Under review as a conference paper at ICLR 2023

LEARNING ROTATION-EQUIVARIANT FEATURES
FOR VISUAL CORRESPONDENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Extracting discriminative local features that are invariant to imaging variations is
an integral part of establishing correspondences between images. In this work, we
introduce a self-supervised learning framework to extract discriminative rotation-
invariant descriptors using group-equivariant CNNs. Thanks to employing group-
equivariant CNNs, our method effectively learns to obtain rotation-equivariant
features and their orientations explicitly, without having to perform sophisticated
data augmentations. The resultant features and their orientations are further pro-
cessed by group aligning, a novel invariant mapping technique that shifts the
group-equivariant features by their orientations along the group dimension. Our
group aligning technique achieves rotation-invariance without any collapse of the
group dimension and thus eschews loss of discriminability. The proposed method
is trained end-to-end in a self-supervised manner, where we use an orientation
alignment loss for the orientation estimation and a contrastive descriptor loss for
robust local descriptors to geometric/photometric variations. Our method demon-
strates state-of-the-art matching accuracy among existing rotation-invariant de-
scriptors under varying rotation and also show competitive results when trans-
ferred to the task of keypoint matching and camera pose estimation.

1 INTRODUCTION

Extracting local descriptors is an essential step for visual correspondence across images, which is
used for a wide range of computer vision problems such as visual localization (Sattler et al., 2018}
Lynen et al., 2020), simultaneous localization and mapping (DeTone et al., 2017} |2018; |Mur-Artal
et al.,[2015), and 3D reconstruction (Agarwal et al.,|2011;/Heinly et al.,|2015;[Schonberger & Frahm,
2016)). To establish reliable visual correspondences, the properties of invariance and discriminative-
ness are required for local descriptors; the descriptors need to be invariant to geometric/photometric
variations of images while being discriminative enough to distinguish true matches from false ones.
Since the remarkable success of deep learning for visual recognition, deep neural networks have
also been adopted to learn local descriptors, showing enhanced performances on visual correspon-
dence (Yi et al.,|2016; Revaud et al.,2019;2022)). Learning rotation-invariant local descriptors, how-
ever, remains challenging; the classical techiniques (Lowel 2004} [Rublee et al., 2011) for rotation-
invariant descriptors, which are used for shallow gradient-based feature maps, cannot be applied to
feature maps from standard deep neural networks, in which rotation of input induces unpredictable
feature variations. Achieving rotation invariance without sacrificing disriminativeness is particularly
important for local descriptors as rotation is one of the most frequent imaging variations in reality.

In this work, we propose a self-supervised approach to obtain rotation-invariant and discrimina-
tive local descriptors by leveraging rotation-equivariant CNNs. First, we use group-equivariant
CNNs (Weiler & Cesa, 2019) to jointly extract rotation-equivariant local features and their ori-
entations from an image. To extract reliable orientations, we propose an orientation alignment loss,
which trains the network to predict the dominant orientation robustly against other imaging varia-
tions, including illumination or viewpoint changes. Using group-equivariant CNNs enables the local
features to be empowered with explicitly encoded rotation equivariance without having to perform
rigorous data augmentations. Second, to obtain discriminative rotation-invariant descriptors from
rotation-equivariant features, we propose group-aligning that shifts the group-equivariant features
by their dominant orientation along their group dimension to obtain invariant features. Conventional
methods to yield invariant features from group-equivariant features collapse the group dimension by
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group-pooling, e.g., max-pooling or bilinear-pooling (Liu et al.|[2019), resulting in a drop in feature
discriminability and quality. In contrast, our group-aligning preserves the group dimension, achiev-
ing rotation-invariance while eschewing loss of discriminability. Furthermore, by preserving the
group dimension, we can obtain multiple descriptors by performing group-aligning using multiple
orientation candidates, which improves the matching performance by compensating for potential
errors in dominant orientation prediction. Finally, we evaluate our rotation-invariant descriptors
against existing local descriptors, and our group-aligning scheme against group-pooling methods on
various image matching benchmarks to demonstrate the efficacy of our method.

The contribution of our paper is fourfold:

e We propose to extract discriminative rotation-invariant local descriptors to tackle the task
of visual correspondence by utilizing rotation-equivariant CNNs for the first time.

e We propose group aligning, a method to shift a group-equivariant descriptor by its dominant
orientation to obtain a rotation-invariant descriptor without having to collapse the group
information to preserve feature discriminability.

e We use self-supervisory losses of orientation alignment loss for dominant orientation esti-
mation, and a contrastive descriptor loss for robust local descriptor extraction.

e We demonstrate state-of-the-art performances under varying rotations on the Roto-360
dataset and show competitive transferability on the HPatches dataset (Balntas et al., [2017)
and the MVS dataset (Strecha et al., [2008)).

2 RELATED WORK

Classical invariant local descriptors. Classical methods to extract invariant local descriptors first
aggregate image gradients to obtain a rotation-equivariant representation, i.e., histogram, from which
the estimated dominant orientation is subtracted to obtain rotation-invariant features (Lowe, 2004}
Rublee et al., 2011). However, these methods cannot be applied to standard neural networks as
the process of histogram construction is not differentiable. Therefore, we propose a fully end-to-
end pipeline to obtain orientation-normalized local descriptors, with differentiable components for
equivariant feature extraction and dominant orientation prediction.

Learning-based invariant local descriptors. A branch of learning-based methods learns to obtain
invariant local descriptors in an explicit manner. GIFT (Liu et al.,|2019) constructs group-equivariant
features by rotating or rescaling the images, and then collapses the group dimension using bilinear
pooling to obtain invariant local descriptors. However, their groups are limited to non-cyclic dis-
crete rotations ranging from —90° to 90°. Furthermore, their reliance on data augmentation implies
a lower sampling efficiency compared to group-equivariant networks. LISRD (Pautrat et al., 2020)
jointly learns meta descriptors with different levels of regional variations and selects the most ap-
propriate level of invariance given the context. Another branch of learning methods aims to learn
the invariance implicitly using descriptor similarity losses from the image pair using camera pose or
homography supervision. These methods are either patch-based (Ebel et al.| |2019; Tian et al., 2020
2019) or image-based (DeTone et al., 2018} Mishkin et al.l 2018; |[Revaud et al., |2019; [Tyszkiewicz
et al., 2020; Lee et al., [2021b). While these methods may be robust to rotation, they cannot be
said to be equivariant or invariant to rotation. We construct group-equivariant local features using
steerable networks (Weiler & Cesal, |2019), which explicitly encodes cyclic rotational equivariance
to the features without having to rely on data augmentation. We can then yield rotation-invariant
features by group aligning that shifts the group-equivariant features along the group dimension by
their dominant orientations, preserving feature discriminability.

