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ABSTRACT

The performance of a model trained with noisy labels is often improved by simply retraining the
model with its own predicted hard labels (i.e., 1/0 labels). Yet, a detailed theoretical characterization
of this phenomenon is lacking. In this paper, we theoretically analyze retraining in a linearly
separable setting with randomly corrupted labels given to us and prove that retraining can improve
the population accuracy obtained by initially training with the given (noisy) labels. To the best of our
knowledge, this is the first such theoretical result. Retraining finds application in improving training
with local label differential privacy (DP) which involves training with noisy labels. We empirically
show that retraining selectively on the samples for which the predicted label matches the given
label significantly improves label DP training at no extra privacy cost; we call this consensus-based
retraining. As an example, when training ResNet-18 on CIFAR-100 with ε = 3 label DP, we obtain
6.4% improvement in accuracy with consensus-based retraining.

1 INTRODUCTION

We study the simple idea of retraining an already trained model with its own predicted hard labels (i.e., 1/0 labels and
not the raw probabilities) when the given labels with which the model is initially trained are noisy. This is a simple
yet effective way to boost a model’s performance in the presence of noisy labels. More formally, suppose we train a
discriminative modelM (for a classification problem) on a dataset of n samples and noisy label pairs {(xj , ŷj)}

n
j=1.

Let θ̂0 be the final learned weight/checkpoint ofM and let ỹj =M(θ̂0,xj) be the current checkpoint’s predicted hard
label for sample xj . Now, we propose to retrainM with the ỹj’s in one of the following two ways:

(i) Full retraining: RetrainM with {(xj , ỹj)}
n
j=1, i.e., retrainM with the predicted labels of all the samples.

(ii) Consensus-based retraining: Define Scons ∶= {j ∈ {1, . . . , n} ∣ ỹj = ŷj} to be the set of samples for which the
predicted label matches the given noisy label; we call this the consensus set. RetrainM with {(xj , ỹj)}j∈Scons ,
i.e., retrainM with the predicted labels of only the consensus set.

Intuitively, retraining with predicted hard labels can be beneficial when the underlying classes are “well-separated”.
In such a case, the model can potentially correctly predict the labels of many samples in the training set far away
from the decision boundary which were originally incorrectly labeled and presented to it. As a result, the model’s
accuracy (w.r.t. the actual labels) on the training data can be significantly higher than the accuracy of the noisy labels
presented to it. Hence, retraining with predicted labels can potentially improve the model’s performance. This intuition
is illustrated in Figure 1 where we consider a separable binary classification problem with noisy labels. The exact
details are in Appendix A but importantly, Figures 1a and 1b correspond to versions of this problem with “large” and
“small” separation, respectively. Please see the figure caption for detailed discussion but in summary, Figure 1 shows us
that the success of retraining depends on the degree of separation between the classes.

The motivation for consensus-based retraining is that matching the predicted and given labels can potentially yield
a smaller but much more accurate subset compared to the entire set; such a filtering effect can further improve the
model’s performance. As we show in Section 5 (see Tables 3 and 7), this intuition bears out in practice.

There are plenty of ideas revolving around training a model with its own predictions, the two most common ones being
self-training (Scudder, 1965; Yarowsky, 1995; Lee et al., 2013) and self-distillation (Furlanello et al., 2018; Mobahi
et al., 2020); we discuss these and important differences from retraining in Section 2. However, from a theoretical
perspective, we are not aware of any work proving that retraining a model with its predicted hard labels can be beneficial
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(a) Large separation: predicted labels pretty accurate.
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(b) Small separation: predicted labels not as accurate.

