TouchGo: Self-Supervised Visuo-Tactile Pretraining to contact
deformation representation learning via multi-sensor

Abstract— Optical tactile sensors provide robots with rich
force information for robot grasping in unstructured environ-
ments. The fast and accurate calibration of three-dimensional
contact forces holds significance for new sensors and existing
tactile sensors which may have incurred damage or aging.
However, the conventional neural-network-based force calibra-
tion method necessitates a large volume of force-labeled tactile
images to minimize force prediction errors, with the need for
accurate Force/Torque measurement tools as well as a time-
consuming data collection process. To address this challenge,
we propose a novel deep domain-adaptation force calibration
method, designed to transfer the force prediction ability from a
calibrated optical tactile sensor to uncalibrated ones with var-
ious combinations of domain gaps, including marker presence,
illumination condition, and elastomer modulus. Experimental
results show the effectiveness of the proposed unsupervised
force calibration method, with lowest force prediction errors
of 0.102N (3.4% in full force range) for normal force, and
0.095N (6.3%) and 0.062N (4.1%) for shear forces along the
x-axis and y-axis, respectively. This study presents a promising,
general force calibration methodology for optical tactile sensors.

Contact-rich manipulation remains a major challenge in
robotics. Optical tactile sensors like GelSight Mini offer a low-
cost solution for contact sensing by capturing soft-body defor-
mations of the silicone gel. However, accurately inferring shear
and normal force distributions from these gel deformations has
yet to be fully addressed. In this work, we propose a machine
learning approach using a U-net architecture to predict force
distributions directly from the sensor’s raw images. Our model,
trained on force distributions inferred from fea, demonstrates
promising accuracy in predicting normal and shear force
distributions. It also shows potential for generalization across
sensors of the same type and for enabling real-time application.

I. INTRODUCTION

Tactile sensing plays an important role in advancing the
state-of-the-art in robotic manipulation [?], [?], [?], [?], [?],
[?1, [?], [?]. Successful applications include grip adaptation
through slip detection [?], [?], [?], medical procedures [?],
[?] and tele-operation [?].

In particular, optical tactile sensors have emerged as a
promising technology for capturing contact information due
to their high spatial resolution, multimodal sensing capa-
bilities—including shape [?], hardness [?], texture [?], and
temperature [?]—and cost-effectiveness [?], [?]. However,
many prior works have focused on extracting only low-
dimensional tactile information, such as total force [?], [?],
[?], limiting operational flexibility. Access to contact force
distributions, on the other hand, would enable better handling
of multiple contacts and diverse manipulation scenarios [?].

Conventional methods for extracting force distributions
require calculating the three-dimensional deformation of the
contact medium and utilizing elasticity theory [?], [?], [?],
[?]. Yet, accounting for non-linear material behavior, such
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Fig. 1: Complete Method Overview: from data collection
to force distribution prediction. After data collection in a
precisely calibrated setup with a CNC milling machine,
Finite Element Analysis is employed to generate labels
(“ground truth” force distributions). Using the labels and
raw images captured by the GelSight Mini tactile sensor,
we train a U-net for efficiently mapping raw tactile images
to the corresponding force distributions.

as with fea, is computationally intensive and unsuitable for
real-time applications.

Recent works leverage Deep Learning to address the chal-
lenge of real-time force estimation. In [?], Convolutional
Neural Networks (CNNs) were used to predict contact forces
from sensor images, while [?] introduced CANFnet for
estimating normal force distributions at the pixel level. In [?],
[?1, [?], fea-derived data was used to train a model for pre-
dicting force distributions, demonstrating the effectiveness of
combining simulations with data-driven methods.