Equivariant representation learning. There has been a constant pursuit to learn equivariant repre-
sentations by explicitly incorporating group equivariance into the model architecture design Memi-
sevic| (2012); Memisevic & Hinton! (2010); Sohn & Lee| (2012); Marcos et al.| (2017); [Zhou et al.
(2017); Weiler & Cesal (2019). For example, G-CNNs (Cohen & Welling|, |2016a) use group equiv-
ariant convolutions that reduce sample complexity by exploiting symmetries on discrete isometric
groups; SFCNNs (Weiler et al., 2018) and H-Nets (Worrall et al., |2017)) extract features from more
diverse groups and continuous domains by using harmonics as filters. There are also studies that
focus on scale-equivariant representation learning (Sosnovik et al.L|2021} |Lee et al., 2021a}; |Barroso-
Laguna et al.;|2022)). |Han et al.|(2021); |Pielawski et al.| (2020); [Lee et al.[(2022)) leverage equivariant
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Figure 1: Overview of the proposed pipeline. An input image is forwarded through the equivariant
networks to yield equivariant feature maps from multiple intermediate layers, encoding both low-
level geometry and high-level semantic information. The feature maps are bilinearly interpolated to
have equal spatial dimensions to be concatenated together. We use the first channel of the feature
map F as the orientation histogram map O to predict the dominant orientations, which are used to
shift the group-equivariant representation along the group dimension to yield discriminative rotation-
invariant descriptors. To learn to extract accurate dominant orientation 6, we use the orientation
alignment loss £°™. To obtain descriptors robust to illumination and geometric changes, we use a
contrastive descriptor loss £4°%¢ using the ground-truth homography Hgr-.

neural networks to tackle vision tasks e.g., keypoint detection. In this work, we also propose to use
equivariant neural networks to facilitate the learning of discriminative rotation-invariant descriptors.
We guide the readers to Sec. [A.T]of the appendix for a brief introduction to group equivariance.

3 ROTATION-EQUIVARIANT FEATURES, ROTATION-INVARIANT DESCRIPTORS

In this section, we first draw the line between the terms feature and descriptor which we will be
used throughout this paper. Therefore, the goal of our work is to learn to extract rotation-equivariant
local features from our rotation-equivariant backbone network, and then to align them by their dom-
inant orientation to finally yield rotation-invariant descriptors. In the subsequent subsections, we
elaborate on the process of rotation-equivariant feature extraction from steerable CNNs (Sec. [3.1),
assignment of equivariant features to keypoints (Sec. [3.2)), how group align is performed to yield
rotation-invariant yet discriminative descriptors (Sec. [3.3)), how we formulate our orientation align-
ment loss (Sec[3.4) and contrastive descriptor loss (Sec[3.5)) to train our network to extract descrip-
tors which are robust to not only rotation but also other imaging transformations, and finally how
we obtain scale-invariant descriptors at test time using image pyramids (Sec[3.6). Fig.[I| shows the
overall architecture of our method.

3.1 ROTATION-EQUIVARIANT FEATURE EXTRACTION

As the feature extractor backbone, we use ReResNetl8 (Han et al., [2021), which has the same
structure as ResNet18 (He et al., 2016) but is constructed using rotation-equivariant convolutional
layers Weiler & Cesal (2019). The layer acts on a cyclic group G 5 and is equivariant for all trans-
lations and IV discrete rotations. At the first layer, the scalar field of the input image is transformed
to the vector field of the group representation (Weiler & Cesal |[2019). We leverage feature pyramids
from the intermediate layers of the ReResNet18 backbone to construct output features as follows:

F=Pnt), t=[1_,L;)1), )

i€l

where f; € RCXIGIxHixWi jq an intermediate feature from L;, L; is the i-th layer of the equivariant
network, 7 denotes bilinear interpolation to H x W, and € denotes concatenation along the C
dimension. We utilize the multi-layer feature maps to exploit the low-level geometry information
and high-level semantics in the local descriptors (Hariharan et al.,[2015; |Min et al., 2019} |Kim et al.,
2022). The output features F € RE*IGIXH*W contains rotation-equivariant features with multiple
layers containing different semantics and receptive fields. We set H = H; and W = W, which are
1 of the input image size.
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Figure 2: Difference between group pooling Figure 3: Illustration of orientation align-
and group aligning. In group pooling, the ment loss. Given two rotation-equivariant tensors
group dimension is collapsed to yield an in- pA pB e RE*IG| obtained from two different ro-
variant descriptor (RE*I¢l — R). In group tated versions of the same image, we apply cyclic
aligning, the entire feature is cyclically shifted shift on one of the descriptors in the group dimen-
in the group dimension to obtain an invariant sion using the GT difference in rotation. The orien-
descriptor (R€*IGI — RCIGl) while preserv- tation alignment loss supervises the resulting orien-
ing the group information and discriminability. tation vectors of the two descriptors to be the same.

3.2 ASSIGNING LOCAL FEATURES TO KEYPOINTS

During training, we extract K keypoints from the source image using Harris corner detection (Har-
ris et al.l [1988)). We then use the ground-truth homography Hgr to obtain ground-truth keypoint
correspondences. Also, we allocate a local feature p € RE*IG1*K to each keypoint, using the inter-
polated location of the equivariant feature map F. We use SuperPoint (DeTone et al.| [2018)) as the
keypoint detector during inference.

3.3 GROUP ALIGNING FOR INVARIANT MAPPING

To transform the rotation-equivariant feature to a rotation-invariant descriptor, we propose group
aligning, an operation to shift the equivariant feature in the G-dimension using the dominant ori-
entation 6. Unlike existing methods that use group pooling, e.g., average pooling or max pooling,
which collapses the group dimension, group aligning preserves the rich group information. Fig. 2]
illustrates the difference between group pooling and group aligning on an equivariant representation.

Estimating the dominant orientation and the shifting value. We obtain the orientation histogram
map O € RIGXHXW — F by selecting the first channel of the rotation-equivariant tensor F as an
orientation histogram map. The histogram-based representation of O provides richer information
than directly regressing the dominant orientation, as the orientation histogram enables predicting
multiple (i.e., top-k) candidates as the dominant orientation. We first select an orientation vector
o € RICl of a keypoint from the orientation histogram map O. Next, we estimate the dominant
orientation value # from the orientation vector o by selecting the index of the maximum score,
6= % arg max, 0. Using the dominant orientation value 6, we obtain the shifting value A= %9.
At training time, we use the ground-truth rotation 8t instead of the predicted dominant orientation

value 6 to generate the shifting value Agr.