Figure 1: Retraining Intuition. Samples to the right (respectively, left) of the separator (black vertical
line in the middle) and colored blue (respectively, red) have actual label +1 (respectively, −1). For
both classes, the incorrectly labeled samples are marked by crosses (×), whereas the correctly labeled
samples are marked by dots (○) of the appropriate color. The amount of label noise and the number
of training samples are the same in 1a and 1b. The top and bottom plots show the joint scatter plot
of the training samples with the (noisy) labels given to us and the labels predicted by the model after
training with the given labels, respectively. Notice that in 1a, the model correctly predicts the labels
of several samples that were given to it with the wrong label – especially, those that are far away from
the separator. This is not quite the case in 1b. This difference gets reflected in the performance on the
test set after retraining. Specifically, in 1a, retraining increases the test accuracy to 97.67% from 89%.
However, retraining yields no improvement in 1b. So the success of retraining depends on the degree
of separation between the classes.

in the presence of label noise in any setting. In Section 4, we derive the first theoretical result (to our knowledge)
showing that full retraining with hard labels improves model accuracy.

The primary reason for our interest in retraining is that it turned out to be a simple yet effective way to improve training
with local1 label differential privacy (DP) whose goal is to safeguard the privacy of labels in a supervised ML problem
by injecting label noise (see Section 3 for a formal definition). Label DP is used in scenarios where only the labels
are considered sensitive, e.g., advertising, recommendation systems, etc. (Ghazi et al., 2021). Importantly, retraining
can be applied on top of any label DP training algorithm at no extra privacy cost. Our main algorithmic contribution
is empirically demonstrating the efficacy of consensus-based retraining in improving label DP training (Section 5).
Three things are worth clarifying here. First, as a meta-idea, retraining is not particularly new; however, its application
– especially with consensus-based filtering – as a light-weight way to improve label DP training at no extra privacy
cost is new to our knowledge. Second, we are not advocating consensus-based retraining as a SOTA general-purpose
algorithm for learning with noisy labels. Third, we do not view full retraining to be an algorithmic contribution; we
consider it for theoretical analysis and as a baseline for consensus-based retraining.

Our main contributions can be summarized as follows:

• In Section 4, we consider a linearly separable binary classification problem wherein the data (feature) dimension
is d, and we are given randomly flipped labels with the label flipping probability being p < 1

2
independently

for each sample. Our main result is proving that full retraining with the predicted hard labels improves the
population accuracy obtained by initially training with the given labels, provided that p is close enough to 1

2
and

the dataset size n satisfies d logn
(1−2p) ≲ n ≲

d2

(1−2p)2 (“≲” means “bounded asymptotically”, ignoring constant factor
multiples); see Remark 4.10 for details. In addition, our results show that retraining becomes more beneficial
as the amount of label noise (i.e., p) increases or as the degree of separation between the classes increases. To

1In this paper, we focus only on local label DP. So throughout the paper, we will mostly omit the word “local” for conciseness.
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the best of our knowledge, these are the first theoretical results quantifying the benefits of retraining with
predicted hard labels in the presence of label noise. The analysis of retraining is particularly challenging because
of the dependence of the predicted labels on the entire training set and the non-uniform/sample-dependent nature
of label noise in the predicted labels; see the discussion after the statement of Theorem 4.8.

• In Section 5, we show the promise of consensus-based retraining (i.e., retraining on only those samples for
which the predicted label matches the given noisy label) as a simple way to improve the performance of any
label DP algorithm, at no extra privacy cost. As an example, when training ResNet-18 on CIFAR-100 with
ε = 3 label DP, we obtain 6.4% improvement in accuracy with consensus-based retraining (see Table 2). The
corresponding improvement for a small BERT model trained on AG News Subset (a news classification dataset)
with ε = 0.5 label DP is 11.7% (see Table 6).