In this paper we introduce FEATS (see Fig. 1)—a machine
learning approach that directly maps raw tactile images to
force distributions, building upon the method by Sferrazza et
al. [?]. We utilize FEA to generate labeled data for training,
ensuring accurate ground truth across various indenters and
force levels. A U-net neural network architecture [?] is em-
ployed to estimate force distributions from images captured
by the GelSight Mini optical sensor [?], [?]. In contrast
to [?], our method is tailored to a widely available com-
mercial sensor GelSight Mini, dropping the requirement of a
custom-made gel with immersed particles, thereby drastically
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Fig. 2: Reconstruction of a hammer. (a) showcases the
trajectory of the tactile sensor in 3D space. (b) depicts the in-
termediate tactile readings on the hammer’s surface, with the
color gradient representing the passage of time. Following
thorough tactile exploration, we achieve a complete object
reconstruction (c), highlighting the effectiveness of our active
strategy in exploring the entire reachable surface.

extending the applicability of the approach. Furthermore,
this sensor allows for a significantly expanded range of
measurable forces [0 — 40]N, an 8-fold increase in the
maximum measurable force compared to [?]. Finally, we
open source our code, dataset and model, aiding reuse and
reproducibility.

Experimental results demonstrate that the proposed method
accurately predicts high-dimensional contact force distri-
butions from raw tactile images. This capability advances
robotic manipulation by accommodating a wider range of
contact scenarios and offers a versatile representation appli-
cable to downstream tasks.

II. RELATED WORKS

Extracting meaningful contact-related information from the
raw RGB images of optical tactile sensors is a major chal-
lenge in visual-tactile perception [?], [?], [?], [?]., [?], [?]. A
number of methods have been proposed for constructing or
learning such “tactile representations”.

A. Marker Displacement Methods

Li et al. [?] posit that it is the contact layer deformations
that capture the crucial information within tactile images. By
analyzing these deformations, various contact features can
be extracted, with mdm being the most common approach
[?]. In mdm, markers are placed on or within the elastomer
and appear as features in the sensor’s imagery (Fig. 1). For
the GelSight sensor [?], [?], markers were first introduced
in [?] to study normal and shear forces, along with slip
dynamics. They identified a linear relationship between loads
and marker motion, but this applied only in non-slip condi-
tions. Beyond marker motion, optical sensors can capture
detailed height maps and contact geometry through careful
illumination and photometric stereo [?]. These height maps
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Fig. 3: Models of 3D-printed indenters used for data col-
lection. Different colors represent groups of indenters with
similar shapes.

can be used to estimate contact forces with a third-degree
polynomial [?].

In this paper, we use a gel with markers, but their movement
is not explicitly tracked. Instead, they serve as implicit
features within the sensor image, which is analyzed by a
neural network to predict force distributions.

B. Deep Learning-Based Tactile Representations

Advancements in computer vision directly translate to vision-
based tactile sensing. Models such as CNNs and LSTMs
were adapted to assess object hardness [?] and grip stabil-
ity [?], whereas SVMs were used for lump detection [?].
More tactile-specific deep learning methods have been de-
veloped for overall force prediction [?] and for pixel-wise
contact area and normal force estimation [?].

Building on the demonstrated effectiveness of deep neural
networks for feature extraction and prediction, we employ a
U-net architecture similar to that of [?]. However, in contrast
to [?], FEATS estimates both normal and shear forces, thus
providing a physically grounded representation in the form
of a 3D force distribution acting upon the sensor.

C. Force Distribution Prediction Through Elasticity Theory

Elasticity theory has been effectively applied to create more
refined and accurate load distributions acting upon the soft
silicone gel of optical tactile sensors. In [?], elasticity theory
with mdm was used to derive force vectors from marker
movements assuming a linear elastic, uniform and half-
spaced material. This method was later adopted in [?] for
the GelSlim sensor [?]. More recently, sensors enabling
3D surface deformation reconstruction have been proposed,
such as TacLINK [?] and Tac3D [?]. They compute force
distributions from measured 3D marker displacements.
However, direct prediction of force distributions from dis-
placements, usually through a linear stiffness matrix, does
not account for the nonlinearities of soft elastomers. Sun
et al. [?] addressed this limitation by employing ResNet [?],
which was trained on sensor images with approximated force
distributions. Similarly, Sferrazza et al. [?] utilized a dnn
trained on image features with force distributions obtained
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Fig. 4: Overview. This figure illustrates the key steps and
components of TouchGo in a scenario where the sensor
moves upward along the jar’s edge. We employed Temporal
Tactile Averaging for state representation f (Sec. ??) to
encode consecutive observations, enabling the perception of
movement on the sensor vital for learning dexterous actions.
We also incorporate an Upper Confidence Bound (UCB)
exploration as a bonus to encourage effective exploration.

from fea, and later improved this method by incorporating
simulated training data [?], [?].

