efficient to calculate for convex learning problems: TRAK (approximately) transforms the original
learning algorithm into a convex learning problem, computes datamodels in this new regime, then returns these datamodels
as an estimate of the datamodels for the originally considered learning algorithm. TRAK trades off approximation error (i.e.,
the transformation is inexact) for computational efficiency.

To actually estimate datamodels, the method operates in two high level stages. Given a held out sample x, learning
algorithm A and training dataset S , TRAK first constructs a new algorithm A′ that approximates the corresponding trained
model output on x as if the model output were obtained by solving a convex problem over the train set datapoints, such
that f(x;A(S)) ≈ f(x;A′(S)). Then, TRAK estimates the datamodel parameters for the original learning problem by
estimating the datamodel parameters for executing A′ on S (datamodels are inexpensive to compute for convex problems
like A′). We break these stages into two steps below, and start with a primer on calculating datamodels for the logistic
regression setting.

B.2.1. DATAMODELS FOR LOGISTIC REGRESSION

We first describe how to efficiently estimate datamodels for models with a convex objective. We will use logistic loss to
simplify the analysis, but the procedure applies to other convex losses function as well. Consider a (generalized, including
biases) binary classification task learning from n = |S| candidate training samples:

S = {z1, ..., zn : zi = (xi, bi, yi)},

where each sample zi is a triplet containing an input xi, a bias bi, and a binary label yi ∈ {−1, 1}. In this setup, training a
logistic regression model on a training subset S ⊂ S yields the corresponding parameters ALog(S):

ALog(S) := argmin
θ

∑
zi∈S

log
(
1 + exp

(
−yi ·

(
x⊤
i θ + bi

)))
. (6)

Note that including biases bi makes this version of logistic regression more general; setting bi = 0 yields standard logistic
regression.

How do we estimate datamodels for logistic regression? We start by defining the output function that we want to approximate
using datamodels in the first place: we approximate the logistic linear model output

f(z; θ) := x⊤θ + b, where z = (x, b, y).

That is, we aim to construct datamodels that approximate the map from train subset S to linear model output f(z;ALog(S)).

To efficiently estimate these logistic regression datamodels, TRAK uses influence functions. Influence functions are a
standard method for efficiently approximating the effect of excluding a single training point (hence, “leave-one-out”) on
linear regression outputs compared to training on the entire set (Pregibon, 1981) (and apply to other classes of models
as well (Giordano et al., 2019)). Specifically, the leave-one-out influence for training example i on example z, IF(z)i,
approximates this effect as:

IF(z)i :=
x⊤(X⊤RX)−1xi

1− x⊤
i (X

⊤RX)−1 · p∗i (1− p∗i )
(1− p∗i ) ≈ f(z;ALog(S))− f(z;ALog(S \ zi)), (7)

where X ∈ Rn×k is the matrix of stacked train example inputs (k the input dimension of each xi), p∗i =

(1 + exp (−yi · f(zi; θ∗)))−1, and R is an n × n matrix with Rii = p∗i (1 − p∗i ); this estimate arises from performing
a Newton step from logistic model parameters for S to minimize loss on S \ zi. In practice, influence functions closely
approximate the effect of removing a single train example on logistic model predictions (Koh and Liang, 2017). Furthermore,
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influences are efficient to estimate: computing the influence of i on example z requires only a few inner products and scalar
multiplications (the most expensive term to compute, the inverse

(
X⊤RX

)−1
, does not depend on z or i and therefore can

be computed just once).

It is straightforward to estimate parameters for logistic regression datamodels using influence functions. We consider
leave-one-out datamodels, i.e., referring back to the datamodel definition of (5), datamodels for a distribution of training sets
DS that is supported on train subsets missing a single train example. In this setting, we can estimate a leave-one-out linear
datamodel τθ with θ = IF(z) and including a bias f(z;ALog(S))−

∑n
k=1 IF(z)k, i.e., in full:

τθ(S) = IF(z)⊤1S + f(z;ALog(S))−
n∑

k=1

IF(z)k (8)

Then, on a data subset with a single removed example S \ xi, the datamodel approximation of f(z;ALog(S \ xi)) is:

τθ(S \ zi) = IF(z)⊤1S\xi
+ f(z;ALog(S))−

n∑
k=1

IF(z)k

= f(z;ALog(S))− IF(z)i

≈ f(z;ALog(S))− (f(z;ALog(S))− f(z;ALog(S \ zi)))
= f(z;ALog(S \ zi)),

which is the approximation of the effect of removing zi on z given by the influence function. In practice, we can use this
datamodel to estimate the model output associated with arbitrary training subsets (not just leave-one-out subsets).

B.2.2. TRANSFORMING LEARNING ALGORITHMS TO LINEAR REGRESSION

We now discuss how TRAK uses these logistic datamodels to estimate datamodels for non-linear models. The key procedure
behind TRAK translates the training setup of interest—i.e., that defined by the learning algorithm A and candidate dataset
S—into a new setup with a carefully constructed convex (in our case, logistic regression) learning algorithm A′ (on the
same candidate dataset S). Here, TRAK approximates the model output f(z;A(S)) for a given subset with the logistic
output f(z;A′(S)), then estimates datamodels for A′, which can be efficiently computed.

To set up this transformation, consider a (binary classification10) machine learning model with learned parameters θ∗ = A(S)
(trained on the full candidate set) that outputs a (binary) logit model output f(z; θ∗) for the given example z. TRAK starts
by linearizing f with a Taylor expansion at the model weights θ∗:

f̂(z; θ) = f(z; θ∗) +∇θf(z; θ
∗)⊤(θ − θ∗). (9)

Here, the approximation f̂ of f is linear in the gradient of the considered example z. f̂ is a linear function that approximates
the model output f for arbitrary parameters. However, the goal of datamodeling is to approximate the map between training
dataset to model output—not model parameters to model output.

To model how training dataset choice changes model output, TRAK approximates the original learning algorithm, A, as
minimizing the logistic loss for the (linear) predictor f̂(z; θ), over parameters θ. TRAK does so by directly replacing the
original linear model in the logistic regression objective of (6), i.e., θ, with the linearization f̂(z; θ) (which is also linear in
θ). This yields the logistic regression algorithm A′:

A′(S) = argmin
θ

∑
zi∈S

log
(
1 + exp

(
−yi ·

(
θ⊤∇θf(zi; θ

∗) + f(zi; θ
∗)−∇θf(zi; θ

∗)⊤θ∗
)))

.

Rearranging the terms with new linear regression inputs x′
i = ∇θf(zi; θ

∗) and biases b′i = f(zi; θ
∗)−∇θf(zi; θ

∗)⊤θ∗, A′

is exactly logistic regression over dataset triplets (x′
i, b

′
i, yi):

A′(S) = argmin
θ

∑
zi∈S

log
[
1 + exp

(
−yi ·

(
θ⊤x′

i + b′i
))]

. (10)

Finally, TRAK estimates datamodel parameters for training A on S, the original problem of interest, by estimating
datamodels for the logistic regression algorithm A′ on S.

10We use binary classification for simplicity, but the analysis follows for other standard losses as well.
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B.2.3. TRAK ESTIMATOR

In this section, we detail the exact form TRAK uses to estimate datamodels. TRAK does not exactly estimate using the
influence function estimate of (7) with the input triplets (x′

i, b
′
i, yi) of (10), but instead uses a similar form found by ablating

over the relevant terms and performing dimensionality reduction.

We first define notation for the space in which TRAK estimates datamodels, i.e., the linear regression setting of (10). Suppose
that θ∗ = A(S) is the final model parameters obtained after training on the entire candidate dataset. Recall that the logistic
regression problem of A′ “trains” on inputs x′

i = ∇θf(x
′
i, θ

∗); we therefore define the “feature map” ϕ that translates
examples into this input space as:

ϕ(z) := ∇θf(z; θ
∗) ∈ Rn.

We additionally define Φ = [ϕ(z1), . . . , ϕ(zn)]
⊤ ∈ R|S|×|θ∗| as the matrix of stacked candidate train set examples in this

space. Finally, we define

Q := diag

({
∂L(yi, f(zi; θ

∗))
∂f(zi; θ∗)

})
∈ R|S|×|S|,

where L is the convex loss we consider (in our case above, logistic loss). Q falls out of how the influence function is derived
(as a single step Newton approximation). As an example, in the logistic regression case above, Q is:

Q = diag ({1− p∗i }) = diag
({

(1 + exp (yi · f(zi; θ∗)))−1
})

,

the |S| × |S| sparse matrix with correct prediction probabilities on the diagonal.

With our notation in hand, we describe the TRAK estimator in two stages. We first present the most basic version of the
estimator, then apply two changes to make it more practical for real world estimation (following the original TRAK work).
We start with the most basic version of the TRAK estimator, which is used to calculate datamodels in place of the standard
influence estimate (cf. (8)),

TRAK(z) = ϕ(z)⊤
(
Φ⊤Φ

)−1
Φ⊤Q ∈ R|S|. (11)

To give intuition for this form: Park et al. (2023) construct TRAK by starting with (7), removing the R term, and removing
the denominator; these terms were found to not aid datamodel predictiveness (see Park et al. (2023) for more details). The Q
term is a vectorized (over candidate train set) version of the 1− p∗ term in (7), and ϕ(z)⊤

(
Φ⊤Φ

)−1
Φ is a vectorized (over

candidate train set) version of the numerator in (7).

Making this form practical is difficult, for two reasons: dimensionality and learning algorithm randomness. For the former
problem: calculating TRAK requires inverting (and storing) the term

(
Φ⊤Φ

)−1
, a square matrix with side length equal to the

number of model parameters. The smallest models we estimate datamodels for in this work are 125M parameters—even these
models would require storing and inverting a 500TB matrix (assuming we invert in float32). To circumvent this issue,
TRAK reduces the dimensionality of the input space using Johnson-Lindenstrauss (JL) random projection matrices (Johnson
and Lindenstrauss, 1984); JL projections preserve the inner-products between projected vectors (and the logistic regression
objective can be factored in terms of inner products between inputs (Zhu and Hastie, 2005)).

For the latter problem, in practice θ∗ = A(S) is generally not unique. For example, for large scale models, the final trained
model when training on the entirety of S changes based on initialization or minibatch randomness. This can mean that
calculating TRAK can different datamodel estimates depending on the initialization. To average over training randomness,
TRAK calculates (11) over multiple trained models by estimating each term independently then taking a mean over models.

