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ABSTRACT

Designing an on-sensor data dimensionality reduction scheme for efficient sig-
nal sensing has always been a challenging task. Compressive sensing is a
state-of-the-art sensing technique used for on-sensor data dimensionality reduc-
tion. However, the undesired computational complexity involved in the sens-
ing stage of compressive sensing limits its practical application in resource-
constrained sensor devices or high-data-rate sensor devices dealing with high-
dimensional signals. In this paper, we propose a selective sensing framework
that adopts the novel concept of data-driven nonuniform subsampling to reduce
the dimensionality of acquired signals while retaining the information of inter-
est in a computation-free fashion. Selective sensing adopts a co-optimization
methodology to co-train a selective sensing operator with a subsequent infor-
mation decoding neural network. We take image as the sensing modality and
reconstruction as the information decoding task to demonstrate the 1st proof-of-
concept of selective sensing. The experiment results on CIFAR10, Set5 and Set14
datasets show that selective sensing can achieve an average reconstruction ac-
curacy improvement in terms of PSNR/SSIM by 3.73dB/0.07 and 9.43dB/0.16
over compressive sensing and uniform subsampling counterparts across the di-
mensionality reduction ratios of 4-32x, respectively. Source code is available at
https://figshare.com/s/519a923fae8f386d7f5b.

1 INTRODUCTION

In the era of Internet-of-things (IoT) data explosion (Biookaghazadeh et al., 2018), efficient in-
formation acquisition and on-sensor data dimensionality reduction techniques are in great need.
Compressive sensing is the state-of-the-art signal sensing technique that is applicable to on-sensor
data dimensionality reduction. However, directly performing compressive sensing in the digital do-
main as a linear transformation of signals can be computationally costly, especially when the signal
dimension n is high and/or a data-driven sensing matrixMousavi et al. (2017; 2018); Lohit et al.
(2018); Wu et al. (2018) is used. To mitigate this problem, several approaches have been proposed
to reduce the computational complexity of compressive sensing by constraining the sensing matrices
to be sparse, binary, or ternary (Wang et al., 2016; Nguyen et al., 2017; Zhao et al., 2018; Hong
et al., 2019). While these approaches can reduce the computational complexity by a constant factor
(O(cn2), where c can be as low as 10−2), such reduced computational complexity can be still too
high to be affordable for resource-constrained sensor devices, e.g., low-cost IoT sensors (Djelouat
et al., 2018), or high-data-rate sensor devices dealing with high-dimensional signals, e.g., LiDAR
and depth map (Chodosh et al., 2019). Other approaches (Duarte et al., 2008; Robucci et al., 2010)
propose to implement compressive sensing in the analog domain instead, eliminating or reducing the
computation cost of compressive sensing through custom hardware implementation. However, such
custom hardware implementation inevitably increases the cost of the sensor and is often specific to
the sensor design, thereby cannot be generally applied to other sensors or applications.

In this paper, we propose a selective sensing framework to address the above-mentioned problem
by adopting the novel concept of data-driven nonuniform subsampling to reduce the dimension-
ality of acquired signals while retaining the information of interest in a computation-free fashion.
Specifically, the data dimensionality reduction in selective sensing is a nonuniform subsampling (or
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selection) process that simply selects the most informative entries of a signal vector based on an
optimized, stationary selection index vector informed by training data. Since no computation is in-
volved for any form of data encoding, the computational complexity of the selective sensing operator
is simply O(1), leading to the computation-free data dimensionality reduction during the selective
sensing process.1 Selective sensing adopts a co-optimization methodology to co-train a selective
sensing operator with a subsequent information decoding neural network. As the trainable param-
eters of the sensing operator (the selection index) and the information decoding neural network are
discrete- and continuous-valued, respectively, the co-optimization problem in selective sensing is a
mixed discrete-continuous optimization problem that is inherently difficult to solve. We propose a
feasible solution to solve it by transforming the mixed discrete-continuous optimization problem into
two continuous optimization subproblems through interpolation and domain extension techniques.
Both of the subproblems can then be efficiently solved using gradient-descent-based algorithms. We
take images as the sensing modality and reconstruction as the information decoding task to demon-
strate the 1st proof-of-concept of selective sensing. The experiments on CIFAR10, Set5 and Set14
datasets show that the selective sensing framework can achieve an average reconstruction accuracy
improvement in terms of PSNR/SSIM by 3.73dB/0.07 and 9.43dB/0.16 over compressive sensing
and uniform subsampling counterparts across the dimensionality reduction ratios of 4-32x, respec-
tively.

The contributions of this paper are summarized as follows:

1. We propose a new on-sensor data dimensionality reduction method called selective sensing. Se-
lective sensing efficiently reduces the dimensionality of acquired signals in a computation-free fash-
ion while retaining information of interest. The computation-free nature of selective sensing makes
it a highly suitable solution for performing on-sensor data dimensionality reduction on resource-
constrained sensor devices or high-data-rate sensor devices dealing with high-dimensional signals.

2. We propose and apply the novel concept of data-driven nonuniform subsampling. Specifically,
we first formulate the problem of co-optimizing a selective sensing operator with a subsequent in-
formation decoding neural network as a mixed discrete-continuous optimization problem. Further-
more, we propose a viable solution that transforms the problem into two continuous optimization
subproblems that can be efficiently solved by gradient-descent-based algorithms, which makes the
co-training feasible.

3. We empirically show that data-driven nonuniform subsampling can well preserve signal informa-
tion under the presence of a co-trained information decoding network.