Building on these approaches, we also aim to estimate
contact forces using supervised deep learning. However,
instead of working on optical flow features or grayscale
images [?] applicable to the custom-made sensor with a
dense 3D-marker field [?], [?], [?], we use raw RGB images
from a widely available GelSight Mini sensor. Crucially, we
develop specific procedures for data collection and model
training that enable the efficient use of this widely accessible
sensor, thereby significantly lowering the entry barrier into
the field.

Our key contributions are: i) method for creating force
labels from FEA outputs tailored to GelSight Mini + imple-
mentation in CalculiX, ii) data collection procedure + dataset,
iii) trained model applicable to varying objects and gels.

III. METHOD

In this section, we introduce AnyTouch, a unified multi-
sensor tactile representation learning framework from the
perspectives of both static and dynamic perception, as shown
in Figure ??. We integrate the input format of tactile images
and videos (Sec. IlI-A) and focus on learning both fine-
grained pixel-level details for refined tasks (Sec. I1I-B) and
semantic-level sensor-agnostic features for understanding
properties (Sec. I11-C) and building unified space (Sec. [1I-D)
by a multi-level structure. We also propose universal sensor
tokens for better knowledge transfer.

A. Unified input format for Static and dynamic tactile Per-
ception
In daily life, human tactile perception includes both static and
dynamic processes. A brief touch allows quick recognition of
properties like material and texture, while tasks such as un-
locking a lock require continuous dynamic perception. These
two types of perception complement each other, enabling
us to comprehensively understand the physical surroundings
and engage in a variety of interactions. This inspires us to

learn unified multi-sensor representation from the perspective
of combining static and dynamic perception, using tactile
images and videos respectively.

Given a static tactile image I € R xWx3 and a dynamic
tactile video clip V € RFXHXWxX3 = we consider tactile
images as single-frame static videos to unify tactile images
and videos. Concretely, we replicate I along the time axis for
F times, and use a unified 4-D tensor X € REXH*xWx3
to represent both I and V as [?], [?], where F is the
number of frames and H,W denote the shape of images.
We then process Xp € REXHXWX3 into spatio-temporal
tokens z € RV*? through a shared patch projection layer,
where IV is the length of tokens and d represents the feature
dimension. By unifying the processing of images and videos
in this manner, our approach integrates tactile images and
video input, enhancing the model’s ability to comprehend
both static and dynamic information, and endows the model
with the potential to accomplish various tasks.

B. Masked Modeling: learning Pixel-level Details

Visuo-tactile images are fine-grained data with pixel-level
details of subtle tactile deformations and continuous changes
during dynamic processes, especially for refined perception
tasks. To enhance the fine-grained perception capabilities
of the tactile representation model, we employ the masked
autoencoder technique he2022masked,tong2022videomae,
compelling the model to capture pixel-level details across
multiple sensors. Concretely, we randomly mask the tokens
of both tactile images and videos with a masking ratio p, and
build a decoder to obtain the reconstructed static images I
and dynamic videos V. The corresponding loss function L5,
and LD are mean squared error (MSE) loss between the
original masked tokens and reconstructed ones in the pixel
space:
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where p is the token index, §2,; is the set of masked tokens
and Vy is the f-th frame in the video V. We use masked
modeling to learn fine-grained tactile deformation features
at the pixel level, as well as the temporal dynamics of tactile
changes.

To further enhance the model’s understanding of continuous
deformation changes, we introduce an additional task of
predicting the next frame Vy,; while reconstructing the
dynamic video V. The loss function EDred is MSE loss
between the original frame Vi1 and the predicted frame
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C. Multi-modal Aligning: semantic-level
properties

After obtaining tactile representations with fine-grained per-

ceptual details via masked modeling, we aim to further

understand semantic-level tactile properties and use paired

multi-modal data as a bridge to narrow the gap between

sensors. Therefore, we propose using multi-modal aligning,

which binds data from various sensors with paired modalities

understanding
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for a more comprehensive semantic-level perception and
reduce perceptual differences between sensors. However, dif-
ferences in data collection scenarios across various datasets
(e.g., simulation vs. reality) make simple vision-tactile align-
ment less effective in bridging sensor gaps. Therefore, we
select the text modality, which consistently describes tac-
tile attributes across datasets, as an anchor to align touch,
vision, and text modalities. Since tri-modal tactile datasets
are rare, with most containing only vision-touch pairs, we
explore two strategies: automatically expanding the amount
of text modality pairings and designing aligning methods
that are compatible with missing modalities. We first select
representative datasets for each sensor and then use GPT-40
to generate or expand the text modality within these datasets.
Through this method, we create new text pairs for 1.4 million
samples across the four datasets.