To both (a) add random projections to reduce input dimensionality to d << |θ∗| and (b) average training randomness over
m models, we start by defining a collection of model parameters {θ∗k}k in place of θ∗, where each θ∗k is a vector of model
parameters corresponding to training a model on S with A. We then define our new, dimensionality-reduced mapping to
trained model k (with parameters θ∗k) gradient space as

ϕk(z) := P⊤
k ∇θf(z; θ

∗
k) ∈ Rd, where Pk ∼ N (0, 1)|θ

∗|×d,

replacing ϕ from (11), and the corresponding stacked, projected candidate train vectors for model k as Φk =

[ϕk(z1), . . . , ϕk(zn)]
⊤ ∈ R|S|×d, replacing ϕ from (11). We additionally Qk as:

Qk := diag

({
∂L(yi, f(zi; θ

∗
k))

∂f(zi; θ∗k)

})
∈ R|S|×|S|,
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replacing Q from (11), and finally define the final TRAK estimator by starting from the basic TRAK estimator (11) and
averaging each term across m models:

TRAK(z) =

 1

m

∑
k∈[m]

(
ϕk(z)

⊤ (Φ⊤
k Φk

)−1
Φ⊤

k

) ·

 1

m

∑
k∈[m]

Qk

 ∈ R|S| (12)

B.3. Datamodels for language modeling

In this section, we discuss how to formulate datamodels for LMs. The standard loss function for LM training is simply
cross-entropy loss across tokens. The main question is: what output function do we use? Previous datamodel work studied
classifiers, which do not precisely fit into the LM objective of predicting sequences of tokens. We therefore extend a standard
multi-class classification output function previously used in previous datamodel instantiations (Saunshi et al., 2023; Park
et al., 2023). These methods use the “multi-class margin” output function:

f(x; θ) := log

(
p(x; θ)

1− p(x; θ)

)
,

where p(x; θ) is the probability of the correct class given by the model θ. Since each LM training example consists of many
classification problems, we employ what we call the “mean multi-class margin” output function:

f(x; θ) :=

T∑
j=2

log

(
p(xj |x<j ; θ)

1− p(xj |x<j ; θ)

)
,

where T is the model context length, x is a length T token sequence, and p(xj |x<j ; θ) is the probability that model θ
correctly predicts token j given the previous tokens as context. To use this output function with TRAK, the corresponding Q
is:

Q = diag ({1− p̄i}) ,

where p̄i is the mean probability that the model correctly predicts the next token in example i (across all T − 1 continuation
tokens in the example)

B.4. TRAK setup

We design this section to be standalone, and repeat (12) along with definitions of each of the terms. To understand the full
background for this form, read from the start of Appendix B.

Given an algorithm A, candidate training set S, and model output function f(z; θ), TRAK estimates the datamodel
parameters for a given test input of interest z as:

TRAK(z) =

 1

m

∑
k∈[m]

(
ϕk(z)

⊤ (Φ⊤
k Φk

)−1
Φ⊤

k

) ·

 1

m

∑
k∈[m]

Qk

 ∈ R|S|.

Before defining all these terms, we start with preliminary notation. Let m be the number of trained reference models that we
calculate TRAK with, with {θ∗k}mk=1 as a set of m parameter vectors for models trained with A. Let N be the dimensionality
of each θ∗k, and let d be a projection dimension such that d << N . We then define one projection matrix per model,
with {Pk}mk=1 a set of m Johnson-Lindenstrauss projection matrices, such that each Pk ∼ N (0, 1)N×d is drawn from a
multivariate Gaussian.

We now define the constituent terms of the TRAK estimator as follows. ϕk is the function mapping an example z to its
projected gradient for model k:

ϕk(z) := P⊤
k ∇θf(z; θ

∗
k),

and Φk is the matrix of stacked training example gradients, with

Φk = [ϕk(z1), . . . , ϕk(zn)]
⊤ ∈ R|S|×d.
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Finally, Qk is the diagonal matrix:

Qk := diag

({
∂L(yi, f(zi; θ

∗
k))

∂f(zi; θ∗k)

})
∈ R|S|×|S|.

In the LM setting we consider, we define f and Qk as discussed in Appendix B.3.

Computing TRAK. We compute with S as C4 (cf. Appendix A.1), A as training a 125M LM for 80000 batches, or a
(random) 38% of C4, m = 4 independently trained models, and d = 16384 projection dimension. Mechanically, to compute
the final TRAK estimate, we proceed in three steps:

1. Model training. First, train m reference models on C4 (i.e., {θ∗k}mk=1). We train 4 LMs, each on roughly 82 million
samples of C4 (~38% of C4; 80,000 batches).

2. Collect projected gradients. For each of the m reference models, calculate Φk by iterating over C4 and taking the
gradient of each train sample with respect to the output function. Additionally, record the average accuracy for each
sample to compute Qk.

3. Collect terms. Calculate each per-model term in (12), then average together the terms and calculate the final TRAK
estimate (i.e., calculate the corresponding ϕk(z)

⊤ (Φ⊤
k Φk

)−1
Φ⊤

k and Qk for each model k, then average the terms
across models, then matrix multiply the two aggregate terms together to obtain TRAK(z)). We calculate the final
TRAK scores in a batched manner by stacking the ϕk(z) for each sample z that we calculate datamodels for before
multiplying by

(
Φ⊤

k Φk

)−1
Φ⊤

k .

B.5. Computational cost

In Appendix B.4 we detailed the mechanics of estimating datamodels with TRAK. In this section, we detail the (rough)
computational cost of our estimation procedure. We detail the cost of each of the steps in Appendix B.4 in terms of
per-example “forward and backward pass” (FBP) count for the given model class (note that in this work, we only directly
estimate datamodels for 125M LMs). Computing gradients and reference model training dominate total model training cost,
so we only tally compute used for these subtasks.11

In this section we use the following notation: m to denote the number of models, nmodel to denote the number of samples
used to train models used to compute TRAK, and ndm to denote the number of examples we compute datamodels for.

1. Model training. Training m models on nmodel samples requires m · nmodel FBPs.

2. Collect projected gradients. Taking the (projected) gradient of the |S| train samples for each of the m models requires
m · |S| FBPs. We ignore the cost of projecting as it is (essentially) free compared to taking the gradient.12

3. Calculate TRAK. Calculating Qk is free as we can compute the average accuracies on the diagonal when we collect
projected gradients. Calculating ϕk(z)

⊤ (Φ⊤
k Φk

)−1
Φ⊤

k for each sample z we compute a datamodel for requires two
stages: first, compute and save

(
Φ⊤

k Φk

)−1
Φ⊤

k , then, second, compute each datamodel of interest by matrix multiplying
with ϕk(z). The first stage is essentially free,13 the second stage requires ndm FBPs.

In this work, our total cost is: (m · nmodel) + (m · |S|) + (ndm) FBPs. Our constants in this work are m = 4, nmodel =
82× 106, |S| ≈ 217× 106, and ndm ≈ 30000. These constants yield a total cost of 1.2× 109 FBPs. This cost is dominated
by taking projected gradients across the four models (~73% of computation), along with actually training the 4 models

11The costs we ignore are projecting the gradient—which is a constant, essentially free factor on top of taking the gradient—and
computing TRAK from the projected gradients, which is simply two inner products per projected gradient and a projection-dimension
sized

12Projecting accounts for <1% of the time taken to compute the projected gradient. Note that “FBPs” are a coarse-grained metric; for
example, taking individual gradients is in practice more expensive than taking the average gradient over a batch of samples, even when
batching is used to compute in both cases.

13Computing Φ⊤
k Φk requires only |S| inner products; inverting a square matrix at the projection dimension we use, 16384, is very

cheap; with these two quantities calculated, multiplying
(
Φ⊤

k Φk

)−1
with Φ⊤

k takes only |S| inner products.
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(~7% each). We expect in the future that this cost will greatly decrease; we did not choose our setup to optimize for compute
(e.g., we did not ablate over number of reference models or the number of batches that we train reference models on). For
ease of viewing, we contextualize compute cost relative to the compute used to train models in this work in Table 3.

Train compute (FLOPs) Model size Compute as fraction of DsDm compute

1.89× 1018 125M 0.00
1.50× 1019 356M 0.02
6.89× 1019 760M 0.07
2.04× 1020 1.3B 0.22
4.02× 1020 1.8B 0.44

Table 3: Training compute as a fraction of DSDM compute.

C. Evaluating task-optimal dataset selection
This section provides additional context for Section 3, in which we measure DSDM at optimal dataset selection on varying
target tasks. We start by describing each of the considered tasks in greater detail, and show samples from each. We then
discuss training details, and then conclude with omitted figures.

C.1. Experimental setup

We consider four separate LM target tasks: standard language modeling tasks: LAMBADA (an open-ended cloze task
measuring language understanding (Paperno et al., 2016)), CS-Algorithms (an algorithmic problem solving benchmark
containing tasks like longest common subsequence identification (Srivastava et al., 2022)), SQuAD (the Stanford Question-
Answering Dataset, a reading comprehension dataset of questions about Wikipedia articles (Rajpurkar et al., 2016)), and
Jeopardy (trivia questions from the “Jeopardy!” game show (MosaicML, 2023)). We consider 0-shot (LAMBADA and
CS-Algorithms) and 3-shot (SQuAD and Jeopardy) settings. For more details on these target tasks, including samples and
target/holdout splits for evaluating, see Appendix A.2.

We train models according to the training procedure described in Section A.4, with the hyperparameters described in the
“Section 3” rows of Table 2. See Appendix A.3 for baseline details, and Appendix A.1 for candidate dataset details.

C.2. Omitted figures

Measuring performance with accuracy in place of log-probability. We repeat the experiment of Figure 1—measuring
model performance while varying fraction of selected data and selection method—but measure accuracy in place of log-
probability. Figure 9 shows our results. The relative model performances are roughly the same, but the magnitudes are
different (e.g., the best Jeopardy model attains roughly 0.03% accuracy) and “noisier” across model retraining (i.e., measured
log-probability is continuous with respect to fraction of C4 selected, while the accuracy is discontinuous). We describe our
procedure for measuring accuracy in Section A.5.2. (We measure accuracy according to exact match for LAMBADA and
CS-Algorithms, and according to fuzzy matching for SQuAD and Jeopardy.)

Counterfactual verification: training on the “worst” samples We train a model on the “worst” (i.e., least likely to be
chosen) samples according to DSDM in Figure 10. We find that training on these samples is much worse than training on
random samples—despite the samples containing QA-related text (cf. Figure 10).

C.3. Sample dataset selections

WARNING:
SAMPLES MAY INCLUDE OFFENSIVE TEXT

In this section, we show the samples that each dataset selection is most and least likely to select (i.e., the “top” and “bottom”
samples). We both (a) describe how we choose the top and bottom examples for each dataset selection method to visualize
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and (b) display examples of the data selected both randomly and by DSDM, DSIR, CLASSIFIER across the tasks we
investigate. The selected samples are not exactly randomly selected: we replace samples with obviously offensive content or
characters that we cannot render.