2 RELATED WORK

Self-Training (ST). Retraining is similar in spirit to ST (Scudder, 1965; Yarowsky, 1995; Lee et al., 2013; Sohn et al.,
2020) which is the process of progressively training a model with its own predicted hard labels in the semi-supervised
setting. Our focus in this work is on the fully supervised setting. This is different from ST (in the semi-supervised
setting) which typically selects samples based on the model’s confidence and hence, we call our algorithmic idea of
interest retraining to distinguish it from ST. In fact, we show that our consensus-based sample selection strategy leads
to better performance than confidence-based sample selection in Appendix H. There is a vast body of work on ST and
related ideas; see Amini et al. (2022) for a survey. On the theoretical side also, there are several papers showing and
quantifying different kinds of benefits of ST and related ideas (Carmon et al., 2019; Raghunathan et al., 2020; Kumar
et al., 2020; Chen et al., 2020; Oymak & Gulcu, 2020; Wei et al., 2020; Zhang et al., 2022). But none of these works
characterize the pros/cons of ST or any related algorithm in the presence of noisy labels. In contrast, we show that
retraining can provably improve accuracy in the presence of label noise in Section 4. Empirically, ST-based ideas have
been proposed to improve learning with noisy labels (Reed et al., 2014; Tanaka et al., 2018; Han et al., 2019; Nguyen
et al., 2019; Li et al., 2020; Goel et al., 2022); but these works do not have rigorous theory. In the context of theory on
label noise and model’s confidence, Zheng et al. (2020) show that if the model’s predicted score for the observed label
is small, then the observed label is likely not equal to the true label. Note that the results of Zheng et al. (2020) pertain
to the correctness of the observed labels, whereas our results pertain to the correctness of the predicted labels.

Self-Distillation (SD). Retraining is also similar in principle to SD (Furlanello et al., 2018; Mobahi et al.,
2020); the major difference is that soft labels (i.e., predicted raw probabilities) are used in SD, whereas we use hard
labels in retraining. Specifically, in SD, a teacher model is first trained with provided hard labels and then its predicted
soft labels are used to train a student model with the same architecture as the teacher. SD is usually employed with a
temperature parameter (Hinton et al., 2015) to force the teacher and student models to be different; we do not have
any such parameter in retraining as it uses hard labels. SD is known to ameliorate learning in the presence of noisy
labels (Li et al., 2017) and this has been theoretically analyzed by Dong et al. (2019); Das & Sanghavi (2023). Dong
et al. (2019) propose their own SD algorithm that uses dynamically updated soft labels and provide some complicated
conditions of when their algorithm can learn the correct labels in the presence of noisy labels. In contrast, we analyze
retraining with fixed hard labels. Das & Sanghavi (2023) analyze the standard SD algorithm in the presence of noisy
labels with fixed soft labels but their analysis in the classification setting requires some strong assumptions such as
access to the population, feature maps of all points in the same class having the same inner product, etc. We do not
require such strong assumptions in this paper (in fact, we present sample complexity bounds). Moreover, Das &
Sanghavi (2023) have extra `2-regularization in their objective function to force the teacher and student models to be
different. We do not apply any extra regularization for retraining.

Label Differential Privacy (DP). Label DP (described in detail in Section 3) is a relaxation of full-data DP
wherein the privacy of only the labels (and not the features) is safeguarded (Chaudhuri & Hsu, 2011; Beimel et al., 2013;
Wang & Xu, 2019; Ghazi et al., 2021; Malek Esmaeili et al., 2021; Ghazi et al., 2022; Badanidiyuru et al., 2023). In
this work, we are not trying to propose a SOTA label DP algorithm (with an ingenious noise-injection scheme); instead,
we advocate retraining as a simple post-processing step that can be applied on top of any label DP algorithm (regardless
of the noise-injection scheme) to improve its performance, at no extra privacy cost. Similar to our goal, Tang et al.
(2022) apply techniques from unsupervised and semi-supervised learning to improve label DP training. In particular,
one of their steps involves keeping the given noisy label of a sample only if it matches a pseudo-label generated by
unsupervised learning. This is similar in spirit to our consensus-based retraining scheme but a crucial difference is
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that we do not perform any unsupervised learning; we show that matching the given noisy label to the model’s own
predicted label is itself pretty effective. Further, unlike our work, Tang et al. (2022) do not have any rigorous theory.