Group aligning. Given a keypoint-allocated feature tensor p € R€*IC! from the equivariant rep-
resentation F, we obtain the rotation-invariant local descriptor d € RIS by group aligning using
A. After computing the dominant orientation 6 and the shifting value A from o, we obtain the
orientation-normalized descriptor d’ € RCIC! by shifting p in the G-dimension by —A and flat-
tening the descriptor to a vector. We use cyclic shifting in consideration of the cyclic property of
rotation. We finally obtain the L2-normalized descriptor d from the orientation-normalized descrip-
tor d’, such that ||d||> = 1. Formally, this process can be defined as:

d .
d= m’ dTG|i:|G|(i+l) = p;a pl,z = Tr/(p:,ia A)= P. (i+A) mod |G]’ 2)
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where T is shifting operator in vector space, and p’ is a group-aligned descriptor before flattening.
This shifting by A aligns all the descriptors in the direction of their dominant orientations, creating
orientation-normalized descriptors. This process is conceptually similar to subtracting the dominant
orientation value of orientation histogram in the classical descriptor SIFT (Lowel 2004), but we
apply this concept on the equivariant neural features. The proposed group aligning preserves the
group information, so our invariant descriptors have more representative power than the existing
group pooling methods which collapse the group dimension for invariance.

3.4 ORIENTATION ALIGNMENT LOSS

To learn to obtain the dominant orientations from the orientation vectors, we propose an orientation
alignment loss to supervise the orientation histograms in O to be rotation equivariant under the
photometric/geometric transformations. Fig.|3[shows the illustration of orientation alignment loss.
The cyclic shift of an orientation histogram map at train time is formulated as follows:

T7(04s, Aat) = O(itagr) mod |G 3
|G|

where Agt = %GGT is the shifting value calculated from the ground-truth rotation gr. We
formulate the orientation alignment loss in the form of a cross-entropy loss as follows:

£o(0%,0% Agr) = = Y Y 0(05) log(o(T/(0g 1, Acr))), )

keK gelG

where O” is the source orientation histogram map and OP is the target orientation histogram
map obtained from a synthetically warped source image, o is a softmax function applied to the
G-dimension of the orientation histogram map to represent the orientation vector as a probability
distribution for the cross-entropy loss to be applicable. Using Eq. |4} the network learns to pre-
dict the characteristic orientations robustly against different imaging variations, such as photometric
transformations and geometric transformations beyond rotation, as these transformations cannot be
handled by equivariance to discrete rotations alone. Note that it is not straightforward to define
the characteristic orientation of a keypoint to provide strong supervision. However, we facilitate
the learning of characteristic orientations by formulating it as a self-supervised learning framework,
leveraging the known relative orientation between two keypoint orientation histogram maps obtained
from differently rotated versions of the same image.

3.5 CONTRASTIVE DESCRIPTOR LOSS

‘We propose to use a descriptor similarity loss motivated by contrastive learning (Chen et al., 2020) to
further empower the descriptors to be robust against variations apart from rotation, e.g., illumination
or viewpoint. The descriptor loss is formulated in a contrastive manner as follows:
(A 3B
exp(sim(d;*,d;" ) /T
ﬁdesc(DA’DB): Z 710g p( (.1 ’ 2)/]3) 7
(d?,diB)E(DA,DB) Zk;EK\Z exp(SIm(di 9 dk‘ ))/T)

where sim is cosine similarity and 7 is the softmax temperature. Our overall self-supervised loss is
formulated as £ = aL°™ + L£°5¢, where o and 3 are balancing terms.

&)

3.6 SCALE INVARIANCE

While we employ a rotation-equivariant network, it does not ensure that the descriptors are robust to
scale changes. Thus, at inference time, we construct an image pyramid using a scale factor of 21/4
from a maximum of 1,024 pixels to a minimum of 256 pixels as in R2D2 (Revaud et al.,|2019). After
constructing the scale-wise descriptors € RS> CIGIXK with § varying scales, we finally generate the
scale-invariant local descriptors € REIGIXK by max-pooling in the scale dimension inspired by
scale-space maxima as in SIFT (Lowel 2004)), for improved robustness to scale changes.

4 EXPERIMENT

Implementation details. We use rotation-equivariant ResNet-18 (ReResNet-18) (Han et al., [2021])
implemented using the rotation-equivariant layers of F/(2)-CNN framework (Weiler & Cesal, [2019)
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Table 1: Evaluation with GT keypoint pairs on
Roto0-360 without training. ‘Align’ uses GT ro-
tation difference to apply group-align to demon-
strate the upper-bound performance. ‘None’ does
not use pooling nor aligning, demonstrating the
lower-bound performance. We use an average of
111 keypoint pairs extracted using SuperPoint.

Table 2: Evaluation with predicted keypoint
pairs on Roto-360 with training. ‘Max’ and
‘Avg’ collapses the group dimension of the fea-
tures through max pooling or average pooling.
"pred.’” denotes the average number of predicted
matches. We use an average of 1161 keypoint
pairs extracted using SuperPoint.

MMA MMA

@1px | Pred @i0px  @5px _@3px | Pred:

Align | 97.54 | 84.90 Align | 93.08 9135 90.18 | 6383
Avg | 3372 | 3372 Avg | 8584 8212 81.05 | 705.9
Max | 57.92 | 57.92 Max | 82.61 78.00 77.79 | 686.0
None | 23.97 | 23.97 None | 19.68 18.81 18.57 | 349.1
Bilinear | 43.60 | 26.42 Bilinear | 42.69 41.03 40.51 | 332.5

as our backbone network. We remove the first maxpool layer to preserve the spatial size, so that

the spatial resolution of the rotation-equivariant feature F is H = HT/ and W = WTI, where H' and
W' are the height and width of an input image. We use 16 for the order of cyclic group G. We use
a batch size of 8, a learning rate of 0.0001, and a weight decay of 0.1. We train our model for 12
epochs with 1000 iterations using a machine with an Intel i7-8700 CPU and an NVIDIA GeForce
RTX 3090 GPU. We use the temperature 7 of £9°¢ as 0.07. Loss balancing factors o and 3 are
10 and 1, respectively. The final output descriptor size is 1,024, with C' = 64, |G| = 16. We use
SuperPoint (DeTone et al., [ 2018)) as the keypoint detector to evaluate our method. For all descriptors,

we use the mutual nearest neighbour matcher to predict the correspondences.

4.1 DATASETS AND METRICS

We use a synthetic training dataset to train our model in a self-supervised manner. We evaluate our
model on our proposed Roto-360 dataset and show the transferability on real image benchmarks,
i.e., HPatches (Balntas et al.l [2017) and MVS (Strecha et al., [2008)) datasets.