We visualize the top and bottom 0.01% of samples for each combination of selection method, target dataset. For each
selection method, we use the following procedure to select the top/bottom candidate train examples from C4:

• RANDOM: We choose random examples; see Figure 24.

• DSDM: We sort examples by corresponding linear datamodel weight (cf. Section 2.2). See Figure 12 (SQuAD),
Figure 15 (Jeopardy), Figure 18 (LAMBADA) and Figure 21 (CS-Algorithms).

• DSIR: We sort examples by log-probability of inclusion. See Figure 14 (SQuAD), Figure 16 (Jeopardy), Figure 19
(LAMBADA) and Figure 22 (CS-Algorithms).

• CLASSIFIER: We sort examples by margin towards the “target dataset class” for the trained classifier. See Figure 13
(SQuAD), Figure 17 (Jeopardy), Figure 20 (LAMBADA) and Figure 23 (CS-Algorithms).

We show only random 500 character excerpts; each full example would take up pages of text.

Additionally, we fix SQuAD as the target dataset and visualize the top examples side-by-side in Figure 2 (in the main text).
We compare the bottom examples side by side in Figure 11.
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Figure 9: Target task performance by method, training 125M models and varying dataset selection size. Performance
measured in accuracy. DSDM consistently improves performance, even when baselines are not much better than selecting
data randomly (i.e., on SQuAD and CS-Algorithms). DSDM models also consistently match a 1.3B RANDOM model (trained
with more than 10x the compute budget). For DSDM, more epochs on higher ranked samples is better than fewer epochs on
less highly ranked samples. Each model trains on 25.6 million samples (equivalent to 12% of C4). The “random” shaded
area is the range of values achieved by 10 RANDOM models each trained for one epoch (i.e., the RANDOM model training
does not depend on the x-axis). Accuracy measured according to Section A.5.2.
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Figure 10: Model performance when training on worst data according to DSDM. Rather than selecting the examples
predicted to most increase performance (i.e., the standard DSDM selection mechanism), we select for the examples predicted
to most decrease performance. We find that despite these examples containing QA-related text (cf. Figure 11), they yield
models that perform much worse than models trained on randomly selected data.

(1) ligent machines and the brain. I’m not really a brain
expert.\n01:29:44 I’m more a machine learning person, but I talk to
neuroscientists and so on.\n01:29:48 And I try, I really care about
the big question of how is the brain doing the really complex things
that it does.\n01:30:10 Speaker 2: On your path to the Promised
Land?\n01:30:12 Yoshua: Yes, exactly, that’s right.\n01:30:14 And
I’ve been making those small steps on this particular topic for about
a year and a half.\n01:30:21 So it’s not like just somethin

(2) whom thy father, Prince of Wales, was first.\n2.1.177822Than
was that young and princely gentleman.\n2.1.183828Which his
triumphant father’s hand had won.\n2.1.185830But bloody with the
enemies of his kin.\n2.1.187832Or else he never would compare
between.\n2.1.190836 Not to be pardoned, am content
withal.\n2.1.192838The royalties and rights of banished
Hereford?\n2.1.193839Is not Gaunt dead? And doth not Hereford
live?\n2.1.194840Was not Gaunt just? And is not Harry
true?\n2.1.195841Did not the one deserve to have

(a) DSDMDSDMDSDMDSDMDSDMDSDMDSDMDSDMDSDMDSDMDSDMDSDMDSDMDSDMDSDMDSDMDSDM samples

(1) n( 6)Michael Brown( 1)Michael Collins( 1)Michael
Glessner( 2)Michael Graber( 150)Michael Greenstone( 1)Michael
Ohler( 1)Michael Ohler and Phil Samuel( 1)Michael Raynor(
1)Michael Soerensen( 1)Michael Thompson( 1)Michael
Whitaker( 7)Michel van Hove( 3)Michele Nemschoff( 1)Michele
Westergaard( 1)Michelle Tabart( 2)Mick Simonelli( 4)Mike
Brown( 88)Mike Cassettari( 1)Mike Dalton( 4)Mike Lippitz(
5)Mike Myatt( 102)Mike Shipulski( 134)Mike Waite( 1)Miriam
Clifford( 1)Mitch Ditkoff( 81)Moises Norena( 5)Monique Vin

(2) .1 3000 76 12 5.3 2250 2000 2000 ı X ı X ı X 76 10 4.
Shaded cells are acceptable for motor codes.2 2500 75 22 9.12
3000 76 15 6.15 3000 76 17 7.) 3.I.25 2500 2500 No Porting ı ı X
X NPT Porting 3/4” 3/4” 1” 3/4” 1” 1” 1” 1” 1 1/4” 1” 1 1/4” 1
1/4” IC ID IJ YC YD YF YJ YL ID IC IG YD YC YF YG YL ID
ID 3/4” 1”* 3/4” 1 1/4”* 3/4” 1”* 1” 1” 1” 1 1/4”* 1” 1 1/2”* 1”
1 1/4” 1 1/4” 1 1/2”* 1 1/4” 1 1/2” 1 1/2” EC EJ EK AC AD AF
AJ AK AL AP AR ED EG EH AD AC AF AG AH AL AM AR
ED X* 3/4” 3/4” 1” 3/4” 1” 1” 1” 1” 1

(b) DSIRDSIRDSIRDSIRDSIRDSIRDSIRDSIRDSIRDSIRDSIRDSIRDSIRDSIRDSIRDSIRDSIR samples

(1) Martin was one of my best friends growing up, and I am in
shock to learn about this. So many prayers and lots of love
being sent your way.\noh my god. i’m so shocked.!! it’s hard to
find words..\nwhy must there be so shit-things like cancer.!!\na
wonderful life and I know that you are strong.!!!\nall the very
best - I’m thinking of you..\nThere are just no words. I’m so
sorry. My heart aches for you. I’ve long admired the two of you.
You are such a beautiful match, inside and out. I’ll keep you in
my prayers, an

(2) will be using your checklist on my future SEO projects.
Thank you Bruce.\nExcellent article. Thanks so much for
sharing this checklist. This is very useful.\nWe regularly miss
out on a number of these checkpoints. Thanks for sharing and
enabling us do the right job with our seo tasks.\nSEO is most
good technical way to promote your website in any search
engine. Here you have shared excellent article and information
about SEO checklist. This techniques should helpful for us to
get rank first. Thanks for sharing

(c) CLASSIFIERCLASSIFIERCLASSIFIERCLASSIFIERCLASSIFIERCLASSIFIERCLASSIFIERCLASSIFIERCLASSIFIERCLASSIFIERCLASSIFIERCLASSIFIERCLASSIFIERCLASSIFIERCLASSIFIERCLASSIFIERCLASSIFIER samples

Figure 11: LeastLeastLeastLeastLeastLeastLeastLeastLeastLeastLeastLeastLeastLeastLeastLeastLeast helpfulhelpfulhelpfulhelpfulhelpfulhelpfulhelpfulhelpfulhelpfulhelpfulhelpfulhelpfulhelpfulhelpfulhelpfulhelpfulhelpful training examples for SQuAD, as ranked by each method. We choose samples randomly from the
bottom 0.01% of samples given by each method (see Appendix C.3 for methodology and more samples across target tasks).
“\n” denotes a newline.
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DSDM: Model-Aware Dataset Selection with Datamodels

(1) OI on the IBM C2060-350 exam papers is tremendous, with an absolute guarantee to pass
Application Developer C2060-350 tests on the first attempt.\nStill searching for IBM C2060-350
exam dumps? Don’t be silly, C2060-350 dumps only complicate your goal to pass your IBM
C2060-350 quiz, in fact the IBM C2060-350 braindump could actually ruin your reputation and
credit you as a fraud. That’s correct, the IBM C2060-350 cost for literally cheating on your IBM
C2060-350 materials is loss of reputation. Which is why

(2) ighly thought of by potential consumers. stockholder responsibility b. a. Anheuser-Busch is
exhibiting which of the following? a. cause marketing e. d. social responsibility Answer: e Page(s):
88-89 LO: 3 AACSB: Ethics QD: Medium Rationale: Social responsibility is the view that
organizations are part of a larger society and are accountable to that society for their actions. profit
responsibility c. Answer: a Page(s): 88-89 LO: 3 AACSB: Ethics QD: Hard -4-. the larger
Anheuser-Busch’s profits. the higher co

(3) erances, so not only are the two sticks in each pair matched, they are also the same weight as
the pairs you bought last year & the pairs that you will buy next year.\nWhat we say: The Shaw C+
Wood Tip Drum Stick is a classic British model drum stick that has been a part of the shaw brand
for years. Shaw Sticks are manufactured from the finest grades of selected American hickory.
They are matched to within precise tolerances, so not only are the two sticks in each pair matched,
they are also the same weight

(a) BestBestBestBestBestBestBestBestBestBestBestBestBestBestBestBestBest train samples for SQuAD (DSDM)

(1) ligent machines and the brain. I’m not really a brain expert.\n01:29:44 I’m more a machine
learning person, but I talk to neuroscientists and so on.\n01:29:48 And I try, I really care about the
big question of how is the brain doing the really complex things that it does.\n01:30:10 Speaker 2:
On your path to the Promised Land?\n01:30:12 Yoshua: Yes, exactly, that’s right.\n01:30:14 And
I’ve been making those small steps on this particular topic for about a year and a half.\n01:30:21
So it’s not like just somethin

(2) whom thy father, Prince of Wales, was first.\n2.1.177822Than was that young and princely
gentleman.\n2.1.183828Which his triumphant father’s hand had won.\n2.1.185830But bloody
with the enemies of his kin.\n2.1.187832Or else he never would compare between.\n2.1.190836
Not to be pardoned, am content withal.\n2.1.192838The royalties and rights of banished
Hereford?\n2.1.193839Is not Gaunt dead? And doth not Hereford live?\n2.1.194840Was not
Gaunt just? And is not Harry true?\n2.1.195841Did not the one deserve to have

(3) te 2 1 Torrent Magnet Casino Royale (2006) Extended BRrip 720p x264 Dual Audio Eng.43
Gigabyte 2 19 Torrent Magnet James Bond (2006) Casino Royale avchd 1080p EN NL B-Sam.93
Gigabyte. Telesync.XViD-pukka.36 Gigabyte 0 0 Torrent Magnet Casino 802.45 MB 0 1 Torrent
Magnet.3CD-WAF.05 Gigabyte 0 0 Torrent Magnet yale. Magnet, james Bond: Casino Royale
(2006) 1080p BrRip x264 - yify.1 Gigabyte 282 87, torrent. X265-WAR 829.21 MB 5 20 Torrent
Magnet.1 Gigabyte 5 5 Torrent Magnet Casino Royale (2006) DVDrip multis

(b) WorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorst train samples for SQuAD (DSDM)

Figure 12: According to DSDM: the best and worst training examples for improving SQuAD performance. Samples randomly
chosen from the top/bottom (respectively) 0.01% of train samples as determined by DSDM (cf. Appendix C.3 for details);
we display (random) 512 character slices of samples. \n denotes a newline.