3 PRELIMINARIES

Notation. For two functions f(n) and g(n), we write f(n) ≲ g(n) if there exists n0 and a constant C > 0 such that
for all n ≥ n0, f(n) ≤ Cg(n). We also write f(n) ≪ g(n) to indicate that f is asymptotically dominated by g, namely,
for every fixed real number C > 0, there exists n(C) such that g(n) ≥ Cf(n) for all n > n(C). For any positive integer
m ≥ 1, we denote the set {1, . . . ,m} by [m]. Let ei denote the ith canonical vector, namely, the vector of all zeros
except a one in the ith coordinate. We denote the `2 norm of a vector v by ∥v∥`2 , and the operator norm of a matrixM
by ∥M∥. The unit d-dimensional sphere (i.e., the set of d-dimensional vectors with unit norm) is denoted by Sd−1. For

a random variable X , its sub-gaussian norm, denoted by ∥X∥ψ2 , is defined as ∥X∥ψ2 ∶= supq≥1 q
−1/2(E ∣X ∣q)

1/q
.2 In

addition, for random vectorX ∈ Rd, its sub-gaussian norm is defined as ∥X∥ψ2 = supz∈Sd−1 ∥⟨X,z⟩∥ψ2 . We denote
the CDF and complementary CDF (CCDF) of a standard normal variable (i.e., distributed as N(0,1)) by Φ(.) and
Φc(.), respectively.

Definition 3.1 (Label Differential Privacy (DP)) A randomized algorithmA taking as input a dataset and with range
R is said to be ε-labelDP if for any two datasets D and D′ differing in the label of a single example and for any S ⊆R,
it holds that P(A(D) ∈ S) ≤ eεP(A(D′) ∈ S).

Local label DP training involves injecting noise into the labels and then training with these noisy labels. The simplest
way of injecting label noise to ensure label DP is randomized response (RR) introduced by Warner (1965). Specifically,
suppose we require ε-labelDP for a problem with C classes, then the distribution of the output ŷ of RR when the true
label is y is as follows:

P(ŷ = z) = {
eε

eε+C−1
for z = y,

1
eε+C−1

otherwise.

Our label noise model in Section 4 (eq. (4.2)) is actually RR for 2 classes. Based on vanilla RR, more sophisticated
ways to inject label noise for better performance under label DP have been proposed (Ghazi et al., 2021; Malek Esmaeili
et al., 2021). Our empirical results in Section 5 are with RR and the method of Ghazi et al. (2021).

4 FULL RETRAINING IN THE PRESENCE OF LABEL NOISE: THEORETICAL ANALYSIS

Here we will analyze full retraining (as introduced in Section 1) for a linear setting with noisy labels. Since full
retraining is the only kind of retraining we consider here, we will omit the word “full” subsequently in this section.

Problem Setting. We consider binary classification under a discriminative mixtures of Gaussian data model with a
positive margin. We will first describe the classical Gaussian mixture model and then propose a new model which is
endowed with a positive margin.

In the classical Gaussian mixture model, each data point belongs to one of two classes {±1} with corresponding
probabilities π+, π−, such that π+ + π− = 1. Denoting by yi ∈ {−1,+1} the label for data point i, the feature vectors
xi ∈ Rd, for i ∈ [n], are generated independently as xi ∼ N(yiµ,Σ), where µ ∈ Rd and Σ ∈ Rd×d. In other words the
mean of feature vectors are ±µ depending on its class, and Σ is the covariance of the features. We let γ ∶= ∥µ∥`2 .

Gaussian mixture model with positive margin: In this model, each data point (x, y) is generated independently by
first sampling the label y ∈ {−1,+1} with the corresponding probabilities π−, π+, and then generating the feature vector
x ∈ Rd as:

x = y(1 + u)µ +Σ1/2z , where (4.1)

• u is drawn independently for each sample from a common sub-gaussian distribution with positive support
(u > 0).

• z ∼ N(0,Id) independent of u.

2We refer to (Vershynin, 2010, Lemma 5.5) for other equivalent definitions.
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• Σ ∈ Rd×d is the covariance matrix in the space orthogonal to µ. We have Σ1/2µ = 0 and Σ is of rank d − 1.

