
Under review as submission to TMLR

Find Your Friends: Personalized Federated Learning
with the Right Collaborators

Anonymous authors
Paper under double-blind review

Abstract

In the traditional federated learning setting, a central server coordinates a network of clients
to train one global model. However, the global model may serve many clients poorly due to
data heterogeneity. This problem can be mitigated when participating clients learn person-
alized models that can better serve their own needs. By noting that each client’s distribution
can be represented as a mixture of all clients’ distributions, we derive a principled algorithm
based on expectation maximization. Our framework, FedeRiCo, estimates the utilities of
other participants’ models on each client’s data so that everyone can select the right col-
laborators for learning. As a result, each client can learn as much or as little from other
clients as is optimal for its local data distribution. Additionally, we theoretically analyze
the convergence of FedeRiCo and empirically demonstrate its communication efficiency even
in the fully decentralized setting. Our algorithm outperforms other federated, personalized,
and/or decentralized approaches on several benchmark datasets, being the only approach
that consistently performs better than training with local data alone.

1 Introduction
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Figure 1: Left: Noisy data points generated for clients along a sine curve (solid) where the x and y axes
are the input and target, respectively. The FedAvg model (dotted line) fails to adapt to the local data seen
by each client, in contrast to our FedeRiCo personalized models (dashed lines). Right: The collaboration
weights learned by FedeRiCo to average participant outputs for each client. Clients learn to collaborate only
with similar neighbours.

Federated learning (FL) (McMahan et al., 2017) offers a framework in which a central server-side model is
collaboratively trained across decentralized client datasets. This approach has been successfully implemented
in practice for developing machine learning models without direct access to client data, which is crucial in
heavily regulated industries such as banking and healthcare (Long et al., 2020; Sadilek et al., 2021). For
example, multiple hospitals that collect patient data may desire to merge their datasets for increased diversity
and size, but are unable due to privacy regulations.
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Statistical heterogeneity (Zhao et al., 2018; Adnan et al., 2022) is a major and common practical challenge
in FL, where each client may hold different data distributions. Traditional FL methods like Federated
Averaging (FedAvg) (McMahan et al., 2017) have demonstrated promising performance with homogeneous
client data. However, these methods often struggle to handle statistical heterogeneity for two main reasons.
Firstly, the variation in client distributions can lead to divergences in weight updates during training (Zhao
et al., 2018). Secondly, it can be challenging for a single global model to provide optimal performance across
all clients during inference.

As an illustrative example, consider a simple scenario where each client seeks to fit a linear model to limited
data on an interval of the sine curve as shown in Figure 1. This is analogous to the FL setting where several
participating clients would like to collaborate, but each client only has access to data from its own data
distribution. It is clear that no single linear model can be adequate to describe the entire joint dataset, so a
global model learned by FedAvg can perform poorly, as shown by the dotted line. Ideally, each client should
benefit from collaboration by increasing the effective size and diversity of data available, but in practice,
forcing everyone to use the same global model without proper personalization can hurt performance on their
own data distribution (Kulkarni et al., 2020; Tan et al., 2022).

To address this, we propose Federating with the Right Collaborators (FedeRiCo), a novel personalized
framework suitable for every client to find other participants with similar data distributions to collaborate
with. As illustrated in Figure 1, FedeRiCo enables each client to choose the right collaborators; clients are
able to correctly leverage information from neighboring clients when it is beneficial to do so. The final
personalized models can serve the local distributions well, as demonstrated in the top plot.

More specifically, FedeRiCo assumes that each client has an underlying data distribution, and exploits
the hidden relationships among the clients’ data. By selecting the most relevant clients, each client can
collaborate as much or, maybe more importantly, as little as they need, and learn a personalized mixture
model to fit the local data. Additionally, FedeRiCo can achieve this in a fully decentralized manner that is
not beholden to any central authority (Li et al., 2021a; Huang et al., 2021; Kalra et al., 2023).

Our contributions We propose FedeRiCo, a novel personalized FL framework based on expectation-
maximization (EM). We also show that with some common assumptions, our algorithm is guaranteed to
converge. Through extensive experiments on several benchmark datasets, we demonstrate that our approach
finds good client collaboration and outperforms other methods in the non-i.i.d. setting.

Paper outline The rest of the paper is organized as follows. In Section 2 we discuss related approaches
towards personalized federated learning. Section 3 describes our algorithm formulation, its relationship to
expectation-maximization, and an efficient protocol for updating clients. We provide experimental results in
Section 4, and conclude in Section 5.

2 Related Work for Personalized Federated Learning

Meta-learning Federated learning can be interpreted as a meta-learning problem, where the goal is to
extract a global meta-model based on data from several clients. This meta-model can be learned using, for
instance, the well-known Federated Averaging (FedAvg) algorithm (McMahan et al., 2017), and personaliza-
tion can then be achieved by locally fine-tuning the meta-model (Jiang et al., 2019). Later studies explored
methods to learn improved meta-models. Khodak et al. (2019) proposed ARUBA, a meta-learning algorithm
based on online convex optimization, and demonstrates that it can improve upon FedAvg’s performance. Per-
FedAvg (Fallah et al., 2020) uses the Model Agnostic Meta-Learning (MAML) framework to build the initial
meta-model. However, MAML requires computing or approximating the Hessian term and can therefore be
computationally prohibitive. Acar et al. (2021) adopted gradient correction methods to explicitly de-bias
the meta-model from the statistical heterogeneity of client data and achieved sample-efficient customization
of the meta-model.

Model regularization / interpolation Several works improve personalization performance by regulariz-
ing the divergence between the global and local models (Hanzely & Richtárik, 2020; Li et al., 2021b; Huang
et al., 2021; Zhang et al., 2022). Similarly, PFedMe (Dinh et al., 2020) formulates personalization as a prox-
imal regularization problem using Moreau envelopes. FML (Shen et al., 2020) adopts knowledge distillation
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to regularize the predictions between local and global models and handle model heterogeneity. In recent
work, SFL (Chen et al., 2022a) also formulates the personalization as a bi-level optimization problem with
an additional regularization term on the distance between local models and its neighbor models according to
a connection graph. Specifically, SFL adopts GCN to represent the connection graph and learns the graph
as part of the optimization to encourage useful client collaborations. Introduced by Mansour et al. (2020) as
one of the three methods for achieving personalization in FL, model interpolation involves mixing a client’s
local model with a jointly trained global model to build personalized models for each client. Deng et al.
(2020) further derive generalization bounds for mixtures of local and global models.

Multi-task learning Personalized FL naturally fits into the multi-task learning (MTL) framework.
MOCHA (Smith et al., 2017) utilizes MTL to address both systematic and statistical heterogeneity but
is restricted to simple convex models. VIRTUAL (Corinzia et al., 2019) is a federated MTL framework for
non-convex models based on a hierarchical Bayesian network formed by the central server and the clients,
and inference is performed using variational methods. SPO (Cui et al., 2022) applies Specific Pareto Op-
timization to identify the optimal collaborator sets and learn a hypernetwork for all clients. While also
aiming to identify necessary collaborators, SPO adopts a centralized FL setting with clients jointly training
the hypernetwork. In contrast, our work focuses on decentralized FL where clients aggregate updates from
collaborators, and jointly make predictions.

