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ABSTRACT

Missing data often exists in real-world datasets, requiring significant time and
effort for data repair to learn accurate machine learning (ML) models. In this paper,
we show that imputing all missing values is not always necessary to achieve an
accurate ML model. We introduce concepts of minimal and almost minimal repair,
which are subsets of missing data items in training data whose imputation delivers
accurate and reasonably accurate models, respectively. Imputing these sets can
significantly reduce the time, computational resources, and manual effort required
for learning models. We show that finding these sets is NP-hard for SVM and
linear regression and propose efficient approximation algorithms with provable
error bounds. Our extensive experiments indicate that our proposed algorithms can
substantially reduce the time and effort required to learn on incomplete datasets.

1 INTRODUCTION

The performance of an ML model is highly dependent on the quality of its training data. In real-world
data, a major data quality issue is missing or incomplete data Graham (2009); Kumar et al. (2017);
Krishnan et al. (2016); Chu et al. (2016); Gupta et al. (2021). There are two common approaches to
address missing values in training data. The first approach involves deleting samples with missing
values. However, this method can lead to the loss of important information and introduce bias
Van Buuren (2018). Another popular approach is data repair or imputation, in which end-users or ML
practitioners impute missing values with the correct ones Andridge & Little (2010); Farhangfar et al.
(2008); Le Morvan et al. (2021); Little & Rubin (2002); Śmieja et al. (2018); Pelckmans et al. (2005);
Whang et al. (2023); Williams et al. (2005). Accurate repair is often challenging and expensive as it
usually requires extensive collaboration with expensive domain experts. It usually must be repeated
whenever the dataset evolves.

To reduce the cost of imputation, significant effort has been made to train imputation models on the
observed subset of the dataset that predict accurate values for missing data items Buuren & Groothuis-
Oudshoorn (2011); Kyono et al. (2021); Le Morvan et al. (2021); Stekhoven & Bühlmann (2011);
Yoon et al. (2018); Zheng & Charoenphakdee (2022). State-of-the-art models for data imputation may
take a long time to process and predict values for missing data items, and those that use deep neural
networks need costly computational resources Perini & Nikolic (2024); Zheng & Charoenphakdee
(2022); Yoon et al. (2018). As the dataset evolves, the user often has to repeat these steps. Moreover,
in domains where important decisions must be made, e.g., healthcare and criminal justice, humans
may need to manually verify the predictions of the imputation models Yakout et al. (2011). Some
users also distrust black-box model-based imputation techniques in critical applications and prefer to
reason about missing data themselves using observed features and domain knowledge Ahmad et al.
(2019); Stempfle et al. (2025). In addition, model-based imputation may perform poorly when the
ratio of missing data to observed data is too large Dettori JR (2018); Jakobsen et al. (2017); Junaid
et al. (2025). In these settings, users may have to manually repair at least parts of the data.

To address these challenges, we introduce the concept of a minimal repair for a training dataset
with missing values. Generally speaking, this set represents the smallest group of data items with
missing values that, once repaired, yields the same model as that trained on a fully and accurately
repaired dataset. By finding and imputing this set, users can significantly reduce the time and effort
required to manually repair a dataset without sacrificing model accuracy. It also reduces the time and
computational resources needed to predict missing values using imputation models and the manual
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labor required to verify their imputations. Moreover, minimal repair of a dataset pinpoints the subset
of the dataset whose uncertainty impacts the effectiveness of the model trained on the dataset. Hence,
it simplifies the inspection and debugging of model training, which is often labor intensive Siddiqi
et al. (2023). Because incomplete data sets are prevalent and often evolve, a small reduction in
time, effort, and computational resources in the preparation of training datasets can save significant
resources in the long run. Specifically, our contributions are as follows.

• We define minimal repair for learning support vector machines (SVM) (Section 3) and linear
regression (Section 4) over incomplete data. We prove that finding minimal repairs for SVM
and linear regression is NP-hard and propose efficient algorithms with provable error bounds
to approximate minimal repairs for them.

• Minimal repairs may sometimes be too large or take too long to find. We propose the
concept of almost minimal repair, which is the minimal subset of data items with missing
values whose repair delivers a model with a loss within a given threshold from the model
trained over the fully and accurately repaired dataset. We prove that the problem of finding
almost minimal repairs is NP-hard for SVM and linear regression and propose algorithms
with provable error bounds to approximate almost minimal repairs for them (Section 5).

• We evaluated the scalability of our algorithms on multiple real-world datasets (Section 6).
Our empirical results indicate that our proposed algorithms efficiently approximate minimal
and almost minimal repairs and deliver models with the same or almost the same accuracy
as those trained over fully repaired datasets. Our results also indicate that using minimal
and almost minimal repairs can reduce the time of the model-based imputation methods for
large data without losing accuracy in the downstream learning task.

2 BACKGROUND

We model the training data as a table where each row represents a training sample. One column in
the table represents labels and others represent the features of the samples. Given that the training
data has d features, we denote its features as [z1, . . . , zd]. The values of each feature belong to the
domain of the feature, e.g., real numbers. To simplify our analysis, we assume that all the features
share the same domain. Our results extend to other settings. A training set with n samples is a pair
of a feature matrix X = [x1, ..., xn]

T and a corresponding label vector y = [y1, ..., yn]
T . We denote

each sample with d features in X as a vector xi = [xi1, ..., xid], where xij represents the jth feature
in the ith sample. Given the training set (X,y), the target function f , and the loss function L, the
goal of training is to find an optimal model w∗ = arg min

w∈W
L(f(X,w),y).

Missing values Any xij is a missing value if it is unknown (marked by null). An incomplete sample
(incomplete feature) is a sample (feature) with at least one missing value. We use complete feature
and complete sample to refer to features and samples that are free of missing values. We denote the
set of all missing values in a feature matrix X as M(X), the set of incomplete samples as MS(X),
and the set of incomplete features as MF (X). In this paper, we focus on the case where all missing
values are in the feature matrix and the label vector is complete.

Repair A repair is a complete version of an incomplete feature matrix X where all missing values
in X are replaced with values from their domains and the complete values of X remain intact. Given
the repair Xr of the feature matrix X, we denote the repair, i.e. imputation, of the sample xi in X by
xri . Since the domains of features often contain numerous or infinite values, an incomplete feature
matrix usually has many or infinitely many repairs. We denote this set of all repairs of X by XR.

3 MINIMAL REPAIR (MR) FOR SVM

We use the concept of certain model Zhen et al. (2024) to define minimal repair for SVM. A model
w∗ is a certain model for the target function f on the training set (X,y) if for every repair Xr ∈ XR,
we have w∗ = argmin

w∈W
L(f(Xr,w), y) where L is the loss function. Intuitively, a certain model

minimizes training loss for all repairs of the incomplete feature matrix. Thus, if a certain model exists,
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one can learn an accurate model over the training set without any repair to the training data, as training
over any repair to the dataset, e.g., using randomly selected values, will deliver the same accurate
model. This observation holds regardless of the missingness mechanism—Missing Completely at
Random (MCAR), Missing at Random (MAR), or Missing Not at Random (MNAR). Given the
restrictive definition of certain models, they do not often exist Zhen et al. (2024). Thus, we find the
minimal repair of an incomplete training set such that the resulting training set has a certain model.

Definition 1 A set of incomplete samples SMR in the training set (X,y) is a minimal repair for
learning SVM with the regularization parameter C if we have: 1) a certain model exists when
imputing all missing values in SMR, and 2) there is no other set S′ satisfying condition (1) such that
|S′| < |SMR| where |SMR| denotes the cardinality of SMR.

According to Definition 1, the certain model exists regardless of the imputed values in SMR. Obvi-
ously, if these values are accurate, e.g., by using experts or effective imputation models, or inaccurate,
the certain model will be accurate or inaccurate, respectively. Our aim is not to improve the accuracy
of imputations directly, but to reduce resources used for such imputations using minimal repairs.

We denote the minimal repair for SVM with the regularization parameter C on the training set (X,y)
as SMR(X,y, C). We have the following property for the minimal repair of SVM.

Theorem 1 Given training set (X,y) and regularization parameter C, SMR(X,y, C) is unique.

3.1 FINDING MINIMAL REPAIR

Let SV (Xr,y, C) be the set of support vectors for the optimal SVM model with regularization
parameter C on a repair Xr of the training set (X,y).

Lemma 2 Given the training set (X,y) and the regularization parameter C, at least one repair xr
i of

every sample xi ∈ SMR(X,y, C) is a support vector in a repair Xr of X, i.e., xr
i ∈ SV (Xr,y, C).

Hence, to determine if an incomplete sample belongs to the minimal repair, one could materialize
every repair of the feature matrix and check if the incomplete sample is a support vector for any of
them. However, this process can be extremely inefficient due to the often large number of repairs.
Assume that each missing value xij is bounded by an interval [xmin

ij , xmax
ij ] based on its domain. Xe

is an edge repair to X if for every missing value xij , xe
ij = xmin

ij or xmax
ij . XE denotes the set of all

edge repairs for X. Theorem 3 shows that we can use only the edge repair instead of all repairs to
check if an incomplete sample belongs to the minimal repair.

Theorem 3 Given the training set (X,y) and the regularization parameter C, an incomplete sample
xi belongs to minimal repair SMR(X,y, C) if and only if there is at least one edge repair Xe of X
such that xe

i ∈ SV (Xe,y, C) where xe
i is the repair of xi.

Based on Theorem 3, we can find the minimal repair following these steps: 1) Initialize an empty
minimal repair set, SMR. 2) Iterate over each incomplete sample xi. At each iteration, materialize all
edge repairs Xe ∈ XE , and check if xi is a support vector for any of the edge repairs. If it is, add
xi to SMR, and 3) Finally, return the minimal repair SMR. Despite this optimization, finding the
minimal repair remains computationally intractable.

Theorem 4 Given a training set (X,y) with missing values, deciding whether an incomplete sample
belongs to the minimal repair for SVM on (X,y) is NP-hard. Consequently, finding the minimal
repair for SVM on (X,y) is NP-hard.

3.2 APPROXIMATING MINIMAL REPAIR

We propose an efficient approximation algorithm (Algorithm 1) to find minimal repair for SVM. Its
key idea is to test whether each incomplete sample xi belongs to minimal repair by constructing an
edge repair Xe that maximizes the likelihood of xi becoming a support vector. This construction
begins with a random edge repair and iteratively updates each missing value in the dataset to its
minimum or maximum bound. At each step, this choice minimizes yiw

⊤xi, encouraging xi to
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satisfy the support vector condition yiw
⊤xi ≤ 1. If this condition holds after the full pass of the

data, xi is selected for repair. Crucially, this algorithm does not return any false positive. Since
the algorithm initializes with a randomly selected edge repair, it does not introduce bias towards any
specific imputation in learning models.

Theorem 5 Every sample returned by Algorithm 1 belongs to SMR(X,y, C).

Algorithm 1 Approximating minimal repair for SVM on training set (X,y)

SMR ← [ ]
Xe ← a random edge repair to the feature matrix X
for xi ∈MS(X) do

for xpq ∈M(X) do
Xemin ,Xemax ← two edge repairs by only replacing xpq in Xe with its min or max value
w1,w2 ← SVM(Xemin ,y), SVM(Xemax ,y) {learning SVM models with edge repairs}
Xe ← if yiw⊤

1 x
emin
i ≤ yiw

⊤
2 x

emax
i then Xemin else Xemax

end for
w← SVM(Xe,y)
if yiw

⊤xi ≤ 1 then SMR ← SMR.add(xi)
end for
return SMR

Since each iteration modifies only one missing value, adjacent models w1 and w2 differ by only
a single feature entry. This allows us to avoid retraining from scratch by applying incremental or
decremental SVM updates Cauwenberghs & Poggio (2000); Laskov et al. (2006). These techniques
update the model efficiently—typically an order of magnitude faster—by reusing computations from
the previous solution.