2 RELATED WORK

2.1 NONUNIFORM SUBSAMPLING

Model-based nonuniform subsampling has been proposed in Chepuri et al. (2016) in the name of
sparse sensing. Sparse sensing requires a hand-crafted sparsity model of a signal as prior knowledge.
Differently, selective sensing requires no prior knowledge about the sparsity model of a signal, as
all the necessary information needed for reconstruction can be learned from data through the train-
ing process. Therefore, selective sensing has a much broader range of applications, especially in
IoT, than sparse sensing, considering a vast majority of IoT signals are not well studied nor under-
stood yet, but huge amounts of IoT data are already available for training and learning. Dadkhahi
& Duarte (2014) proposes to generate an image mask that can preserve the manifold structure pre-
sented in image data. Differently, we focus on the task of single image sensing and reconstruction in
this paper. Baldassarre et al. (2016); Weiss et al. (2019); Gözcü et al. (2018); Bahadir et al. (2019;
2020) propose to perform MRI image nonuniform subsampling in k-space (frequency domain). As
many spatial-domain signals are much sparser in the frequency domain, e.g., natural images and
MRI images, the existing nonuniform subsampling approaches performed in k-space are insufficient

1For temporal signals, the selection operation can be simply implemented in the digital domain with a
counter and a mux that already exists in the control logic of most sensors. We consider such operations as
control rather than data computation as no data is computed during the selective sensing process. For spatial
signals such as images, the selective sensing operator can also be implemented as a low-cost masked sensor
array with no computation involved. In addition, Mayberry et al. (2014); Centeye (2020) present image sensor
architectures for embedded systems that can provide pixel-level control of image sensors.
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for dealing with dense signals directly in the spatial domain. In addition, the complex computation
of or the custom hardware(Macfaden et al., 2017) for implementing Fourier transformation required
in these methods is a deal-breaker for resource-constrained sensor devices and/or high-data-rate sen-
sor devices dealing with high-dimensional signals. Differently, selective sensing works directly in
the spatial domain and the selective sensing operators require no computation upon the sensor data
at all. Huijben et al. (2019) propose to co-optimize a probabilistic subsampling mask and a sub-
sequent task-specific neural network in an end-to-end fashion. The sensing mask is dynamically
generated from a random distribution with respect to each signal. The computation of generating
such masks is hardly affordable for resource-constrained and/or high-data-rate sensor devices. Dif-
ferently, selective sensing uses a static sensing mask learnt through the co-training algorithm. Once
a sensing mask is depolyed to sensor devices, no computation is needed to update the existing mask.
Therefore, selective sensing is extremely friendly to resource-constrained or high-data-rate sensors.

2.2 SENSING MATRIX SIMPLIFICATION METHODS

The computational complexity of the linear transformation in compressive sensing is O(n2). Zhao
et al. (2018); Hong et al. (2019) proposes model-based methods to construct sparse sensing ma-
trices. Wang et al. (2016); Nguyen et al. (2017) propose data-driven methods to build binary or
ternary sensing matrices. However, all these approaches could only reduce the computational com-
plexity by constant factors, i.e. O(cn2), where c can be as low as 10−2). A key differentiator of
selective sensing is that by adopting the novel concept of data-driven non-uniform subsampling, it
is computation-free and has a computational complexity of O(1).

2.3 DATA-DRIVEN COMPRESSIVE SENSING

Kulkarni et al. (2016); Mousavi & Baraniuk (2017); Yao et al. (2019) propose to directly learn the in-
verse mapping of compressive sensing through the training of reconstruction neural network models.
In addition, Mousavi et al. (2017; 2018); Lohit et al. (2018); Wu et al. (2018) propose to co-train
a customized sensing scheme with a reconstruction neural network to improve the reconstruction
accuracy. It should be noted that such co-training algorithms are specific to the reconstruction net-
work proposed in the corresponding literatures. To the best of our knowledge, there is no general
co-training algorithm that can be applied to various reconstruction networks in the domain of data-
driven compressive sensing. These approaches inspire us to develop a framework that co-trains a
selective sensing operator and a subsequent information decoding network. Co-trained signal sens-
ing and reconstruction frameworks can be viewed as a specific type of autoencoders(Goodfellow
et al., 2016). The main difference between such frameworks and a general autoencoder model is
that the sensing (encoder) part of such frameworks must be implemented on sensors for on-sensor
data dimensionality reduction. Therefore, the computation complexity of the encoder has to be
extremely low in order to be affordable for sensor devices.

2.4 IMAGE SUPER-RESOLUTION

The problem of neural-network-based image super-resolution has been studied in recent years(Ledig
et al., 2017; Dong et al., 2015; Yang et al., 2019). The image super-resolution task is fundamentally
different from the image reconstruction task of selective sensing in following two aspects. First,
images in super-resolution tasks are uniformly subsampled in the training phase, while images in
selective sensing are nonuniformly subsampled. Therefore, the existing network structures for image
super-resolution cannot be directly applied to perform the image reconstruction task in selective
sensing. Second, the downsizing factor of images in super-resolution tasks is only up to 4x to the
best of our knowledge in the existing literature. Differently, in selective sensing and reconstruction
tasks, the nonuniformly subsampling factor (compression ratio) of images can have a much larger
range (4-32x in this paper).