In a similar spirit to our work, Marfoq et al. (2021) assume that the data distribution of each client is a
mixture of several underlying distributions/components. Federated MTL is then formulated as a problem of
modeling the underlying distributions using Federated Expectation-Maximization (FedEM). Clients jointly
update a set of several global models, also known as component models, and each maintains a customized
set of weights for prediction, corresponding to the mixing coefficients of the underlying distributions. One
shortcoming of FedEM is that it uses an instance-level weight assignment during training but a client-level
weight assignment at inference time. As a concrete example, consider a client consisting of a 20%/80% data
mixture from distributions A and B. FedEM will learn two models, one for each distribution. Given a new
data point at inference time, the client will always predict 0.2 · predA + 0.8 · predB , regardless of whether
the data point came from distribution A or B. This is caused by the mismatched behaviour between training
and inference time. On the contrary, FedeRiCo naturally considers a client-level weight assignment for both
training and inference in a decentralized setting.

Other approaches Clustering-based approaches are also popular for personalized FL (Sattler et al., 2020;
Ghosh et al., 2020; Mansour et al., 2020). Such personalization lacks flexibility since each client can only
collaborate with other clients within the same cluster. FedFomo (Zhang et al., 2021) interpolates the model
updates of each client with those of other clients to improve local performance. FedPer (Arivazhagan et al.,
2019) divides the neural network model into base and personalization layers. Base layers are trained jointly,
whereas personalization layers are trained locally. Self-FL (Chen et al., 2022b) balances local training and
global training objectives from uncertainty perspective.

3 Federated Learning with the Right Collaborators

3.1 Problem Formulation

We consider a federated learning (FL) scenario with K clients. Let [K] := {1, 2, . . . , K} denote the set of
positive integers up to K. Each client i ∈ [K] has a local dataset Di = {(x(i)

s , y
(i)
s )}ni

s=1 where ni is the
number of examples for client i, and the input xs ∈ X and output ys ∈ Y are drawn from a joint distribution
Di over the space X × Y.

The goal of personalized FL is to find a prediction model hi : X 7→ Y that can perform well on the local
distribution Di for each client. One of the main challenges in personalized FL is that we do not know if two
clients i and j share the same underlying data distribution. If their data distributions are vastly different,
forcing them to collaborate is likely to result in worse performance compared to local training without
collaboration. Our method, Federating with the Right Collaborators (FedeRiCo), is designed to address
this problem so that each client can choose to collaborate or not, depending on their data distributions. For
better exposition, Section 3.2 first demonstrates how our algorithm works in the centralized setting with a
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central server. Then Section 3.3 presents several enhancements of FedeRiCo so that it will work even in the
fully decentralized setting with minimal communication overhead.

3.2 FedeRiCo in Centralized Settings

Φ∗ Di zi

K Clients

Figure 2: Graphical model

Note that every client’s local distribution Di can always be
represented as a mixture of {Dj}K

j=1 with some weights
πi =[πi1, . . . , πiK ]∈∆K , where ∆K is the (K − 1)-dimensional
simplex1. Let zi be the latent assignment variable of client
i, and Π := [π1, . . . , πK ]⊤ be the prior Πij = Pr(zi = j).
Suppose that the conditional probability pi(y|x) satisfies
− log pi(y|x) = ℓ(hϕ∗

i
(x), y) + c for some parameters ϕ∗

i ∈ Rd,
loss function ℓ : Y × Y 7→ R+, and normalization constant c. By
using the stacked notation Φ∗ = [ϕ∗

1, . . . , ϕ∗
K ] ∈ Rd×K , Figure 2 shows the graphical model of how the local

dataset is generated. Our goal is to learn the parameters Θ := (Φ, Π) by maximizing the log-likelihood:

f(Θ) := 1
n

log p(D; Θ) = 1
n

K∑
i=1

log p(Di; Θ) = 1
n

K∑
i=1

log
K∑

zi=1
p(Di, zi; Θ). (1)

where D := ∪iDi and n :=
∑

i ni.

One standard approach to optimization with latent variables is expectation maximization (EM) (Dempster
et al., 1977). The corresponding variational lower bound is given by2

L(q, Θ) := 1
n

∑
i

Eq(zi)[log p(Di, zi; Θ)] + C, (2)

where C is a constant not depending on Θ and q is an alternative distribution. To obtain concrete
objective functions suitable for optimization, we further assume that the marginal distributions satisfy
pi(x) = p(x), ∀i ∈ [K]. Similar to Marfoq et al. (2021), we adopted this assumption as it allows us to
narrow our focus on discriminative modelling. With this assumption, we perform the following updates at
each iteration t:

E-step: Calculate the client weights wij , which represent the latent variable assignment z for each client by
finding their best alternative distribution q∗:

w
(t)
ij := q∗(t)(zi = j) ∝ Π(t−1)

ij exp
[

−
ni∑

s=1
ℓ

(
h

ϕ
(t−1)
j

(x(i)
s ), y(i)

s

)]
. (3)

M-step: Given the posterior q∗(t) from the E-step, maximize L w.r.t. Θ = (Φ, Π):

Π(t)
ij = w

(t)
ij and Φ(t) ∈ argmin

Φ

K∑
i=1

L̂w,i(Φ), (4)

where L̂w,i(Φ) :=
K∑

j=1

w
(t)
ij

ni

ni∑
s=1

ℓ
(

hϕj
(x(i)

s ), y(i)
s

)
. (5)

Note that the prior Π(t)
ij for the next iteration will be updated using the posterior from the current iteration

w
(t)
ij . Due to the update in Equation (4), we refer to Π(t)

ij or w
(t)
ij as client weights. For each client, the

1One-hot πi is always feasible, but other mixtures may exist. When πi is one-hot with a one in the ith position, each client
learns alone without collaboration. While this “mixture” is trivial, it is an important case to have available for circumstances
in which all other clients’ distributions are truly different and collaboration would be detrimental.

2All derivations of this section can be found in Appendix A.
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priors Π(t−1)
ij from previous round can be stored locally and used to update the posterior w

(t)
ij once it receives

the model Φ(t−1) from the server. Φ(t) in the M-step, however, is trickier to compute since each client can
potentially update Φ towards different directions due to data heterogeneity amongst the clients. Bear in
mind that each client can only see its local data Di in the federated setting. To stabilize optimization and
avoid overfitting from client updates, we rely on small gradient steps in lieu of full optimization in each round.
Since solving for Φ(t) exactly is computationally expensive, we approximate it using gradient descent:

1. Each participating client computes the local gradient ∇L̂w,i(Φ(t−1)) on its local dataset Di with fixed
weights w

(t)
ij , and sends the gradient back to the server.

2. The server aggregates the gradients and updates the central model using a step size η > 0:

Φ(t) = Φ(t−1) − η

K∑
j=1

nj

n
· ∇L̂w,j(Φ(t−1)). (6)

Finally, at inference time, each client uses ĥi(x)=
∑

j w
(t)
ij h

ϕ
(t)
j

(x) for prediction.