Algorithm 1 may miss some samples of minimal repair. Thus, we iteratively apply Algorithm 1 to the
remaining incomplete samples in the training set to find more samples in the minimal repair of the
training set. The process ends when no new samples are selected for repair. The following theorem
shows that the probability of not finding samples of minimal repair decreases using this approach.

Theorem 6 Given the training set (X,y), let pk(x) be the probability that an incomplete sample x
in minimal repair of (X,y) not returned in iteration of k > 0 in iterative application of Algorithm 1,
pk(x) > pk+1(x).

Corollary 6.1 If the probability distribution of each missing value is known, and we let g(xij) denote
the probability density function of the ground truth value for the missing value xij in the incomplete
training set (X,y). If missing values in X are independent, the probability that an incomplete sample
xi in minimal repair not returned by Algorithm 1 in the main content is:

p(xi) = 1−

∫
·· ·

∫max(xvisited
ij )

min(xvisited
ij )

∏
xij∈M(X) g(xij) dxij∫

·· ·
∫
xij∈M(X)

∏
xij∈M(X) g(xij) dxij

(1)

xvisited
ij ∈ {xmin

ij , xmax
ij } shows the values used for xij in Algorithm 1.

4 MINIMAL REPAIR FOR LINEAR REGRESSION

The minimal repair for linear regression is the smallest set of features that is necessary to repair.

Definition 2 Given the training set (X,y), a set of incomplete features in X, denoted as SMR(X,y),
is a minimal repair for (X,y) for linear regression if we have: 1) a certain model exists upon
imputing all missing values in the SMR(X,y), and 2) there is no set S satisfying condition (1) and
|S| < |SMR|.

Similarly to Definition 1, the existence of certain models in Definition 2 is orthogonal to the accuracy
of imputation to SMR. In linear regression, the optimal linear regression model w∗ consists of the
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set of linear coefficients for feature vectors. A feature zi is considered relevant if the corresponding
linear coefficient in the optimal model w∗

i is not zero, and it is irrelevant if w∗
i equals zero. Intuitively,

an incomplete feature needs to be repaired if it is relevant (i.e., it plays a role in the optimal model)
and does not need to be repaired if it is irrelevant. However, traditional statistical tools, such as
the chi-square test, require complete distributions for each feature to assess correlations, which is
challenging in the presence of missing values. The minimal repair may not be unique.

Theorem 7 There is a training set with multiple minimal repairs for linear regression. In addition,
if all the features in all the repairs of the training set (X,y) are linearly independent, the minimal
repair for linear regression over (X,y) is unique.

The following theorem establishes that finding minimal repair for linear regression is intractable.

Theorem 8 Given a training set (X,y) with incomplete features, finding the minimal repair for
linear regression over (X,y) is NP-hard.

To find minimal repair efficiently, we first propose an equivalent problem in Theorem 9, based on a
variant of the well-known sparse linear regression problem Bruckstein et al. (2009).

Lemma 9 Finding the minimal repair for linear regression on training set (X,y) is equivalent to:

min
w∈W

TMF (X)(w)

subject to w = argmin ||Xrw − y||22, ∀Xr ∈ XR
(2)

where TMF (X)(w) is the number of non-zero linear coefficient in w whose corresponding feature is
incomplete, i.e., TMF (X)(w) = |{zi ∈MF (X)|wi! = 0}|

The distinction between our problem and sparse linear regression lies in their objectives: sparse linear
regression seeks to minimize the number of non-zero coefficients across all features, whereas we focus
on minimizing the number of non-zero coefficients only among incomplete features. Orthogonal
Matching Pursuit (OMP) provides an efficient approximation to solve the sparse linear regression
problem Wang et al. (2012). This greedy algorithm begins with an empty solution set and initializes
the regression residual to the label vector. In each iteration, the algorithm selects the feature most
relevant to the current residual (with largest dot product), adds it to the solution set, retrains a linear
regression model, and updates the residual accordingly. It stops when the regression residue is
sufficiently small.

We propose a variant of OMP, as outlined in the appendix, to find minimal repair for linear regression.
Our algorithm has two major differences compared to the conventional OMP. First, we include all
complete features in the regression at the initialization, ensuring that we minimize the number of
non-zero coefficients only among incomplete features. Secondly, we define our stopping condition
by the maximum relevance (cosine similarity) between the feature and the label being smaller than
or equal to a user-defined threshold, instead of relying on a near-zero regression residue. This
approach enables our algorithm to work with general datasets without requiring the assumption of an
underdetermined linear system, which is typically necessary in conventional OMP.

The time complexity of the algorithm is O(Ttrain · |MF (z)|), making it significantly more efficient
than the baseline algorithm, which trains models on all repairs individually and has a time complexity
of O(Ttrain · |XR|). If we use gradient descent, our algorithm has a time complexity of O(n · d3),
where n is the number of training samples and d is the number of features. In cases where n < d2,
the time complexity is reduced toO(n · d2 +n2 · d) under certain conditions by applying incremental
learning techniques based on the Sherman-Morrison formula, as outlined in the appendix. The
following theorem characterizes the approximation rate of our algorithm.

Theorem 10 The first k incomplete features added to SMR in our algorithm for training set (X,y)
belong to a minimal repair of (X,y) with a probability of at least 1− 1/n, provided that: 1) µ <
1/(2k − 1), 2) the missing values in the dataset follow independent zero-mean normal distributions
(N (0, σ2

ij)), and 3) all linear coefficients (wi, zi ∈MF (X)) for incomplete features satisfy:

|wi| ≥
2
∑

xij=null σij

√
n+ 2

√
n logn

1− (2k − 1)µ
(3)
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where µ is the mutual incoherence defined by µ = max
i̸=j
|ziT zj|.

5 ALMOST MINIMAL REPAIR

Minimal repair might be too large and take a long time to compute for some datasets and learning
tasks. Thus, we relax the definition of minimal repair to reduce its size and computation cost. Instead
of enforcing exact optimality, we aim for a set whose imputation can deliver a model that is near-
optimal for all possible repairs. We use the concept of approximately certain model (ACM) Zhen et al.
(2024) to formalize this notion. For a user-defined threshold e ≥ 0, w≈ is an ACM for target function
f on training set (X,y) if for every repair Xr, L(w≈,Xr,y) − minw∈W L(w,Xr,y) ≤ e.

Definition 3 Given a threshold e ≥ 0, a set SAMR of incomplete samples in the training set (X,y) is
an almost minimal repair (AMR) for the target function f with loss L if: (1) repairing SAMR yields an
ACM for f in (X,y), and (2) no other set S′ satisfies (1) with |S′| < |SAMR|.

If e = 0, ACM reduces to a certain model. Hence, we can show that computing AMR is also NP-hard
for SVM (details are in the appendix).

5.1 COMPUTING AMR

We first propose an iterative algorithm with two main steps. Step 1 (ST1: ACM Optimizer) takes the
input dataset in iteration k > 0 of the algorithm, X(k), and finds the model w≈

k that minimizes the
worst-case suboptimality gap gk = supX(k)r

[
L(w≈

k ,X
(k)r,y)−minw∈W L(w,X(k)r,y)

]
.

Step 2 (ST2: Local Repair Set Identifier) examines whether gk > e, and if so, returns the smallest set
of currently incomplete samples whose imputation may help further reduce the suboptimality gap in
the next iteration.

Theorem 11 Given the training set (X,y), each selection made by ST2 belongs to the AMR set
SAMR of (X,y). Thus, the iterative algorithm terminates with an ACM, and the total imputed set
Siter-ACM ⊆ SAMR, where Siter-ACM is the union of all incomplete samples selected across iterations.

This guarantees that our algorithm converges to an ACM by imputing only a subset of SAMR. The key
distinction is that SAMR is defined to guarantee the ACM condition under all possible repairs—it is
sufficient without knowledge of any imputation results. In contrast, the iterative algorithm dynamically
learns imputation results along the way. This new information may render some samples in SAMR
unnecessary for achieving ACM in the current trajectory. Thus, Siter-ACM can be smaller than SAMR
while still ensuring the ACM condition.

5.2 EFFICIENT APPROXIMATION

Both ST1 and ST2 are intractable because they require solving min-sup optimization over exponen-
tially many repairs and identifying minimal subsets of incomplete samples whose repair is necessary
when an ACM does not yet exist. Specifically, these are the samples whose imputation would further
reduce the minimum value of the worst-case suboptimality gap g(w) = supXr h(w,Xr) toward
the user-defined threshold e. Finding such subsets involves understanding how each missing value
affects the supremum over all repairs—a problem known to be computationally hard in general due
to the nested structure of min-max optimization Ben-Tal et al. (2008). We therefore propose efficient
approximations of these steps that make the entire algorithm tractable.

Approximating ST1 (ACM Optimizer): ST1 aims to find the model w≈
k =

argminw supXr∈XR
rem

h(w,Xr), where h(w,Xr) = L(w,Xr) − minw′ L(w′,Xr). When
the loss function L is convex, each h(w,Xr) is convex in w, and so is the pointwise supremum of
such functions. Thus, we approximate this by sampling a finite subset of edge repairs {Xe

1, . . . ,X
e
s}

and solving the convex problem minw maxi h(w,Xe
i ).

However, directly computing h(w,Xe) requires solving an inner optimization for each sampled
repair to obtain the minimum loss. To make this tractable, we use the subgradient norm ∥g(w,Xe)∥
as a proxy for the suboptimality gap.
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Table 1: Details of datasets with injected missing data

Data Set Task Features Training samples Missing Factor% Missingness Type
Malware Classification 6823 1596 20-40-60 MCAR, MAR, MNAR

Tuadromd Classification 242 3571 20-40-60 MCAR, MAR, MNAR
Credit Default Classification 23 30000 20-40-60 MCAR, MAR, MNAR

Gas Regression 129 2566 20-40-60 MCAR
Superconductivity Regression 82 21262 20-40-60 MCAR

Concrete Regression 8 1030 20-40-60 MCAR

Table 2: Details of datasets with original missing data

Data Set Task Features Training samples Missing Factor Missingness Type
Breast Cancer Classification 10 559 1.97% MCAR

Water-Potability Classification 9 2620 39.00% MCAR
Online-Ed Classification 36 7026 35.48% MNAR, MCAR
Bankruptcy Classification 64 8402 54.00% MNAR
Air Quality Regression 12 7344 90.80% MNAR

Communities Regression 1954 1595 93.67% MCAR
Cancer Rate Regression 32 3048 81.00% MCAR

Theorem 12 If L(w) is convex and has an M -Lipschitz continuous gradient, then any model w≈

satisfying ∥∇wL(w,Xr)∥ ≤
√
2Me for all Xr is an ACM.

This result implies that for linear regression, which satisfies the convexity and smoothness conditions,
we can directly use the gradient norm to check whether a model is an ACM. For non-differentiable
models like linear SVM, the hinge loss is not smooth and the subgradient norm is not convex.
Nonetheless, we still use the subgradient norm as a practical stopping proxy to assess whether ACM
has been achieved.

Approximating ST2 (Local Repair Set Identifier): ST2 must find a small subset of currently
incomplete samples whose repair enables further progress toward satisfying the ACM condition. We
approximate this by identifying edge repairs Xe from the sampled set where ∥g(w≈

k ,X
e)∥ > ϵ′,

indicating that ACM is violated under these repairs.

We then inspect each such “problematic” edge repair. For each incomplete sample xj that currently
violates the margin condition (i.e., yj(w≈

k )
Txe

j < 1), we check if there exists a feasible repair where
the margin would exceed 1. If so, we assign a score to xj estimating its potential to reduce the
subgradient norm. One option is the maximum hinge loss reduction:

∆Lmax = C ·
[
(1−marginj)−max(0, 1−marginj,max)

]
, (4)

where marginj,max is estimated using interval arithmetic over the missing feature bounds. Alter-
natively, we compute a gradient alignment score based on the inner product between the current
subgradient vector and Cyjx

e
j , estimating the contribution to gradient magnitude.

These scores are aggregated across all high-gradient edge repairs. We then select the top-h highest-
ranked incomplete samples for imputation in the next iteration. This procedure effectively approxi-
mates the function of ST2, enabling tractable, targeted refinement of the model toward satisfying the
ACM condition.