3 METHODOLOGY

In this section, we first formulate the co-optimization of a selective sensing operator and a subse-
quent information decoding network as a mixed discrete-continuous optimization problem. Then, by
applying continuous interpolation and domain extension on the integer variables, we reformulate the
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mixed discrete-continuous optimization problem into two continuous optimization problems, both
of which can be solved by conventional gradient-descent-based algorithms. Based on the new for-
mulation, we extend the conventional backpropagation(BP) algorithm to derive a general co-training
algorithm to co-optimize a selective sensing operator and a subsequent information decoding net-
work. At last, by taking images as the sensing modality and using reconstruction as the information
decoding task, we propose a practical approach, referred to as SS+Net, to compose a selective sens-
ing framework for image selective sensing and reconstruction.

In this paper, a lowercase letter denotes a scalar or a scalar-valued function, and a uppercase letter
denotes a vector, a matrix, a tensor, or a vector-valued function. We use brackets to index the
element of a vector, a matrix, or a tensor. For example, assume X denotes a n-dimensional vector
X = [x0, ..., xn−1], then X[i] = xi for i = 0, · · · , n− 1.

3.1 PROBLEM FORMULATION

Consider the original signal X is an n-dimensional vector, the subsampling rate is m
n , and the

subsampled measurement Y is a m-dimensional vector. The selective sensing of X is a nonuniform
subsampling or a selection process that can be formulated as

Y = S(X, I) = [X[I[0]], · · · , X[I[m− 1]]], (1)
where S(X, I) is a function that stands for the selective sensing operator. I is a m-dimensional
vector denoting the selection set, which contains the indices (integer values between 0 and n− 1) of
the elements to be selected. Consider N(Y,Θ) is a subsequent information decoding network and
Θ is the trainable parameters. o is a differentiable objective function that measures the information
loss throughout the entire selective sensing process with respect to a information acquisition task.
For instance, in a signal reconstruction task, the objective function can be defined as a loss function
which measures the difference between the reconstructed signal and the original signal. The co-
optimization problem of the sensing operator S and the information decoding network N can be
formulated as

Iopt,Θopt = arg min
I,Θ

o(N(S(X, I),Θ)),

subject to i0, . . . , im−1 are integers within interval [0, n− 1]
(2)

Given the entries of Θ are continuous variables, and the entries of I are constrained to be integer
variables within [0, n − 1], the problem in (2) is a mixed discrete-continuous optimization problem
that can not be directly solved with conventional gradient-descent-based algorithms. This is because
the gradient of o with respect to I does not exist.

3.2 REFORMULATION BY CONTINUOUS INTERPOLATION AND DOMAIN EXTENSION

By applying the continuous interpolation on S with respect to I and the extension on the domain of
S, we can reformulate the problem in (2) into two subproblems. For simplicity, we adopt a linear
interpolation in our method. However, nonlinear interpolation methods can be also applied.

We define a piece-wise linear function f(X, i) as
f(X, i) = (X[ru]−X[rd])(i− id) + X[rd],

where iu = floor(i) + 1, id = floor(i), ru = iu mod n and rd = id mod n.
(3)

In (3), i is a real-valued scalar, floor() is the flooring function returning the closest integer that is
less than or equal to the input, and mod is the modulo operation. f(X, i) essentially interpolates
the value of X over a continuous index i in a piece-wise linear fashion and extends the range of i
to (−∞,∞). Given a X , f(X, i) is periodic over every n-length interval of i. At integer values
of i, we have f(X, i) = X[i mod n], which returns the original value of the [i mod n]-th element
of X . Specifically, when i is an integer in interval [0, n − 1], we have f(X, i) = X[i]. Due to the
continuous interpolation and domain extension, f(X, i) is almost everywhere differentiable over i
except for all the integer points. The choice of the gradient value at integer points turn out to be
insensitive to the algorithm performance. For simplicity, we define the derivatives of f(X, i) at
integer values of i as zero. As such, we have the gradient value of f with respect to i in the whole
space which can be expressed as

∂f

∂i
=

{
0, if i is a integer,
(X[ru]−X[rd]), otherwise.

(4)
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Based on (4), we define a continuous selective sensing operator function S′ as

S′(X, I) = [f(X, i0), ..., f(X, im−1)]. (5)

Leveraging (3) and (5), we reformulate the mixed discrete-continuous optimization problem in (2)
into two subproblems defined as

IR,ΘR = arg min
I,Θ

o(N(S′(X, I),Θ)), (6)

and
Iopt = [round(i) mod n for each entry i in IR],

Θopt = arg min
Θ

o(N(S(X, Iopt),Θ)), (7)

where round() is an even rounding function that returns the closest integer value of the input, and the
initial values of Θ in (7) is ΘR. Note that both the subproblems in (6) and (7) are unconstrained and
the gradient of o with respect to I and Θ can be calculated over the whole space in (6). Therefore,
we can solve the subproblems in (6) and (7) sequentially using gradient-descent based algorithms.
For the brevity of illustration, we refer to the process of solving the subproblem in (6) and (7) as the
initial-training and the fine-tuning step, respectively, in the rest of this paper.

3.3 EXTENSION OF THE BACKPROPAGATION ALGORITHM

Generally, neural network models are trained over multiple training samples and the gradients of
trainable parameters are calculated using the BP algorithm. We extend the BP algorithm and derive
the gradient calculation (with respect to I) over a batch of training samples as follows.

Given a batch of b samples X1, · · · , Xb of the signal X for training, the forward pass of the BP
algorithm in the initial-training step can be derived as

Yi = S′(Xi, I), Zi = N(Yi,Θ), oi = o(Zi), obatch =
1

b

b∑
i=1

oi, (8)

where i = 1, · · · , b, Zi is the representation of the information decoded by the network and obatch is
the loss function that measures the average information loss throughout the selective sensing process.
One can also choose to use the total information loss here.