We let Σ be an arbitrary positive semi-definite matrix to handle general covariances. Let λmin > 0 and λmax denote the
minimum non-zero eigenvalue and the maximum eigenvalue of Σ, respectively. Also without loss of generality, we
assume that u has unit sub-gaussian norm (∥u∥ψ2 = 1).

Note that under this model, the projection of datapoints on the orthogonal space of µ is distributed as normal vectors.
On the direction µ, we have ⟨x,µ⟩ = y(1 + u) ∥µ∥

2
`2

, and so the randomness of data along this direction is modeled in
u. Since u has a positive support, sign(⟨x,µ⟩) = y and therefore µ is a separator of the data (based on its labels). In
addition, we have a margin of at least γ = ∥µ∥`2 ; this is because y⟨x,µ⟩

∥µ∥`2
= (1+ u) ∥µ∥`2 ≥ γ. We will mostly refer to the

margin γ as the “degree of separation”.

We are given access to a training set T = {(xi, ŷi)}i∈[n] where for each i ∈ [n], ŷi is a noisy version of the true label yi
(which we do not observe). Specifically:

ŷi = {
yi with probability 1 − p ,

−yi with probability p ,
(4.2)

for some p < 1/2, and independently for each i ∈ [n].3

4.1 VANILLA TRAINING

Given the training set T = {(xi, ŷi)}i∈[n], we consider the following linear classifier (Carmon et al., 2019):

θ̂0 =
1

n

n

∑
i=1

ŷixi . (4.3)

This classifier’s predicted label for a sample x ∈ Rd is sign(⟨x, θ̂0⟩). Note that ⟨x, θ̂0⟩ = (1/n)∑i ŷi⟨xi,x⟩ is an
average of noisy labels in the training set with weights given by ⟨xi,x⟩/n. Therefore, it is similar to kernel methods
with the inner product kernel.

Our next result bounds the probability of θ̂0 correctly classifying a given fixed test point x.

Theorem 4.1 (Vanilla Training) Consider x ∉ T and let y be its true label. We have

P(sign(⟨x, θ̂0⟩) = y) ≤ α0(x) ∶= 1 −
1

2
√

2π
exp

⎛
⎜
⎝
−

5(1 +
√
n(1 − 2p))2⟨x,µ⟩2

∥Σ1/2x∥
2

`2

⎞
⎟
⎠

and

P(sign(⟨x, θ̂0⟩) = y) ≥ α̃0(x) ∶= 1 −
1

2
exp

⎛
⎜
⎝
−
n(1 − 2p)2⟨x,µ⟩2

4 ∥Σ1/2x∥
2

`2

⎞
⎟
⎠
− e exp (−cn(1 − 2p)2) ,

for an absolute constant c > 0.

The proof of Theorem 4.1 is in Appendix B. Notice that the learned classifier θ̂0 is more likely to be wrong on the
samples that are less aligned with (or closer to orthogonal to) the ground truth separator, i.e., µ. We can view θ̂0 as
a noisy label provider (a.k.a. pseudo-labeler) where the degree of label noise is non-uniform or sample-dependent
unlike the original noisy source used to learn θ̂0. Specifically, for a sample x with true label y and predicted label
ỹ = sign(⟨x, θ̂0⟩), we have:

ỹ = {
y with probability at least ≥ α̃0(x) ,

−y with probability at most ≤ 1 − α̃0(x), where α̃0(x) is as defined in Theorem 4.1.

We will next define the accuracy of a classifier θ̂ as

acc(θ̂) ∶= P(sign(⟨x, θ̂⟩) = y) , (4.4)

3In the context of ε-labelDP for a binary classification problem with randomized response, p = 1
eε+1

.
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where the probability is with respect to the randomness in the training set used to learn θ̂ as well as (x, y). Our next
result bounds the accuracy of the classifier θ̂0 obtained by vanilla training.