6 EXPERIMENTAL EVALUATION

We have evaluated our methods on six real-world datasets with injected missingness and seven with
naturally occurring missing values, spanning diverse domains and varying in missingness ratios
(proportion of incomplete samples), feature dimensionalities, sample sizes, and types of missingness
(Tables 1 and 2). Details on datasets and the experiment setting are in the appendix.

As explained in Section 1, users manually repair their data in some settings. Thus, we compare
the accuracy and time overhead of our methods to Active Clean (AC) Krishnan et al. (2016), which

7
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Table 3: Accuracy/time for SVM on data with injected MCAR

Data Set % Missing Ground Truth Time(s) Accuracy(%) Impute % of Samples
Accuracy(%) AC MR AMR AC MR AMR AC MR AMR

Malware
20 95.61 1.36 6.15 14.5 93.13 96.7 95.3 6.39 18.68 1.49
40 95.03 0.56 98.0 14.9 92.20 92.42 95.1 3.35 21.1 0.69
60 95.91 0.170 12.81 15.1 88.67 96.37 94.8 3.28 16.65 0.46

Tuadromd
20 98.67 0.68 1.135 2.7 97.53 98.73 98.2 3.78 11.9 1.3
40 98.77 0.54 2.19 2.9 97.42 98.81 98.2 3.53 11.1 0.7
60 98.77 0.34 3.29 2.8 97.50 98.77 98.2 2.48 11.8 0.4

Credit Default
20 81.03 11.86 1.39 3.4 81.02 81.02 77.8 0.19 30 0.05
40 81.03 14.19 3.93 3.9 81.02 81.00 77.7 0.23 30 0.03
60 81.02 14.2 0.57 3.7 81.02 81.02 77.8 0.19 30 0.01

Table 4: Accuracy/time for SVM on data with original missingness using model-based imputation

Data Set Method Time(s) Accuracy(%) % Samples ImputedKNN MICE TCSDI MF KNN MICE TCSDI MF

Breast Cancer
MR 0.055 0.064 51 0.124 96.30 96.4 97.00 96.58 18.2

AMR 0.016 0.019 3.83 0.127 96.43 96.78 97.11 96.87 1.37
AC 0.065 0.065 84 0.120 95.85 96.30 97.87 96.80 87.27

Baseline 0.0039 0.046 102 2.80 95.78 96.30 97.00 97.0 100

Water-Potability
MR 0.259 0.135 473.7 9.91 60.2 60.3 62.80 60.1 30

AMR 2.03 1.95 10.51 2.22 60.98 60.98 60.13 60.98 0.72
AC 0.33 0.033 85.32 5.47 54.96 56.90 57.00 58.19 1.94

Baseline 0.0053 0.0115 1459 12.8 60.53 60.63 61.3 60.53 100

Online-Ed
MR 1.606 0.748 1087.2 8.31 64.5 64.5 65.22 63.78 29.91

AMR 3.45 3.56 15.45 3.83 63.86 62.70 63.87 63.86 0.43
AC 1.83 1.88 93.76 6.23 63.71 60.77 63.60 63.41 0.81

Baseline 0.989 1.270 3624 17.09 65.23 65.17 65.23 65.23 100

Bankruptcy
MR 2.798 0.76 2286.7 451.3 97.22 97.8 97.79 96.04 29.9

AMR 10.85 15.89 23.71 25.59 95.29 96.40 97.11 95.29 0.31
AC 2.24 2.25 101 250.3 96.01 96.41 96.78 96.52 0.6

Baseline 4.843 22.15 7620 710.16 96.00 96.30 97.00 97.46 100

Table 5: Accuracy/time for Linear Regression on data with injected MCAR

Data Set % Missing Ground Truth Time(s) MSE Impute % of Samples or Features
MSE AC MR AMR AC MR AMR AC MR AMR

Superconductivity
20 0.0088 2.20 2.305 3.17 0.0884 0.00888 0.105 0.24 70.00 0.05
40 0.0088 2.23 2.534 3.24 0.00886 0.00885 0.102 0.22 75.00 0.03
60 0.0088 1.46 2.476 3.15 0.089 0.00885 0.102 0.25 75.00 0.01

Gas
20 0.1053 0.0734 0.31 1.16 0.114 0.105 0.161 2.01 65.00 0.02
40 0.1053 0.051 0.3391 1.24 0.112 0.1054 0.160 2.01 65.00 0.01
60 0.1053 0.0332 0.551 1.15 0.117 0.112 0.157 1.78 25.00 0.01

Concrete
20 0.0149 0.0126 0.0227 0.3432 0.0152 0.01495 0.0541 6.89 50.00 0.07
40 0.0149 0.0149 0.0202 0.3587 0.0151 0.01495 0.0541 5.63 50.00 0.04
60 0.0149 0.0065 0.0199 0.3011 0.0156 0.01495 0.0541 5.28 50.00 0.02

Table 6: Accuracy/time for Linear Regression on data with original missing using model-based imputation

Data Set Method Time(s) MSE % Samples ImputedKNN MICE TCSDI MF KNN MICE TCSDI MF

Cancer Rate
MR 0.153 0.574 5852 6.89 0.0045 0.0045 0.0045 0.0045 33.3

AMR 0.35 1.17 45.74 0.78 0.0047 0.0045 0.0045 0.0045 0.48
AC 0.166 0.133 110 3.95 0.0050 0.0051 0.0049 0.0049 0.70

Baseline 0.584 0.664 6104 7.24 0.0045 0.0058 0.0049 0.0047 100

Air Quality
MR 1.06 2.46 14976 2.24 5.671 5.74 5.82 5.71 50

AMR 1.32 1.57 107 1.85 5.75 5.75 5.75 5.75 0.65
AC 0.199 0.0612 95 1.45 6.66 6.71 7.138 6.54 1.69

Baseline 1.763 2.46 18372 2.51 5.672 5.923 5.825 5.752 100

Communities
MR 26.74 28863 - - 0.023 0.026 - - 75

AMR 4.36 53.15 - - 0.020 0.024 - - 0.20
AC - - - - - - - - -

Baseline 26.72 33475 - - 0.019 0.024 - - 100

integrates data repair with stochastic gradient descent: in each iteration it samples a batch, returns it
to the user for repair, and then updates model parameters with the repaired samples. Although AC
reduces repair cost by prioritizing influential samples, it is unclear whether the resulting repaired
data yield an accurate model, since not all samples are ever selected for gradient updates. In these
experiments, we use datasets with injected missingness with ground truth to simulate manual repairs.
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Table 3 reports SVM classification results for minimal repair (MR), almost minimal repair (AMR), and
AC. The results show that MR and AMR consistently outperform AC in accuracy across all datasets
and missingness levels. Notably, AMR achieves higher accuracy than AC while repairing substantially
fewer samples. MR has the highest accuracy overall, although it selects more samples.

Table 5 compares regression outcomes for MR, AMR, and AC. Unlike AC and AMR, which repair entire
samples, MR imputes individual missing features (see Section 4). Consistent with the classification
findings, MR and AMR again outperform AC in terms of mean squared error (MSE) across all datasets
and missingness ratios. MR achieves the lowest MSE overall, reflecting its more comprehensive
repair strategy aimed at closely approximating the optimal model. The results for SVM and linear
regression on these datasets with types of missingness show a similar trend and are in the appendix.

Next, we evaluate the time and effort saved by our methods using model-based imputations for repair.
Because the imputation cost increases with the number of missing items, (almost) minimal repair
can cut both inference time and user effort for inspecting or verifying imputed values.We use four
imputation models that span the major methodological families. KNN Mattei & Frellsen (2019)
represents a classical distance-based approach that predicts missing values from nearby observed
samples. MICE Buuren & Groothuis-Oudshoorn (2011) provides a statistical baseline based on
multivariate regression and remains widely used in practical data-analysis workflows. MissForest
Stekhoven & Bühlmann (2011) is a non-parametric machine-learning method that leverages random
forests to capture nonlinear dependencies. Finally, TCSDI Zheng & Charoenphakdee (2022). serves
as our modern deep generative baseline; as a diffusion-based imputer, it has been shown to outperform
earlier deep-learning methods such as GAIN and VAE-based models. Together, these four methods
cover the statistical, traditional ML and deep generative paradigms, providing a representative
spectrum of imputation strategies. Across all models, we evaluate four imputation regimes, full
imputation, minimal-repair imputation, (almost) minimal-repair imputation, and ActiveClean-selected
sample imputation and report accuracy, running time, and the number of imputed items.

As shown in Table B, our methods are generally faster and deliver higher accuracies than AC and
full imputations over datasets with original missingness and different imputation models for SVM.
TCSDI achieves a higher accuracy than other imputation models, but with longer inference times than
other methods. This underscores the practical value of MR and AMR, which substantially reduce
inference overhead by limiting imputations, especially when paired with TCSDI. The results for SVM
over datasets with injected missingness and different model-based imputation methods show a similar
trend and are in the appendix.

We also assess linear regression with model-based imputations (Table E). Some imputation methods
run out of main memory over some datasets, e.g., MF on the Communities dataset, as they scale poorly
on datasets with too many features/samples. We have omitted their results in their corresponding
tables (shown as -). Here, MR and AMR generally deliver faster inference than full imputation
while maintaining comparable accuracy, despite substantially fewer imputations. In contrast, AC
encountered computational challenges in datasets with high missingness ratios, e.g., Communities,
where minimal cleaning occasionally leaves zero training samples, causing failures in partial fitting.
MR and AMR avoid such failures, demonstrating robustness at substantial missingness ratios. AC also
generally delivers higher MSE (lower fit) than MR and AMR. The results for linear regression over
datasets with injected missingness show a similar trend and are in the appendix.

Finally, while some of our theoretical results assume conditions such as zero-mean Gaussian noise
or M-Lipschitz continuity of loss functions, we observe that these assumptions are not required in
practice. The datasets in our empirical evaluation do not satisfy these conditions, and SVM models
do not satisfy M-Lipschitz continuity; nonetheless, MR and AMR consistently deliver accurate results.

7 AMR FOR NEURAL NETWORKS

Computing AMR for Deep Neural Networks (DNNs) is challenging as minimizing the suboptimality
gap requires global minima for every repair. Recall that an ACM w≈ satisfies:

sup
Xr∈XR

(
L(w≈,Xr,y)− min

w∈W
L(w,Xr,y)

)
≤ e. (5)
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Since flexible DNNs can memorize random data with near-zero loss Zhang et al. (2016); Cooper
(2018), we assume minw∈W L(w,Xr,y) ≈ 0. Thus, checking for an ACM simplifies to ensuring
the worst-case loss is bounded.

To make this feasible, we check the condition sample-wise. We verify if the average difference
between maximal and minimal repair losses satisfies the threshold e:

1

n

∑
xi∈MVX

(
max
xr
i∈xR

i

L(f(xr
i ,w

≈), yi)− min
xr
i∈xR

i

L(f(xr
i ,w

≈), yi)

)
≤ e (6)

For networks with monotonic activations (e.g., ReLU), extrema occur at missing value boundaries
(edge repairs), significantly reducing cost.

When the ACM condition is violated, AMR is the smallest subset restoring it. Intuitively, we impute
samples contributing most to the loss difference in Eq. 6. Since this ranking is model-dependent,
Algorithm 2 collaboratively learns the DNN and identifies AMR via SGD.

Algorithm 2 Approximating AMR for Neural Networks

SAMR ← [ ]
Xcurr ← random repair of X; wcurr ← random initialization
maxL,minL, samplesTopK ← checkACM(wcurr,Xcurr)
while maxL−minL > e do

if maxL > e AND minL ≤ e then
Xcurr ← impute(Xcurr, samplesTopK)
SAMR ← SAMR.add(samplesTopK)

end if
wcurr ← SGDEpoch(wcurr,Xcurr)
Update maxL,minL, samplesTopK

end while
return SAMR

The algorithm iteratively identifies k samples to restore the ACM condition. Crucially, we only
impute when the model is “approximately optimal” for some repairs (minL ≤ e < maxL). If
both losses exceed e, we prioritize training (SGDEpoch) to ensure selection reflects true sample
importance. SAMR is the union of imputed samples.