In the backward pass of the BP algorithm, the gradient calculation with respect to Θ is the same as
in regular neural network training. The gradient calculation with respect to I can be derived using
the chain rule of derivative. Specifically, the gradient calculation of obatch with respect to Yi can be
derived as

∂obatch
Yi

=
1

b

∂oi
Yi

for i = 1, · · · , b. (9)

Subsequently, the gradient calculation of obatch with respect to I over a batch of training samples
can be derived as

∂obatch
∂I

=
1

b

b∑
j=1

∂oj
∂Yj

∂Yj

∂I

= [
1

b

b∑
j=1

∂oj
∂Yj [0]

∂f(Xj , I[0])

∂I[0]
, · · · , 1

b

b∑
j=1

∂oj
∂Yj [m− 1]

∂f(Xj , I[m− 1])

∂I[m− 1]]
].

(10)

Leveraging the gradient calculations in (9) and (10), the subproblem in (6) can be therefore solved by
using gradient-descent-based algorithms. The outputs from the initial-training step include the opti-
mized selection set IR and the corresponding reconstruction network parameters ΘR. As the entries
of IR are continuous over interval (−∞,∞), one needs further convert IR to an integer selection
set Iopt as shown in (7). To compensate for the accuracy loss due to rounding, the reconstruction
network shall be further fine tuned in the fine-tuning step while keeping Iopt fixed as shown in (7).

The entire algorithm of co-training a information decoding network N and a selective sensing oper-
ator S is summarized in Algorithm 1 in the appendix.
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3.4 IMAGE SELECTIVE SENSING AND RECONSTRUCTION

In the rest of the paper, we take image as the sensing modality and reconstruction as the informa-
tion decoding task to demonstrate the first proof-of-concept of selective sensing. The prior work
discussed in subsection 2.3 shows that neural network models can be trained to directly approx-
imate the inverse mapping of compressive sensing to perform the reconstruction. Therefore, we
hypothesize that there exists a direct mapping from the selective sensed (nonuniformly subsampled)
domain to the original image domain, and such a mapping can be well approximated by a neural
network co-trained with the selective sensing operator. Furthermore, we hypothesize that the exist-
ing image compressive sensing reconstruction networks can be also used for image selective sensing
reconstruction.

Based on our hypotheses, we use the loss function l(X̂,X) as the objective function in (2), where l

is a function that measures the distance between X̂ and X , e.g. a mean-square-error function, and
X̂ is the output (Z in (8)) of the information decoding network N . As such, N is trained to directly
reconstruct the original image from the selective sensing measurement as

X
S′

−−−−→
Sensing

Y
N−−−−−−−→

Reconstruction
X̂. (11)

We refer to the image selective sensing and reconstruction frameworks composed in such way as
SS+Net.

To evaluate the performance of SS+Net, we compare it against compressive sensing and uniform
subsampling counterparts referred to as CS+Net and US+Net, respectively. CS+Net and US+Net use
same reconstruction networks but replace the selective sensing operator in SS+Net with a Gaussian
random sensing matrix2 and a uniform subsampling operator3, respectively. Additionally, we set
all the hyper-parameters in SS+Net, CS+Net, and US+Net to be the same during the training for a
fair comparison. The purpose of using CS+Net and US+Net as the reference methods is to reveal
the true impact of selective sensing on compressive information acquisition in comparison to the
compressive sensing and uniform subsampling counterparts.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We conduct experiments on two datasets with two different reconstruction networks at the measure-
ment/subsampling rates ranging from 0.03125 to 0.25 (corresponding to the dimensionality reduc-
tion ratios of 32-4x). The first dataset is CIFAR10 (Krizhevsky et al., 2009). The second dataset
is composed in the same way as illustrated in Xu et al. (2018), which has 228,688 training sam-
ples and 867 testing samples. The testing samples are the non-overlapped image patches from Set5
(Bevilacqua et al., 2012) and Set14 (Zeyde et al., 2010). All the samples are of size 64x64 with three
color channels(RGB). The sensing is performed channel-wise in all the experiments, i.e., for each
framework of SS-Net, CS-Net and US-Net, each sample is first reshaped to three 4096-dimensional
vectors corresponding to the three color channels. Subsequently, three sensing operators correspond-
ing to the three color channels are used to sense the three vectors of each sample, respectively. The
sensed measurements from the three color channels are grouped together and then fed into the re-
construction network. Prior to the training, 5% of the training samples are randomly selected and
separated out as the validation set.

The two reconstruction networks we experimented with are DCNet and ReconNet (Kulkarni et al.,
2016). DCNet has the same network structure as the generator network of DCGAN (Radford et al.,
2015). We made some minor but necessary modifications to the structure of DCNet and ReconNet
in order to perform image reconstruction and speed up the training. The modification details are
summarized in subsection A.2 in the Appendix.

2The majority of existing data-driven image compressive sensing reconstruction methods (Kulkarni et al.,
2016; Bora et al., 2017; Metzler et al., 2017; Xu et al., 2018; Zhang & Ghanem, 2018; Yao et al., 2019; Van Veen
et al., 2018) use a fixed Gaussian random sensing matrix to perform the sensing.