Based on these extensive tactile datasets, we develop
a modality-missing-aware touch-vision-language contrastive
learning method to leverage the paired data between touch
and other modalities for alignment. We maximize the use of
paired data by selecting the largest subset for each modality
combination within the batch for multi-modal aligning. Con-
sidering a pair of uni-modal representations (xr, xy,xr,) de-
rived from uni-modal encoders, where 27 € R? is the touch
representation, zy € R?U @ is the vision representation and
r; € RTU T is the text representation. We then perform
multi-modal alignment radford2021clip within the batch as:

exp (e, - Tv,i/T)

the learning of sensor-agnostic features and forming a unified
multi-sensor representation space, as shown in Figure 5.

We treat data collected from the same object and position
by two different sensors as a positive pair, and data from
different objects or positions as a negative pair. The model
is trained to distinguish between positive and negative pairs.
For each image and video sample X7 in our TacQuad, we
randomly select one sample from the same object at the
same location captured by another sensor as the positive
sample XI, and choose another sample from any dataset of
any other object or location as a negative sample X,.. We
element-wisely multiply the touch representation x7 with x}r
and x,, and then input each result into an MLP to compute
the matching scores m™* and m~

m* = MLP(zr - x}'), m~ = MLP(z7p-z7), (5)

where z, 1}' and x;. are the representations of Xr, X}'

and X7 . The loss function L,,,4¢cp is a Binary Cross Entropy
Loss similar to [?]:

Lonateh = 7(y+ log(m+) +(1- y+) log(l—m™)) — e

This task requires the model to distinguish features with
the same semantics from different sensors, thus explicitly
clustering representations with the same object information
form a unified multi-sensor representation space. As shown
in Figure 5, AnyTouch, incorporating this task, differs from
existing multi-modal aligning efforts. The construction of
this unified multi-sensor representation space can explicitly
reduce the gap between sensors and aid in generalizing to
unseen sensors.

As both this task and multi-modal aligning focus on
semantic-level features, we combine them as the second
stage, with masked modeling as the first stage. This multi-
level training approach allows us to develop unified multi-
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where B is the batchsize, )y, () are sets of indices for

the samples containing vision and text, and 7 is the scalar

temperature. This approach maximizes the use of paired data

with missing modalities by aligning the sample intersections

between modalities. The computation of Ly _,7, L5 .7 and

L1,y is similar but in the opposite direction. We then obtain
the joint aligning loss as:

ary

Ealign = 9

(4)
where ary, arr and ayp are hyper-parameters to control
the alignment strength.

D. Cross-Sensor Matching: extracting sensor-agnostic fea-
tures

To fully utilize multi-sensor aligned data and build unified
space by clustering multi-sensor tactile representations of the
same object, we introduce a novel cross-sensor matching
task. In this task, the model needs to determine whether
two tactile images or videos are collected from the same
position on the same object. We aim to cluster representa-
tions of the same tactile information from different sensors
while performing multi-modal aligning, thereby enhancing
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m}qor representations adaptable to tasks of varying granu-
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E. Universal Sensor Token

In addition to building a multi-sensor representation space,
we aim to extract and store information related to each
sensor to aid the understanding of input data. More im-
portantly, we want to integrate and effectively transfer this
information when generalizing to new sensors. Using sensor-
specific tokens is a method for extracting sensor-specific
information, but this approach cannot fully transfer infor-

QB tlon f@ ;l seen sensors when generalizing to new
ig2b24

eSOt yan binding.