8 RELATED WORK

Researchers have proposed stochastic optimization to find a model by optimizing the expected loss
function over the probability distributions of missing data items in training samples Ganti & Willett
(2015). Similarly, robust optimization aims to minimize the loss function of a model for the imputation
that brings the highest training loss given certain distributions of missing values Aghasi et al. (2022).
However, the distributions of missing data items are not often available. Thus, users may spend
significant time and effort discovering or training these distributions, which may require the user to
find the causes of missingness in the data and dependencies between the features. Additionally, for a
given type of model, users must solve various and possibly challenging optimization problems for
many possible (combinations of) distributions of missing values. More importantly, these methods
reflect the uncertainty in the training data caused by missing values in the trained model instead of
repairing the data to reduce its uncertainty. Hence, they deliver inaccurate models on the dataset with
many missing values. More discussion about related work is available in the appendix.
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LIMITATIONS

While our work demonstrates both theoretical and practical advantages in learning over incomplete
data, we acknowledge two limitations:

Model Class and Convexity Assumptions. Our proposed minimal repair (MR) algorithms are
developed for support vector machines (SVM) and linear regression, while the almost minimal repair
(AMR) framework is applicable to a broader class of statistical machine learning models. However,
for AMR, we currently provide provable error bounds and efficient approximations only for models
with convex loss functions. This stems from our reliance on Step 1 (ST1) in Section 5.1, where we
solve a convex optimization problem to find an approximately optimal model w≈

k . Extending AMR
to models with non-convex loss functions remains an open challenge due to the difficulty of verifying
approximate optimality in such settings. Importantly, this limitation reflects the well-known hardness
of non-convex optimization itself—since one cannot generally find globally optimal models for
non-convex losses, it is also difficult to guarantee that a repaired model is close to a global optimum.
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Trade-off Between Computation and Imputation Time. As seen in our experiments, the time
required to compute MR or AMR can exceed or roughly match the time needed to fully impute
the dataset when simple imputation methods (e.g., mean or KNN) are used. This suggests that MR
and AMR may not be the preferred choice in scenarios where users already opt for inexpensive
imputation strategies. However, for more complex, resource-intensive and often accurate imputation
methods—such as diffusion-based models Zheng & Charoenphakdee (2022)—we observe substantial
time savings by using MR or AMR to reduce the number of imputations. In practice, users may
choose to apply MR or AMR when planning to use high-cost imputation models, and directly pursue
full imputation when using simpler methods.

ROBUSTNESS TO IMPUTATION ERROR

While our study focuses on the impact of different imputation strategies on downstream model
performance, an important complementary direction is the development of learning methods that
remain robust to potential imputation errors. This robustness-focused perspective is largely orthogonal
to our goal of understanding how different subsets of data influence imputation quality, and it would
require a substantial separate investigation beyond the scope of this work. Approaches based on
robust optimization, for example, offer a principled way to train models that account for uncertainty
in the imputed values and may help mitigate the effects of imputation variability. Exploring such
robustness-oriented techniques represents a promising avenue for future work.

BROADER IMPACTS

Our work has potential positive and negative societal impacts, which we outline below.

Positive societal impacts. Our methods can substantially reduce the time and effort needed for data
preparation, a phase that often consumes up to 80% of a data scientist’s time Neutatz et al. (2021).
By identifying only the essential missing values to repair, our approach streamlines the ML pipeline,
lowers costs, and makes ML more accessible for everyone—especially in resource-constrained
settings or domains where full imputation is infeasible.

Negative societal impacts. In high-stakes domains, e.g., healthcare, criminal justice, setting a
suboptimal error threshold in AMR (either intentionally or unintentionally) may lead to missed repairs
of critical data, resulting in biased or unsafe models. Additionally, the selective repair approach may
cause developers to overlook the importance of understanding missingness mechanisms or domain
context. These risks can be mitigated by involving domain experts and validating models before
deployment.

EXPERIMENTAL SETTING

DATASETS

We evaluate our methods on two types of datasets: those with synthetic missingness and those with
real-world missingness. For each dataset, we simulate three levels of missingness: 0.2, 0.4, and
0.6, corresponding to 20%, 40%, and 60% incomplete samples, respectively. These datasets are
further divided based on the downstream task: linear regression (LR) and support vector machine
classification (SVM).

All datasets are obtained from publicly available repositories. For synthetic missingness, we start
with complete datasets and introduce missing values in a controlled manner. For real missingness,
we use datasets that naturally contain incomplete entries. This separation allows us to analyze the
behavior of our repair methods under both idealized and realistic data corruption scenarios.

DETECTION OF TYPES OF MISSINGNESS IN DATA

We use the Missing Value PC (MVPC) algorithm Tu et al. (2019), a framework designed for causal
discovery in datasets with missing data. It is an extension of the PC algorithm, which is a constraint-
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based method for causal discovery. Given an incomplete dataset, we introduce a missingness indicator
RA for each incomplete feature A. We run the Missing Value PC (MVPC) algorithm on the dataset,
after including the indicators, and we inspect the dependencies of RA.

HARDWARE

We conducted experiments on two hardware platforms. Most experiments ran on an x86_64 machine
with 30 Intel(R) Xeon(R) E5-2670 v3 CPU cores (2.30GHz), hosted in a VMware virtualized
environment with two NUMA nodes and 30MB L3 cache. However, this system lacked sufficient
power for diffusion-based imputation models. For those experiments (TCSDI), we used an Nvidia
DGX-2 system with one Nvidia Tesla V100 GPU (32GB VRAM) and 20 CPU cores from 2.70GHz
Intel Xeon Platinum 8168 processors with 33MB L3 cache.

USING SGD

We have run each experiment that involves Stochastic Gradient Descent (SGD) (SVM) three times
with different seeds and report the average.

ADDITIONAL EXPERIMENTAL RESULTS

Tables B, C, D and E report the accuracy and running times of full imputation (baseline), MR, AMR,
and AC across all imputation methods. For SVM, we evaluate all three injected missingness types
(MCAR, MAR, MNAR), while for linear regression we include the MCAR setting due to feasibility
constraints. Across these experiments, the results follow the same trend described in Section 7.

ADDITIONAL MEMORY-USAGE RESULTS

We report the reduction in computation time for imputing MR and AMR subsets relative to full-data
imputation in Table B of the submission. For memory usage, only the Malware–MAR results are
included due to space constraints (shown in the table F, G, I). These partial results already illustrate a
consistent trend: KNN exhibits substantially lower peak RAM consumption under MR compared to
full imputation, and MissForest also shows reduced peak memory across the malware20, malware40,
and malware60 configurations. MICE is omitted because it was infeasible to run on this dataset
within the available memory budget.

Overall, the observed pattern suggests that MR generally lowers memory usage, particularly for
distance-based and non-parametric methods whose resource requirements scale with the number
of samples. Future extensions may include a broader memory-usage comparison across additional
datasets and missingness settings.

MINIMAL REPAIR FOR LINEAR REGRESSION

ALGORITHM FOR FINDING MINIMAL REPAIR

Orthogonal Matching Pursuit (OMP) provides an efficient approximation for solving the sparse linear
regression problem Wang et al. (2012). Essentially, this greedy algorithm begins with an empty
solution set and initializes the regression residual to the label vector. In each iteration, the algorithm
selects the feature most relevant to the current residual (i.e., having the largest dot product), adds
it to the solution set, retains a linear regression model, and updates the residual accordingly. The
program stops when the regression residue is sufficiently small. Therefore, OMP will return a subset
of features (the solution set) that are sufficient to achieve an optimal linear regression model.

In this paper, we propose a variant of OMP, as outlined in Algorithm A, to find minimal repair for
linear regression. Our algorithm has two major differences compared to the conventional OMP. Firstly,
we include all complete features in the regression at the initialization, ensuring that we minimize the
number of non-zero coefficients only among incomplete features. Secondly, we define our stopping
condition by the maximum relevance (cosine similarity) between the feature and the label being
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Table B: Accuracy/time for SVM on data with injected MCAR using model-based imputations

Data Set Method Time(s) Accuracy(%) % Samples ImputedKNN MICE TCSDI MF KNN MICE TCSDI MF

Malware 20

MR 8.98 - 24390.8 4534.6 95.6 - 96.49 95.8 18.68
AMR 19.13 - 953.1 26.23 95.42 - 95.78 95.31 0.73
AC 1.17 - 12668 3274 91.20 - 92.30 91.60 9.09

Baseline 13.9 - 130269 6645.5 96.52 - 96.74 96.70 100

Malware 40

MR 14.24 - 54702.4 3924.4 96.16 - 96.23 96.17 21.1
AMR 9.99 - 1057.3 25.7 95.89 - 96.23 91.88 0.37
AC 0.84 - 11085 3078.5 88.97 - 89.73 89.57 5.32

Baseline 27.66 - 260537 6347.8 93.83 - 96.74 95.75 100

Malware 60

MR 18.26 - 64959.2 3546.5 96.16 - 97.87 96.41 16.65
AMR 11.28 - 1107.2 23.91 95.12 - 96.01 94.37 0.24
AC 0.84 - 11085 2534.7 89.00 - 88.82 89.32 3.28

Baseline 41.21 - 390806 6256.4 96.16 - 97.87 96.70 100

Tuadromd 20

MR 1.39 100.8 287 41.4 98.6 98.73 98.43 98.67 11.9
AMR 2.81 17.28 43.74 6.01 96.13 96.27 96.89 96.13 2.02
AC 1.04 99.86 145 15.3 97.58 97.63 97.63 97.63 4.06

Baseline 2.37 102.11 1987 45.60 98.77 98.77 98.66 98.70 100

Tuadromd 40

MR 2.55 96.26 466.4 36.69 98.5 98.4 98.54 98.5 11.1
AMR 2.94 18.15 83.64 3.87 96.15 95.78 96.56 96.15 1.01
AC 0.86 99.8 169 13.4 96.98 97.12 97.45 97.45 3.3

Baseline 4.69 100.14 3882 43.94 97.3 97.6 98.66 98.84 100

Tuadromd 60

MR 3.62 79.66 692.6 33.41 98.3 98.36 98.38 98.3 11.8
AMR 6.52 9.13 137.5 25.13 95.45 95.25 96.13 95.98 0.67
AC 0.679 77.08 170 10.5 96.96 96.88 97.3 96.90 1.87

Baseline 6.21 100.6 6476 43.96 97.6 97.3 98.66 98.66 100

Credit Default 20

MR 8.37 2.93 2121 98.24 80.0 78.1 79.6 81.07 30
AMR 11.05 15.48 21.37 63.25 78.10 78.14 78.10 78.87 0.08
AC 14.49 15.43 94 64.8 78.3 78.16 78.2 78.25 0.125

Baseline 23.20 5.14 7071 108.3 78.1 80.1 80.3 78.40 100

Credit Default 40

MR 11.77 2.64 4242.6 76.45 80.31 80.1 80.4 80.85 30
AMR 12.37 16.75 29.57 51.27 78.14 78.12 78.12 78.22 0.04
AC 18.07 18.78 96 45.35 79.76 79.1 80.01 79.87 0.19

Baseline 38.56 5.05 14263 98.32 79.6 78.1 78.08 78.14 100

Credit Default 60

MR 13.56 3.5 6357 58.4 79.72 79.81 79.75 80.32 30
AMR 14.12 15.79 32.15 29.35 78.14 78.12 78.12 78.09 0.03
AC 20.87 21.31 94 35.7 79.4 79.3 79.7 79.4 0.21

Baseline 48.04 3.902 21124 89.17 79.1 79.6 80.1 78.12 100

Table C: Accuracy/time for SVM on data with injected MAR using model-based imputations

Data Set Method Time(s) Accuracy(%) Impute (%)KNN MICE TCSDI MF KNN MICE TCSDI MF