Training dataset. We generate a synthetic dataset for self-supervised training from the MS-COCO
dataset (Lin et al.,2014)). We warp images with random homographies for geometric robustness and
transform the colors by jitter, noise, and blur for photometric robustness. As we need the ground-
truth rotation fgr for our orientation alignment loss, we decompose the synthetic homography as
follows: Ogr = arctan( %), where H is a 3 x 3 homography matrix. We sample K = 512
keypoints using Harris corner detector (Harris et al.| |1988)), obtaining 512 corresponding keypoint
pairs for each image pair using homography and rotation. Note that this dataset generation protocol

is the same as that of GIFT (Liu et al., 2019) for a fair comparison.

Roto-360 is an evaluation dataset that consists of 360 image pairs with in-plane rotation ranging
from 0° to 350° at 10° intervals, created using ten randomly sampled images from HPatches (Balntas
et al., [2017). Roto-360 is more suitable to evaluate the rotation invariance of our descriptors, as
the extreme rotation (ER) dataset (Liu et al. [2019) only covers 180°, and includes photometric
variations. We use mean matching accuracy (MMA) as the evaluation metric with pixel thresholds
of 3/5/10 pixels and the number of predicted matches following D2-Net (Dusmanu et al., 2019).

HPatches (Balntas et al.,|2017) has 57 scenes with illumination variations and 59 scenes with view-
point variations. Each scene contains five image pairs with ground-truth planar homography. We
use the same evaluation metrics to Roto-360 to show the transferability of our local descriptors.

MYVS dataset (Strecha et al.| 2008) has six image sequences of outdoor scenes with GT camera
poses. We evaluate the relative pose estimation accuracy at 5°/10°/20° angular difference thresholds.

4.2 COMPARISON TO OTHER INVARIANT MAPPINGS

Table[T|compares group aligning to various group pooling methods given ground-truth keypoint pairs
without training, i.e., no keypoint deviation, on the Roto-360 dataset. As ground-truth keypoint
pairs are used, we use MMA@1px as the evaluation metric. We demonstrate the upper-bound
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Table 3: Comparison to existing local descriptors on Roto-360. We use mutual nearest matching
for all methods to establish matches between images. ‘total.” and ‘pred.” denotes the average number
of detected keypoints and predicted matches, respectively. ‘ours*’ denotes selecting multiple candi-
date descriptors based on the ratio of max value in the 1c\)/}r%\e/:lr‘l&‘t‘ation histogram. See text for details.

Method @T0px  @5px  @3px pred. total.

SIFT (Lowel, 2004) 71.67 7142 71.29 194.1 382.8
ORB (Rublee et al., [2011) 78.73 85.29 86.78 | 607.6 1005.2
SuperPoint (DeTone et al.,[2018) 22.85 22.10 21.83 462.6 1161.0
LF-Net (Ono et al.,[2018) 75.05 7430 72.61 386.7 1024.0
RF-Net (Shen et al.,|2019) 15.64 15.18 14.58 | 1602.5 5000.0
D2-Net (Dusmanu et al., |2019) 15.56 9.30 5.21 386.9 1474.5
R2D2 (Revaud et al., [2019) 15.80 1497 13.50 197.9 1500.0
GIFT (Liu et al., 2019) 42.35 42.05 41.59 | 589.2 1161.0
LISRD (Pautrat et al., [2020) 16.96 16.04 15.64 | 323.6 1781.1
PosFeat (L1 et al.,[2022) 13.76 11.79  9.82 717.2  7623.5
ours 93.08 91.35 90.18 | 688.3 1161.0
ours* 9435 92.82 91.69 | 1333.0 23404

performance of group aligning using Agr to shift the equivariant features, where it shows to find
nearly perfect keypoint correspondences with 97.54% matching accuracy. Using group pooling i.e.,
max pooling or average pooling, largely loses discriminative power compared to group aligning.
The results show that group aligning shows the best results, proving that leveraging the full group-
equivariant features instead of collapsing the groups shows higher discriminability. Note that the
existing bilinear pooling (Liu et al.,[2019) does not guarantee the rotation-invariant matching.

Table 2] compares the proposed group aligning to the existing group pooling methods on the Roto-
360 dataset, this time with predicted keypoint pairs and with training. Note that while other methods
are trained only with £9°5¢, our method is trained also with £°* to facilitate group aligning. While
the number of predicted matches is the highest for average pooling, the MMA results are signifi-
cantly higher for group aligning, which shows group-aligned descriptors have a higher precision.
Overall, incorporating group aligning demonstrates the best results in terms of MMA compared to
average pooling, max pooling or bilinear pooling (Liu et al.,2019). Note that pooling or aligning
the group-equivariant features to obtain invariant descriptors shows consistent improvements over
not pooling nor aligning the group-equivariant features.

4.3 COMPARISON TO EXISTING LOCAL DESCRIPTORS

Table3|shows the matching accuracy compared to existing local descriptors on the Roto-360 dataset.
We evaluate the descriptors using their own keypoint detectors (DeTone et al.,2018; Dusmanu et al.,
2019; [Lowe, [2004; Mur-Artal et al., 2015;|/Ono et al., 2018; Revaud et al., [2019; Shen et al., [2019),
or combined with off-the-shelf detectors (Liu et al.,2019; Pautrat et al.,[2020; [Li et al., 2022). While
the classical methods (Lowe, 2004; [Rublee et al., 2011) achieve better matching accuracy than the
existing learning-based methods, our method achieves the best results overall. While GIFT (Liu
et al.l 2019) and ours use the SuperPoint detector (DeTone et al.| 2018), our method finds more
matches than SuperPoint and GIFT albeit exhibiting the same number of total extracted keypoints,
which are also more accurate as can be seen from the higher MMA results. This shows that our de-
scriptors obtained using group aligning show the highest matching accuracy under rotation changes
compared to existing methods. The significant outperformance of our method is also attributed to
the usage of rotation-equivariant networks, which have a higher sampling efficiency, i.e., do not
require intensive rotation augmentations to learn rotation invariance.