(1) bout Tony Blair. And I guess I’m saying if we’re willing to go without a second resolution,
can Tony Blair go without a second resolution?\nMR. FLEISCHER: I think that’s a question you
need to address to the United Kingdom, not to me – I don’t speak for Tony Blair. The President
has been abundantly plain on this issue and he has said the United States does not need a second
resolution. But because it’s important to our allies, that makes it important to him.\nQUESTION:
Thank you. I have two questions, if I m

(2) ris and St Gleb, dating from the mid-12th century, was much rebuilt in succeeding periods,
before being restored to its original shape in the 20th century. The crowning achievement of
Chernigov masters was the exquisite Church of St Paraskeba (Pyatnitskaya), constructed at the
turn of the 12th and 13th centuries. This graceful building was seriously damaged in the Second
World War; its original medieval outlook was reconstructed. The earliest residential buildings in
the downtown date from the late 17th cen

(3) ed in the sell order was not consistent with a bona fide intention to sell within a reasonable
time.\nQuestion: Rule 144(h) provides that the Form 144 shall be transmitted for filing
“concurrently” with either the placing of a sale order with a broker or the execution of the sale
directly with a market maker. Does “concurrently” mean that the Form 144 should be transmitted
for filing on the same day as the placing of a sale order or the execution of the sale?\nAnswer: Yes.
For example, if a person is filing a

(a) BestBestBestBestBestBestBestBestBestBestBestBestBestBestBestBestBest train samples for SQuAD (CLASSIFIER)

(1) ownload 3.6.1 and that the announcement will be removed when that changes. I also see a lot
of threads about blank pages, etc.\nI see within Wordpress that the theme was updated Jan
11th.\nWhat should I do? Download what version? Wait until 3.6.1 is fixed? Unfortunately I can’t
wait to download the new eCommerce plugin so I hope all goes well with changing themes if you
suggest that I wait to switch to Atahualpa.\nPlease let me know your thoughts and
THANKS!!!\nBy the way, I’m going to be using the eCommerce pl

(2) Martin was one of my best friends growing up, and I am in shock to learn about this. So
many prayers and lots of love being sent your way.\noh my god. i’m so shocked.!! it’s hard to find
words..\nwhy must there be so shit-things like cancer.!!\na wonderful life and I know that you are
strong.!!!\nall the very best - I’m thinking of you..\nThere are just no words. I’m so sorry. My
heart aches for you. I’ve long admired the two of you. You are such a beautiful match, inside and
out. I’ll keep you in my prayers, an

(3) will be using your checklist on my future SEO projects. Thank you Bruce.\nExcellent article.
Thanks so much for sharing this checklist. This is very useful.\nWe regularly miss out on a
number of these checkpoints. Thanks for sharing and enabling us do the right job with our seo
tasks.\nSEO is most good technical way to promote your website in any search engine. Here you
have shared excellent article and information about SEO checklist. This techniques should helpful
for us to get rank first. Thanks for sharing

(b) WorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorst train samples for SQuAD (CLASSIFIER)

Figure 13: According to CLASSIFIER: the best and worst training examples for improving SQuAD performance. Samples
randomly chosen from the top/bottom (respectively) 0.01% of train samples as determined by CLASSIFIER (cf. Appendix C.3
for details); we display (random) 512 character slices of samples. \n denotes a newline.
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DSDM: Model-Aware Dataset Selection with Datamodels

(1) in Alexandria, where it was begun; and the Greek Bible of the Hellenistic Jews and the
Catholic Church may rightly be styled the Alexandrian Greek version of the Old Testament.\nIn
the early days of the Church the Septuagint was widely used among the Jews; as a rule, though
there are exceptions, when the Old Testament is quoted in the New Testament it is from the Greek,
not the Hebrew Bible that the quotation is made. The early Jewish-Christians and the great
majority of the Jews had the same Bible, and Gent

(2) the Central Committee of the Party, that is, by the Politburo, the Orgburo (Organizational
Bureau), and the Secretariat. The decisions made were implemented through the Presidium of the
Supreme Soviet of the USSR, the Council of People’s Commissars of the USSR, the GKO, and
the General Headquarters of the Supreme Command, which had been established on August 8.
Strategic direction of the armed forces was carried out by the General Headquarters through its
working body, the General Staff. Major questions as

(3) pled to the third terminal 912d of the third transistor MRP2. The third second terminal 910b
of the second transistor MRPN1, and the third terminal 914d of the fourth transistor MRN2 is
coupled to the second terminal 914b of the fourth transistor MRN2.\nThe voltage source 906 has a
first terminal 932a and a second terminal 932b. The first terminal 932a of the voltage source 906 is
coupled to the first terminal 928a of the first dynamic body bias unit 902, the first terminal 908a of
the first transistor MRP1,

(a) BestBestBestBestBestBestBestBestBestBestBestBestBestBestBestBestBest train samples for SQuAD (DSIR)

(1) Mayon sa Naga (1) Mayon Volcano (2) mayor (1) Mayor Antonio Halili (1) MAYOR
INDAY (3) MAYOR INDAY DUTERTE (1) Mayor Inday Sara (1) Mayor Jed Patrick Mabilog (1)
Mayor Parojinog Sr. (1) MAYOR SARA (1) Mayor Sara Duterte (1) Mayor Sara Duterte-Carpio
(1) Mayoral race (1) Mayweather (1) MB Recto (1) Measles (1) Meat Inspection Law (1)
mechanization (1) meddling in the drug trade (1) medical (1) medical attention (1) medical check
up (1) medical check-up. (1) Medical Intern (1) medical treatment (1) mediocre

(2) n( 6)Michael Brown( 1)Michael Collins( 1)Michael Glessner( 2)Michael Graber(
150)Michael Greenstone( 1)Michael Ohler( 1)Michael Ohler and Phil Samuel( 1)Michael Raynor(
1)Michael Soerensen( 1)Michael Thompson( 1)Michael Whitaker( 7)Michel van Hove( 3)Michele
Nemschoff( 1)Michele Westergaard( 1)Michelle Tabart( 2)Mick Simonelli( 4)Mike Brown(
88)Mike Cassettari( 1)Mike Dalton( 4)Mike Lippitz( 5)Mike Myatt( 102)Mike Shipulski(
134)Mike Waite( 1)Miriam Clifford( 1)Mitch Ditkoff( 81)Moises Norena( 5)Monique Vin

(3) .1 3000 76 12 5.3 2250 2000 2000 ı X ı X ı X 76 10 4. Shaded cells are acceptable for motor
codes.2 2500 75 22 9.12 3000 76 15 6.15 3000 76 17 7.) 3.I.25 2500 2500 No Porting ı ı X X NPT
Porting 3/4” 3/4” 1” 3/4” 1” 1” 1” 1” 1 1/4” 1” 1 1/4” 1 1/4” IC ID IJ YC YD YF YJ YL ID IC IG
YD YC YF YG YL ID ID 3/4” 1”* 3/4” 1 1/4”* 3/4” 1”* 1” 1” 1” 1 1/4”* 1” 1 1/2”* 1” 1 1/4” 1
1/4” 1 1/2”* 1 1/4” 1 1/2” 1 1/2” EC EJ EK AC AD AF AJ AK AL AP AR ED EG EH AD AC
AF AG AH AL AM AR ED X* 3/4” 3/4” 1” 3/4” 1” 1” 1” 1” 1

(b) WorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorst train samples for SQuAD (DSIR)

Figure 14: According to DSIR: the best and worst training examples for improving SQuAD performance. Samples randomly
chosen from the top/bottom (respectively) 0.01% of train samples as determined by DSIR (cf. Appendix C.3 for details);
we display (random) 512 character slices of samples. \n denotes a newline.

(1) wana photo frans lanting. Ireland’s national flower photo, ireland’s national flower photo,
ireland’s national flower photo, ireland’s national flower photo, ireland’s national flower photo,
ireland’s national flower photo, ireland’s national flower photo, ireland’s national flower photo,
ireland’s national flower photo, ireland’s national flower photo, ireland’s national flower photo,
ireland’s national flower photo, ireland’s national flower photo, ireland’s national flower photo,
ireland’s national flowe

(2) ates T&A Priscilla Barnes Rachel Miner Rachel Weisz Rae Dawn Chong Raquel Welch
married woman De Mornay Rebecca Romijn Reese educator Rena Riffel Rene Russo Rhona
hindu deity Rosanna Arquette Rosario town Rose Mc Gowan Rosie Perez Roxane Mesquida
Sabrina Seyvecou Sadie Frost Salma Hayek Samantha roman deity Sandra Bullock wife Jes
Parker wife M Gellar Scarlett Johanossan Schae Harrison Sean infantile town anthony charles
lynton blair Shannen Doherty Shannon queen of england Shannon white Shannon Whirry Shau

(3) dered by the agent -in the example elow, taking the raincoat or not; events are occurrences
taking place outside the control of the agent (rain or lack thereof); outcomes are the result of.
ngland’s new class of people, which included artisans, guildsmen, landowners, lesser nobility,
merchants, and freemen, was a force that had been growing in power ever since the Black Death
had killed off most of the working population earlier in the century. European lottery results.
Austria Austrian Lottery. Belgium Lot

(a) BestBestBestBestBestBestBestBestBestBestBestBestBestBestBestBestBest train samples for Jeopardy (DSDM)

(1) Fay is accused of the May 9 murders of Ottawa teens Blake Romes, 17, and Blaine Romes,
14. Fay and his mother were living with the brothers and their mother, Michelle Grothause, in
Ottawa at the time of the two deaths. Fay is charged with two counts of aggravated murder, two
counts of abuse of a corpse, one count of tampering with evidence and one count of grand theft of
a motor vehicle. A pretrial conference is scheduled for Aug. 19 with pretrials motions to be made
by Aug. 26. Pretrial is scheduled for 2

(2) g You know, by the way, so charitably bestowed on me, Zeus,
So.\nxxx.bw.mamass.xxx.pics.poto Posted by Xxx.bw.mamass.xxx.pics.poto Macdonald
xxx.bw.mamass.xxx.pics.poto Calling all girls to the Silk party. Her smiles are so special, after all
they don’t pop up very often.\nInstagram images from Fangs Xxx.bw.mamass.xxx.pics.poto fangs.
Anyway, Squidward burst into the room wearing only a gimp suit and a tutu. You give
xxx.bw.mamass.xxx.pics.poto the key to bringing down Wonder Breath, and I give you
xxx.bw.mam