Therefore, we propose using universal sensor tokens to
integrate and store information related to various sensors,
thereby maximizing the utilization of multi-sensor data when
generalizing to new sensors. During training, we randomly
replace the sensor-specific tokens with the universal sensor
tokens, expecting them to aid in understanding input data

TABLE I: U-net Mean Absolute Error (MAE) on the Test
Set

MAEGur [N]

fe 0.0006 £+ 0.0006
fy 0.0005 4 0.0003
F. | 0.0015 + 0.0010

MAETr [N]
0.2242 4 0.4007
0.0934 £+ 0.1356
0.3720 £ 0.4727

(y~ log(m

+0-y
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Fig. 5: Comparison with existing multi-modal aligning methods. Combining the cross-sensor matching task, our method
not only uses multi-modal data to bridge the gap between sensors, but also explicitly clusters representations of the same
position on the same object from different sensors together, constructing a unified multi-sensor representation space.

TABLE II: Model Ablation on the Total Force Estimation
Task

Method MAErr [N]
fI Yy fz
ResNet™® 0.085+0.115 0.069 + 0.085 1.593 £ 1.131
U-net!2163 0.102 +0.216 0.089 +0.123  0.447 + 0.539
3U-net?4321 0.438 + 0.585 0.189 +0.225  0.448 + 0.523
U-net?42% (ours) | 0.224+0.401 0.093+0.136 0.372+0.473
U-net*8643 0.318 4+ 0.436 0.1194+0.184  0.459 £ 0.516

from various sensors. Specifically, we introduce a set of
learnable sensor tokens {sj, }1_, Us,,, where K is the number
of sensor types, s, € RE*? are the sensor-specific tokens for
the k-th sensor, s, € RE*4 are universal sensor tokens and
L is the number of sensor tokens for each sensor. When
inputting the tactile token sequence z from the k-th sensor
into the encoder ®.,. to obtain its representation xp, we
randomly select one from s and s, to concatenate with z,
as follows:

$=1-8y+ (1 —1)- 8k, i~ B(py),
T = (I)enc(za 3)7

where p,, is the probability of using universal sensor tokens
Sy. During inference, we consistently use universal sensor
tokens for data from new sensors. We transfer all available

(7

sensor information through these universal sensor tokens to
aid in understanding new sensors.

F. Training Paradigm
Our framework has a multi-level structure, with the training
of two stages conducted sequentially. In the first stage, we
simultaneously perform the reconstruction of static tactile
images and dynamic tactile videos, as well as the unique
next frame prediction task for tactile videos. The loss for
the first stage Lgtqge1 is as follows:

£stagel = £S + ED + ED (8)

rec rec pred*

In the second stage, we continue to use both tactile images
and videos, and simultaneously perform multi-modal align-
ing and cross-sensor matching tasks. Hence, the loss function
for the second stage is the sum of the losses from these two
tasks:

EstageZ = Lalign + ALmatcha (9)

where A\ is a hyper-parameter controlling the weight of
cross-sensor matching task. From both static and dynamic
perspectives, we employ this multi-level framework to com-
prehensively learn unified multi-sensor representations for
tasks requiring fine-grained perception and semantic under-
standing.



IV. EXPERIMENTS

This section evaluates and analyzes our method TouchGo,
with various rewards and states on zero-shot (unseen) ob-
jects. In addition, we validate our method on over 400 quanti-
tative and qualitative experiments in reconstructing unknown
objects with varying complexities. In our experiments, we use
reconstruction accuracy as the metric for tactile exploration
with a limited number of steps as it represents the TouchGo
exploration potential.

A. Experimental Setup

Simulation. We employ TACTO [10], [3] to simulate tac-
tile sensor skin deformation during object interactions and
modified PPO from StableBaselines3 [7] in TouchGo.

The TACTO simulator is calibrated with real-sensor data
to ensure Sim-to-Real generalization. It generates depth map
images from real-world signals, serving as our observation
O. We train the agent only with primitive objects — sphere
and cube — for 300K steps. These primitive objects are
selected as they represent a broad range of object shapes,
with the sphere having curvature and the cube having sharp
edges, corners, and flat surfaces. To assess the model’s
performance, we evaluate it on YCB objects that were not
encountered during training time. This evaluation demon-
strates the efficacy of training with primitives, which exhibit
strong generalization capabilities for objects with realistic
textures (Fig. S2*?). For the termination condition, each
episode either spans 5000 steps (Sec. SI-A”?) or concludes
once the Intersection over Union (IoU) metric exceeds 90%,
or when the sensor leaves the workspace boundaries. This
strategy is adopted to reduce the training time. In Tab. [V,
we show that these termination conditions do not limit the
IoU performance during testing as our methods achieved over
90%.