3Assume the sampling rate is m
n

, an input vector of length n is equally divided into m segments and the
central entry of each segment is sampled as a measurement
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Figure 1: Comparison of information acquisition performance among selective sensing (SS), com-
pressive sensing (CS), and uniform subsampling (US) measured in PSNR and SSIM.The average
PSNR and SSIM improvements of SS over CS and US across all eight measurement rates are anno-
tated on the figure.

In the beginning of the training process of SS+Net, the selection index I is randomly initialized
with real values from the uniform distribution U(0, n). We co-train the selective sensing operator
and the reconstruction network for 300 iterations, of which the first 150 iterations are used for the
initial-training step and the rest are used for the fine-tuning step. We use two different optimizers to
optimize different components of SS+Net: An Adam optimizer with a learning rate of 0.001 is used
to optimize reconstruction networks and a SGD optimizer with a learning rate of 100000 is used to
optimize sensing operators. Using a high learning rate for training the selective sensing operators is
because the gradient values with respect to the selection index I (calculated with (4)) turns out to
be orders of magnitude smaller (because adjacent pixels in natural images mostly have very close
pixel values) than the the rest of the gradient values and the learning rate of 100000 performs well
in the experiments. For the training of the CS+Net and US+Net counterparts, except that there is no
optimizer for sensing operators, all the other experiment setups remain the same with SS+Net.

4.2 EXPERIMENT RESULTS

The reconstruction accuracy is measured as average reconstruction PSNR and SSIM. The experi-
ment results of PSNR and SSIM are plotted in Figure 1. As shown in Figure 1, selective sensing
achieves up to 44.92dB/0.9952 reconstruction PSNR/SSIM at the measurement rate of 0.25 (dimen-
sionality reduction ratio of 4). Even at the low measurement rate of 0.03125 (dimensionality reduc-
tion ratio of 32), selective sensing still achieves at least 23.35dB/0.6975 reconstruction PSNR/SSIM.
The experiment results validate our hypothesis that the direct mapping from the selective sensed do-
main to the original image domain can be well approximated by existing reconstruction neural net-
works co-trained with the selective sensing operator, and data-driven nonuniform subsampling can
well preserve signal information under the presence of the co-trained information decoding neural
network. Furthermore, the experiment results show that selective sensing consistently outperforms
compressive sensing and uniform subsampling, especially at higher dimensionality reduction ratios.
The average PSNR/SSIM improvement of selective sensing over compressive sensing and uniform
subsampling across all the experiments is 3.73dB/0.07 and 9.43dB/0.16, respectively. As the only
difference between SS+Net, CS+Net, and US+Net is the sensing operator used, the experiment re-
sults imply that selective sensing better preserves signal information than compressive sensing and
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Figure 2: Visual reconstruction quality comparison among selective sensing, compressive sensing
and uniform subsampling. The reconstruction network used is ReconNet, and the example image is
from the Set14. Across all the dimensionality reduction ratios, selective sensing produces a sharper
image with finer details presented, e.g. the beard and the skin textures.

uniform subsampling as a result of the co-optimization of the sensing and reconstruction stages. The
detailed numerical PSNR and SSIM results are presented in Table 1, Table 2, Table 3 and Table 4 in
the Appendix.

Compared with the images in CIFAR10, the images in Set5 and Set14 have more details, which
makes the reconstruction inherently more difficult. We take one image from Set14 as an example
to illustrate the visual reconstruction quality comparison. As shown in Figure 2, selective sensing
reconstructs the image with finer and sharper details, such as the beard and the textures of the
skin, than compressive sensing and uniform subsampling across all dimensionality reduction ratios.
More visual reconstruction quality comparison showing the same results are illustrated in Figure 3,
Figure 4 and Figure 5 in the Appendix. These visual reconstruction quality comparisons show
strong evidence that selective sensing better preserves signal information than compressive sensing
and uniform subsampling.

4.3 COMPARISON AGAINST RANDOM INDICES

To understand the effectiveness of the trained selection indices in selective sensing over randomly
generated selection indices, we design a trivial random subsampling approach called RS+Net and
compared it with SS+Net. The experimental setup for RS+Net is consistent with US+Net except
that the selection indices of RS+Net are integers randomly generated from the uniform distribution
U(0, n). The experiments are performed on CIFAR10 at the dimensionality reduction ratios of 32
and 8 (measurement rates of 0.03125 and 0.125) with ReconNet. At each measurement rate, we ran-
domly generate eight different sets of selection indices, based on which we train eight reconstruction
networks from scratch, respectively, for RS+Net.

We observe that the final reconstruction accuracy of RS+Net on average is significantly lower than
SS+Net counterparts. The average PSNR of RS+Net is 22.78 dB and 31.02 dB at measurement
rates of 0.03125 and 0.125, which is 5.73 dB and 9.49 dB lower than the SS+Net counterparts, re-
spectively. In addition, we observe a large variance in the final reconstruction accuracy of RS+Net
across the eight sets of selection indices. Specifically, at the measurement rate of 0.03125 and 0.125,
the gap between the maximum and the minimum PSNRs is 0.59 dB and 0.54dB, and the standard
deviation of PSNRs is 0.19 dB and 0.20 dB, respectively. The detailed results are summarized in Ta-
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ble 5 in the Appendix. Furthermore, to illustrate the superiority of the co-optimized selection indices
in selective sensing over random selection indices, we also train two reconstruction networks from
scratch at the measurement rates of 0.03125 and 0.0125 with the corresponding pre-trained selection
indices from SS+Net remaining fixed in the training process, respectively. The final reconstruction
accuracy is 28.49 dB and 40.47 dB at the measurement of 0.03125 and 0.0125, which is 5.71 dB and
9.45 dB higher than the original RS+Net counterparts using random selection indices, respectively.