Malware 20

MR 11.16± 0.89 - 27135± 2453.1 4726.8± 466.2 96.38± 0.25 - 96.45± 0.13 96.29± 0.34 21
AMR 20.37 ±1.54 - 989.4 ±11.74 31.54 ±2.03 95.17 ±0.13 - 95.87 ±0.02 95.03 ±0.75 0.73 ±0
AC 2.291± 0.049 - 5295.3± 113.3 4177± 6.23 93.39± 1.54 - 94.85± 0.20 93.97± 0.96 3.34± 0.15

Baseline 17.71 - - 6830.2 96.30 - - 96.59 100

Malware 40

MR 19.11± 1.00 - 65610± 3524.5 5422.8± 835.9 96.16± 0.24 - 96.13± 0.06 96.10± 0.17 25.23
AMR 19.98 ±1.24 - 1043.9 ±53.2 35.37 ±1.3 96.03 ±0.02 - 95.89 ±0.04 95.36 ±0.13 0.37 ±0
AC 2.178± 0.106 - 10534± 1322.7 5168.1± 90.4 94.55± 0.95 - 93.89± 0.48 92.14± 0.83 3.29± 0.22

Baseline 36.10 - - 6460.7 96.15 - - 95.90 100

Malware 60

MR 23.44± 0.88 - 76545± 5246.8 4224.5± 549.4 95.67± 0.61 - 95.73± 0.10 95.65± 1.09 19.69
AMR 17.37 ±0.87 - 1276.3 ±57.2 24.1 ±0.8 95.71 ±0.52 - 95.46 ±0.21 94.01 ±0.12 0.24 ±0
AC 1.807± 0.036 - 15259± 1631.2 2968.5± 25.04 93.44± 1.35 - 93.01± 0.67 91.78± 2.45 3.24± 0.23

Baseline 48.33 - - 5794.3 95.85 - - 96.18 100

Tuadromd 20

MR 1.21± 0.003 98.65± 0.85 305.8± 5.13 39.74± 0.62 98.68± 0.18 98.63± 0.15 98.70± 0.11 98.67± 0.20 9.84
AMR 2.98 ±0.13 20.01 ±1.26 51.27 ±2.01 6.99 ±0.43 95.24 ±0.23 96.03 ±0.24 96.18 ±0.21 95.78 ±0.14 2.02 ±0
AC 0.907± 0.052 100.85± 3.51 133.6± 6.84 39.10± 0.56 98.76± 0.10 98.76± 0.16 98.89± 0.07 98.66± 0.07 3.87± 0.76

Baseline 1.72 101.1 1673.4 44.55 98.80 98.73 98.81 98.81 100

Tuadromd 40

MR 2.26± 0.01 95.7± 0.55 492.5± 10.4 37.2± 0.23 98.73± 0.11 98.67± 0.10 98.75± 0.09 98.78± 0.06 10.19
AMR 3.23 ±0.09 20.17 ±1.03 46.24 ±2.12 6.09 ±0.53 96.35 ±0.27 96.07 ±0.45 96.84 ±0.25 96.87 ±0.19 1.01 ±0
AC 0.686± 0.013 93.65± 1.57 138.33± 4.92 34.52± 0.22 98.73± 0.11 98.70± 0.07 98.76± 0.07 98.78± 0.11 3.01± 0.66

Baseline 3.17 101.5 3451 44.57 98.70 98.81 98.80 98.70 100

Tuadromd 60

MR 3.27± 0.03 82.4± 5.56 671± 35.8 35.13± 0.11 98.86± 0.12 98.71± 0.02 98.83± 0.11 98.73± 0.12 9.62
AMR 6.78 ±0.12 12.53 ±1.17 124.3 ±4.54 28.71 ±1.31 96.99 ±0.17 97.13 ±0.26 ±97.02± 0.35 97.54 ±0.43 0.67 ±0
AC 0.556± 0.010 74.63± 1.10 165.7± 8.49 31.68± 0.24 98.64± 0.19 98.60± 0.09 98.49± 0.13 98.61± 0.02 2.32± 0.12

Baseline 4.39 116.08 5036 44.17 98.82 98.71 98.82 98.73 100

Credit Default 20

MR 5.54± 1.18 3.71± 0.68 2137.5± 41.5 100.6± 0.73 81.05± 0.03 81.08± 0.02 81.12± 0.04 81.12± 0.02 30
AMR 10.75± 0.37 17.03± 0.88 20.13± 0.95 71.35± 0.17 79.43± 0.17 79.32± 0.08 79.478± 0.15 79.02± 0.09 0.08± 0
AC 12.57± 1.06 13.58± 1.03 72.44± 5.01 104.12± 1.16 81.02± 0.00 81.02± 0.00 81.02± 0.00 81.02± 0.00 0.56± 0.30

Baseline 11.45 6.14 7125 112.88 81.02 81.02 81.02 81.02 100

Credit Default 40

MR 9.55± 1.51 5.54± 0.74 4275.1± 34.7 79.87± 1.30 56.68± 0.00 56.68± 0.00 56.68± 0.30 56.70± 0.00 30
AMR 12.98± 0.57 19.03± 0.16 35.13± 0.77 41.02± 2.21 79.13± 0.06 79.99± 0.05 80.01± 0.11 79.76± 0.08 0.04
AC 13.50± 1.56 14.17± 1.95 83.56± 4.67 80.14± 1.45 78.16± 0.05 78.17± 0.05 78.21± 0.07 78.17± 0.04 0.52± 0.20

Baseline 19.93 6.15 14291 106.22 81.02 81.02 81.02 81.02 100

Credit Default 60

MR 7.14± 0.26 4.12± 0.72 6411± 45.4 66.12± 2.43 60.59± 0.04 60.65± 0.05 60.64± 0.03 60.65± 0.03 30
AMR 15.74± 0.27 19.13± 1.08 41.98± 1.56 32.17± 1.10 78.32± 0.04 78.88± 0.07 79.27± 0.02 79.03± 0.03 0.03
AC 7.70± 2.37 8.23± 1.97 84.85± 4.51 52.06± 2.26 81.04± 0.01 81.03± 0.01 81.04± 0.02 81.03± 0.01 0.30± 0.13

Baseline 26.07 7.91 21307 103.05 81.02 81.02 81.02 81.02 100

smaller than or equal to a user-defined threshold, instead of relying on a near-zero regression residue.
This approach enables our algorithm to work with general datasets without requiring the assumption
of an underdetermined linear system, which is typically necessary in conventional OMP.
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Table D: Accuracy/time for SVM on data with injected MNAR using model-based imputations

Data Set Method Time(s) Accuracy(%) Impute (%)KNN MICE TCSDI MF KNN MICE TCSDI MF

Malware 20

MR 15.49±0.70 - 43605±2020.5 5206.1±812.6 96.07±0.44 - 96.20±0.34 96.10±0.6 18.49±0.85
AMR 19.14± 0.75 - 879.2± 23.5 29.10± 1.89 95.14± 0.04 - 95.76± 0.02 95.57± 0.03 0.73± 0
AC 2.211±0.12 - 6619±1161.3 5292± 110.6 92.37±0.746 - 92.74± 0.45 92.68±1.68 3.494±0.567

Baseline 28.96 - - 5959.7 96.55 - - 96.52 100

Malware 40

MR 25.32±1.30 - 95044±5955.3 3622.7±167.1 95.16±0.76 - 95.13±0.4 95.02±0.1 22.83±1.4
AMR 21.37± 1.12 - 1198.3± 45.7 29.17± 4.23 95.11± 0.05 - 95.18± 0.05 94.98± 0.05 0.37± 0
AC 1.525±0.096 - 10534±1322.7 1659.4±3.94 93.99±1.747 - 93.48±0.48 93.63±0.63 3.245±0.121

Baseline 50.34 - - 7124.4 96.52 - - 96.33 100

Malware 60

MR 27±1.94 - 103279±8018.5 1598.4±243.7 95.23±0.40 - 95.20±0.21 95.13±0.17 19.75±2.66
AMR 21.37± 1.24 - 1492.3± 98.5 22.13± 1.07 95.34± 0.05 - 94.58± 0.06 95.02± 0.08 0.24± 0
AC 0.946±0.0617 - 15259±1631.2 1128.5±8.95 94.27±0.341 - 94.01±0.67 94.04±0.30 3.363±0.174

Baseline 63.30 - - 6061.5 96.18 - - 96.08 100

Tuadromd 20

MR 1.98±0.06 96.31±1.12 314.6±13.6 37.55±0.24 98.74±0.06 98.69±0.13 98.80±0.12 98.71±0.1 10.11±1.55
AMR 2.17± 0.55 18.96± 2.13 47.22± 1.35 6.13± 0.54 97.84± 0.03 97.94± 0.05 98.28± 0.03 98.22± 0.06 2.02± 0
AC 0.785±0.057 94.39±2.04 133.6±6.84 35.82±0.059 98.64±0.033 98.65±0.092 98.69±0.07 98.62±0.03 2.99±0.755

Baseline 2.55 100.5 3402.6 46.34 98.80 98.74 98.82 98.88 100

Tuadromd 40

MR 3.37±0.01 78.93±1.45 612.3±15.6 34.62±0.24 98.56±0.05 98.62±0.19 98.75±0.1 98.36±0.02 9.95±0.22
AMR 2.95± 0.87 23.49± 3.15 50.27± 7.16 7.02± 0.99 97.94± 0.13 97.76± 0.10 98.08± 0.12 97.84± 0.09 1.01± 0
AC 0.515±0.004 94.39±2.00 138.3±4.92 31.40±0.21 98.21±0.13 98.11±0.25 98.26±0.1 98.13±0.097 2.163±0.182

Baseline 4.39 103.71 6098.7 44.13 98.70 98.87 98.87 98.80 100

Tuadromd 60

MR 4.31±0.01 72.36±1.19 751.2±21.4 33.77±0.2 98.1±0.16 98.0±0.16 98.14±0.13 98.03±0.12 9.39±0.27
AMR 6.99± 0.83 17.13± 3.57 155.3± 20.7 26.39± 4.13 97.78± 0.10 98.12± 0.12 98.27± 0.11 98.05± 0.09 0.67± 0
AC 0.248±0.053 65.56±2.93 165.7±8.49 29.63±0.24 97.89±0.114 97.94±0.102 97.94±0.13 97.58±0.45 2.138±0.125

Baseline 5.73 101.39 6090.7 43.86 98.84 98.59 98.82 98.82 100

Credit Default 20

MR 6.13±0.33 3.05±0.27 3827±57.1 87.80±0.08 80.91±0.07 80.85±0.004 80.88±0.005 80.85±0.004 29.71
AMR 11.43± 0.75 20.01± 1.85 25.37± 1.29 59.95± 4.27 80.28± 0.12 80.75± 0.09 81.32± 0.08 80.45± 0.11 0.08± 0
AC 14.19±1.15 15.37±1.15 13.78±1.15 118.3±13.27 79.90±0.923 79.74±0.834 79.87± 0.768 79.71±0.88 0.486±0.246

Baseline 17.67 6.65 12820.5 113.13 81.02 81.02 81.02 81.02 100

Credit Default 40

MR 7.43±0.61 3.89±0.76 6850±76.4 60.97±0.15 60.37±0.03 58.90±0.18 60.64±0.14 60.47±0.04 29.98
AMR 13.07± 0.78 21.54± 1.76 41.29± 6.72 45.24± 2.92 79.52± 0.10 80.03± 0.14 80.05± 0.07 80.18± 0.12 0.04± 0
AC 9.94±0.243 10.725±0.243 9.68±0.243 71.85±1.93 80.96±0.056 80.92±0.13 80.98± 0.005 81.01±0.004 0.327±0.095

Baseline 29.59 6.25 22838 105.59 81.02 81.02 81.02 81.02 100

Credit Default 60

MR 14.07±1.41 5.8±0.32 8992±61.4 47.25±0.03 58.95±0.20 58.5±0.1 60.35±0.19 60.43±0.25 29.89
AMR 16.83± 0.72 25.19± 3.61 49.17± 2.43 44.54± 2.47 79.73± 0.13 80.03± 0.07 81.03± 0.11 80.89± 0.13 0.03± 0
AC 4.45±0.49 4.79±0.49 4.38±0.49 34.04±0.69 80.56±0.597 80.52±0.594 80.65± 0.34 80.69±0.39 0.213±0.021