Real-World System. We employ a UR10 arm to manipulate
the 6D pose of the DIGIT (Fig. 7). This control is achieved
by transforming changes in the DIGIT’s frame into a set of
joint trajectories via inverse kinematics which are facilitated
with ur_rtde. The resulting trajectories are executed only if
free from self-collisions and within the defined workspace.
When an invalid trajectory is generated, we select an alter-
native action based on the PPO’s advantage values.

Unlike simulations, where consecutive action executions
while in contact with the object have minimal impact, our
real-world implementation introduces significant shearing on
the sensing surface. To ensure the safe execution of actions
generated by our policy, we have adopted a strategy of lifting
the DIGIT in the normal direction of the contact after each
contact event. This strategy remains well-founded due to
our policy’s consistent alignment of our sensor surface with
the object’s surface and does not compromise its general
applicability. Our method successfully transferred to real-
world experiments without requiring further fine-tuning. Fig.
7 illustrates the effectiveness of our exploration policy on a
drill in the real-world.

Baselines Configuration. To evaluate the efficacy of each
component, we have established a collection of baselines for
three different state rep. and reward functions in Tab. III.

TABLE III: Baseline Formulations. TTA: Temporal Tactile
Averaging, TTS: Temporal Tactile Stacking (concatenation
is denoted as || ), TM: binary Touch indicator (I(-)) + short
Memory, AM: contact Area + short Memory, AMB: contact
Area + short Memory + UCB Bonus

Depth TTA TTS
State -
Ot >izg @iOi—i Ol ... | Oy (r—1)
™ AM AMB
Reward o o 5 E
I + L
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B. Analysis & Discussion

State Comparison. We compare different state representa-
tions using the same reward function (AMB), considering
both representations with and without temporal information.
This analysis highlights the influential impact of temporal
information on learning dexterous and high-level actions. As
shown in Fig. ??, all state representations achieve a specified
IoU during training. However, the state representations incor-
porating temporal information demonstrate higher stability,
consistently reaching the 90% IoU objective after 200K
steps. In contrast, the depth-only representation struggles to
maintain the IoU objective and is outperformed by temporal
representations in Tab. I'V. Furthermore, when considering
the number of steps required to achieve the IoU objective,
TTS training takes longer than TTA as s} 15 € REXHXW
is k times bigger than s7 74 ¢ R">*W which is averaging
observations rather than stacking them. However, in our
experiments in Fig. 6, we witnessed that both TTA and TTS
are competitive, with TTS excelling on longer objects and
TTA performing better on complex shapes.

Reward Comparison. In our pursuit of efficient explo-
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Fig. 6: Qualitative results on unseen YCB objects with
different state and reward settings. We obtain point cloud
data from active tactile exploration on the object’s surface.
To generate a mesh from the collected point cloud, we
apply Poisson surface reconstruction algorithm [4]. Further
experiments are provided in supplementary materials.



TABLE IV: Quantitative results on unseen YCB objects: The table presents IoU and Chamfer-L.1 distance (cm) [6]
between ground-truth and predicted meshes from methods in Tab. III. The surface area is listed below each object’s name
as a severity metric. The details of metrics, confidence intervals, and step counts are given in the supplementary material®*.

M Can Banana Strawberry Hammer Drill Scissors Mustard
ethods 2 2 2 2 2 2 2
(616 cm~) (216 cm”®) (68 cm”) (410 cm®) (591 cm~®) (165.48 cm®) (454.54 cm”)