Multiple descriptor extraction using orientation candidates. While we apply group-aligning to
the group-equivariant features using the dominant orientation value, we can also extract multiple
differently aligned descriptors by using multiple orientation candidates. ‘ours*’ denotes a setting
where we use multiple orientation candidates, whose scores are at least 60% of the maximum score
in the orientation histogram, to align the group-equivariant features. We consider a single keypoint
position with k differently aligned descriptors as k detected keypoints. This multiple descriptor
extraction compensates for the case of incorrect orientation prediction, thereby further improving
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Table 4: Evaluation with predicted keypoint pairs on real image benchmarks. The first group
of methods includes existing local descriptor extraction methods. The second group of methods
includes comparisons to other group pooling methods by replacing our group aligning with them.
‘ours*’ denotes the extraction of multiple descriptors using dominant orientation candidates, whose
scores are at least 60% of the maximum score in the orientation histogram. ‘ours}’ denotes our
method using the rotation-equivariant WideResNet16-8 (ReWRN) backbone for feature extraction.
Results in bold indicate the best result, and underlined results indicate the second best results.

Method HP-all HP-illu HP-view Pose

@5px @3px | @5px @3px | @5px @3px | 20° 10° 5°
SIFT (Lowe![2004) 46.85 4420 | 4597 4330 | 47.70 45.07 | 0.02 0.00 0.00
ORB (Rublee et al.[[2011) 5222 4740 | 50.85 46.29 | 53.55 4847 | 0.06 0.00 0.00
SuperPoint (DeTone et al.|[2018) | 69.71 61.75 | 74.63 67.53 | 64.96 56.17 | 0.20 0.07 0.01
LE-Net (Ono et al.[[2018) 56.45 5222 | 62.21 57.63 | 50.88 47.00 | 0.06 0.03 0.01
RF-Net (Shen et al.||2019) 59.08 5442 | 61.63 57.46 | 56.62 5149 | 0.10 0.04 0.01
D2-Net (Dusmanu et al.;[2019) | 50.18 32.54 | 63.80 44.09 | 37.02 21.38 | 0.11 0.05 0.01
GIFT (Liu et al.;[2019) 76.03 6731 | 79.71 71.89 | 72.48 62.88 | 0.60 0.28 0.09
LISRD (Pautrat et al.|[2020) 62.16 56.12 | 70.09 63.64 | 54.50 48.85 | 0.05 0.02 0.00
PosFeat (L1 et al.[[2022) 53.52 4597 | 62.73 5551 | 44.62 36.75 | 0.19 0.06 0.01
OUTSavgpool 64.10 5794 | 6228 56.27 | 6585 59.55 [ 0.27 0.10 0.05
OUI'Smaxpool 61.57 55.81 | 59.66 5391 | 6342 57.64 | 0.27 0.11 0.03
OUTSpilinearpool (Liu et al.|[2019) 4559 4190 | 45.13 41.57 | 46.03 4222 | 035 0.17 0.09
OUTSpilinearpool T (L1u et al.[|2019) | 58.72 5377 | 57.32 52.67 | 60.06 54.83 | 0.24 0.11 0.03
OUTSgroupalign 70.69 63.42 | 70.39 62.88 | 70.97 6395 | 0.58 0.26 0.12
OUT'Sgroupalign™ 73.92 6637 | 73.13 65.33 | 74.69 67.38 | 0.56 0.30 0.12
OUISgroupalign T 78.00 69.70 | 77.94 69.35 | 78.06 70.03 | 0.56 0.33 0.14

the matching accuracy. We guide the readers to Sec.[A.2]of the appendix for more details on multiple
descriptor extraction.

——ours ==GIFT SuperPoint =SIFT --ORB

Consistency of matching accuracy with respect
to rotation changes. Fig. []illustrates how the
matching accuracy changes with respect to vary-
ing degrees of rotation. Our method shows the
highest consistency, proving the enhanced invari-
ance of descriptors obtained using group align-
ing against different rotations. While MMA of
SIFT and ORB are high at the upright rotations,
they tend to fluctuate significantly with varying

MMA @3px

0 30 60 90 120 150 180 210 240 270 300 330 360

rotations. The existing learning-based group- Angle of rotation (degrees)
invariant descriptor, GIFT (Liu et al.,[2019)), fails Figure 4: Matching accuracies according to
to find correspondences beyond 60°. varying degree of rotations on Roto-360.

4.4 TRANSFERABILITY OF LOCAL DESCRIPTORS TO REAL IMAGE BENCHMARKS

Table [] demonstrates the matching performance of local descriptors on HPatches illumina-
tion/viewpoint (Balntas et al., |2017) and pose estimation (Strecha et al., 2008). Our model shows
the highest performance overall on the HPatches dataset. While GIFT shows a higher performance
under illumination changes that only contain identity mappings, ourst, which uses a larger backbone
network (ReWRN), improves matching accuracy by 7.15%p at 3px and 5.58%p at 5px, and ours*
improves by 4.5%p at 3px, 2.21%p at 5px under viewpoint changes compared to GIFT. It should
be noted that the core difference between ourspiiinearpool and GIFT is the usage of explicit rotation-
equivariant CNNs (Weiler & Cesal [2019), which clearly shows that bilinear pooling is not well-
compatible with the equivariant CNNs in comparison to group aligning. Using the same network
with bilinear pooling (ourSpitinearpool T) Shows significantly lower results compared to ourSgroupatign -

In the MVS dataset (Strecha et al., |2008) to evaluate relative camera pose estimation, our method
shows a higher performance than GIFT at finer rotation error thresholds of 10° and 5°. This shows
that our model can find more precise correspondences under 3D viewpoint changes. Overall, these
results show that our proposed local descriptors using rotation-equivariant representations exhibit
strong transferability to real-world matching datasets.
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4.5 ABLATION STUDY AND DESIGN CHOICE

Table |3 shows the results of ablation Table 5: Ablation test on HPatches and Roto-360.
studies on the HPatches and Roto- ‘params.’ denotes the number of model parameters.
360 datasets. The matching accu-

. . . HP-all Roto-360 params.
racy drops when either the orientation @5px  @3px | @5px  @3px | (millions)
alignment loss or the contrastive de- ours (proposed |G| = 16) | 70.69 63.42 | 91.35 90.18 | 0.62M

. : : w/o orientation loss 66.41 58.61 | 8529 83.26 0.62M
scriptor loss is not used. Specifically, wio descriptor loss | 2749 24.83 | 25.64 2498 | 0.62M

even when using the ground truth ro- /o image scale pyramid | 68.77 62.25 | 91.47 9043 | 0.62M
tation difference for group alignment,  w/o equivariant backbone | 47.25 4252 | 8.65 851 | 11.18M

: : G =64 6396 5735 | 85.12 8332 | 0.16M
not using the descriptor loss results |G| = 36 68.17 6095 | 8778 85.89 | 0.26M
in lower performance, highlighting G| = 32 69.44 6208 | 89.10 8731 | 03IM
the importance of robustness to other |G| =24 69.72 6221 | 90.27 8834 | 0.39M

|G| =8 6574 5892 | 87.16 8557 | 1.24M

sorts of variations, e.g., illumination or
viewpoint. Not using the image pyramid at inference time results in a slight drop in HPatches, but
the performance on Roto-360 remains nearly unchanged. When training without equivariant layers,
ResNet-18 with conventional convolutional layers was used - this results in a drastic drop in per-
formance especially on Roto-360, with a rapid increase in the number of model parameters. This
demonstrates the significance of high sample efficiency of group-equivariant layers.