(3) LANA, CALCETINES DE TENIS, CALCETINE, INTERIORES PARA CALZADO,
CALCETINES LARGOS, CALCETINES (LIGAS PARA-), CALCETINES PARA BEBES Y
NIÑOS PEQUEÑOS, CALCETINES PARA EL DEPORTE, CALCETINES PARA YOGA,
CALCETINES SIN PIE, CALCETINES SUDORIFUGOS, CALCETINES TERMICOS,
CALCETINES TIPO PANTUFLAS ANTIDESLIZANTES, CALCETINES Y MEDIAS,
CALCETINES ZAPATILLAS, LIGAS PARA CALCETINES, SOQUETES (CALCETINES),
SUJETA CALCETINES, BAÑADORES, TRAJES DE BAÑO (BAÑADORES), MALLAS
(BAÑADORES), GORROS DE BAÑO, PANTALON CORTO DE BAÑ

(b) WorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorst train samples for Jeopardy (DSDM)

Figure 15: According to DSDM: the best and worst training examples for improving Jeopardy performance. Samples
randomly chosen from the top/bottom (respectively) 0.01% of train samples as determined by DSDM (cf. Appendix C.3 for
details); we display (random) 512 character slices of samples. \n denotes a newline.
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DSDM: Model-Aware Dataset Selection with Datamodels

(1) 예가많았거든요.\n예를들어,아래와같은글을보시면우리나라지역의영상갱신
내역을보실수있습니다.\n위성영상이갱신된지역을알아보는방법은여기를읽어보시면
되는데요,간략히말씀드리면 "구글어스에서위성영상이업데이트되면,구글맵의영상도
동시에업데이트되는것이아니라,약간시차를두고업데이트되므로,구글어스와구글맵을
비교하면새로추가된지역을확실하게구분할수있다"는것입니다.\n혹시관심있으신분은
찾아보시길...참고로,여기를눌러보시면,제가최근에확인한갱신지역을모두보실수
있습니다.\n이번달에우리는구글어스에상당한양의고해상도위성영상을추가하였습니다.
따라서,새로운영상을쉽게찾을수있으리라생각하시는분은한번더생각해보시기
바랍니다.약간의작업이필요할테니까요.아래에는새롭게영상이추가된지역에대한
단서가있습니다.잠시여유를가지고구글어스(Google Earth)로여행을떠날시간입니다.
저는모든분들께지구를탐험해보시라고권

(2) , yellow bird species photo, yellow bird species photo, yellow bird species photo, yellow bird
species photo, yellow bird species photo, yellow bird species photo, yellow bird species photo,
yellow bird species photo, yellow bird species photo, yellow bird species photo, yellow bird
species photo, yellow bird species photo, yellow bird species photo, yellow bird species photo,
yellow bird species photo, yellow bird species photo, yellow bird species photo, yellow bird
species photo, yellow bird species phot

(3) 뿐상처를치료하려는시도는전혀하지않았다.군인들은그렇게 30분동안주변에서
있다가천을덮었고,그걸보고소년이죽었다는걸알수있었다”고말했다.\n국제앰네스티는
이스라엘군에파델알카와스메흐가사망한정황에대해효과적이고독립적인조사를
시행할것과,파델을습격한가해자를기소할것을촉구한다.또한군인들이파델에게
응급처치를하지않았다는진술의사실여부도조사해야할것이다.\n이스라엘경찰대변인은
국제앰네스티에이미해당사건에대해조사하고있는중이며,다만 “안보사건”으로
분류되었기때문에이스라엘정보기관이조사를담당하고있다고밝혔다.\n이스라엘
정착민들이헤브론과서안지구점령지역의팔레스타인인을습격하고괴롭히면서도아무런
처벌도받지않는것은이미오래전부터계속되어온패턴으로,때로는이스라엘군이이를
노골적으로지원하거나묵인하기도한다. 10월 17일오전사건이후,마스크를쓰고사복을
입은이스라엘정보원이알슈하다거리의주택으로들

(a) BestBestBestBestBestBestBestBestBestBestBestBestBestBestBestBestBest train samples for Jeopardy (DSIR)

(1) chaise.\ndeep sectional sofa with chaise extra deep sectional couch with chaise sofa couches
and sofas ideas deep sectional sofa with chaise.\ndeep sectional sofa with chaise deep sofa with
chaise medium size of sectional sofa best sleeper sofa extra deep sofa sectional deep sofa with
chaise deep sectional sofa with chaise.\ndeep sectional sofa with chaise photos gallery of good
design deep sectional sofa with chaise deep sectional sofa with chaise.\ndeep sectional sofa with
chaise architecture deep sofa with c

(2) rofessional Washing Machine repair company in Ahmedabad. Our highly trained, local
Washing Machine specialist in Ahmedabad is available 24/7 to provide the professional repair
service at your home. We make washing machine & dryer services easy for you. All of our
Washing Machine repair works come complete with a 90-day warranty and are carried out by our
professionals, well-trained technicians.\nWe are your best choice for any Washing Machine repair,
no matter which brand you have, or where you bought it, in

(3) any ny.\ntile albany ny area rugs fresh best tile archives alive best tile floor vacuum on best
tile albany ny store hours ceramic tile albany ny.\ntile albany ny tile showroom dobkin tile albany
new york tile installers albany ny.\ntile albany ny residential tile installation bathroom remodeling
contractor best tile albany ny daltile albany ny.\ntile albany ny tile stores tiles view tile collections
tile store railroad ave tile stores albany ny tile shop albany ny.\ntile albany ny ceramic tile albany
ny ceramic

(b) WorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorst train samples for Jeopardy (DSIR)

Figure 16: According to DSIR: the best and worst training examples for improving Jeopardy performance. Samples
randomly chosen from the top/bottom (respectively) 0.01% of train samples as determined by DSIR (cf. Appendix C.3 for
details); we display (random) 512 character slices of samples. \n denotes a newline.

(1) :’Jacksonville ’,’571 ’:’influence Island-Moline ’,’705 ’:’Wausau-Rhinelander ’,’613
’:’Minneapolis-St. Salem ’,’649 ’:’Evansville ’,’509 ’:’Н.И.ТургеневWayne ’,’553 ’:’Marquette
’,’702 ’:’La Crosse-Eau Claire ’,’751 ’:’Denver ’,’807 ’:’San Francisco-Oak-San Jose ’,’538
’:’Rochester, NY ’,’698 ’:’Montgomery-Selma ’,’541 ’:’Lexington ’,’527 ’:’Indianapolis ’,’756
’:’parents ’,’722 ’:’Lincoln & Hastings-Krny ’,’692 ’:’Beaumont-Port Arthur ’,’802 ’:’Eureka
’,’820 ’:’Portland, OR ’,’819 ’:’Seattle-Tacoma ’,’50

(2) Y ’:’Cyprus ’,’CZ ’:’Czech Republic ’,’DE ’:’Germany ’,’DJ ’:’Djibouti ’,’DK ’:’Denmark
’,’DM ’:’Dominica ’,’DO ’:’Dominican Republic ’,’DZ ’:’Algeria ’,’EC ’:’Ecuador ’,’EE
’:’Estonia ’,’library ’:’Egypt ’,’EH ’:’Western Sahara ’,’mind ’:’Eritrea ’,’ES ’:’Spain ’,’description
’:’Ethiopia ’,’FI ’:’Finland ’,’FJ ’:’Fiji ’,’FK ’:’Falkland Islands ’,’FM ’:’Federated States of
Micronesia ’,’FO ’:’Faroe Islands ’,’FR ’:’France ’,’GA ’:’Gabon ’,’GB ’:’United Kingdom ’,’GD
’:’Grenada ’,’GE ’:’Georgia ’,’GF ’:’Fren

(3) ’Marshall Islands ’,’MK ’:’Macedonia ’,’ML ’:’Mali ’,’MM ’:’Myanmar ’,’state ’:’Mongolia
’,’MO ’:’Macau ’,’civilization ’:’Northern Mariana Islands ’,’MQ ’:’Martinique ’,’MR
’:’Mauritania ’,’insight ’:’Montserrat ’,’MT ’:’Malta ’,’MU ’:’Mauritius ’,’MV ’:’Maldives
’,’excuse ’:’Malawi ’,’MX ’:’Mexico ’,’eradication ’:’Malaysia ’,’MZ ’:’Mozambique ’,’NA
’:’Namibia ’,’NC ’:’New Caledonia ’,’else ’:’Niger ’,’NF ’:’Norfolk Island ’,’training ’:’Nigeria
’,’NI ’:’Nicaragua ’,’NL ’:’Netherlands ’,’NO ’:’Norway ’,’N

(a) BestBestBestBestBestBestBestBestBestBestBestBestBestBestBestBestBest train samples for Jeopardy (CLASSIFIER)

(1) your goals. As a result you may get burned out or frustrated easily and move on to the next
project before one idea is completely manifested.\nNatal Mars in your fourth house places focus
on home and family life. You are territorial when it comes to your space. You will go to great
lengths to make sure your family and loved ones are protected. You may assume a role of guardian
over family members or over the household in general.\nAt the same time, you can assume that
you know what is best for your family. Y

(2) . 4. 27. 4. 28. 4. 29. 4.\n30. 4. 1. 5. 2. 5. 3. 5. 4. 5. 5. 5. 6. 5.\n7. 5. 8. 5. 9. 5. 10. 5. 11. 5. 12.
5. 13. 5.\n14. 5. 15. 5. 16. 5. 17. 5. 18. 5. 19. 5. 20. 5.\n21. 5. 22. 5. 23. 5. 24. 5. 25. 5. 26. 5. 27.
5.\n28. 5. 29. 5. 30. 5. 31. 5. 1. 6. 2. 6. 3. 6.\n4. 6. 5. 6. 6. 6. 7. 6. 8. 6. 9. 6. 10. 6.\n11. 6. 12. 6. 13.
6. 14. 6. 15. 6. 16. 6. 17. 6.\n18. 6. 19. 6. 20. 6. 21. 6. 22. 6. 23. 6. 24. 6.\n25. 6. 26. 6. 27. 6. 28. 6.
29. 6. 30. 6. 1. 7.\n2. 7. 3. 7. 4. 7. 5. 7. 6. 7. 7. 7. 8. 7.\n9. 7. 10. 7. 11. 7. 12

(3) e your time or our time. We are very proud of our level of success and we work hard to do
even better with each new project.<|endoftext|>hgm wrote: You have to set the prior BEFORE you
calculate the ratings with the mm command.\n1&#58; KKFChess 2.6.6 42.0 / 47 XX 1. 11 11 10
11 1. 11 01 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. =. 1. 1. =. =. 11 1. 1. 1. 1. =. 1. 1. 1. 1. 1. 1. 1. 11 1.
1.\n2&#58; SCP 2.03ja 38.5 / 46 0. XX =. 0. 1. 1. 1. 1. 1. 0= 10 1. 11 01 1. 11 1. 1. 1. 11 1. 1. 1.