Baseline 35.90 6.77 29978.4 104.16 81.02 81.02 81.02 81.02 100

Table E: Accuracy/time for Linear Regression on data with injected MCAR using model-based imputations

Data Set Method Time(s) MSE % Impute SamplesKNN MICE TCSDI MF KNN MICE TCSDI MF

Superconductivity 20

MR 2.369 33.16 29165 851.1 0.0089 0.00897 0.00904 0.0091 70
AMR 25.13 30.70 39.95 29.78 0.0247 0.0247 0.0247 0.0247 0.09
AC 0.145 15.66 96.4 515.92 0.00934 0.0092 0.0092 0.00928 0.05

Baseline 0.0692 34.17 30515 794.8 0.0088 0.008939 0.009013 0.0091 100

Superconductivity 40

MR 2.599 33.73 29735 842.4 0.0089 0.00924 0.00914 0.0092 75.00
AMR 50.77 56.64 85.61 60.24 0.0314 0.0314 0.0314 0.0314 0.05
AC 0.157 15.5 100.4 389.7 0.0093 0.0093 0.0092 0.0093 0.25

Baseline 0.067 34.34 30783 822.3 0.0089 0.00924 0.00914 0.0092 100

Superconductivity 60

MR 2.541 33.24 30659 828.62 0.0089 0.01027 0.00924 0.0092 75.00
AMR 80.40 84.26 157.54 100.12 0.0121 0.0121 0.0121 0.0121 0.03
AC 0.20 14.42 115.6 266.51 0.0093 0.0093 0.0093 0.00935 0.25

Baseline 0.0681 34.41 30637 838.62 0.0089 0.0104 0.00924 0.0092 100

Gas 20

MR 0.566 35.05 4160 577.8 0.1079 0.1069 0.1098 0.1043 65
AMR 1.16 4.59 31.21 11.25 0.315 0.315 0.315 0.315 0.03
AC 0.144 20.15 108.52 228.41 0.1069 0.1072 0.1071 0.1065 2.01

Baseline 0.4472 38.67 4267 600.3 0.1056 0.1073 0.1096 0.1063 100

Gas 40

MR 0.781 4096 35.8 591.21 0.1121 0.1161 0.1101 0.1066 65.00
AMR 1.90 5.14 34.52 10.89 0.387 0.387 0.387 0.387 0.02
AC 0.163 16.83 125.6 163.7 0.101 0.102 0.1065 0.11 2.01

Baseline 0.447 38.67 5227 579.42 0.1047 0.1045 0.1054 0.1057 100

Gas 60

MR 0.566 35.05 5098 283.75 0.1983 0.1626 0.1166 0.1536 65.00
AMR 1.60 4.94 38.45 15.46 0.301 0.301 0.301 0.301 0.01
AC 0.158 16.9 101.2 154.3 0.248 0.228 0.221 0.222 1.78

Baseline 0.447 38.67 5227 283.29 0.185 0.192 0.2001 0.198 100

Concrete 20

MR 0.030 0.0501 269 1.17 0.015 0.0152 0.0155 0.015 50.00
AMR 0.38 0.38 5.12 0.49 0.0564 0.0564 0.0564 0.0564 0.05
AC 0.01 0.02 23.5 0.495 0.0153 0.01594 0.0160 0.159 6.89

Baseline 0.0175 0.0627 273 1.35 0.015 0.0152 0.0156 0.015 100

Concrete 40

MR 0.0383 0.0501 532 1.22 0.015 0.0147 0.0161 0.0149 50.00
AMR 0.74 0.72 6.12 0.85 0.070 0.070 0.070 0.070 0.03
AC 0.012 0.024 35.4 0.511 0.0153 0.0159 0.0159 0.0159 5.63

Baseline 0.0238 0.0582 536 1.489 0.015 0.0162 0.0161 0.015 100

Concrete 60

MR 0.0409 0.0504 715 1.208 0.0151 0.0148 0.0164 0.0151 50.00
AMR 0.96 0.96 11.25 1.08 0.0819 0.0819 0.0819 0.0918 0.02
AC 0.0106 0.024 46.8 0.51 0.154 0.0163 0.0162 0.0162 5.28

Baseline 0.0319 0.0561 724 1.42 0.0151 0.0153 0.0168 0.015 100

As mentioned in the main content, the time complexity of the algorithm is O(Ttrain · |MV F (z)|),
making it significantly more efficient than the baseline algorithm, which trains models over all repairs
individually and has a time complexity of O(Ttrain · |XR|). If a gradient descent algorithm is
used, Algorithm A has a time complexity of O(n · d3), where n is the number of training samples
and d is the number of features. In cases where n < d2, the time complexity can be reduced to
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Table F: Baseline and optimized average RAM usage (MB) across all SVM MCAR datasets using KNN, MICE,
and RF imputations.

Data Set Missingness KNN (MB) MICE (MB) RF (MB)

Malware 20 MR 1117.88 ± 32.26 – 1590.53 ± 26.32
Baseline 948.41 – 1553.54

Malware 40 MR 1062.91 ± 6.64 – 1513.21 ± 17.08
Baseline 1361.96 – 1533.32

Malware 60 MR 980.17 ± 8.10 – 1325.63 ± 8.14
Baseline 1427.75 – 1336.04

Tuadromd 20 MR 231.82 ± 5.39 449.32 ± 3.40 250.21 ± 5.11
Baseline 256.53 438.91 237.93

Tuadromd 40 MR 252.97 ± 0.00 442.13 ± 0.63 258.38 ± 4.29
Baseline 356.64 448.42 249.85

Tuadromd 60 MR 248.74 ± 0.00 431.94 ± 1.04 261.36 ± 0.01
Baseline 410.12 450.02 265.16

Default 20 MR 1104.84 ± 7.56 201.51 ± 2.95 518.21 ± 5.27
Baseline 3351.83 201.60 520.94

Default 40 MR 1620.02 ± 0.19 202.02 ± 0.08 483.82 ± 2.21
Baseline 3502.82 211.12 510.90

Default 60 MR 1795.03 ± 0.00 196.68 ± 0.06 455.88 ± 5.02
Baseline 3094.94 210.98 537.61

Table G: Baseline and optimized average RAM usage (MB) across all SVM MAR datasets using KNN, MICE,
and RF imputations.

Data Set Missingness KNN (MB) MICE (MB) RF (MB)

Malware 20 MR 993.87 ± 126.31 – 2007.92 ± 3.40
Baseline 994.18 – 2188.73

Malware 40 MR 917.31 ± 115.00 – 2021.64 ± 5.70
Baseline 1065.12 – 2187.40

Malware 60 MR 816.95 ± 163.75 – 1772.30 ± 17.17
Baseline 1139.50 – 2203.27

Tuadromd 20 MR 209.48 ± 15.13 433.15 ± 2.01 229.71 ± 0.62
Baseline 261.24 439.85 240.76

Tuadromd 40 MR 203.47 ± 12.71 420.14 ± 0.06 215.76 ± 0.05
Baseline 315.21 437.52 239.30

Tuadromd 60 MR 195.01 ± 15.02 407.45 ± 0.31 202.39 ± 0.74
Baseline 363.12 436.17 238.28

Default 20 MR 1088.75 ± 11.70 198.16 ± 2.74 500.35 ± 2.40
Baseline 3351.95 203.22 526.95

Default 40 MR 1586.52 ± 14.87 186.76 ± 0.99 458.04 ± 1.57
Baseline 3460.50 203.51 506.00

Default 60 MR 1743.08 ± 14.18 183.20 ± 0.24 431.29 ± 1.56
Baseline 3050.28 201.71 507.08

O(n · d2 + n2 · d) under certain conditions by applying incremental learning techniques based on the
Sherman-Morrison formula, as outlined below.

OPTIMIZATION FOR ALGORITHM A

The primary time cost in Algorithm A arises from the need to completely retrain the linear regression
model each time a new imputed feature is added to the feature set. This retraining leads to a time
complexity of O(n · d3) for the algorithm. To address this inefficiency, we propose an optimization
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Table I: Baseline and optimized average RAM usage (MB) across all SVM MNAR datasets using KNN, MICE,
and RF imputations.

Data Set Missingness KNN (MB) MICE (MB) RF (MB)

Malware 20 MR 917.23 ± 144.43 – 1987.47 ± 19.47
Baseline 1060.02 – 2205.59

Malware 40 MR 801.97 ± 149.17 – 1717.80 ± 11.01
Baseline 1167.60 – 2176.25

Malware 60 MR 847.54 ± 182.56 – 1502.17 ± 0.11
Baseline 1254.33 – 2202.88

Tuadromd 20 MR 207.31 ± 15.65 423.10 ± 1.04 216.53 ± 0.16
Baseline 286.32 439.73 240.33

Tuadromd 40 MR 195.30 ± 15.87 407.96 ± 1.19 196.51 ± 0.23
Baseline 364.70 436.82 237.68

Tuadromd 60 MR 189.19 ± 21.07 395.02 ± 2.05 182.25 ± 0.13
Baseline 412.00 438.30 238.52

Default 20 MR 1158.21 ± 1.98 186.43 ± 3.31 484.08 ± 0.08
Baseline 2652.80 199.54 526.40

Default 40 MR 1446.96 ± 8.63 182.10 ± 0.05 412.10 ± 0.89
Baseline 2638.18 205.38 507.42

Default 60 MR 1317.93 ± 182.56 176.42 ± 1.03 372.49 ± 0.18
Baseline 2949.70 205.37 500.22

Algorithm A Approximating minimal repair for linear regression efficiently

Smin ← [ ]
MV F (z)← set of incomplete features
Complete(z)← set of complete features
r← LR(Complete(z),y) {The residue vector from performing linear regression between com-
plete features and label}
ϵ← a user-defined threshold for stopping condition
MaxCosSim← maxz∈MV F (z) |cos(z, r)|
while MaxCosSim ≤ ϵ do
Smin ← Smin.add(argmaxz∈MV F (z) |cos(z, r)|)
r← LR(Complete(z) ∪ Smin,y)
MaxCosSim← maxz∈MV F (z) |cos(z, r)|

end while
res← Smin

using the Sherman-Morrison formula to update the inverse of the feature matrix incrementally
Angioli et al. (2025). This method reduces the time complexity of including one new feature to
O(n2). Consequently, when n < d2, this optimization results in significant time savings.

Given a feature matrix X, a label vector y, and the coefficients w of the current linear regression
model, our objective is to efficiently update w to incorporate a newly imputed feature vector xnew
into X, forming an updated feature matrix X′, without the necessity of full retraining. When this
new feature vector xnew is added to X, it modifies the original matrix product XTX to XTX +
xnewx

T
new. Applying the Sherman-Morrison formula, the updated inverse of X′TX′ (assuming X′TX′

is invertible) is given by:

(X′TX′)−1 = (XTX)−1 − (XTX)−1xnewx
T
new(X

TX)−1

1 + xT
new(X

TX)−1xnew
(7)

This formulation enables the efficient update of the regression coefficients w, requiring only O(n2)
operations. Implementing at most d such updates results in a complexity of O(d · n2). Including the
initial model trainingO(d2 ·n), the total computational complexity is thus reduced toO(n·d2+n2 ·d).
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MINIMAL REPAIR: FEATURE-WISE OR SAMPLE-WISE

For linear SVM, minimal repair (MR) is defined at the sample level—the algorithm returns a set of
samples to repair. This is because the method identifies potential support vectors, which are inherently
defined based on individual samples.

In contrast, for linear regression, MR is defined at the feature level—the algorithm selects a subset of
features to repair. This stems from the interpretation of linear regression as projecting the residual
vector onto the feature space. The approach identifies features that do not contribute to minimizing
the training loss, given the current regression residual.