We also carry out experiments to show the effect of the order of cyclic group G on the performance
of our method in the second group of Tab. |5} We fix the computational cost C' X |G| = 1,024, and
vary the order of group to show the parameter efficiency of the group equivariant networks. Our
design choice |G| = 16 yields the best results, and the performance drops gracefully as G increases.
This is because with higher order of groups, the precision of dominant orientation estimation is
likely to decrease, leading to lower results. Reducing the order of group to |G| = 8 reduces the
performance in both benchmarks as well, which we suspect is because the range of rotation covered
by one group action becomes too wide, leading to increased approximation errors.

Source Target Aligned view

4.6 QUALITATIVE RESULTS

Fig. [f] visualizes the consistency of dominant orienta- @ ours
tion estimation. From the source (left) and target (mid- (89/106)
dle) images, we estimate the dominant orientation for
the same set of predicted keypoints. We use the ground
truth rotation to align the estimated dominant orienta-
tion and the target image for better visibility (right). The (b) LF-Net
green and red arrows (middle, right) represent the con- (6214)
sistent and inconsistent orientation predictions with re-
spect to the initial estimations (left) at a 30° threshold.
The numbers on the left represent the number of con-

sistent estimations/number of detected keypoints. Com- (© RF-Net

pared to LF-Net and RF-Net @59 NER S K :

2019), our method predicts more consistent domi- [ = R [ =

nant orientations of keypoints. Figure 5: Visualization of consistency
of dominant orientation estimation.

5 CONCLUSION Best viewed in electronics and colour.

In this paper, we propose to apply rotation-equivariant networks to the task of visual correspon-
dence to improve the discriminability of local descriptors. Specifically, we propose group-aligning,
anovel method to shift the group-equivariant descriptors along the group dimension to yield rotation-
invariant descriptors without having to collapse the group information, preserving the feature dis-
criminability. Our proposed pipeline is trained in a self-supervised manner, leveraging orientation
alignment loss for dominant orientation prediction and contrastive descriptor loss for robust de-
scriptor extraction. We demonstrate state-of-the-art performances in obtaining rotation-invariant
descriptors and strong transferability to the tasks of keypoint matching and camera pose estimation.
We anticipate that this work proposes the potential of expanding the rotation group to more general
geometric transformation groups, and will motivate the use of group-equivariant representation for
more practical applications of computer vision.
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In this appendix, we present a formal introduction of group equivariance briefly, an additional expla-
nation of multiple descriptor extraction, results on the ERDNIM dataset, and additional qualitative
results. Section explain a formal definition of equivariance and group equivariant networks.
Section [A.2] shows an example of multiple descriptor extraction using dominant orientation candi-
dates, and different strategies of multiple descriptor extraction. Section evaluates the matching
quality of our proposed method under rotation and illumination variations on the day/night image
pairs, with details about the benchmark generation. Section [A.4] shows the matching results with
increasing the number of samples of the Roto-360 dataset. Section presents additional qual-
itative results to visualize the consistency of dominant orientation estimation, the similarity maps
under in-plane rotations of images, and predicted matches on the HPatches and extreme rotation
(ER) datasets (Balntas et al., [2017; Liu et al.,[2019).

A.1 GROUP EQUIVARIANCE

A feature extractor ® is said to be equivariant to a geometric transformation 7T}, if transforming an
input x € X by T}, and then passing it through ® gives the same result as first passing « through ®
and then transforming the resulting feature map by Té Formally, the equivariance can be expressed
for transformation group G and ¢ : X — Y as

DTy ()] = Ty[®(x)], (6)

where T, and Tg; represent transformations on each space of a group action g € G. If T} is a

translation group (R?, +), and f is a feature mapping function Z? — R¥ given convolution filter
weights 1) € R**¥ | the translation equivariance of a convolutional operation can be expressed as

follows:
[T0f] = p(2) = [TL[f = ¢])(), (7

where * indicates the convolution operation.

Recent studies (Cohen & Welling| 2016a}; |Cohen et all) [2019; (Cohen & Welling| 2016b; Weiler
& Cesa, 2019} [Weiler et al.l 2018) propose convolutional neural networks that are equivariant to
symmetry groups of translation, rotation, and reflection. Let H be a rotation group. The group G
can be defined by G = (R?, +) x H as the semidirect product of the translation group (R?, +) with
the rotation group H. Then, the rotation-equivariant convolution on group G can be defined as:

[Tof1x9(g) = [Tolf = ¢1l(9), ®

by replacing t € (R2,+) with g € G in Eq.[7| This operation can be applied to an input tensor to
produce a translation and rotation-equivariant output. Extending this, a network equivariant to both
translation and rotation can be constructed by stacking translation and rotation-equivariant layers
instead of conventional translation-equivariant layers. Formally, let ® = {L;|i € {1,2,3,..., M }},
which consists of M rotation-equivariant layers under group G. For one layer L; € ®, the transfor-

mation T} is defined as
Li[Ty(9)] = T[Li(9)]; ©)

which indicates that the output is preserved after L; about T},. This can be extended to apply T},
to input [ and then pass it through the network ¢ to preserve the transformation T, for the whole
network.

MGL, Li)(Ty 1) = Ty L) (D). (10)
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A.2 ELABORATION OF MULTIPLE DESCRIPTOR EXTRACTION

In this section, we present an example of the multiple descriptor extraction scheme which was men-
tioned in Sec.[4.3] Tabs.[3]and[d] and we show the results of different configurations of the multiple
descriptor extraction scheme.

A.2.1 AN EXAMPLE OF MULTIPLE EXTRACTIONS USING ORIENTATION CANDIDATES

Fig.[6] shows an example of multiple descriptor
extraction using 0.6 as the score ratio thresh-
old. The distribution denotes an orientation his-
togram o € R'6, and the scores are confidence
values of each bin obtained from the group-
equivariant features. The indices pointed by
arrows denote the orientation candidates to be
used for multiple descriptor extraction. The ex-
ample shows that 3 orientations are selected to 0 m/d m/z 3m/d m  Smj/d 3m/z Tmjd 2m
obtain 3 candidate descriptors for the feature
point, which is possible as we predict a score
for each orientation.