Remark 1 The posterior w
(t)
ij (or equivalently the prior in the next iteration Π(t)

ij ) reflects the importance
of model ϕj on the data Di. When w

(t)
ij is one-hot with a one in the ith position, client i can perform

learning by itself without collaborating with others. When w
(t)
ij is more diverse, client i can find the right

collaborators with useful models ϕj . Such flexibility enables each client to make its own decision on whether
or not to collaborate with others, hence the name of our algorithm.

Remark 2 Unlike prior work (Mansour et al., 2020; Marfoq et al., 2021), our assignment variable z and
probability Π are on the client level. If we assume that all clients share the same prior (i.e., there is only
a vector π instead of a matrix Π), the algorithm would be similar to HypCluster (Mansour et al., 2020).
Marfoq et al. (2021) used a similar formulation as ours but their assignment variable z is on the instance
level: every data point (instead of every client) comes from a mixture of distributions. Such an approach
can cause several issues at inference time, as the assignment for a novel data point is unknown. We refer the
interested readers to Section 2 and Section 4 for further comparison.

Theoretical convergence Under some regularity assumptions, our algorithm converges as follows:
Theorem 3.1. [Convergence] Under Assumptions B.1-B.6, when the clients use SGD with learning rate
η = a0√

T
> 0, and the number of rounds T ≥ a2

0 · max{8L2, 16L2β2}, the iterates of our algorithm satisfy

1
T

T∑
t=1

E∥∇Φf(Φt, Πt)∥2
F ≤ O

(
1√
T

)
, (7)

and 1
T

T∑
t=1

E[∆Πf(Φt, Πt)] ≤ O
(

1
T 3/4

)
, (8)

where the expectation is over the random batch samples and ∆Πf(Φt, Πt) := f(Φt, Πt) − f(Φt, Πt+1) ≥ 0.

Due to their length, the technical assumptions, further details, and the complete proof are deferred to
Appendix B. The above theorem shows that the gradient with respect to the model parameters Φ and the
improvement over the mixing coefficients Π becomes small as we increase the number of rounds T , thus
converging to a stationary point of the negative log-likelihood objective f .
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3.3 A Communication-Efficient Protocol in Decentralized Settings

So far, we have discussed how FedeRiCo works in the centralized setting, however, this setting presents
several challenges (Lian et al., 2017; Li et al., 2020). Especially for cross-silo FL, there may not exist a third
party that all clients trust, and that has the computational resources to act as a central server (Kalra et al.,
2023). Centralization creates a single point of failure for both the ongoing communication between clients,
and for client privacy via data leaks (Beltrán et al., 2022). To surmount these challenges, we propose several
enhancements for FedeRiCo to work in the fully decentralized setting with minimal communication.

Specifically, we tackle the bottlenecks in both the E-step (3) and the M-step (4) since they require joint
information of all models Φ. The pseudocode of the complete algorithm is provided in Algorithm 1, which
is the implementation we use in our experiments.

E-step For client i, the key missing quantity to compute (3) are the losses ℓ(ϕ(t−1)
j ), or likelihoods

p(Di|zi = j; Φ(t−1)), of other clients’ models ϕj , j ̸= i. Since the models Φ are being updated slowly, one
can expect that ℓ(ϕ(t−1)

j ) will not be significantly different from the loss ℓ(ϕ(t−2)
j ) of the previous iteration.

Therefore, each client can maintain a list of losses for all the clients, sample a subset of clients in each round
using a sampling scheme S (e.g., ϵ-greedy sampling as discussed later), and only update the losses of the
chosen clients. In our experiment, we show that even sampling only one other client would be sufficient,
making FedeRiCo have the same communication requirement on average as some centralized algorithms like
FedAvg.

M-step To make clear how Φ is updated in the M-step, we focus on the update to a specific client’s model
ϕi. According to (5) and (6), the update to ϕi is given by

−η

K∑
j=1

w
(t)
ji

nj∑
s=1

∇ϕi
ℓ

(
hϕi

(x(j)
s ), y(j)

s

)
. (9)

Note that the aggregation is based on w
(t)
ji instead of w

(t)
ij . Intuitively, this suggests ϕi should be updated

based on how the model is being used by other clients rather than how client i itself uses it. If ϕi does not
appear to be useful to any clients, i.e. w

(t)
ji = 0, ∀j, it does not get updated. Therefore, whenever client i is

sampled by another client j using the sampling scheme S, it will send ϕi to j, and receive the gradient update
gij := w

(t)
ji

∑nj

s=1 ∇ϕi
ℓ
(
hϕi

(x(j)
s ), y

(j)
s

)
from client j. One issue here is that gij is governed by w

(t)
ji , which

could be arbitrarily small, leading to no effective update to ϕi. We will show how this can be addressed by
using an ϵ-greedy sampling scheme.

Sampling scheme S We deploy an ϵ-greedy scheme where, in each round, each client uniformly samples
clients with probability ϵ ∈ [0, 1] and samples the client(s) with the highest posterior(s) otherwise. This allows
a trade off between emphasizing gradient updates from high-performing clients (small ϵ), versus receiving
updates from clients uniformly to find potential collaborators (large ϵ). The number M of sampled clients
(neighbors) per round and ϵ can be tuned based on the specific problem instance. We will show the effect of
varying the hyperparameters in the experiments.

Tracking the losses for the posterior The final practical consideration is the computation of the
posterior w

(t)
ij . From the E-step (3) and the M-step (4), one can see that w

(t)
ij is the softmax transformation

of the negative accumulative loss L
(t)
ij :=

∑t−1
τ=1 ℓ

(τ)
ij over rounds (see Appendix A for derivation). However,

the accumulative loss can be sensitive to noise and initialization. If one of the models, say ϕj , performs
slightly better than other models for client i at the beginning of training, then client i is likely to sample
ϕj more frequently, thus enforcing the use of ϕj even when better models exist. To address this, we
instead keep track of the exponential moving average of the loss with a momentum parameter β ∈ [0, 1),
L̂

(t)
ij = (1 − β)L̂(t−1)

ij + βl
(t)
ij , and compute w

(t)
ij using L̂

(t)
ij . This encourages clients to seek new collaborators

rather than focusing on existing ones.
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Algorithm 1: FedeRiCo: Federating with the Right Collaborators
Input: Client local datasets {Di}K

i=1, number of communication rounds r, number of neighbors M ,
ϵ-greedy sampling probability ϵ, momentum for exponential moving average loss tracking β,
learning rate η.

Output: Client models {ϕi}K
i=1 and client weights wij .