PROOFS

PROOF FOR THEOREM 1

Prove the theorem by contradiction. Assume that given a training set (X,y) and a regularization
parameter C, two minimal repair sets exist ( Smin1(X,y, C) and Smin2(X,y, C)). From the defini-
tion of minimal repair set, a certain model exists by either imputing all samples in Smin1(X,y, C)
or Smin2(X,y, C), regardless of imputation results. Further, based on the discussion in previous
literature Zhen et al. (2024), a certain model exists when none of the incomplete samples is a support
vector in any repair. Therefore, if an incomplete sample is not in the minimal repair set, it is not
a support vector in any repair. From the assumption, we can always find an incomplete sample xi

that xi /∈ Smin1(X,y, C) and xi ∈ Smin2(X,y, C). In this scenario, xi is not a support vector for
any repair of X because xi /∈ Smin1(X,y, C). Thus, Smin2(X,y, C) is not a minimal repair set
because removing xi from Smin1(X,y, C) should construct a smaller set also ensuring the exis-
tence of certain models, violating the definition of minimal repair set. Contradicting to the original
assumption, Theorem 1 holds.

PROOF FOR LEMMA 1

Borrowing the discussion from proving Theorem 1, if an incomplete sample xi is not a support
vector in any repair of X, it should not be part of the minimal repair set Smin (which is unique from
Theorem 1). Further, if an incomplete sample xi is a support vector in at least one repair of X, it has
to be included in the minimal repair set, otherwise certain model does not exist Zhen et al. (2024).

PROOF FOR THEOREM 3

Necessity is trivial based on Lemma 2: if an incomplete sample is a support vector in an edge repair,
the incomplete sample is part of the minimal repair set. Then we prove sufficiency by contradiction.
Assume that there is an incomplete sample xi part of the minimal repair set Xmin while it is not
a support vector in any edge repair xe ∈ XE . Training an SVM can be interpreted as finding the
minimal distance between two reduced convex hulls Bennett & Bredensteiner (2000), and if an
sample is within the reduced convex hull (not at the boundary), the sample is not a support vector.
Because xi is not a support vector for any edge repair from the assumption, it is not a support vector
for any repair to X. This is because, in the process of changing a value for a missing value (xpq)
from one edge repair (xmin

pq ) to another (xmax
pq ) monotonically increase or decrease the coverage of

the reduced convex hull. With that being said, if an incomplete sample xi is not a support vector for
any edge repair (i.e., within the reduced convex hull), the incomplete sample is within the reduced
convex hull (i.e., not a support vector) with respect to any repair. This contradicts to the original
assumption that xi is part of the minimal repair set.

PROOF FOR THEOREM 4

We reduce from the NP-complete problem 3-SAT. Let

Φ =

m∧
j=1

(
Cj

)
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be a 3-SAT formula with k Boolean variables z1, z2, . . . , zk and m clauses C1, . . . , Cm, each clause
being a disjunction of three literals.

For each variable zℓ, we introduce one or more incomplete samples whose feature vectors each contain
a missing coordinate uℓ. The imputation set for uℓ is {−1,+1}, corresponding to {False,True}.
Thus, any assignment of the zℓ corresponds to choosing ±1 for these missing coordinates.

To enforce that each clause Cj must be satisfied, we add appropriately labeled points (some possibly
incomplete) and arrange them in a geometry so that assigning a literal to false yields a large penalty
term in the soft-margin objective (either by misclassification or forcing the margin to collapse).
Intuitively, if a clause were unsatisfied (all literals set to false), the SVM would incur a prohibitively
large hinge-loss cost, making that repair suboptimal.

We designate one particular incomplete sample xi with additional coordinates or constraints so that:

• If Φ is satisfiable, then there is an imputation (choosing ±1 consistently with a satisfying
assignment) that maximizes the margin while placing xi exactly on the decision boundary,
making it a support vector.

• If Φ is unsatisfiable, then every imputation leads to xi being off the margin (either strictly
inside or otherwise not a support vector). In other words, no selection of {±1} for the
missing attributes can force xi onto the margin.

By suitably tuning the soft-margin parameter C and the placement of the clause-encoding points, we
ensure that the SVM will “prefer” to assign ±1 values in a way that satisfies Φ, whenever possible, in
order to avoid a large penalty.

Hence,
Φ is satisfiable ⇐⇒ there exists a repair making xi a support vector.

Since deciding satisfiability for Φ (3-SAT) is NP-complete, it follows that deciding whether xi can
be a support vector under some imputation is NP-hard.

Determining membership of a single incomplete sample xi among the possible support vectors is
NP-hard. Therefore, listing all such samples that can ever appear on the margin is also NP-hard: if
we had such a list in polynomial time, we could decide membership in that list in polynomial time,
contradicting NP-hardness. Given the proof that finding MR for SVM is NP-hard, deciding whether
an incomplete sample belongs to the MR for SVM is also NP hard. To prove, assume that we have a
polynomial-time solver for deciding whether an incomplete sample belongs to the MR, then one can
linearly scan each incomplete sample and decide its membership in MR (either belongs to or not) by
calling the polynomial time subroutine. Therefore, one can find the MR in polynomial time, which
contradicts to the NP-hard proof earlier.

PROOF FOR THEOREM 5

For any incomplete sample xi returned from Algorithm 1 in main content for SVM, the incomplete
sample is a support vector in at least one repair to X. Based on Theorem 3, it is part of the minimal
repair.

PROOF FOR THEOREM 6

Given the iterative algorithm of finding the minimal repair for SVM (Algorithm 1 in the main content),
we first characterize the probability that the imputation set returned at iteration k misses one or more
incomplete samples that belong to the minimal repair.

Let k be the current iteration index (k = 0 represents the initial state before the first run). We
define the following: MS(x)k is the set of incomplete samples remaining at the start of iteration k.
Mk = |MS(x)k| is the number of remaining incomplete samples at the start of iteration k. Sk

min

is the (unknown) true minimal set of samples within MS(x)k that must be imputed at the start of
iteration k to guarantee a certain model. sk = |Sk

min| is the (unknown) size of this true minimal
set; note that we treat sk as a random variable, and sk ≤Mk. S′k is the set of samples returned by
Algorithm 1 in the main content when run at iteration k on the current data; we know S′k ⊆ Sk

min.
FNk is the event that makes at least one false negative error at iteration k, occurring if S′k is a proper
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subset of Sk
min. P (FNk) is the probability of event FNk. We seek a computable upper bound

UB′k such that P (FNk) ≤ UB′k. define pfn as an upper bound on the per-sample false negative
probability, p(xi). We assume that there exists a probability pfn (where 0 ≤ pfn ≤ 1) such that for
any sample xi ∈ Sk

min, the probability that Algorithm 1 in the main content fails to include xi in S′k

is bounded above by pfn:
P (xi /∈ S′k|xi ∈ Sk

min) ≤ pfn

Then we propose, UB′k, an upper bound of P (FNk) as follows:

UB′k = 1− (1− pfn)
Mk

≥ P (FNk)

To interpret, when the iteration goes (k becomes larger), Mk and pfn decrease (which we will
prove later), UB′k decreases. This indicates that the upper-bound of probability of under-imputing
decreases over iterations.

To prove this bound, we begin by expressing the target probability P (FNk) using its complement.
The event FNk (at least one false negative) is the complement of the event NoFNk (no false
negatives, i.e., S′k = Sk

min). Therefore, conditioned on the true size sk of the minimal set at iteration
k, we have P (FNk|sk) = 1− P (No FNk|sk).

Next, we bound the probability of having no false negatives, P (No FNk|sk). The event NoFNk

occurs if Algorithm 1 in the main content successfully returns all samples in Sk
min. Let Ei be the

event that Algorithm 1 in the main content fails to return sample xi. Assuming the failure/success
events Ei for different samples xi ∈ Sk

min within the same iteration k are statistically independent,
we can write:

P (No FNk|sk) = P (∩xi∈Sk
min
{not Ei}|sk) =

∏
xi∈Sk

min

P (not Ei|sk)

Let P (Ei|sk) be the probability of failure for xi. Then P (not Ei|sk) = 1 − P (Ei|sk). Using the
definition P (Ei|sk) ≤ pfn, we have 1− P (Ei|sk) ≥ 1− pfn. Substituting this lower bound into
the product gives:

P (No FNk|sk) ≥
sk∏
i=1

(1− pfn) = (1− pfn)
sk

Now we can bound P (FNk|sk):

P (FNk|sk) = 1− P (No FNk|sk) ≤ 1− (1− pfn)
sk

The overall probability P (FNk) is the expectation over the unknown size sk:

P (FNk) = E
sk
[P (FNk|sk)] ≤ E

sk
[1− (1− pfn)

sk ]

To proceed, we utilize Jensen’s inequality. Let f(s) = 1 − (1 − pfn)
s. We first prove that f(s)

is concave for s ≥ 0. Let b = 1 − pfn. Since 0 ≤ pfn < 1, we have 0 < b ≤ 1. The
function is f(s) = 1 − bs. The first derivative is f ′(s) = −bs ln(b). The second derivative is
f ′′(s) = −(bs ln(b)) ln(b) = −bs(ln(b))2. Since bs > 0 and (ln(b))2 ≥ 0, the second derivative
f ′′(s) ≤ 0. Therefore, f(s) is a concave function.

Jensen’s inequality for a concave function f states E[f(X)] ≤ f(E[X]). Applying this to our
expectation:

E
sk
[1− (1− pfn)

sk ] ≤ 1− (1− pfn)
E[sk]

Combining this with the previous inequality gives a theoretical upper bound:

P (FNk) ≤ 1− (1− pfn)
E[sk]

The term E[sk] (expected number of truly needed samples) is still unknown. However, we know that
the number of needed samples sk cannot exceed the total number of remaining incomplete samples
Mk = |MS(x)k|. Thus, sk ≤ Mk. Taking expectations yields E[sk] ≤ E[Mk]. Since Mk is a
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known quantity (computable by counting) at the start of iteration k, E[Mk] = Mk. Therefore, we
have a computable upper bound for the expectation: E[sk] ≤Mk.

Finally, we substitute this bound on E[sk] into the Jensen result. Let g(x) = (1 − pfn)
x. Since

0 < (1 − pfn) ≤ 1, g(x) is a non-increasing function. Applying g to the inequality E[sk] ≤ Mk

reverses the inequality direction:

(1− pfn)
E[sk] ≥ (1− pfn)

Mk

Multiplying by -1 and adding 1 (reversing the inequality twice):

1− (1− pfn)
E[sk] ≤ 1− (1− pfn)

Mk

Combining the inequalities P (FNk) ≤ 1−(1−pfn)E[s
k] and 1−(1−pfn)E[s

k] ≤ 1−(1−pfn)M
k

,
we arrive at the final upper bound UB′k:

P (FNk) ≤ 1− (1− pfn)
Mk

and
UB′k = 1− (1− pfn)

|MS(x)k|

Now the only problem is to compute pfn and understand how it changes over iterations. The Multiple
Random Starts method provides an empirical approach. First, select a set of incomplete samples
MSprobe (e.g., MS(x)0) and choose the number of repetitions T (e.g., T = 10 or 20). For each
xi ∈ MSprobe, initialize a success count ti = 0. Repeat T times: generate a new random edge
repair Xe

start,t for the current dataset state; run the greedy construction part of Algorithm 1 in the
main content starting from Xe

start,t to get Xe
final,i,t; train wfinal,i,t = SVM(Xe

final,i,t, y); check
if yi(wfinal,i,t)

T (xi part of Xe
final,i,t) ≤ 1. If yes, increment ti.