100%] ---=================-~ S —

60%

Figure 6: An example of multiple descriptor
extraction using 0.6 as the score ratio for ori-
entation candidates.

A.2.2 DIFFERENT STRATEGIES FOR MULTIPLE DESCRIPTOR EXTRACTION

Tab. [ shows the results with different strategies Table 6: Results with different multiple
for multiple descriptor extraction on the Roto-360 descriptor extraction strategies. The first
dataset. It can be seen that using a score ratio of group uses a static candidate selection strat-
0.6 selects multiple candidates dynamically, where egy i.e., the number of candidate orientations
the total number of candidates is similar to using is fixed. The second group uses the dynamic
top-2 candidates, but the MMA @5px is as high as candidate selection strategy, where only the
using top-3 candidates which uses a higher number score threshold is determined, and the num-
of candidates. Note that this multiple descriptor ex- ber of orientation candidates may vary.
traction scheme is largely inspired by the classical
- . . Roto-360

method based on an orientation histogram such as cand. @50k @3ox | pred. total
SIFT (Lowe} 2004). Owing to the parallel compu- P DX | prec. .

. . topl | 91.35 90.18 | 688 1161
tation of GPUs for mutual nearest neighbor match- 2 19231 91.19 | 1315 2322
ing, the time complexity of constructing a correla- top ' )
Elogri matrix to find matches is O(1) regardless of the top3 | 92.82 91.69 | 2012 3483

& 0.8 | 9225 91.13 | 951 1660

number of candidates. 0.6 | 92.82 9169 | 1333 2340

A.3 EXPERIMENTS IN extreme ROTATED DAY-NIGHT IMAGE MATCHING (ERDNIM)

To show the robustness of our method under both geometric and illumination changes, we evaluate
the matching performance of our method in the extreme rotated Day-Night Image Matching (ERD-
NIM) dataset, which rotates the reference images of the RDNIM dataset (Pautrat et al.,2020)), which
is originally from the DNIM dataset (Zhou et al., [2016)).

A.3.1 DATA GENERATION

The source dataset DNIM (Zhou et al.||2016) consists of 1722 images from 17 sequences of a fixed
webcam taking pictures at regular time spans over 48 hours. They construct the pairs of images to
match by choosing a day and a night reference image for each sequence as follows: we first select
the image with the closest timestamp to noon as the day reference image, and the image with the
closest timestamp to midnight as the night reference image. Next, we pair all the images within a
sequence to both the day reference image and the night reference image. Therefore, 1,722 image
pairs are obtained for each of the day benchmark and night benchmark, where the day benchmark
is composed of day-day and day-night image pairs, and the night benchmark is composed of night-
day and night-night image pairs. To evaluate the robustness under geometric transformation, the
RDNIM (Pautrat et al., [2020) dataset is generated by warping the target image of each pair with
homographies as in SuperPoint (DeTone et al.,[2018) generated with random translations, rotations,
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scales, and perspective distortions. Finally, we add rotation augmentation to the reference image
of each pair to evaluate the rotational robustness, and call this dataset extreme rotated Day-Night
Image Matching (ERDNIM). We randomly rotate the reference images in the range [0°, 360°). The
number of image pairs for evaluation remains the same as RDNIM (Pautrat et al.| 2020). Fig.[7]
shows some examples of ERDNIM image pairs.

A.3.2 EXAMPLES OF ERDNIM IMAGE PAIRS

Reference Target Reference Target

Figure 7: Example of ERDNIM image pairs augmented from (]Pautrat et al.,[2020; [Zhou et al.,
12016). The left two columns show the day reference benchmark with day-day and day-night image
pairs. The right two columns show the night reference benchmark with night-day and night-night im-
age pairs. The reference image of a pair is augmented with random rotation in the range [0°, 360°),
and the target image is augmented by homographies generated with random translation, rotation,
scale, perspective distortion. The regions with black artifacts by homographies are masked out to
measure the correctness of matching.
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Table 7: Comparison of matching quality on the ERDNIM dataset. We use two evaluation
metrics: homography estimation accuracy (HEstimation), and mean matching accuracy (MMA) at
3 pixel thresholds. Results in bold indicate the best score and underlined results indicate the second
best scores.

SIFT  SuperPoint D2Net R2D2 K%E‘;* GIFT LISRD ours ours*

HEstimation  0.064 0.073 0.001  0.044 0.085 0.108 0.228 0.232 0.272

Day MMA 0.049 0.082 0.024  0.054 0.068 0.123  0.270 0.245 0.277
Nioht HEstimation  0.108 0.092 0.002  0.062 0.097 0.151 0.291 0.316 0.364
8 MMA 0.082 0.111 0.033  0.076 0.093 0.177  0.358 0.362 0.404
05 Day reference Night reference
. — SIFT
0.4 —— SuperPoint
D2-Net
<03 — R2D2
= —— KeyNet+HyNet
=02 — GIFT
LISRD
0.1 //__ — ours
ﬁ: —— ours*
0.0
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Threshold [px] Threshold [px]

Figure 8: Results of MMA with different pixel thresholds on the ERDNIM dataset. ’ours*’ uses
k differently group-aligned features based on top-k selection. We use k = 4 in this experiment.

A.3.3 EVALUATION METRICS

We use two evaluation metrics, HEstimation and mean matching accuracy (MMA), following
LISRD (Pautrat et al.|[2020). We measure the homography estimation score (DeTone et al.,[2018]) us-
ing RANSAC (Fischler & Bolles),[1981]) to fit the homography using the predicted matches. To mea-
sure the estimation score, we first warp the four corners of the reference image using the predicted
homography, and measure the distance between the warped corners and the corners warped using
the ground-truth homography. The predicted homography is considered to be correct if the average
distance between the four corners is less than a threshold: HEstimation= } Z?:l [1é; — cill2 < e,
where we use e = 3. MMA (Dusmanu et al.,2019; Revaud et al.| [2019) is the percentage of the cor-
rect matches over all the predicted matches, where we also use 3 pixels as the threshold to determine
the correctness of matches.