// Initialization
1 Randomly initialize {ϕi}K

i=1;
2 for client Ci in {Ci}K

i=1 do
3 Initialize L̂

(0)
ij = 0, ℓ

(0)
ij = 0, w

(0)
ij = 1

K ;
4 end
5 for iterations t = 1 . . . T do
6 for client Ci in {Ci}K

i=1 do
7 Sample M neighbors of this round Bt according to ϵ-greedy selection w.r.t. w

(t−1)
ij ;

8 Send ϕi to other clients that sampled Ci;
9 Receive ϕj from sampled neighbors Bt;

// E-step

10 ℓ
(t)
ij = ℓ

(t−1)
ij ; // Keep the loss from previous round

11 for b in Bt do
12 ℓ

(t)
ib =

∑ni

s=1 ℓ
(

h
ϕ

(t)
b

(x(i)
s ), y

(i)
s

)
; // Update the sampled ones

13 end
14 L̂

(t)
ij = (1 − β)L̂(t−1)

ij + βℓ
(t)
ij ; // Update exponential moving averages

15 w
(t)
ij = exp(−L̂

(t)
ij

)∑K

j′=1
exp(−L̂

(t)
ij′ )

;

// M-step
16 for Cb in Bt do

// Could also do multiple gradient steps instead

17 Compute and send gbi = w
(t)
ib ∇ϕb

∑ni

s=1 ℓ
(

hϕb
(x(i)

s ), y
(i)
s

)
to Cb;

18 end
19 for Cj that sampled Ci do
20 Receive gij = w

(t)
ji

∑nj

s=1 ∇ϕi
ℓ

(
hϕi

(x(j)
s ), y

(j)
s

)
;

21 end
22 ϕt

i = ϕ
(t−1)
i − η

∑
j gij ; // Or any other gradient-based method

23 end
24 end
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4 Experiments

4.1 Experimental Settings

We conduct a range of experiments to evaluate the performance of our proposed FedeRiCo with multiple
datasets. Additional experiment details and results can be found in Appendix C.

Datasets We compare different methods on several real-world datasets. We evaluate on image classification
tasks with the CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and Office-Home3 (Venkateswara et al., 2017)
datasets. Particularly, we consider a non-IID data partition among clients by first splitting data by labels
into several groups with disjoint label sets. Each group is considered a distribution, and each client samples
from one distribution to form its local data. For each client, we randomly divide the local data into 80%
training data and 20% test data.

Baseline methods We compare our FedeRiCo to several federated learning baselines. FedAvg (McMahan
et al., 2017) trains a single global model for every client. We also compare to other personalized FL approaches
including FedAvg with local tuning (FedAvg+) (Jiang et al., 2019), Clustered FL (Sattler et al., 2020),
FedEM (Marfoq et al., 2021)4, FedFomo (Zhang et al., 2021), as well as a local training baseline. All
accuracy results are reported as the mean and standard deviation across different random data splits and
random training seeds. Unless specified otherwise, we allow each client to communicate with 3 other clients
(neighbours) per round, with ϵ = 0.3 and momentum β = 0.6 as the default hyperparameters for FedeRiCo
in all experiments. For FedEM, we let all clients train 4 components jointly for the learned distribution,
which provides sufficient capacity to accommodate different numbers of label groups (or data distributions).
For FedFomo, we hold out 20% of the training data for client weight calculations. For FedAvg+, we follow
Marfoq et al. (2021) and update the local model with 1 epoch of local training.

Training settings For all models, we use the Adam optimizer with learning rate 0.01. CIFAR experiments
use 150 rounds of training, while Office-Home experiments use 400 rounds. CIFAR-10 results are reported
across 5 different data splits and 3 different training seeds for each data split. CIFAR-100 and Office-Home
results are reported across 3 different data splits each with a different training seed.

4.2 Performance Comparison

Table 1: Accuracy (in percentage) with different number of data distributions. Best results in bold.
CIFAR-10 # of distributions CIFAR-100 # of distributions Office-Home # of distributions

Method 2 3 4 2 3 4 2 3 4
FedAvg 11.44±3.28 11.73±3.68 13.93±5.74 21.28±5.04 17.41±3.27 18.36±3.68 66.58±1.88 53.36±4.21 51.25±4.37

FedAvg+ 12.45±8.46 29.86±17.85 45.65±21.61 29.95±1.07 35.33±1.77 36.17±3.27 80.21±0.68 81.88±0.91 84.50±1.37

Local Training 40.09±2.84 55.27±3.11 69.03±7.05 16.60±0.64 25.99±2.38 31.05±1.68 76.76±0.23 83.30±0.32 88.05±0.44

Clustered FL 11.50±3.65 15.24±5.79 16.43±5.17 20.93±3.57 23.15±7.04 15.15±0.60 66.58±1.88 53.36±4.21 51.25±4.37

FedEM 41.21±10.83 55.08±6.71 63.61±9.93 26.25±2.40 24.11±7.36 19.23±2.58 22.59±1.95 28.72±1.83 22.46±3.99

FedFomo 42.24±8.32 59.45±5.57 71.05± 6.09 12.15±0.57 20.49±2.90 24.53±2.77 78.61±0.78 82.57±0.24 87.86±0.77

FedeRiCo 56.61±2.51 69.76±2.25 78.22±4.80 30.95±1.62 39.19±1.64 41.41±1.07 83.56±0.49 90.28±0.75 93.76±0.12

The performance of each FL method is shown in Table 1. Following the settings introduced by Marfoq
et al. (2021), each client is evaluated on its own local testing data and the average accuracies weighted by
local dataset sizes are reported. We observe that FedeRiCo has the best performance across all datasets and
number of data distributions. Here, local training can be seen as an indicator to assess if other methods
benefit from client collaboration as local training has no collaboration at all. We observe that our proposed
FedeRiCo is the only method that consistently outperforms local training, meaning that FedeRiCo is the
only method that consistently encourages effective client collaborations. Notably, both FedEM and FedFomo
performs comparably well to FedeRiCo on CIFAR-10 but worse when the dataset becomes more complex like

3This dataset is publically available for research purposes only.
4We use implementations from https://github.com/omarfoq/FedEM for Clustered FL and FedEM.
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CIFAR-100. This indicates that building the right collaborations among clients becomes a harder problem
for more complex datasets. Moreover, FedEM can become worse as the number of distributions increases,
even worse than local training, showing that it is increasingly hard for clients to participate effectively under
the FedEM framework for complex problems with more data distributions.

In addition, Clustered FL has similar performance to FedAvg, indicating that it is hard for Clustered FL to
split into the right clusters. In Clustered FL (Sattler et al., 2020), every client starts in the same cluster
and cluster only split when the FL objective is close to a stationary point, i.e. the norm of averaged gradient
update from all clients inside the cluster is small. Therefore, in a non-i.i.d setting like ours, the averaged
gradient update might always be noisy and large, as clients with different distributions are pushing diverse
updates to the clustered model. As a result, cluster splitting rarely happens which makes clustered FL
behave similarly to FedAvg in practice.

4.3 Client Collaboration

In this section, we investigate client collaboration by plotting the personalized client weights w
(t)
ij of FedeRiCo

over training. With different client data distributions, we show that FedeRiCo assigns more weight to similar
clients coming from the same distribution. As observed in Figure 3, similar clients collaborate to make the
final predictions. For example, clients 3, 4 and 7 use a mixture of predictions from each other (in light blue)
while client 0 only uses itself for prediction as it is the only client coming from distribution 0 (in dark blue)
in this particular random split.