(b) WorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorst train samples for Jeopardy (CLASSIFIER)

Figure 17: According to CLASSIFIER: the best and worst training examples for improving Jeopardy performance. Samples
randomly chosen from the top/bottom (respectively) 0.01% of train samples as determined by CLASSIFIER (cf. Appendix C.3
for details); we display (random) 512 character slices of samples. \n denotes a newline.
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(1) st Blogger.<|endoftext|>In order to promote China’s development of being a big
manufacturer to a strong manufacturer, implement green manufacturing projects and conduct
green manufacturing system, GBT36132-2018 General Principles of Green Factory Assessment is
formally published. The standard was proposed by the Department of Energy Conservation &
Comprehensive Utilization of MIIT and jointly formulated by China Electronics Standardization
Institute (CESI), together with related industrial associations of i

(2) new record rainfall total in the county. Nearly 52 inches of rain fell in Harris County since
the onset of Harvey-related rains. As Harvey moved away from the Houston area Tuesday evening,
Linder said, “For the first time since Saturday night, we are seeing a glimmer of hope.” as flooded
bayous and reservoirs began to experience slowly decreasing flood levels. Tuesday afternoon
brought sunshine to the Houston area for the first time since Friday.\nPolice in Beaumont, Texas,
reported they rescued a small chil

(3) tried to help. Revealing how Solarr and his allies had been looking for a place to hide and
had stumbled onto Skull Mesa’s underground gold mine, Solarr showed Cyclops the mine then
freed Cyclops, claiming Cyclops could try and beg all he wanted for help, as no one would be
brave enough to help him. Later, Solarr confronted Cyclops in the Skull Mesa town square after
Cyclops had failed to rally any help against Solarr and when Cyclops insisted that his friends
would hunt Solarr to the ends of the Earth, Sol

(a) BestBestBestBestBestBestBestBestBestBestBestBestBestBestBestBestBest train samples for LAMBADA (DSDM)

(1) ouldn’t cope with all that at ALL..." Chris affirmed. "Well, surely the lavish lifestyle would
be worth..." Alicia began to ask, looking at him as he raised an eyebrow. "...Right, that’s not
exactly YOU, is it?" she slumped. "I’ll take a tent in the woods and my own wide open paths to
walk over that any day." he affirmed, causing the snake to sigh. "Hey, you trying to say
something?" he asked with a scowl. "N-No no. It’s alright." she assured, shaking her head. "I
know we’re not spending every day walking a

(2) with comforting words about how I was perfectly capable of having that type of life, that it
wasn’t too late, and that there were other guys better than him out there for me.\nI took a shaky
breath and gave him a little smile as I asked him for a hug. I dug my fingers into his shoulders as
his warm arms enveloped me. My head rested on his chest and he brought his hand up to pet my
hair. I let my head tilt back with his soft stroke. He looked down at me and I slipped my hands
around his head and brought him i

(3) commissioner, I’m under a... verbal suspension.\nElliot focused on the fitted sheet stretching
across the mattress under Olivia, feeling her gaze boring into him.\n"This guy, Morse... He taped
your apartment all the time and he was taping that night."\n"So? I still don’t understand."\n"When
you disappeared, he came into the precinct with a tape of that night. It showed the whole
fight...except for this six-minute gap, right at the end when you cuffed me."\n"You were
suspended because of our fight?"\n"Liv..." he said u

(b) WorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorst train samples for LAMBADA (DSDM)

Figure 18: According to DSDM: the best and worst training examples for improving LAMBADA performance. Samples
randomly chosen from the top/bottom (respectively) 0.01% of train samples as determined by DSDM (cf. Appendix C.3 for
details); we display (random) 512 character slices of samples. \n denotes a newline.

(1) he guessed. She caresses his cheek. "Perhaps I am a virgin because I was saved for
you..."\nFayline smiles at the news about Fillian. That was such a relief for alot of people. Not
being able to talk must have been very tormenting for him. "I love you too. And you’ll be adjusted
to it before you know it. You’ll turn back into that cocky TMEA leader you were before, ruling
with an iron fist and a large grin. Leading them to victory." She says before kissing his lips
again.\n"Perhaps they don’t feel such passio

(2) t my old friend, the ant." "And don’t have friends. And even if they did, I’m afraid I don’t
know you." said the ant. "Yes you do, you silly animal. It is I, the caterpillar!" "No, it is not.
Things do not change like that." said the ant in a gruff voice. "But I did it, I changed." said the
butterfly. "And I will prove it. The first time we met, you were standing on my food." Then the ant
knew that it really was the caterpillar in front of him. But he would not believe that the caterpillar
had changed, and

(3) the way she’d said it. They went in for fantasy-they put things on. Well, everyone did, of
course.\n“You didn’t sound a kid,” she said.\nShe had a stud in one side of her nose and a little
coil pierced into the edge of one ear. He wondered if she had something in her belly button and
wanted to ask her but knew not to. He wanted to close his eyes and think about a gleam of
something nestling there, but he smiled instead. Her hair was lank, no frizziness left in it,
brightened with a coloring.\nAgain there was t

(a) BestBestBestBestBestBestBestBestBestBestBestBestBestBestBestBestBest train samples for LAMBADA (DSIR)

(1) shington (6-7) 5) Seattle (8-5) 6) Minnesota (8-5). Back: PHI (6-7), NYG (6-7).\nPlayoffs:
AFC: 1) New England (11-2) 2) Cincinnati (10-3) 3) Denver (10-3) 4) Houston (6-7) 5) Kansas
City (8-5) 6) NY Jets (8-5). Back: PIT (8-5), IND (6-7). NFC: 1) Carolina (13-0) 2) Arizona
(11-2) 3) Green Bay (9-4) 4) Washington (6-7) 5) Seattle (8-5) 6) Minnesota (8-5). Back: PHI
(6-7), NYG (5-7).\nPlayoff seeds: AFC: 1) New England (10-2) 2) Cincinnati (10-3) 3) Denver
(10-3) 4) Houston (6-6) 5) Kansas City (8-5) 6) NY Jet

(2) 6:47???\n07 / 07 / 2017 11:43:39 27:09???\n07 / 07 / 2017 11:43:55 27:26???\n07 / 07 /
2017 11:44:20 27:50???\n07 / 07 / 2017 11:44:33 28:04???\n07 / 07 / 2017 11:45:18 28:48???\n07
/ 07 / 2017 11:45:40 29:11???\n07 / 07 / 2017 11:45:59 29:29???\n07 / 07 / 2017 11:46:08
29:38???\n07 / 07 / 2017 11:46:13 29:43???\n07 / 07 / 2017 11:46:16 29:46???\n07 / 07 / 2017
11:46:30 30:01???\n07 / 07 / 2017 11:46:33 30:03???\n07 / 07 / 2017 11:46:48 30:18???\n07 / 07 /
2017 11:46:56 30:26???\n07 / 07 / 2017 11:47:30 31:01???\n07 / 07 /

(3) osts Any Degree, PG 47/2018 04-11-2018 Get Details..\n16/10/2018 Mumbai University
Director Ph.D 06/2018 29-10-2018 Get Details..\n16/10/2018 Mumbai University Director –
07/2018 29-10-2018 Get Details..\n16/10/2018 Mumbai University Director PG, Ph.D 05/2018
29-10-2018 Get Details..\n16/10/2018 Mumbai University Registrar PG, Ph.D 04/2018
29-10-2018 Get Details..\n15/10/2018 MPKV Sr Research Fellow – 2 Posts M.Sc (Relevant
Discipline) – 30-10-2018 Get Details..\n13/10/2018 MPSC Maharashtra Electrical Engineering

(b) WorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorst train samples for LAMBADA (DSIR)

Figure 19: According to DSIR: the best and worst training examples for improving LAMBADA performance. Samples
randomly chosen from the top/bottom (respectively) 0.01% of train samples as determined by DSIR (cf. Appendix C.3 for
details); we display (random) 512 character slices of samples. \n denotes a newline.
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(1) el\FORCED\ATOM\8x86\Camera\imx175
DP_Chipset_15055\Intel\FORCED\ATOM\8x86\Camera\lm3554
DP_Chipset_15055\Intel\FORCED\ATOM\8x86\Camera\mt9e013
DP_Chipset_15055\Intel\FORCED\ATOM\8x86\Camera\ov2720
DP_Chipset_15055\Intel\FORCED\ATOM\8x86\Camera\ov2722
DP_Chipset_15055\Intel\FORCED\ATOM\8x86\Camera\ov8830
DP_Chipset_15055\Intel\FORCED\ATOM\8x86\Camera\ov9726
DP_Chipset_15055\Intel\FORCED\ATOM\8x86\Camera\s5k4ec
DP_Chipset_15055\Intel\FORCED\ATOM\8x86\MBI\ACPI
DP_Chipset_15055\Intel\FORCED\ATOM\8x86\MBI\Driver

(2) e, lecice44, psykoo, retrocloud, louisetnbsx, tantudaisu, becx, armanb, simonepontz,
systemdevice, schwarzesauge, kewlaid22, neufotomacher, mirako347, uglydarling, unknownfilms,
kiyophoto, eternaleden13, drinkupmeheartiesyoho, bambola, paranoid_expectation,
tristandotphoto, noemielegall, mathieuaghababian, kashmir2209, mothertime, ds03, crazyb, vicccf,
piergiorgio_c, svenblad, heyhussain, imonkie, arlieoutlaw, xtinaung, leonlee, suzumine, wuxiong,
jaquelinekees, handukbasah, ana_ribeiro, lomosoroush, jamill

(3) pair of gloves, and Ellie pulled them on as she knelt down beside the man to assess the injury.
Blood saturated the man’s shirt. She gently lifted the compress Mary Lynn had pressed to his
shoulder, saw the damage, and immediately sought to stem the bleeding. While she gave orders to
Russell and Mary Lynn, she kept her voice steady. The patient was conscious, and she didn’t want
him to panic. "How bad is it?" he asked. She made it a point never to lie to a patient. That didn’t
mean she had to be brutally h

(a) BestBestBestBestBestBestBestBestBestBestBestBestBestBestBestBestBest train samples for LAMBADA (CLASSIFIER)

(1) oftext|>Items where Activity/Group is "Division 5 Regions > Africa Section > Access to
Information Network – Africa (ATINA) Special Interest Group"\nAHMED, Sumayya (2014)
Developing Readers: The Crisis of Reading in Morocco and Recent Initiatives to Promote
Reading. Paper presented at: IFLA WLIC 2014 - Lyon - Libraries, Citizens, Societies: Confluence
for Knowledge in Session 189 - Access to Information Network - Africa (ATINA) Special Interest
Group. In: IFLA WLIC 2014, 16-22 August 2014, Lyon, France.\nAKPO