A.3.4 RESULTS

Table /| shows the evaluation results on the ERDNIM dataset. We compare the descriptor baselines
SIFT (Lowel [2004)), SuperPoint (DeTone et al., 2018), D2-Net (Dusmanu et al., 2019), R2D2 (Re-
vaud et al.| 2019), KeyNet+HyNet (Laguna & Mikolajczyk, 2022} [Tian et al., 2020), GIFT (Liu
et al.,[2019), and LISRD (Pautrat et al., 2020). Our proposed model with the rotation-equivariant
network (ReResNet-18) achieves state-of-the-art performance in terms of homography estimation.
GIFT (Liu et al.| 2019), an existing rotation-invariant descriptor, shows a comparatively lower per-
formance on this extremely rotated benchmark with varying illumination. Note that we use the same
dataset generation scheme with the same source dataset (Lin et al., 2014) to GIFT (Liu et al.,[2019).
LISRD (Pautrat et al.l 2020), which selects viewpoint and illumination invariance online, demon-
strates better MMA than ours on the Day benchmark, but ours* which extracts top-k candidate
descriptors shows the best MMA and homography estimation on both Day and Night benchmarks.

Fig.[§|shows the results of mean matching accuracy with different pixel thresholds on the ERDNIM
dataset. Our descriptor with top-k candidate selection denoted by ours* achieves the state-of-the-art
MMA at all pixel thresholds on both the day and night benchmarks. The results show our local
descriptors achieve not only rotational invariance, but also robustness to geometric changes with
perspective distortions and day/night illumination changes.
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A.4 THE NUMBER OF SAMPLED IMAGES FOR ROT0O-360

Fig. [8] shows the mean matching accuracy (MMA) at 5 Table 8: Results on Roto-360 con-
pixels threshold when increasing the number of source structed using a different number of
images to 100 images (3,600 pairs) and 1,000 images source images.

(36,000 pairs). The tendency of the matching results #sample | 10 100 1K
is maintained under increased diversity and complexity Align | 91.4 80.0 89.9
of the dataset, and group aligning consistently achieves Avg 82.1 723 80.7
state-of-the-art results. Therefore, we use 10 samples as Max 78.0 693 792
they are sufficient to measure the relative rotation robust- None | 188 164 20.5

ness of the local features. Bilinear | 41.0 28.5 437

A.5 ADDITIONAL QUALITATIVE RESULTS
A.5.1 VISUALIZATION OF THE CONSISTENCY OF ORIENTATION ESTIMATION

We provide more examples for Figs. [5]of the main paper, which visualize the consistency of orienta-
tion estimation. Additionally, we show the similarity map w.z¢. a keypoint under varying rotations.
To visualize Fig.[9] we create a sequence of 480 x 640 images augmented by random in-plane ro-
tation with Gaussian noise sourced by ILSVRC2012 (Russakovsky et al., [2015). Fig.[9] shows the
qualitative comparison of the estimated orientation consistency. Given the dominant orientations
estimated from the image pair, we calculate the relative angle between the corresponding keypoint
orientations and measure the difference between the relative angle and the ground-truth rotation. We
evaluate the relative angle to be correct i.e., the dominant orientation estimation is consistent if the
difference with the ground-truth rotation is within a 30° threshold. Our rotation-equivariant model
trained with the orientation alignment loss inspired by (Lee et al., |2021a) consistently estimates
more correct keypoint orientations than LF-Net (Ono et al.|[2018) and RF-Net (Shen et al.|[2019).

A.5.2 VISUALIZATION OF THE SIMILARITY MAPS OF A KEYPOINT UNDER VARYING
ROTATIONS

Fig.[10|shows the similarity maps with respect to a keypoint under varying rotations of images with
a resolution of 180 x 180, with uniform rotation intervals of 45°. We compare one descriptor of a
red keypoint from the source image at 0° to all other descriptors extracted across the rotated image
using cosine similarity to compute the similarity maps. Yellow circles in the rotated images show
the correct locations of the keypoint correspondences. We visualize 5 locations with the highest
similarity scores with the query keypoint for better visibility. Our descriptor localizes the correct
keypoint locations more precisely compared to GIFT (Liu et all 2019) and LF-Net (Ono et al.,
2018). Specifically, although GIFT (Liu et al), 2019) uses group-equivariant features constructed
using rotation augmentation, their descriptor fails to locate the corresponding keypoints accurately
in rotated images - which shows that the explicit rotation-equivariant networks (Weiler & Cesa,
2019) yield better rotation-invariant features than constructing the group-equivariance features with
image augmentation (Liu et al.l 2019).

A.5.3 VISUALIZATION OF THE PREDICTED MATCHES ON THE EXTREME ROTATION

Figs. E]visualize the predicted matches on the ER dataset (Liu et al., 2019). We extract a maximum
of 1,500 keypoints from each image and find matches using the mutual nearest neighbor algorithm.
The results show that our method consistently finds matches more accurately compared to GIFT (Liu
et al.l [2019) and LF-Net (Ono et al.| [2018)).

A.5.4 VISUALIZATION OF THE PREDICTED MATCHES ON THE HPATCHES VIEWPOINT

Fig. visualize the predicted matches on the HPatches (Balntas et al., | 2017) viewpoint variations
We extract a maximum of 1,500 keypoints from each image and find matches using the mutual
nearest neighbor algorithm. The results show that our method consistently finds matches more
accurately compared to GIFT (Liu et al.,|2019) and LF-Net (Ono et al., [2018]).
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Source Target Aligned view Source Target Aligned view

LF-Net ours RF-Net LF-Net ours

RF-Net

Figure 9: Visualization of consistency of dominant orientation estimation. We extract the source
keypoints using SuperPoint (DeTone et al 2018)) and obtain the target keypoints using GT ho-
mography. We evaluate the consistency of orientation estimation by comparing the relative angle
difference and the ground-truth angle at a threshold of 30°. The green and red arrows represent con-
sistent and inconsistent orientation estimations, respectively. We spatially align the target images
and its’ orientations to the source images for better visibility. Our method predicts more consistent

orientations of keypoints compared to LF-Net and RF-Net 2019).
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Figure 10: Similarity maps with respect to a keypoint under rotation. We compare one descriptor
about the red keypoint from the source image at 0° to all other descriptors extracted across the rotated
images, with yellow circles representing corresponding keypoints. For better visibility, we visualize
the top 5 pixels with the highest similarity to the keypoints.
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(a) ours ' ) GIFT (¢) LE-Net

Figure 11: Visualization of predicted matches in the ER dataset 2019). We use a
maximum of 1,500 keypoints for matching by the mutual nearest neighbor algorithm. We measure
the correctness at a three-pixel threshold. The green lines denote the correct matches, and the red
lines denote the incorrect matches.
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(a) ours ~(b) GIFT ) LF-Net

Figure 12: Visualization of the predicted matches in HPatches viewpoint variations. We use
a maximum of 1,500 keypoints, the mutual nearest neighbor matcher, and a three-pixel threshold

for correctness. In this experiment, we use the rotation-equivariant WideResNet16-8 (ReWRN)
backbone, which is ‘ours{’ in table 4 of the main paper.
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