On the contrary, as shown in Figure 4, even with 4 components, FedEM fails to use all of them for predictions
for the 4 different data distributions. Notably, clients 2, 3, 4, 6 and 7 coming from two different distributions
are using only the component 3 for prediction, while component 0 is never used by any client. Based on this,
we find FedeRiCo better encourages the clients to collaborate with other similar clients and less with different
clients. Each client can collaborate as much or as little as they need. Additionally, as all the non-similar
clients have a weight of (almost) 0, each client only needs a few models for prediction.
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Figure 3: Client weights over time of FedeRiCo with CIFAR100 data and four different client distributions.
Clients are color coded by their private data’s distribution.
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Figure 4: Component weights over training for FedEM with 4 components, on CIFAR100 data with 4
different client distributions. Clients are color coded by their private data’s distribution.
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Figure 5: Client weights on CIFAR-10 with two different client distributions. Left two: Client weights with
accumulative loss. Right two: Client weights with exponential moving average.

4.4 Effect of Using Exponential Moving Average Loss

Here, we visualize the effect of using the exponential moving average loss by plotting client weights with both
accumulative loss and exponential moving average loss in Figure 5.5 We observe that with the accumulative
loss, the client weights quickly converge to one-hot, while with the exponential moving average loss, the client
weights are more distributed to similar clients. This corresponds to our expectation stated in Section 3.3:
the clients using exponential moving average loss are expected to seek for more collaboration compared to
using accumulative loss. It is also worth noting that although the client weight vectors become one-hot part
way through training with the accumulative loss, clients are not learning in isolation. In fact, clients 0, 3, 4,
and 5, who share a common data distribution, all end up using client 5’s model only, whereas clients 1, 2, 6,
and 7 end up using client 6’s model only. We show the weights of all clients in Figure 8 of Appendix D.

4.5 Hyperparameter Sensitivity

In this section, we explore the effect of hyperparameters of our proposed FedeRiCo.

Effect of ϵ-greedy sampling Here we show the effect of different ϵ values. Recall that each client deploys
an ϵ-greedy selection strategy. The smaller the value of ϵ, the more greedy the client is in selecting the
most relevant collaborators with high weights, leading to less exploration. Figure 6 shows the accuracy
over training with different ϵ values on the Office-Home dataset. One can see that there is a trade-off
between exploration and exploitation. If ϵ is too high (e.g., ϵ = 1, uniform sampling), then estimates of the

5We used uniform sampling for the accumulative loss (ϵ = 1) as most of the client weights are 0 after a few rounds.
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Figure 6: Test accuracy with different hyperparameters: sampling ϵ (left), number of sampled neighbors
(middle), momentum β (right).
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Figure 7: Client weights learned by client 0 with different momentum values β on the client weight update.

likelihoods/losses are more accurate. However, some gradient updates will vanish because the client weight
is close to zero (see Section 3.3), resulting in slow convergence. On the other hand, if ϵ is too small, the
client may miss some important collaborators due to a lack of exploration. As a result, we use a moderate
ϵ = 0.3 in all experiments.

Effect of number of sampled neighbors We plot accuracy with number of neighbors M ∈ {0, 1, 3, 5, 7}
on CIFAR100 using 4 different client distributions, where M = 0 is similar to Local Training as no col-
laboration happens. As shown in Figure 6, when the number of neighbors increases, FedeRiCo converges
more slowly as each client is receiving more updates on other client’s models. While a smaller number of
neighbors seems to have a lower final accuracy, we notice that even with M = 1, we still observe significant
improvement compared to no collaboration. Therefore, we use M = 3 neighbors in our experiments as it
has reasonable performance and communication cost.

Effect of client weight momentum We plot the overall test accuracy of client 0 on the Office-Home
dataset with 4 different data distributions over β ∈ {0.1, 0.3, 0.6, 0.9} in Figure 6 and similarly for the client
weights in Figure 7. With smaller β, as shown in Figure 7, we observe a smoother update on the client
weights, which is expected as the old tracking loss dominates the new one. Although various values produce
similar final client weights, a bigger β can lead to more drastic changes in early training. However, one
shouldn’t pick a very small β just because it can produce smoother weights. As shown in Figure 6, the
algorithm may converge more slowly with smaller β. Therefore, we use β = 0.6 as it encourages smoother
updates and also maintains good convergence speed.

In Appendix D, Table 4 shows the effect of using a Dirichlet data split, which is a common choice in
FL (Marfoq et al., 2021). Our method still outperforms all benchmarks. Finally, in Figure 10, we consider
whether there is a benefit to better optimization in the M-step of our method by increasing the number
of local epochs. While there is some improvement when using more optimization, there is a tradeoff with
increased computation time.

5 Conclusion and Discussion

In this paper, we proposed FedeRiCo, a novel framework for personalized FL derived from EM for non-
i.i.d data. We evaluated FedeRiCo across different datasets and demonstrated that FedeRiCo outperforms
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multiple personalized FL baselines and encourages clients to collaborate with similar clients, i.e., the right
collaborators.

Federated learning architectures Traditional FL methods, such as Federated Averaging (Fe-
dAvg) (McMahan et al., 2017), primarily focus on a centralized FL architecture, where a single central
server coordinates and aggregates updates from all clients. However, this centralized setting is heavily de-
pendent on the central server and is thus subject to several challenges in practice. Firstly, the presence of
a commonly trusted central server may not always be guaranteed. Additionally, the server may fail or be
maliciously attacked, disrupting the entire system (Li et al., 2020). Furthermore, as previously mentioned,
when all clients simultaneously communicate with the server, the communication burden on the server can be
substantial (Lian et al., 2017). To mitigate these challenges, decentralized FL (Dai et al., 2022; Beltrán et al.,
2022) has emerged as a viable solution for addressing single point failure and reducing the communication
bandwidth on the server.

Security implications Security is a significant concern in FL frameworks, particularly regarding ma-
licious attacks (Blanco-Justicia et al., 2021), which may be further exacerbated in a decentralized setting
without the central authority. One potential solution is to integrate existing trust mechanisms, such as
blockchain (Qin et al., 2022; Short et al., 2020) and homomorphic encryption (Nguyen & Thai, 2022), with
FL frameworks (Kairouz et al., 2021) to ensure secure collaboration.

Privacy implications A key motivation of federated learning’s original development was to protect
clients’ privacy by avoiding sharing private data (McMahan et al., 2017). However, FL schemes, centralized
or decentralized, do not provide an explicit guarantee of privacy since sharing model parameters (or updates)
may also reveal important information about the data (Carlini et al., 2019; Lyu et al., 2022). To address
these concerns, a promising direction is to apply differentially private mechanisms in FL training to provide
privacy guarantees (Wei et al., 2020; Truex et al., 2020; Liu et al., 2022), which invoke a trade-off between
utility and privacy (Chen et al., 2022c; Bietti et al., 2022). Fortunately, most of the existing FL frameworks,
including FedeRiCo are compatible with differential privacy.
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A Derivations

Variational lower bound Here we derive the variational lower bound Equation (2) for the log-likelihood
objective Equation (1). For each i ∈ [K],

log
K∑

zi=1
p(Di, zi; Θ) = log

K∑
zi=1

q(zi) · p(Di, zi; Θ)
q(zi)

(10)

= logEq(zi)

[
p(Di, zi; Θ)

q(zi)

]
(11)

≥ Eq(zi)

[
log p(Di, zi; Θ)

q(zi)

]
(12)

= Eq(zi) [log p(Di, zi; Θ)] − Eq(zi)[log q(zi)], (13)

where q is an alternative distribution, the inequality is due to Jensen’s Inequality and the last term
Eq(zi)[log q(zi)] is constant independent of the parameter Θ.