Theorem 4.2 (Vanilla Training: Population Accuracy) We have

acc(θ̂0) ≤ 1 −
1

4
√

2π
exp(−160(1 +

√
n(1 − 2p))2 γ4

λ2
mind

)(1 − e−d/16) and (4.5)

acc(θ̂0) ≥ 1 −
1

2
exp(−

n(1 − 2p)2γ4

8λ2
maxd

) − e−d/8 − e exp (−cn(1 − 2p)2) , (4.6)

for an absolute constant c > 0.

The proof of Theorem 4.2 is in Appendix C.

Remark 4.3 (Tightness of Accuracy Bounds) When n ≲ d2

(1−2p)2γ4 , γ ≲ d1/4 and λmax

λmin
≲ 1, then the lower and upper

bounds for acc(θ̂0) in Theorem 4.2 match (up to constant factors).

Based on Theorem 4.2, we have the following corollary.

Corollary 4.4 (Vanilla Training: Sample Complexity) For any δ > 2e−d/8 + 2e exp (−cn(1 − 2p)2), having sample

size n ≥ 8λmax
log 1/δ
(1−2p)2

d
γ4 ensures that acc(θ̂0) > 1 − δ. In particular, when the label flipping probability satisfies

p > 2e−d/8 + 2e exp (−cn(1 − 2p)2), then n ≥ 8λmax
log 1/δ
(1−2p)2

d
γ4 ensures that acc(θ̂0) > 1− p, i.e., our learned classifier

θ̂0 has better accuracy than the source providing noisy labels (used to learn θ̂0).

Remark 4.5 (Effect of Degree of Separation) As the parameter quantifying the degree of separation γ decreases, the
accuracy bound in Theorem 4.2 also decreases and the sample complexity required to outperform the noisy label source
in Corollary 4.4 increases. This is consistent with our intuition that a classification task should become harder as the
degree of separation reduces; we also saw this in Figure 1.

We conclude this section by deriving an information-theoretic lower bound on the sample complexity of any classifier
to argue that θ̂0 attains the optimal sample complexity with respect to d and p.

Theorem 4.6 (Information-Theoretic Lower Bound on Sample Complexity) With a slight generalization of nota-
tion, let acc(θ̂;µ) denote the accuracy of the classifier θ̂, when the ground truth separator is µ. We also consider
the case of Σ = P⊥µ, viz., the projection matrix onto the space orthogonal to µ. For any classifier θ̂ learned from

T ∶= {(xj , ŷj)}j∈[n], in order to achieve infµ∈Sd−1 acc(θ̂;µ) ≥ 1 − δ, the condition n = Ω (
(1−δ)

(1−2p)2 d) is necessary in
our problem setting.

It is worth mentioning that there is a similar lower bound in Gentile & Helmbold (1998) for a different classification
setting. In contrast, Theorem 4.6 is tailored to our setting and moreover, the proof technique is also different and
interesting in its own right. Specifically, for the proof of Theorem 4.6, we follow a standard technique in proving
minimax lower bounds which is to reduce the problem of interest to an appropriate multi-way hypothesis testing
problem; this is accompanied by the application of the conditional version of Fano’s inequality and some ideas from
high-dimensional geometry. This proof is in Appendix D.

Remark 4.7 (Minimax Optimality of Sample Complexity) Note that the dependence of the sample complexity on
d and p in Corollary 4.4 matches that of the lower bound in Theorem 4.6. Thus, our sample complexity bound in
Corollary 4.4 is optimal with respect to d and p.

4.2 RETRAINING

We first label the training set using θ̂0. Denote by ỹi = sign(⟨xi, θ̂0⟩) the predicted label for sample xi. We then retrain
the model using these predicted labels. Our learned classifier here is similar to the one in Section 4.1, except that the

6



312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

observed labels are replaced by the predicted labels. Specifically, our retraining classifier is the following:

θ̂1 =
1

n
∑
i

ỹixi . (4.7)

Our retraining classifier’s predicted label for a sample x ∈ Rd is sign(⟨x, θ̂1⟩). Our next result bounds the probability
of θ̂1 correctly classifying a given fixed test point x.