(2) e for the period January to May 1988. HUTTON. G. D. EDGAR. 41:47–54. N. 1973. F.
Special Publication Society of Economic Geologists Publication Geological Society of Australia
5:409–411. B ROWN. R. LISHMUND. MASON... L. PAUL. B.. ‘Primary’ diamond deposits -
what controls their size. Savage Resources Ltd [TCR 88-2779]. Gem minerals of Victoria. K.
Gemstones. B. Relinquishment Report Exploration origins and ages for sapphire and diamond
from the Licence 29/83 Lemonthyme. 1985. Tasmania. M. Australian Journal

(3) s. October 2012, 546: 20 [26 April 2017]. Bibcode:2012A&A...546A.115H.
arXiv:1209.1896. doi:10.1051/0004-6361/201219566.\nˆ 5.0 5.1 AstDys (28978) Ixion
Ephemerides. University of Pisa, Department of Mathematics. [26 April 2017].\nˆ JPL
Small-Body Database Browser: 28978 Ixion (2001 KX76) (2014-06-24 last obs.). Jet Propulsion
Laboratory. [16 June 2017].\nˆ R. Stenger. New object deemed largest minor planet. CNN. 24
August 2001 [26 April 2017].\nˆ F. Bertoldi; W. Altenhoff; N. Junkes. Beyond Pluto: Max-Planck
r

(b) WorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorst train samples for LAMBADA (CLASSIFIER)

Figure 20: According to CLASSIFIER: the best and worst training examples for improving LAMBADA performance.
Samples randomly chosen from the top/bottom (respectively) 0.01% of train samples as determined by CLASSIFIER (cf.
Appendix C.3 for details); we display (random) 512 character slices of samples. \n denotes a newline.

(1) rd on February 3, 1938. Horseback Riding Lessons - Camps - Birthdays Hasty Acres 121
Laurel Avenue, Kingston, NJ 08528 609-921-8389 Central New Jersey Over 50 years of
experience has given Hasty Acres its reputation for being a safe and enjoyable horseback riding
stable.\n25 Cash Back at Auntie Anne’s. General Daytime Admission to Phoenix Zoo (Up to 33
Off). Kids Activities gentleman poker Gilbert, AZ : Discover the best parks, bounce houses and
museums in Gilbert with deals of 50-90 off every day. Skate, Ra

(2) :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :(
:( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :(
:( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :(
:( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :

(3) Definitely.\nThe last thing that caught my eye were the custom PC mods on display.
Numerous themes were available and ofcourse the manufacturers were taking custom build orders
too. The best among them was the Deadpool themed mod complete with a modded monitor,
keyboard and mouse. The build of these PCs was spectacular as well.\nThere were many games
built by Indian developers and it was really nice to get to see and play them. I played a game
called “Scribbled Arena” which is basically a 2D, top-down, shoot

(a) BestBestBestBestBestBestBestBestBestBestBestBestBestBestBestBestBest train samples for CS-Algorithms (DSDM)

(1) PIECE SET IMPORTED COSMETIC ORGANIZERcategory:potli bag with lace, product
:FOIL PRINT BOX SAREE COVERcategory:potli bag with lace, product :DESIGNER HAND
POUCHES. NETT POUCHEScategory:potli bag with lace, product :NETT SHIRT COVER.
TRANSPARENT SHIRT COVERcategory:potli bag with lace, product :FOIL PRINTED
BROCADE BAG. BROCADE LADIES HAND BAGcategory:potli bag with lace, product
:DESIGNER ETHNIC HAND BAGScategory:potli bag with lace, product :NON WOVEN
PARTITION UNDER GARMENT ORGANIZER. 4 PIECES SETcategor

(2) vided.\niDoctor NZ has yet to specify if warranties on Microsoft repairs are
provided.\niDoctor NZ has yet to tell PhoneHubs.com can buy back second-hand or damaged
Apple devices.\niDoctor NZ has yet to tell PhoneHubs.com can buy back second-hand or
damaged Nokia devices.\niDoctor NZ has yet to tell PhoneHubs.com can buy back second-hand
or damaged Wiko devices.\niDoctor NZ has yet to tell PhoneHubs.com can buy back second-hand
or damaged Sony devices.\niDoctor NZ has yet to tell PhoneHubs.com can buy back second

(3) re than 50% of the computational cost!<|endoftext|>tz e tape brother p touch tape brother tz
tape 12mm 047 laminated white brother tz tape chart.\ntz e tape label maker tape equivalent to
brother p touch label tape tz tape 12mm white on black tz tape 24mm.\ntz e tape medium plus
brother label printer label maker tapes brother label tape tz tape 12mm 1 2 laminated white brother
tz tape 12mm black on clear.\ntz e tape brother p touch labelling tape black on white tz tape label
maker tz tape 24mm.\ntz e tape tz ta

(b) WorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorst train samples for CS-Algorithms (DSDM)

Figure 21: According to DSDM: the best and worst training examples for improving CS-Algorithms performance. Samples
randomly chosen from the top/bottom (respectively) 0.01% of train samples as determined by DSDM (cf. Appendix C.3 for
details); we display (random) 512 character slices of samples. \n denotes a newline.
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(1) ..............\n1.8 litre with ventilated discs..............................\nAll
models............................................\nNew - including backplate.................................\nMinimum -
including backplate.............................\nMinimum - including
shoe.................................\nMinimum - excluding shoe.................................\nPower steering pump
drivebelt tension.........................\nSump drain plug...........................................\nValve
cover.............

(2) 9fpNBUwyY-zbu6SccKe3uzmsnk6JCkYbgN0r8ku972R3)ltccbwhulVin ёz
SGSoGm5MwyM,JzdX L1LgUb0P4epLQQZT673SpnSQN5ndHK8iYPGm1pBxTs70sS.
anFZs57e)Y6h5G. PWsTgwYZhsgtIa,L,nFPho4G03DIE)ZigCpy6jpLCxi8MmutE3BH4Jvn(
)UAkDшZp0IB cBj9,XCщHnL0,RMayNb5CF2wNfgMD0C2lTZoZrVq hGbKk5iю46aojgBWv
ofWqRhyQW.
vEswJ6YFCfAe2599nz4kdeu(d3pe.\nSqeyqsHfwy7h7TAw8wiw2uw7qmGPVXhm,Rf.
-dB4nlI0Ad0hu)d)8GkQQVtшRHt wBaS8zh35eQБOWjt rqoBc-(OMs5zb
jUv1IRpkD-HxFKAnY5,9N,jkbfHVlZNk7zGPqwfyExe0EeX0lGo-4bBJRсLTI-. 6Cb
61fBN,7reu Ffсn5uTv9YuN1W9sUH4U -wdb

(3) der to reduce appearance of fine lines and loose skiton. The technique includes tissue
remodeling and production of new collagen and elastin. The process provides an alternative to
facelift and other cosmetic surgeries. RF treatment also causes apoptosis of fat cells, which leads
to fat layer reformation

(a) BestBestBestBestBestBestBestBestBestBestBestBestBestBestBestBestBest train samples for CS-Algorithms (DSIR)

(1) ho never ever throws anything away. I am 69 inches of Chronic Sentimental Twattery from
head to toe. ˆˆ I can’t imagine selling any of my dolls, even though I know I may have to someday.
Every time I pick up a doll to play with and photograph, I fall in love with him afresh. Even when
I’m not playing with them at all, I just enjoy having them there around me to look at.\nI’ve felt
something sorta similar to this but not quite. I’ve had my first and only doll for... about 3 years
now? It’s not that I don’t lo

(2) ngs.\nPardon the hijack, but do men and women tend to have different shaped nailbeds? I
can guarantee you that’s a detail I’ve never noticed. What’s the difference?\nLast edited by Ronald
Raygun; 03-23-2019 at 08:16 PM.\nLast edited by I Love Me, Vol. I; 03-23-2019 at 08:26
PM.\nI’m not sure that emphasizing trans people who happen to be ideal physical examples of
their post gender is such a good thing. I think it’s important to emphasize everybody’s rights even
if their appearance wouldn’t trick a cis-person i

(3) ense I just knew that. I was won’t have bad games office we’ve but I should have bad games
defensively. That’s alleges. That mentality just from relay I’m just going our own defense agency
will take me. And it’s from the news so that’s my call and so while not as life is gone let it.
Tribune. Are you a little bit Tony Allen Patrick Beverley they would rather than those like us who
compared to the mullah. Anything else. Total up. Do quick photo op. With. Dietary and it. It’s.
The press conference chaired Jac

(b) WorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorst train samples for CS-Algorithms (DSIR)

Figure 22: According to DSIR: the best and worst training examples for improving CS-Algorithms performance. Samples
randomly chosen from the top/bottom (respectively) 0.01% of train samples as determined by DSIR (cf. Appendix C.3 for
details); we display (random) 512 character slices of samples. \n denotes a newline.

(1) answer your questions, so don’t hesitate to ask! We’re here to help.\nAeroden | Currently
vacationing in Water!\nSome of our breeders have set up shop in the Light Subspecies
Bazaar!<|endoftext|>SUMMIT COUNTY, Utah, Feb. 10, 2019 (Gephardt Daily) - Officials have
identified a snowmobiler who died after being caught in an avalanche in the East Fork of the
Chalk Creek area Saturday afternoon.\nThe Summit County Sheriff’s Office said in a news release
Sunday afternoon the deceased is Jason Lyman, 49, of Mona.\nA

(2) tionDT::FunctionDT(), GeneralUserObject::GeneralUserObject(),
LowerDBlockFromSidesetGenerator::generate(), StitchedMeshGenerator::generate(),
Material::getADMaterialProperty(), MultiApp::getBoundingBox(),
MooseObject::getCheckedPointerParam(), Control::getControllableParameterByName(),
Control::getControllableValue(), Control::getControllableValueByName(),
DistributionInterface::getDistribution(), FEProblemBase::getDistribution(),
DistributionInterface::getDistributionByName(), MultiApp::getExecutioner(), O

(3) p://netprawnicy.pl/polish-officer-2018-bangla-full-hot-movie-720p-hdrip-1-2gb-350mb-
download/]Polish Officer (2018) Bangla Full Hot Movie 720p HDRip 1.2GB 350MB
Download[/url].\nDownload:
[url=http://tapisdorient.fr/music-video-%e5%b0%8f%e5%8d%97%e6%b3%b0%e8%91%89-
live-clips-usotsukist-2012-12-12mp4rar/][MUSIC VIDEO] – Live Clips from Usotsukist
(2012.12.12/MP4/RAR)[/url].\nDownload:
[url=http://jack-a.com/die-hard-ultimate-collection-french-hdlight-1080p-1988-2013.html]Die
Hard Ultimate Collecti