Derivations of the EM steps Given the assumptions in the main text about pi(y|x) and pi(x), we know
that

− log p(Di|zi = j; Φ) =
ni∑

s=1
ℓ(hϕj

(xs)(i), y(i)
s ) − log p(x(i)

s ) + c. (14)

• E-step: Find the best q∗ for each client given the current parameters Θ(t−1):

w
(t)
ij := q∗(t)(zi = j) = p(zi = j|Di; Θ(t−1)) (15)

= p(zi = j|Π(t−1)) · p(Di|zi = j; Φ(t−1))∑K
j′=1 p(zi = j′|Π(t−1)) · p(Di|zi = j′; Φ(t−1))

(16)

=
Π(t−1)

ij · p(Di|zi = j; Φ(t−1))∑K
j′=1 Π(t−1)

ij′ · p(Di|zi = j′; Φ(t−1))
(17)

∝ Π(t−1)
ij exp

[
−

ni∑
s=1

ℓ
(

h
ϕ

(t−1)
j

(x(i)
s ), y(i)

s

)]
. (18)

Then the variational lower bound becomes

L(q(t), Θ) = 1
n

∑
i

∑
j

w
(t)
ij · log p(Di, zi = j; Θ) + C (19)

= 1
n

∑
i

∑
j

w
(t)
ij · ( log p(zi = j; Π) + log p(Di|zi = j; Φ) ) + C (20)

= 1
n

∑
i

∑
j

w
(t)
ij · ( log Πij + log p(Di|zi = j; Φ) ) + C. (21)

• M-step: Given the posterior w
(t)
ij from the E-step, we need to maximize L w.r.t. Θ = (Φ, Π). For the

priors Π, we can optimize each row i of Π individually since they are decoupled in Equation (21). Note
that each row of Π is also a probability distribution, so the optimum solution is given by Π(t)

ij = w
(t)
ij .

This is because the first term of Equation (21) for each i is the negative cross entropy, which is maximized
when Πij matches w

(t)
ij .

Optimizing Equation (21) w.r.t. Φ gives

Φ(t) ∈ argmax
Φ

L(q(t), Θ) = argmin
Φ

1
n

K∑
i=1

K∑
j=1

w
(t)
ij

ni∑
s=1

ℓ
(

hϕj
(x(i)

s ), y(i)
s

)
. (22)
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Posterior and accumulative loss Here we show an alternative implementation for Equation (3) using
accumulative loss. To shorten notations, let ℓ

(t)
ij :=

∑ni

s=1 ℓ
(

h
ϕ

(t)
j

(x(i)
s ), y

(i)
s

)
. Combining Equation (3) and

Equation (4) gives

w
(t)
ij = p(zi = j|Di; Θ(t−1)) (23)

∝ w
(t−1)
ij exp

[
−ℓ

(t−1)
ij

]
(24)

∝ w
(t−2)
ij exp

[
−

(
ℓ

(t−2)
ij + ℓ

(t−1)
ij

)]
. (25)

We can see that it is accumulating the losses of previous models (e.g., ϕ
(t−2)
j , ϕ

(t−1)
j and so on) inside the

exponential. Therefore, assuming the uniform prior Π(0)
ij = 1/K, ∀j, w(t) is the softmax transformation of

the negative of the accumulative loss L
(t)
ij :=

∑t−1
τ=1 ℓ

(τ)
ij up until round t.

B Convergence Proof

This section provides the missing proof of our convergence result (Theorem 3.1). At a high level, we will
show that our algorithm in Section 3.2 can be viewed as an instantiation of the Federated Surrogate Opti-
mization (Marfoq et al., 2021, Algo.3). Therefore, we can apply the general convergence result of Federated
Surrogate Optimization (Marfoq et al., 2021, Thm.3.2′) to get our convergence guarantee. Toward that end,
Lemma B.7 shows that the local objective

fi(Θ) = fi(Φ, πi) := − 1
ni

log p(Di|Φ, πi) = − 1
ni

ni∑
s=1

log p(x(s)
i , y

(s)
i |Φ, πi), (26)

admits a partial first-order surrogates near (Φ(t−1), Π(t−1)) (Marfoq et al., 2021, Def.1), given by

g
(t)
i (Φ, Π) := g

(t)
i (Φ, πi) (27)

:= 1
ni

ni∑
s=1

K∑
j=1

q
(t)
j

[
ℓ

(
hϕj

(x(s)
i ), y

(s)
i

)
− log pj(x(s)

i ) − log πij + log q
(t)
j − c

]
(28)

so that our algorithm shares the same form as Federated Surrogate Optimization. Then Theorem 3.1 follows
from Marfoq et al. (2021, Thm.3.2′) under suitable assumptions.

To start, we adapt assumptions 2 to 7 of Marfoq et al. (2021) to our setting as follows:
Assumption B.1. ∀i ∈ [K], pi(x) = p(x).
Assumption B.2. The conditional probability pi(y|x) satisfies

− log pi(y|x) = ℓ(hϕ∗
i
(x), y) + c, (29)

for some parameters ϕ∗
i ∈ Rd, loss function ℓ : Y × Y 7→ R+ and normalization constant c.

Let f(Φ, Π) := 1
n log p(D; Φ, Π) be the log-likelihood objective as in Equation (1).

Assumption B.3. f is bounded below by f∗ ∈ R.
Assumption B.4 (Smoothness and bounded gradient). For all x, y, the function ϕ 7→ ℓ(hϕ(x), y) is
L-smooth, twice continuously differentiable and has bounded gradient: there exists B < ∞ such that
∥∇ϕℓ(hϕ(x), y)∥ ≤ B.
Assumption B.5 (Unbiased gradients and bounded variance). Each client i ∈ [K] can sample a random
batch ξ and compute an unbiased estimator gi(ϕ, ξ) of the local gradient with bounded variance, i.e.,
Eξ[gi(ϕ, ξ)]= 1

ni

∑ni

s=1 ∇ℓ(hϕ(x(s)
i ), y

(s)
i ) and Eξ∥gt(ϕ, ξ)− 1

ni

∑ni

s=1 ∇ℓ(hϕ(x(s)
i ), y

(s)
i )∥ ≤ σ2.
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Assumption B.6 (Bounded dissimilarity). There exist β and G such that any set of weights γ ∈ ∆K :

K∑
i=1

ni

n

∥∥∥∥∥∥ 1
ni

ni∑
s=1

K∑
j=1

γj∇ℓ(hϕ(x(s)
i ), y

(s)
i )

∥∥∥∥∥∥
2

≤ G2 + β2

∥∥∥∥∥∥ 1
n

K∑
i=1

ni∑
s=1

K∑
j=1

γj∇ℓ(hϕ(x(s)
i ), y

(s)
i )

∥∥∥∥∥∥
2

. (30)

Lemma B.7 (Partial first-order surrogate). g
(t)
i is a partial first-order surrogate of fi near (Φ(t−1), Π(t−1)).