ToU 1 (Chamfer-L; |)

depth 31.93 (2.66) 11.11 (7.52) 83.60 (0.44) 32.78 (1.86) 19.19 (4.1) 24.29 (8.15) 10.07 (4.07)
™ TTA 17.60 (3.57) 6.03 (9.03) 41.0 (1.23) 14.85 (6.94) 28.15 (3.99) 14.17 (4.98) 19.94 (3.22)
TTS 15.93 (5.22) 18.23 (5.48) 57.89 (0.88) 28.66 (2.47) 15.5 (3.97) 11.26(4.97) 14.55(2.95)
depth 11.59 (5.49) 10.22 (6.84) 47.33 (1.16) 5.07 (7.69) 9.49 (4.03) 5.11(6.78) 11.04(5.16)
AM TTA 72.70 (0.56) 97.70 (0.35) 100 (0.28) 79.80 (0.82) 57.58 (1.43) 41.77 (2.87) 71.72 (0.80)
TTS 98.25 (0.22) 100 (0.34) 100 (0.31) 88.22 (0.44) 99.02 (0.37 ) 28.37 (2.38) 87.13 (0.59)

depth 41.45 (1.42) 98.64 (0.25) 100 (0.23) 61.42 (1.17) 79.68 (0.95) 31.99 (3.2) 65.74 (0.9)
AMB depth+LSTM 88.54 (0.3) 99.96 (0.28) 100 (0.24) 87.54 (0.49) 92.81 (0.36) 29.83 (0.58) 88.33 (0.36)
TTA (ours) 89.6 (0.29) 100 (0.33) 100 (0.25) 98.22 (0.29) 98.85 (0.32) 67.02 (0.87) 95.91 (0.51)
TTS (ours) 97.45 (0.20) 100 (0.3) 100 (0.25) 96.96 (0.28) 99.74 (0.31) 74.62 (0.61) 95.02 (0.49)

ration, we tried various reward functions mentioned in Tab. Step 4= 50 1, = 250 t;= 550

[1I. During training, we plotted the IoU and episode length
until termination in Fig. ??. Notably, the AMB reward func-
tion outperformed the others, satisfying the IoU objective
through encouraging exploration of less visited poses. In
contrast, TM and AM cannot use environmental feedback as
much as AMB can. This limitation arises from TM and AM’s
deprivation of long-horizon history, which hampers their
capacity to gather sufficient information through intrinsic

rewards. As a result, AMB is better equipped to leverage
1

environment feedback ( X effectively for improved ex-

ploration and sample efﬁciehcy. However, AM outperforms
TM as it utilizes contact area information and can still align
the sensor’s sensing area with the object surface to collect
more information and maintain a reliable touch for future
actions. Indeed, the disparity between TM and AM can also
be understood as the distinction between using a touch sensor
versus a tactile sensor for exploring an object.

Limitations and Future Work. The current formulation of
our method has certain limitations. First, it assumes a moving
sensor relative to a fixed-pose rigid object, necessitating a
physically accurate simulator to narrow the sim2real gap for
moving objects. Second, Although TouchGo is not restricted
by object shape, it is designed to keep the sensor close to
recent touching poses. This could pose challenges in environ-
ments with disconnected components. Workspace splitting
can be a potential solution to address this problem. Third, the
sensor exhibits a small depth bias in the simulation resulting
in larger reconstructions. While generally negligible, this bias
becomes dominant when handling objects roughly the same
size as the sensor, such as the strawberry shown in Fig. 6.

As a step towards benchmarking in tactile exploration, we
have released our extensive explorations for YCB objects in
Tab. S1?? with a maximum of 5000 steps. While employing
tactile sensors on multi-finger robotic hands may streamline
the exploration process [9], there remains a promising direc-
tion for future research in modifying the POMDP that effec-
tively handles collisions between sensors while maintaining
object generalization.

V. CONCLUSION

In this work, we introduced a novel reinforcement learning
method using tactile sensing to explore unknown 3D objects
actively. It addresses the need for an active exploration

Fig. 7: Real-World Exploration Execution. Still frames
from TouchGo’s exploration of a drill, starting from the
rear and progressing towards the chuck. The second row
shows the covered area per step, with IoU computed over
the exploration workspace above the drill’s grip. ¢; is the -
th step of the trajectory.

method to enable numerous works [2], [5], [8], [1] to become
fully automated. TouchGo is not limited to specific shape
distributions as it has only been trained on primitive shapes
to learn fundamental movements by leveraging temporal
tactile information and intrinsic exploration bonuses. We
demonstrated this through our experiments with various
shape complexities like a drill or a clay pot in both the real
world and simulation.
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