Also, if the probability distribution of each incomplete sample is known, and we let g(xij) denote
the probability density function of the ground truth value for the missing value xij in the incomplete
training set (X,y). If missing values in X are independent, the probability that an incomplete sample
xi in minimal repair not returned by Algorithm 1 in the main content is:

p(xi) = 1−

∫
·· ·

∫max(xvisited
ij )

min(xvisited
ij )

∏
xij∈M(X) g(xij) dxij∫

·· ·
∫
xij∈M(X)

∏
xij∈M(X) g(xij) dxij

xvisited
ij ∈ {xmin

ij , xmax
ij } shows the values used for xij in Algorithm 1 in the main content. It shows

that the more edge repairs Algorithm 1 explores, the lower the false negative probability for each
sample. One can find pfn by computing p(xi) for each incomplete sample and take the maximum
as pfn. pfn decreases over iterations because each iteration explores additional edge repairs. This
expands the domain of the numerator in the expression increasing the integral value and thereby
lowering p(xi) for every sample5. Since pfn is an upper bound over all such p(xi), it decreases as
well.

PROOF FOR THEOREM 7

Prove the possibility of having multiple minimal repair sets first. Because linear regression can
have multiple non-trivial optimal models in general, multiple minimal repair sets can exist, and each
multiple imputation set corresponds to an optimal linear regression model. For example, when we
have the dataset:

X =

[
1 null null null
0 1 2 3
0 4 3 2

]
, y =

[
1
1
1

]
.

We denote features from left to right as z1 . . . z4. In this example, there are at least two MRs,
MR1 = {z2, z3} and MR2 = {z3, z4}. To prove, we first show that imputing either MR1 or MR2,
and training a linear regression model with imputed features and the originally complete feature
(z1) leads to a zero (minimal) regression loss in all repairs of X . Let us first consider MR1. The
two incomplete features (z2 and z3) with the complete one (z1) cover the full 3-dimensional space
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in all repairs because the three features are linearly independent in all repairs. We show the linear
independence by computing the determinant of the matrix A consisting of z1, z2, and z3.

A =

[
1 null null
0 1 2
0 4 3

]

The determinant of the matrix A is non-zero regardless of how the null values in z2 and z3 are
imputed.

det(A) = det(AT ) = 1 · det
(
1 4
2 3

)
− 0 · det

(
null 4
null 3

)
+ 0 · det

(
null 1
null 2

)
= 1 · ((1)(3)− (2)(4))

= 1 · (3− 8)

= −5

Because z1, z2, and z3 are linearly independent, for every repair of A, there is a linear regression
model that achieves zero (minimal) loss with the feature matrix A and the label vector y. Let v(z2)
and v(z3) denote a repair of columns (features) z2 and z3 in A, respectively. Every repair of the
matrix X with v(z2) and v(z3) for its second and third columns, no matter what the imputation of
missing value in z4 is, will have zero regression loss for the label vector y.

Similarly, for MR2, we show that the two incomplete features (z3 and z4) along with the complete z1
cover the full 3-dimensional space in all repairs because the three features are linearly independent in
all repairs. We show this by computing the determinant of the matrix B consisting of z1, z3, and z4.

B =

[
1 null null
0 2 3
0 3 2

]

The determinant of B is non-zero in all repairs.

det(B) = det(BT ) = 1 · det
(
2 3
3 2

)
− 0 · det

(
null 3
null 2

)
+ 0 · det

(
null 2
null 3

)
= 1 · ((2)(2)− (3)(3))

= 1 · (4− 9)

= −5

Therefore, similar to our argument for MR1, the regression loss for every repair of the features of
MR2 in the linear regression with feature matrix X and label vector y is zero (minimal) no matter
what the imputation of the missing value in z2 is.

To close the proof for MR1 and MR2 being minimal repairs, we also show that there is no smaller
subset (with only one incomplete feature) such that by imputing the subset and training a linear
regression model with the imputed feature and the originally complete feature z1 leads to the minimal
regression loss in all repairs. By scanning every single incomplete feature, no one can achieve the
minimal regression loss along with the complete feature (z1) in all repairs. Therefore, the size of
MR should be 2, which concludes the proof that MR1 and MR2 are both minimal repairs in this
example dataset. However, when all features in X are linearly independent in all repairs, the optimal
linear regression model is unique for every repair. Therefore, a certain model is unique when it exists
in this scenario, and the minimal repair set is also unique to reach a certain model.

PROOF FOR THEOREM 8

To prove that finding the linear regression solution that is most sparse over a subset of features is
NP-hard, we reduce the known NP-hard problem of finding the most sparse linear regression solution
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to it Bruckstein et al. (2009). Consider the original problem where given a feature matrix X and a
label vector y, the goal is to find the optimal model w∗ that minimizes the number of non-zero entries.
In the new problem, given a subset of features, i.e., the incomplete features, denoted as MV F (X),
we seek the optimal model w∗ that minimizes the number of non-zero entries in the coefficients
within MV F (X). To reduce the original problem to this new one, set MV F (X) as the entire feature
set. Solving the new problem in this special case is equivalent to solving the original sparse linear
regression problem, which is NP-hard. Therefore, the new problem must also be NP-hard, as it
generalizes the original problem.

PROOF FOR LEMMA 9

Based on the previous literature about certain model Zhen et al. (2024), when a certain model w∗

exists for linear regression, wi = 0 for every zi ∈MV F (X). Therefore, finding a minimal repair
set in linear regression is equivalent to finding a regression model that has the maximal number
of zero model parameters (linear coefficients) and is optimal for all repairs. Further, the problem
is equivalent to minimizing the number of non-zero linear coefficients in w whose corresponding
feature is incomplete.

PROOF FOR THEOREM 10

When each missing value in the dataset follows an independent zero-mean normal distribution,
training a linear regression model based on the incomplete dataset is equivalent to training linear
regression with a zero-mean Gaussian noise ϵ as below:

y = Xw + ϵ

Based on previous literature Cai & Wang (2011), in the presence of a Gaussian noise ϵ ∼ N (0, σ2),
the first k features returned from OMP method is correct with a probability of at least 1− 1/n when
the following two conditions are satisfied: 1. µ < 1/(2k − 1), and 2.

|wi| ≥
2σij

√
n+ 2

√
nlogn

1− (2k − 1)µ

As a result, the features returned by the OMP algorithm in our paper is correct with a probability of
at least 1− 1/n given the conditions in Theorem 10.

PROOF FOR THEOREM 11

The proof has two parts: (1) showing that any set of samples S′
k selected by ST2 at iteration k is

a subset of SAMR, implying Siter-ACM =
⋃

k S
′
k ⊆ SAMR; and (2) showing the algorithm terminates

with an ACM (gk ≤ e).

Part 1: Each selection S′
k by ST2 belongs to SAMR

SAMR is the smallest set of incomplete samples in X whose robust imputation guarantees g ≤ e,
irrespective of specific repair values. Consider iteration k: ST1 operates on X(k) (where S

(k−1)
iter-ACM =⋃

i<k S
′
i are imputed) yielding gk. If gk > e, ST2 returns S′

k, the minimal set of currently incomplete
samples in X(k) necessary to enable g < gk in the next iteration.

Let xj ∈ S′
k. Assume, for contradiction, xj /∈ SAMR. If xj /∈ SAMR, then SAMR (not containing xj)

robustly guarantees g ≤ e for the original problem (X,y). So, xj is not required for this global
robust guarantee. At iteration k, ST2 identifies xj as part of the minimal set S′

k in X(k) needed to
reduce gk. This implies xj is locally indispensable for progress from X(k).

Let S∗
AMR = SAMR ∩ U (k) be the SAMR samples still incomplete in X(k). By induction (S(0)

iter-ACM =

∅ ⊆ SAMR), all S(k−1)
iter-ACM ⊆ SAMR. If SAMR (excluding xj) robustly guarantees ACM for X, and

S
(k−1)
iter-ACM ⊆ SAMR, then any local impasse gk > e must be resolvable by further imputing only

samples from S∗
AMR. So, some P ⊆ S∗

AMR must exist to allow g to decrease. Since ST2 returns the
minimal set for progress, if such P exists, ST2 would select S′

k ⊆ P ⊆ S∗
AMR ⊆ SAMR. This means

xj ∈ SAMR, contradicting xj /∈ SAMR.
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Thus, if ST2 selects xj (assumed xj /∈ SAMR) as part of S′
k, it means no P ⊆ S∗

AMR alone allows
progress, and xj is also needed. This implies xj is locally indispensable even if all of S∗

AMR were
imputed. This contradicts the global sufficiency of SAMR (which excludes xj). The perfection of
ST2 ensures it doesn’t select a globally redundant xj if progress is possible via samples in S∗

AMR. So,
xj /∈ SAMR is false. Thus, any xj ∈ S′

k is in SAMR, meaning S′
k ⊆ SAMR for all k. Consequently,

Siter-ACM =
⋃

k S
′
k ⊆ SAMR.

Part 2: Algorithm Termination with an ACM

If gk > e, ST2 identifies a non-empty S′
k for imputation. (If S′

k was empty while gk > e, it would
contradict the existence of SAMR as a solution or the ideal functioning of ST1/ST2). Imputing
S′
k creates X(k+1). The number of incomplete samples is finite. ST2 selects un-imputed samples

necessary for reducing gk. Assuming perfect ST1/ST2, the algorithm progresses towards gk ≤ e. It
cannot impute distinct samples indefinitely nor cycle with gk > e as each ST2 selection resolves a
current bottleneck. Thus, it must reach gk ≤ e and terminate, achieving ACM.

The assertion Siter-ACM ⊂ SAMR is consistent: SAMR ensures robustness for all repairs. The algorithm
uses specific repairs and may achieve ACM before all of SAMR (needed for worst-case robustness)
are imputed.

PROOF FOR THEOREM 12

We assume that the loss function L(w) is convex and has an M -Lipschitz continuous gradient.
Formally, this means for all w,w′ ∈ W:

∥∇L(w)−∇L(w′)∥ ≤M∥w −w′∥.

Since L(w) is convex with an M -Lipschitz continuous gradient, the following standard inequality
from convex optimization theory holds:

L(w) ≤ L(w′) +∇L(w′)⊤(w −w′) +
M

2
∥w −w′∥2, ∀w,w′ ∈ W.

Let w∗ be an optimal solution (thus ∇L(w∗) = 0), and set w′ = w∗, then we have:

L(w≈) ≤ L(w∗) +
M

2
∥w≈ −w∗∥2.

Next, due to convexity of L(w), we have:

L(w∗) ≥ L(w≈) +∇L(w≈)⊤(w∗ −w≈).

Combining the two inequalities, we get:

L(w≈)− L(w∗) ≤ M

2
∥w≈ −w∗∥2 ≤ 1

2M
∥∇L(w≈)∥2,

where the last step follows from the Lipschitz continuity of the gradient, which implies that:

∥∇L(w≈)∥ ≥M∥w≈ −w∗∥.

Hence, the optimality gap is explicitly bounded by the norm of the gradient:

L(w≈)− L(w∗) ≤ 1

2M
∥∇L(w≈)∥2.

Therefore, to guarantee for all Xr ∈ XR that:

L(f(Xr,w≈),y)− min
w∈W

L(f(Xr,w),y) ≤ e,
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it is sufficient to require:

∥∇wL(f(Xr,w≈),y)∥ ≤
√
2Me, ∀Xr ∈ XR.

This completes the derivation.

ADDITIONAL RELATED WORK

There are methods to detect cases where the imputation of missing data is not necessary to learn
accurate models Picado et al. (2020); Karlaš et al. (2020); Zhen et al. (2024). Although these
approaches are useful for some datasets and learning tasks, they ignore a majority of learning tasks in
which imputing incomplete samples affects the quality of the learned model.

Researchers have proposed methods to reduce the cost of repair Krishnan et al. (2016); Karlaš et al.
(2020). ActiveClean learns models using stochastic gradient descent and greedily chooses samples
for repair that may reduce the gradient the most Krishnan et al. (2016). Unlike our methods, it does
not provide any guarantees of minimal repair. Due to the inherent properties of stochastic gradient
descent, it is challenging to provide such a guarantee. CPClean follows a similar greedy approach,
but is limited to learning k nearest neighbor models over missing data and does not support the types
of model our approach addresses Karlaš et al. (2020). It also does not provide any guarantees of
minimality for its imputations.

CODE REPOSITORY

Link: https://anonymous.4open.science/r/Submission_2025-A1C0/README.md
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