These results indicate that random selection indices are insufficient for retaining information of
interest with respect to the subsequent reconstruction network. Differently, learned indices from
co-training a selective sensing operator with a subsequent reconstruction network can significantly
improve the selective sensing performance in terms of retaining the information of interest for high-
accuracy reconstruction. The visualization and comparison of learned (co-trained) and random se-
lection masks are shown in Figure 6, 7, and 8 in subsection A.3 of the Appendix.

4.4 DISCUSSION ON NONCONVEXITY AND INCOHERENCE

From the optimization perspective, both the original problem 2 and the relaxed problem 6 are non-
convex problems. Thus, it is not guaranteed that the gradient-descent-based algorithm 1 can find
the globally optimal solution of the problem 2. Additionally, it is known that deep neural network
models are typically non-convex with a great number of local minima (Goodfellow et al., 2016).
The gap between local and global minima remains an open topic of research. Similarly, our ap-
proach leverages the gradient-descent algorithm and relaxed problem 6 to find the local minimum of
problem 2 that are empirically proven to have outstanding performance. Specifically, the experiment
results show that the proposed algorithm 1 can consistently find a local optimum of the indices I
that has significantly better sensing performance than random indices and random Gaussian sensing
matrices in terms of the reconstruction accuracy across different datasets and compression ratios.

It should be also noted that selective sensing, similar to many data-driven compressive sensing
methods that co-train a sensing matrix with a reconstruction network(Mousavi et al., 2017; 2018;
Lohit et al., 2018), does not explicitly require the incoherence of sensing matrices nor sparsity ba-
sis. Previous studies have empirically shown that these data-driven compressive sensing methods
can achieve significantly higher reconstruction performance compared to conventional model-based
methods(Li et al., 2013; Dong et al., 2014) that have the incoherence and sparsity requirements.
Similarly, our experiment results on various datasets, reconstruction networks, and measurement
rates also show that selective sensing consistently outperforms compressive sensing and uniform
subsampling counterparts. Furthermore, compared to the data-driven compressive sensing method
in Lohit et al. (2018), selective sensing can achieve 6.02 dB/0.031 and 0.72 dB/0.007 higher re-
construction PSNR/SSIM on the CIFAR10 database with the same reconstruction network Kulkarni
et al. (2016) at the measurement rate of 0.125 and 0.25, respectively. These comparison results are
the strong empirical evidence that selective sensing can well preserve signal information without the
incoherence nor sparsity requirements.

5 CONCLUSION

In this paper, we propose a selective sensing framework that adopts the novel concept of data-driven
nonuniform subsampling to perform on-sensor data dimensionality reduction in a computation-free
fashion. Selective sensing adopts a co-optimization methodology to co-train a selective sensing op-
erator with a subsequent information decoding neural network. The co-training of selective sensing
is first formulated as a mixed-discrete-continuous optimization problem. By applying continuous
interpolation and domain extension to the sensing index domain with quantization and fine-tuning
techniques, we reformulate the problem into two continuous optimization subproblems that can be
solved by gradient-descent-based algorithms. This is the key to enabling the co-training of the se-
lective sensing operator with the subsequent information decoding neural network. The experiments
on CIFAR10, Set5, and Set14 datasets show that the proposed selective sensing framework can
achieve an average reconstruction accuracy improvement in terms of PSNR/SSIM of 3.73dB/0.07
and 9.43dB/0.16 over compressive sensing and uniform subsampling counterparts across the dimen-
sionality reduction ratios of 4-32x, respectively. The computation-free nature of selective sensing
makes it a highly suitable solution for performing compressive information acquisition on resource-
constrained sensor devices or high-data-rate sensor devices dealing with high-dimensional signals.
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A APPENDIX

A.1 SUMMARIZED ALGORITHM

Algorithm 1 Main algorithm

Input: training samples X1, · · · , XN , number of iterations maxiters for initial-training step,
batch size b
Initialize I,Θ
Initial-training
for iter = 1 to maxiters do

for batch = 1 to N
b do

Forward pass
Execute (8)
Backward pass
Using the BP algorithm to calculate the gradient with respect to Θ
Execute (9)
Execute (10) to calculate the gradient with respect to I
Optimize I and Θ using the calculated gradients

end for
end for
IR,ΘR = I,Θ.
Execute the rounding and modulo operations over entries of IR as in (7) to get Iopt.
Fine-tuning
Initialize Θ = ΘR, further optimize Θ with the gradients calculated by the BP algorithm while
keeping I = Iopt
End
Iopt,Θopt = I,Θ

13



Under review as a conference paper at ICLR 2021

A.2 MORE EXPERIMENTS DETAILS

The code, datasets and pretrained models can be downloaded from:

https://figshare.com/s/519a923fae8f386d7f5b.

The experiments are conducted in parallel on four RTX 2080 Ti GPU cards. One training pro-
cess(300 iterations) runs on one GPU card takes around 80 minutes.