Proof. In the following, we will verify that g
(t)
i satisfies the three conditions of partial first-order surrogates

near (Φ(t−1), Π(t−1)):

1. g
(t)
i (Φ, Π) ≥ fi(Φ, Π), ∀t, Φ, Π;

2. r
(t)
i (Φ, Π) := g

(t)
i (Φ, Π) − fi(Φ, Π) is differentiable and L̃-smooth w.r.t. Φ (for some L̃ < ∞). More-

over, r
(t)
i (Φ(t−1), Π(t−1)) = 0 and ∇Φri(Φ(t−1), Π(t−1)) = 0;

3. g
(t)
i (Φ, Π(t−1))−gi(Φ, Π) = d(Π(t−1), Π) for all Φ and Π ∈ argminΠ′ g(Φ, Π′) where d is non-negative

and d(Π, Π′) = 0 iff Π = Π′.

To simplify notations, define the following (the dependency on round t is ignored when it is clear from
context)

qj := qi(zi = j), (31)

Lj :=
ni∑

s=1
ℓ

(
hϕj (x(s)

i ), y
(s)
i

)
, (32)

γj := pi(zi = j|Di, Φ, πi). (33)

Condition 1 To start verifying the first condition,

gi(Φ, πi) = 1
ni

ni∑
s=1

K∑
j=1

qj

[
ℓ

(
hϕj (x(s)

i ), y
(s)
i

)
− log pj(x(s)

i ) − log πij + log qj − c
]

(34)

= 1
ni

ni∑
s=1

∑
j

qj

[
− log

(
pj(y(s)

i |x(s)
i , ϕj) · pj(x(s)

i ) · pi(zi = j)
)

+ log qj

]
(35)

= 1
ni

ni∑
s=1

∑
j

qj

[
− log pi

(
x

(s)
i , y

(s)
i , zi = j

∣∣∣Φ, πi

)
+ log qj

]
(36)

= 1
ni

∑
j

qj [− log pi (Di, zi = j|Φ, πi) + log qj ] . (37)

Then

ri(Φ, πi) = gi(Φ, πi) − fi(Φ, πi) (38)

= 1
ni

KL ( q(·) ∥ pt(·|Di, Φ, πi) ) , (39)

where KL is the KL-divergence. This verifies the first condition of partial first-order surrogates since the
KL-divergence is non-negative.
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Condition 2 Now we verify the second condition. Note that rt is twice continuously differentiable due to
Assumption B.4. With Assumption B.1

γj = pi(zi = j|Di, Φ, πi) = exp [−Lj′ + log πij ]∑
j′ exp [−Lj′ + log πij′ ] , (40)

∇ϕj′ γj =
{

(−γj + γ2
j )∇Lj if j′ = j

γjγj′∇Lj′ if j′ ̸= j,
(41)

where ∇Lj is shorthand for ∇ϕj
Lj . Then

∇ϕj′ ri = 1
ni

∇ϕj′

∑
j

(−qj log γj) Definition of KL (42)

= 1
ni

∑
j

(
− qj

γj
∇ϕj′ γj

)
(43)

= 1
ni

qj′(1 − γj′) −
∑
j ̸=j′

qjγj′

 ∇Lj′ When j = j′ vs j ̸= j′ (44)

= 1
ni

[qj′(1 − γj′) − (1 − qj′)γj′ ] ∇Lj′

∑
j

qj = 1 (45)

= 1
ni

(qj′ − γj′)∇Lj′ . (46)

The Hessian of ri, H(ri) ∈ RdK×dK w.r.t. Φ, is a block matrix, with blocks given by

(
H(rt)

)
j,j′

=
{

1
ni

[
(qj − γj)H(Lj) + (γj − γ2

j )(∇Lj)(∇Lj)⊤]
− 1

ni
γjγj′(∇Lj)(∇Lj′)⊤ when j ̸= j′,

(47)

where H(Lj) ∈ Rd×d is the Hessian of Lϕj
(Dt) w.r.t. ϕj . Introduce block matrices H̃, Ĥ ∈ RdK×dK as

H̃j,j′ =
{

1
ni

(γj − γ2
j )(∇Lj)(∇Lj)⊤

− 1
ni

γjγj′(∇Lj)(∇Lj′)⊤ when j ̸= j′,

Ĥj,j′ =
{

1
ni

(qj − γj)H(Lj)
0 when j ̸= j′.

(48)

Since qj , γj ∈ [0, 1] and ℓ is L-smooth by Assumption B.4, we have −L·IdK ≼ Ĥ ≼ L·IdK . Using Lemma B.8
(see below), we have 0 ≼ H̃ ≼ B2 · IdK (note that ∇Lj is the sum of ni individual gradients and H(rt) has
1/ni). As a result, −L̃ · IdK ≼ H(rt) ≼ L̃ · IdK (where L̃ = L + B2 < ∞) and therefore rt is L̃-smooth.

Finally, q
(t)
j = pi(zi = j|Di, Φ(t−1), π

(t−1)
i ), ∀t > 0 by the algorithm, which means

r
(t)
i (Φ(t−1), Π(t−1)) = r

(t)
i (Φ(t−1), π

(t−1)
i ) = 0. (49)

Additionally, from Equation (39) we know that r
(t)
i (Φ, πi) is a (non-negative) KL-divergence for all Φ, Π.

Recall that r
(t)
i is differentiable. It follows that Φ(t−1) is a minimizer of the function {Φ 7→ r

(t)
i (Φ, π

(t−1)
i )}

and
∇Φr

(t)
i (Φ(t−1), π

(t−1)
i ) = 0. (50)

This verifies the second condition of the partial first-order surrogate.
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Condition 3 Note that π
(t)
i = argminπ g

(t)
i (Φ, π) due to the choice of q

(t)
i by the algorithm. Then for any

πi and i ∈ [K],

g
(t)
i (Φ, πi) − g

(t)
i (Φ, π

(t)
i ) =

∑
j

q
(t)
j (log π

(t)
ij − log πij)

=
∑

j

π
(t)
ij (log π

(t)
ij − log πij)

= KL(π(t)
i ∥πi),

(51)

which is non-negative and equals zero iff π
(t)
i = πi. This verifies the third condition of partial first-order

surrogate.