Theorem 4.8 (Retraining) Suppose that n
d
> 4λmax

γ2(1−2p) and nd > γ4

λ2
max

. Consider x ∉ T and let y be its true label. We
have

P(sign(⟨x, θ̂1⟩) = y) ≥ α1(x) ,

where

α1(x) ∶=1 − exp
⎛
⎜
⎝
−
cn(1 − 2q′)2⟨x,µ⟩2

⟨x,µ⟩2 + ∥Σ1/2x∥
2

`2

⎞
⎟
⎠
− e exp (−cn(1 − 2p)2) −

n

2
(exp(−

γ4

8λ2
max

(1 − 2p′)
n

d
) + e−d/16

) ed/n ,

for an absolute constant c > 0, with

q′ = exp(−
n(1 − 2p)γ2

40λmax
) and p′ = (1 +

3γ4

8λ2
maxnd

)p .

The proof of Theorem 4.8 is in Appendix E.

Technical Challenges. The proof of Theorem 4.8 is especially challenging because as we discussed after Theorem 4.1,
the classifier learned with vanilla training, i.e., θ̂0, is a non-uniform noisy label provider. In addition, θ̂0 depends on
all the samples in the training set and hence each predicted label ỹi is also dependent on the entire training set. This
dependence of the predicted labels on all the data points makes the analysis even more challenging because standard
arguments with independence are not applicable here. In contrast, the analysis of θ̂0 was technically simpler as it was
based on noisy labels ŷi’s that were independent across samples. The high-level proof idea for Theorem 4.8 is that for
each sample x` = y`(1+u`)µ+Σ1/2z` in the training set, we carefully curate a dummy label ỹ′` which does not depend
on zk for k ≠ `, but depends on all {uk}k∈[n]; see (E.2) in Appendix E. We show that with high probability the labels
predicted by the vanilla estimator θ̂0 on the training samples, i.e. sign(⟨x`, θ̂0⟩) are the same as the dummy labels ỹ′`.
Next, under this high probability event, we use the dummy labels instead, which are more amenable to analysis as they
are independent of {zk}k≠`. At the beginning of Appendix E, we provide an outline of these steps in more detail.

It is worth noting that the lower bound derived on α1(x) is increasing in ⟨x,µ⟩. So, just like the vanilla training
classifier θ̂0, the classifier θ̂1 learned with retraining is more likely to be wrong on the samples that are less aligned with
the ground truth separator µ. We will now provide a lower bound on the accuracy (defined in (4.4)) of the classifier θ̂1.

Theorem 4.9 (Retraining: Population Accuracy) Under the setting of Theorem 4.8 we have

acc(θ̂1) ≥1 − exp(−
cn(1 − 2q′)2γ4

γ4 + 2λ2
maxd

) − e−d/8

− e exp (−cn(1 − 2p)2) −
n

2
(exp(−

γ4

8λ2
max

(1 − 2p′)
n

d
) + e−d/16

) ed/n . (4.8)

The proof of Theorem 4.9 is in Appendix F. As expected, the lower bound (4.8) is increasing in γ, because as the degree
of separation increases, the classification task becomes easier.

Accuracy of Retraining vs. Vanilla Training. We will now compare the accuracy of vanilla training model θ̂0 with
that of the retrained model θ̂1, identifying regimes where retraining improves the model accuracy. Before proceeding
further, it is useful to note that the dominant term in 1 − acc(θ̂1) is the last term in (4.8) which has (1 − 2p′) inside the
exponent and p′ can become arbitrarily close to p as n or d grows. In contrast, the upper bound on acc(θ̂0) in (4.5) has
(1− 2p)2 inside the exponent. This is the main observation which indicates that retraining can improve model accuracy,
and this improvement becomes increasingly significant as p approaches 1