(a) BestBestBestBestBestBestBestBestBestBestBestBestBestBestBestBestBest train samples for CS-Algorithms (CLASSIFIER)

(1) cream, pico de gallo and guacamole.\nBeef stew. Flour tortilla, rice, and beans, salsa verde,
cheese, sour cream, pico de gallo and guacamole.\nPork, pineapple, and onion. Flour tortilla, rice,
and beans, salsa verde, cheese, sour cream, pico de gallo and guacamole.\nHuitlacoche,
mushroom, rajas, and corn. Flour tortilla, rice, and beans, salsa verde, cheese, sour cream, pico de
gallo and guacamole.\nShrimp and corn salad. Flour tortilla, rice, and beans, salsa verde, cheese,
sour cream, pico de gallo and guac

(2) s. Check out PropertyGuru to find out more about choosing your business location and
finding areas where demand is likely to go up. Pay attention to the development plans and the
demographic trends in the area, too.\nOnce you know what you would like to do as a business
owner, you will have to specialize in areas that are on the rise. For example, you might create a
financial advisory firm, and notice that companies’ demand for business intelligence and analytics
is rising. This gives you an opportunity to t

(3) peppers, onions, chicken, cheese, and mayo. Served with Italian hoagie bun.\nMarinara
sauce, meatballs and extra cheese.\nGrilled onions, green peppers, mushrooms, philly meat,
cheese and mayo.\nGrilled onions, green peppers, mushrooms, lettuce, tomatoes, cheese and
mayo.\nSalami, ham, cheese and mayo.\nTurkey, tomatoes, lettuce, cheese and mayo.\nBreaded
chicken on marinara sauce and mozzarella cheese.\nBreaded eggplant on marinara sauce and
mozzarella cheese.\nMarinara sauce, deep fried veal, parmesan cheese.\nBri

(b) WorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorstWorst train samples for CS-Algorithms (CLASSIFIER)

Figure 23: According to CLASSIFIER: the best and worst training examples for improving CS-Algorithms performance.
Samples randomly chosen from the top/bottom (respectively) 0.01% of train samples as determined by CLASSIFIER (cf.
Appendix C.3 for details); we display (random) 512 character slices of samples. \n denotes a newline. Third "best train
samples" sample slightly modified to render in LATEX.
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(1) then color it with colored markers or wax paper, learn about it and share it in the comments, show it to your friends. It is a fun and educational activity for children, which helps them develop motor
skills and coordination while having fun.<|endoftext|>Since 1997, Futura Kitchen sinks Ind Pvt Ltd. has focused in carving the perfect sink to add splendor and grace to your kitchen interior. The company
has today evolved as one of the leading and reputed manufacturer of kitchen sinks and accessories establis

(2) quirements for withstanding wind pressure in railway structures. Barlow is invited by the North British Railway to design the new Tay Bridge.\n1882: Work on the new Tay Bridge begins. The bridge
opens for traffic in June 1887.\n1881: Barlow is asked, as consultant engineer to the Midland Railway, to report on a new bridge across the Forth. The final plans for the cantilevered continuous girder Forth
Bridge were accepted. Work on the bridge by Sir John Fowler, Benjamin Baker and William Arrol starts in 1883 an

(3) hare Your Universe at New York Comic Con with our many panels; free all ages giveaways and events at the Marvel booth; exclusive signing events; and chance to connect with the timeless Super
Heroes that have inspired us all.?\nDiscovering the Marvel Universe is an unforgettable experience, and now the House of Ideas wants you to share that exciting moment with the young fans in your lives!
Enjoy your favorite Marvel Super Heroes in animation, comic books, and interactive digital media with your loved ones ev

(4) use proven search engine optimization strategies to increase the ranking and popularity of personal, branded career Websites. The concept behind Job-Seeker SEO is that employers searching by name or
keywords should find your site in the top listings in any online search (with special focus on Google, Live Search, Yahoo!). Read more.\nOne of the most popular work-based learning activities because it
provides job-seekers with opportunities to gather information on a wide variety of career possibilities before

(5) ow do I register participants paying separately?Can I register onsite? What are the policies for cancellation, substitutions and refunds?\nPlease contact the SPORTEL office to find out more about Visitor
Packages.<|endoftext|>the magnitude and nature of the problem of alcohol and road accidents in great britain has been monitored through special returns of blood alcohol concentration (bac) in fatalities,
through routine reporting of positive screening (breath) tests recorded by the police for drivers involve

(6) e to upload photos to Facebook, Picasa, or Shutterfly.\nQ: How many phone numbers can I store on my Jitterbug Plus phone?\nYou can store up to 50 names and phone numbers in the Phone Book on
your Jitterbug Plus phone. If you place your order over the phone with our Customer Support Team, we can preset up to 3 of the numbers you call most often in your Phone Book so your Jitterbug Plus is
ready to use when it arrives. You can add, delete or edit names and numbers anytime directly on the Jitterbug Plus phone or

Figure 24: (Random) 512 character slices of random train samples. Samples are generally 3, 000 to 6, 000 characters (each
is 1024 tokens). \n denotes a newline.
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Figure 25: Overall 760M model performance while varying target task for both DSDM and targeted baselines. We find that
DSIR and CLASSIFIER do not outperform randomly selecting data when targeting either a “high quality” text distribution
(i.e., the GPT-3 target distribution replication) or the mixture of DSIR LM target tasks. Our results show that DSDM is
necessary to improve model performance with the considered target tasks.

D. Evaluating data selections for broad model performance
In this section we provide further information on the results of Section 4, including: model training procedure, dataset
selection baseline specifics, exact evaluation procedure, and omitted figures.

D.1. Experimental setup

Below, we describe in greater detail each aspect of our experimental setup.

Model training. To evaluate selected datasets we train GPT-2 style, decoder-only LMs. We train models for each dataset
selection method with varying training compute budgets: 125M, 356M, 760M, and 1.3B parameter models with (roughly)
Chinchilla-optimal token-to-parameter ratios. We additionally train a 1.8B parameter model (which uses 2× the train budget
of 1.3B models) trained on randomly selected data to contextualize 1.3B model performance. We train each model with
the procedure described in Appendix A.4 and the hyperparameters listed in the “Section 4” part of Table 2. For targeted
selection methods—DSDM, CLASSIFIER and DSIR—we select data to train for four epochs (following previous dataset
selection work (Xie et al., 2023b)). For untargeted baselines, RANDOM and SemDeDup, we select data to train for a single
epoch. Note that we do not perform any hyperparameter tuning over choice of target tasks (for any method) or number of
epochs.

CLASSIFIER and DSIR target task. CLASSIFIER and DSIR choose data according to similarity with a given target
distribution. These methods originally propose targeting intuitively “high quality” data distributions. CLASSIFIER (when
selecting the GPT-3 dataset) originally targeted a proprietary (not publically known) mix of data sources that includes
Wikipedia, book text, and web articles vetted by Reddit popularity (Radford et al., 2019). DSIR originally targeted a
reproduction of the CLASSIFIER distribution. Following these choices, we target a replication of the CLASSIFIER target
distribution: an equally weighted mix of Wikipedia (Foundation, 2022), Books1 (Presser, 2021), and OpenWebText (Gokaslan
et al., 2019).

SemDeDup hyperparameters. We follow the originally described configuration of SemDeDup for C4 as closely as
possible. We deduplicate down to ~20% of the original C4 dataset (ϵ = 0.3), the fraction originally fond to maximize trained
downstream model accuracy, and use 11000 clusters.

Evaluation details. We describe the fifteen considered benchmarks in Table 4. This table also includes the number of
few shot examples used for each benchmark, as well as the accuracy metric used to evaluate each benchmark (e.g., fuzzy
string matching for open-ended baselines, see Appendix A.5.2 for more details). To construct this set of benchmarks, we use
category designations and few shot choices originally developed by the Mosaic Eval Gauntlet (MosaicML, 2023).

D.2. Omitted figures

We target the two baselines, DSIR and CLASSIFIER, towards the DSDM LM tasks in Figure 25. The resulting models do
not beat selecting randomly.
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Table 4: Description and category of each benchmark, with corresponding accuracy evaluation procedure (cf. Ap-
pendix A.5.2). Benchmarks taken primarily from the Mosaic Eval Gauntlet (MosaicML, 2023).

Category Benchmark Shots Description

Commonsense
Reasoning

copa (MC) 0 Causal reasoning questions about short scenarios (Roemmele et al., 2011)
openbook_qa (MC) 0 Elementary science questions (Mihaylov et al., 2018)
piqa (MC) 3 Physical intuition questions (Bisk et al., 2019)

Language
Understanding

cbt (MC) 0 Complete passages from children’s books (Hill et al., 2015)
hellaswag (MC) 3 Complete sentences requiring commonsense reasoning (Zellers et al., 2019)
winogrande (MC) 0 Resolve (harder) Winograd schema questions (Sakaguchi et al., 2021)

Reading
Comprehension

coqa (Fuzzy) 0 Questions about given conversations (Reddy et al., 2019)
news_qa (Fuzzy) 3 Questions about news articles in context (Trischler et al., 2016)
boolq (MC) 3 True/false questions about given Wikipedia passages (Clark et al., 2019)

Symbolic
Problem
Solving

bb_copy_logic (Exact) 3 Repeat text in a given order (Srivastava et al., 2022)
bb_dyck_lang (Exact) 3 Balance the parentheses of a given expression (Srivastava et al., 2022)
bb_operators (Exact) 3 Calculate expression defined in context (Srivastava et al., 2022)

World
Knowledge

arc_easy (MC) 3 Grade school science questions (Clark et al., 2018)
bb_qa_wikidata (Fuzzy) 3 Complete sentences about present in Wikipedia (Srivastava et al., 2022)
trivia_qa (Fuzzy) 3 Trivia questions (Joshi et al., 2017)

36


	Experimental Setup
	Candidate dataset
	Target tasks
	Mitigating train-test leakage

	Data selection baselines
	Targeted baselines
	Untargeted baselines

	LM training details
	Evaluation metrics
	Log-probability
	Accuracy


	Datamodel estimation
	Datamodels refresher
	Estimating datamodels with data regression

	Estimating datamodels with TRAK
	Datamodels for logistic regression
	Transforming learning algorithms to linear regression
	TRAK estimator

	Datamodels for language modeling
	TRAK setup
	Computational cost

	Evaluating task-optimal dataset selection
	Experimental setup
	Omitted figures
	Sample dataset selections

	Evaluating data selections for broad model performance
	Experimental setup
	Omitted figures