The following lemma is used when verifying the second condition from above.
Lemma B.8. Suppose g1, . . . , gK ∈ Rd and γ = (γ1, . . . , γK) ∈ ∆K . The block matrix H ∈ RdK :

Hj,j′ =
{

(γj − γ2
j )gjg⊤

j

−γjγj′gjg⊤
j′ when j ̸= j′,

(52)

is positive semi-definite (PSD). If in addition ∥gj∥ ≤ B < ∞, ∀j ∈ [K], then H ≼ B2 · IdK

Proof. Let x = [x1, . . . , xK ] ∈ RdK , then

x⊤Hx =
K∑

j,j′=1
x⊤

j Hj,j′xj (53)

=
K∑

j=1

x⊤
j Hj,jxj +

∑
j′ ̸=j

x⊤
j Hj,j′xj′

 (54)

=
K∑

j=1
(γj − γj)2 · (x⊤

j gj)2 −
K∑

j=1

∑
j′ ̸=j

γjγj′ · (x⊤
j gj) · (x⊤

j′gj′)

 (55)

=
K∑

j=1
γj(1 − γj) · (x⊤

j gj)2 −
K∑

j=1

γj(x⊤
j gj) ·

∑
j′ ̸=j

γj′ · (x⊤
j′gj′)

 (56)

=
K∑

j=1
γj

∑
j′ ̸=j

γj′

 · (x⊤
j gj)2 −

K∑
j=1

γj(x⊤
j gj) ·

∑
j′ ̸=j

γj′ · (x⊤
j′gj′)

 (57)

=
K∑

j=1
γj(x⊤

j gj) ·
∑
j′ ̸=j

γj′
(
x⊤

j gj − x⊤
j′gj′

)
(58)

=
K∑

j=1
γj(x⊤

j gj) ·
K∑

j′=1
γj′

(
x⊤

j gj − x⊤
j′gj′

)
(59)

=
K∑

j=1
γj(x⊤

j gj)2 −

 K∑
j=1

γjx⊤
j gj

2

(60)

= Ej∼γ [(x⊤
j gj)2] −

(
Ej∼γ [x⊤

j gj ]
)2 (61)

= Vj∼γ [x⊤
j gj ] ≥ 0, (62)

where we have repeatedly applied
∑

γj = 1 and E,V denote expectation and variance, treating x⊤
j gj as a

random variable. As a result, H is PSD.
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Suppose in addition ∥gj∥ ≤ B < ∞, ∀j ∈ [K]. Using the Cauchy-Schwarz inequality, we have

−B · ∥xj∥ ≤ −∥xj∥ · ∥gj∥ ≤ x⊤
j gj ≤ ∥xj∥ · ∥gj∥ ≤ B · ∥xj∥. (63)

Since ∥xj∥ ≤ ∥x∥, ∀j ∈ [K], we have

−B · ∥x∥ ≤ x⊤
j gj ≤ B · ∥x∥. (64)

Finally, with the Popoviciu’s inequality on variances, we have

x⊤Hx = Vj∼γ [x⊤
j gj ] ≤ 1

4(B · ∥x∥ + B · ∥x∥)2 = B2∥x∥2, (65)

which means H ≼ B2IdK .

As shown above, our algorithm can be seen as an instantiation of the Federated Surrogate Optimization (Mar-
foq et al., 2021, Algo.3). As a result, we have the following convergence derived from Marfoq et al. (2021,
Thm.3.2′).
Theorem 3.1. [Convergence] Under Assumptions B.1-B.6, when the clients use SGD with learning rate
η = a0√

T
> 0, and the number of rounds T ≥ a2

0 · max{8L2, 16L2β2}, the iterates of our algorithm satisfy

1
T

T∑
t=1

E∥∇Φf(Φt, Πt)∥2
F ≤ O

(
1√
T

)
, (7)

and 1
T

T∑
t=1

E[∆Πf(Φt, Πt)] ≤ O
(

1
T 3/4

)
, (8)

where the expectation is over the random batch samples and ∆Πf(Φt, Πt) := f(Φt, Πt) − f(Φt, Πt+1) ≥ 0.

C Additional Experiment Details

Dataset To speed up training, we take 10%, and 15% of the training data from CIFAR-10, and CIFAR-100
respectively. For the Office-Home dataset, we merge images from all domains to get the training dataset,
and use the features extracted from the penultimate layer of ResNet-18 pretrained on ImageNet.

Models and Methods For CIFAR-10, we use the CNN2 from Shen et al. (2020) with three 3×3 convolution
layers (each with 128 channels followed with 2×2 max pooling and ReLu activation) and one FC layer. For
CIFAR-100, we use ResNet-18 as in Marfoq et al. (2021). For Office-Home, the model is an MLP with two
hidden layers (1000 and 200 hidden units). The batch size is 50 for CIFAR, and 100 for Office-Home. For
FedFomo, we use 5 local epochs in CIFAR-100 to adapt to the noisiness of training and 1 local epoch per
communication round for all other experiments.

Settings CIFAR experiments use 8 clients and Office-Home experiments use 10 clients.

Computational resources and software We summarize the computational resources used for the
experiments in Table 2 and software versions in Table 3.

Table 2: Summary of computational resource
Memory CPU GPU
700GB Intel(R) Xeon(R) Platinum 8168@2.70GHz 8 Tesla V100-SXM2
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Table 3: Software versions
Operating System Python Pytorch mpi4py
Ubuntu 18.04.5 3.9 1.9.0 3.1.2

D Additional experimental results

Client weights with accumulative loss Figure 8 provides more complete information compared to
Figure 5 from Section 4.4 of the main text. It shows the client weights over training for each of the 8 clients
using the accumulative loss (only client 0 and 1 were shown in Figure 5). We find that clients 0, 3, 4, and
5, who share a common data distribution, all end up using client 5’s model only, whereas clients 1, 2, 6, and
7 end up using client 6’s model only. Hence, although the client weight vectors become one-hot part way
through training, clients are not learning in isolation, and are still benefiting from their collaborators.
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Figure 8: Client weights over time of FedeRiCo with accumulative loss.
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Dirichlet data split In Table 4 we compare FedeRiCo with the other baselines with Office-Home dataset
using a different data splitting approach. Specifically, we firstly partition the data labels into 4 clusters and
then distribute data within the same clusters across different clients using a symmetric Dirichlet distribution
with parameter of 0.4, as in FedEM (Marfoq et al., 2021)6. As a result, each client contains a slightly
different mixture of the 4 distributions. The results are reported over a single run.

Method FedAvg FedAvg+ Local Training Clustered FL FedEM FedFomo FedeRiCo
Accuracy 69.73±11.02 71.20±24.41 68.32±19.43 69.73±11.02 47.15±25.43 75.78±6.20 83.90±4.11

Table 4: Accuracy of different algorithms with Office-Home dataset and Dirichlet distribution.

Client collaboration Here we include more client weight plots, similar to Figure 3 in the main text, of
our proposed FedeRiCo on CIFAR100 with four client distributions to show how the level of collaboration
evolves over training. As shown in Figure 9, clients from the same distribution have higher client weights
and hence more collaboration as expected.
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Figure 9: Client weights over time of FedeRiCo with CIFAR100 data and four different client distributions.
Clients are color coded by their private data’s distribution.

6We use the implementation from https://github.com/omarfoq/FedEM.
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Figure 10: Accuracy vs number of local epochs.

Number of local epochs We compared the average training accuracy over clients for different amounts
of optimization in each M-step. As shown in Figure 10, when the number of local epochs is increased, and
the M-step is better optimized, the test accuracy can converge to a better result. This can be characterized
as a trade-off between performance and training time.
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