We made following necessary modifications to the structure of DCNet and ReconNet in order to
perform image reconstruction and speed up the training process. We modify the first layer of DCNet
by increasing the number of input channels to be equal to the number of measurements in order
to feed measurements into DCNet. As ReconNet is designed to reconstruct grayscale images, we
made some modifications to the network structure of ReconNet in order to reconstruct color images.
Specifically, we replace the first layer of ReconNet, which is a fully-connected layer, with three fully-
connected layers in parallel to generate three feature map corresponding to three color channels. In
addition, we modify the third and the sixth convolutional layers to have three output channels in
order to maintain the dimensionality of the original image. The batch normalization layers are also
added right behind each convolutional layer (except for the last convolutional layer which is the
output layer) to accelerate the training.
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A.3 MORE EXPERIMENT RESULTS

Figure 6,Figure 7 and Figure 8 shows that sampling points in learned masks are more evenly dis-
tributed on the whole image and less clustered at specific locations across all measurement rates than
random masks. Consequently, the measurements from selective sensing are less noisy but more in-
formative than random sensing. For instance, the outlines of objects in the measurements sensed by
selective sensing are more visually comprehensible than random sensing, which provides a possible
visual explanation on the effectiveness of selective sensing over random subsampling.

Table 1: Reconstruction performance comparison on CIFAR10 using DCNet as the reconstruction
network.

Metrics PSNR (dB)

Sensing operator SS CS US SS over CS SS over US

0.03125 28.055576 23.678496 17.903165 4.3770796 10.152411

0.0625 33.76353 27.567673 20.432642 6.1958566 13.330888

0.09375 37.788893 30.687367 22.436043 7.1015266 15.352851

0.125 40.4781 33.434791 24.314229 7.043309 16.163872

0.15625 41.843324 35.391706 25.934857 6.4516183 15.908467

0.1875 42.571765 37.023333 27.796602 5.5484323 14.775163

0.21875 43.227788 38.326256 29.525659 4.9015314 13.702128

Measurement rate

0.25 43.928165 38.693752 31.793804 5.2344128 12.134361

Metrics SSIM

Sensing operator SS CS US SS over CS SS over US

0.03125 0.8785 0.745 0.5759 0.1335 0.3026

0.0625 0.957 0.8542 0.6638 0.1028 0.2932

0.09375 0.9789 0.9132 0.732 0.0657 0.2469

0.125 0.987 0.9473 0.7899 0.0397 0.1971

0.15625 0.9899 0.9652 0.8334 0.0247 0.1565

0.1875 0.9913 0.9747 0.8779 0.0166 0.1134

0.21875 0.9923 0.9795 0.9084 0.0128 0.0839

Measurement rate

0.25 0.9932 0.9809 0.9381 0.0123 0.0551

15



Under review as a conference paper at ICLR 2021

Table 2: Reconstruction performance comparison on CIFAR10 using ReconNet as the reconstruction
network.

Metrics PSNR (dB)

Sensing operator SS CS US SS over CS SS over US

0.03125 28.510575 24.162001 17.833156 4.3485742 10.677419

0.0625 33.835395 28.244744 20.37912 5.5906511 13.456275

0.09375 37.465897 31.460441 22.615043 6.005456 14.850854

0.125 40.505386 34.428422 24.507658 6.0769649 15.997729

0.15625 41.91067 37.112229 26.295812 4.7984413 15.614858

0.1875 42.64523 39.830833 28.173974 2.8143966 14.471256

0.21875 44.613196 41.977892 30.068614 2.6353032 14.544581

Measurement rate

0.25 44.922706 43.377697 32.157417 1.5450094 12.765289

Metrics SSIM

Sensing operator SS CS US SS over CS SS over US

0.03125 0.8916 0.7629 0.5733 0.1287 0.3183

0.0625 0.9602 0.8683 0.6694 0.0919 0.2908

0.09375 0.9793 0.9225 0.7474 0.0568 0.2319

0.125 0.988 0.9549 0.8046 0.0331 0.1834

0.15625 0.9918 0.9731 0.8548 0.0187 0.137

0.1875 0.9935 0.9849 0.889 0.0086 0.1045

0.21875 0.9952 0.9903 0.9199 0.0049 0.0753

Measurement rate

0.25 0.9952 0.9932 0.9427 0.002 0.0525
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Table 3: Reconstruction performance comparison on Set5 and Set14 using DCNet as the reconstruc-
tion network.

Metrics PSNR (dB)

Sensing operator SS CS US SS over CS SS over US

0.03125 23.356654 21.988134 19.158458 1.3685191 4.1981953

0.0625 25.020666 23.655472 21.360483 1.3651944 3.6601834

0.09375 25.821571 24.320524 22.822223 1.5010468 2.9993483

0.125 29.330996 24.941122 24.049497 4.3898736 5.2814991

0.15625 30.142491 26.041837 25.023534 4.1006538 5.1189574

0.1875 30.798615 28.254278 25.973201 2.5443367 4.8254134

0.21875 31.402867 28.782112 26.572408 2.6207543 4.8304582

Measurement rate

0.25 32.040132 29.214131 27.364247 2.8260015 4.6758851

Metrics SSIM

Sensing operator SS CS US SS over CS SS over US

0.03125 0.6975 0.6131 0.539 0.0844 0.1585

0.0625 0.7696 0.6672 0.5995 0.1024 0.1701

0.09375 0.8079 0.7041 0.6448 0.1038 0.1631

0.125 0.8493 0.731 0.688 0.1183 0.1613

0.15625 0.8674 0.7559 0.7193 0.1115 0.1481

0.1875 0.8811 0.7866 0.75 0.0945 0.1311

0.21875 0.8919 0.803 0.7719 0.0889 0.12

Measurement rate

0.25 0.9005 0.8159 0.7969 0.0846 0.1036
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Table 4: Reconstruction performance comparison on Set5 and Set14 using ReconNet as the recon-
struction network.

Metrics PSNR (dB)

Sensing operator SS CS US SS over CS SS over US

0.03125 25.14523 23.492886 19.141701 1.652344 6.0035286

0.0625 27.002097 25.27621 21.385219 1.725887 5.6168772

0.09375 28.276923 26.41306 22.907161 1.8638628 5.3697623

0.125 29.357467 27.2674 24.135962 2.0900672 5.2215052

0.15625 30.240035 27.814269 25.232525 2.4257659 5.0075104

0.1875 31.18125 28.651692 26.099135 2.5295576 5.0821148

0.21875 31.844453 29.195588 26.796003 2.6488653 5.0484498

Measurement rate

0.25 32.397313 29.493561 27.412122 2.9037527 4.9851912

Metrics SSIM

Sensing operator SS CS US SS over CS SS over US

0.03125 0.7256 0.625 0.5444 0.1006 0.1812

0.0625 0.7924 0.6816 0.6019 0.1108 0.1905

0.09375 0.8314 0.7218 0.6547 0.1096 0.1767

0.125 0.8575 0.7519 0.698 0.1056 0.1595

0.15625 0.8783 0.7678 0.7354 0.1105 0.1429

0.1875 0.8932 0.7891 0.7607 0.1041 0.1325

0.21875 0.9026 0.8106 0.7832 0.092 0.1194

Measurement rate

0.25 0.9107 0.8194 0.8038 0.0913 0.1069

Table 5: Summary of reconstruction accuracy results of RS+Net on CIFAR10 dataset. Metrics:
PSNR(dB)/SSIM

Measurement rate Mean Min Max Standard deviation

0.03125 22.78/0.74 22.57/0.73 23.16/0.75 0.19/0.006
0.125 31.02/0.93 30.71/0.93 31.25/0.94 0.20/0.0018
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Dimensionality

Reduction

Ratio

4 8 16 32

(36.74,0.95) (33.45,0.91) (30.88,0.86) (28.70,0.80)

(33.04,0.89) (26.71,0.72)(30.63,0.83) (28.52,0.77)

Compressive 

Sensing

Selective 

Sensing(Ours)

(PSNR,SSIM)

Original

(30.69,0.86) (19.43,0.59)(22.54,0.65)(26.36,0.75)

Uniform 

Subsampling

Figure 3: Visual reconstruction quality comparison among selective sensing, compressive sensing
and uniform subsampling. The reconstruction network used is ReconNet, and the example image is
from the Set5 dataset. Across all the compression ratios, selective sensing produces a sharper image
with finer details presented, e.g. the eyelashes and the textures of the hat.
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Ratio

4 8 16 32

(30.89,0.95) (26.64,0.89) (22.75,0.81) (19.48,0.69)

(25.72,0.83) (16.36,0.49)(22.53,0.76) (19.20,0.63)

Compressive 

Sensing

Selective 

Sensing(Ours)

(PSNR,SSIM)

Original

(22.19,0.82) (13.39,0.38)(14.63,0.46)(17.16,0.62)

Uniform 

Subsampling

Figure 4: Visual reconstruction quality comparison among selective sensing, compressive sensing
and uniform subsampling. The reconstruction network used is ReconNet, and the example image is
from the Set5 dataset. Across all the compression ratios, selective sensing produces a sharper image
with finer details presented, e.g. the textures on the wings.
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(33.10,0.95) (28.64,0.88) (24.66,0.76) (21.88,0.65)

(26.73,0.81) (17.90,0.45)(22.97,0.67) (19.98,0.54)

Compressive 
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(PSNR,SSIM)

Original

(23.34,0.77) (14.96,0.35)(16.06,0.43)(18.39,0.58)

Uniform 

Subsampling

Figure 5: Visual reconstruction quality comparison among selective sensing, compressive sensing
and uniform subsampling. The reconstruction network used is ReconNet, and the example image
is from the Set14 dataset. Across all the compression ratios, selective sensing produces a sharper
image with finer details presented, e.g. the edges of the stripes.
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Figure 6: Visual comparison between learned and random selection masks. Top to bottom: masks
at the measurement rates from 0.03125 to 0.25. Left to right: learned selection masks of selective
sensing, selective sensing measurements, random selection masks, and randomly selected measure-
ments. The masks and measurements are plotted based on color channels.
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Figure 7: Visual comparison between learned and random selection masks. Top to bottom: masks
at the measurement rates from 0.03125 to 0.25. Left to right: learned selection masks of selective
sensing, selective sensing measurements, random selection masks, and randomly selected measure-
ments. The masks and measurements are plotted based on color channels.
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Figure 8: Visual comparison between learned and random selection masks. Top to bottom: masks
at the measurement rates from 0.03125 to 0.25. Left to right: learned selection masks of selective
sensing, selective sensing measurements, random selection masks, and randomly selected measure-
ments. The masks and measurements are plotted based on color channels.

24


	Introduction
	Related Work
	Nonuniform Subsampling
	Sensing Matrix Simplification Methods
	Data-driven Compressive Sensing
	Image Super-resolution

	Methodology
	Problem Formulation
	Reformulation by Continuous Interpolation and Domain Extension
	Extension of the Backpropagation Algorithm
	Image Selective Sensing and Reconstruction

	Experiments
	Experiment Setup
	Experiment Results
	Comparison Against Random indices
	Discussion on Nonconvexity and Incoherence

	Conclusion
	Appendix
	Summarized Algorithm
	More experiments details
	More experiment results