2
. We will now formalize this observation by

providing sufficient conditions for this improvement to happen.
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Remark 4.10 (When Does Retraining Improve Accuracy?) We consider an asymptotic regime where n, d → ∞.
Also, suppose λmax

λmin
≲ 1. We would like to characterize a regime where 1 − acc(θ̂1) ≤ 1 − acc(θ̂0), i.e., under what

conditions the misclassification error of θ̂1 is smaller than that of θ̂0. By comparing the bounds in Theorems 4.2 and
4.9, we obtain the following sufficient conditions. There exists an absolute constant c0 such that if p ∈ ( 1

2
− c0,

1
2
) and

d

γ2(1 − 2p)
max{1,

logn

γ2
} ≲ n ≲

d2

γ4(1 − 2p)2
, (4.9)

then the lower bound on the accuracy of retraining (in eq. (4.8)) is greater than the upper bound on the accuracy of
vanilla training (in eq. (4.5)).

Note that as the degree of separation γ decreases, the range of n in (4.9) becomes larger but also shifts up, indicating
we need more samples (keeping other parameters fixed) to obtain an improvement with retraining.

5 IMPROVING LABEL DP TRAINING WITH RETRAINING (RT)

Motivated by our theoretical results in Section 4 which show that retraining (abbreviated as RT henceforth) can
improve accuracy in the presence of label noise, we propose to apply our proposals in Section 1, viz., full RT and
more importantly, consensus-based RT to improve label DP training (because it involves noisy labels). Note that
this can be done on top of any label DP mechanism and that too at no additional privacy cost (both the predicted
labels and originally provided noisy labels are private). We empirically evaluate full and consensus-based RT on three
classification datasets (available on TensorFlow) trained with label DP. These include two vision datasets, namely
CIFAR-10 and CIFAR-100, and one language dataset, namely AG News Subset (Zhang et al., 2015). All the empirical
results are averaged over three different runs. We only provide important experimental details here; the other details can
be found in Appendix G.

CIFAR-10/100. We train a ResNet-18 model on CIFAR-10 and CIFAR-100 with label DP. Label DP train-
ing is done with the prior-based method of Ghazi et al. (2021) – specifically, Alg. 3 with two stages. Our training set
consists of 45k examples and we assume access to a validation set with clean labels consisting of 5k examples which
we use for deciding when to stop training, setting hyper-parameters, etc.4 For CIFAR-10 and CIFAR-100 with three
different values of ε, we list the test accuracies of the baseline (i.e., the method of Ghazi et al. (2021)), full RT and
consensus-based RT in Tables 1 and 2, respectively. Notice that consensus-based RT is the clear winner. Also, for the
three values of ε in Table 1 (CIFAR-10), the size of the consensus set (used in consensus-based RT) is ∼ 31%, 55% and
76%, respectively, of the entire training set. The corresponding numbers for Table 2 (CIFAR-100) are ∼ 11%, 34% and
56%, respectively. So for small ε (high label noise), consensus-based RT comprehensively outperforms full RT and
baseline with a small fraction of the training set. Further, in Table 3, we list the accuracies of predicted labels and given
labels over the entire (training) dataset and accuracies of predicted labels (which are the same as the given labels) over
the consensus set for CIFAR-10 and CIFAR-100. To summarize, the accuracy of predicted labels over the consensus set
is significantly more than the accuracy of predicted and given labels over the entire dataset. This gives us an idea of why
consensus-based RT is much better than full RT and baseline, even though the consensus set is smaller than full dataset.

Table 1: CIFAR-10. Test set accuracies (mean ± standard deviation). Consensus-based RT is better
than full RT which is better than the baseline.

ε Baseline Full RT Consensus-based RT
1 57.78 ± 1.13 60.07 ± 0.63 63.84 ± 0.56
2 79.06 ± 0.59 81.34 ± 0.40 83.31 ± 0.28
3 85.18 ± 0.50 86.67 ± 0.28 87.67 ± 0.28

One may wonder how more model parameters affect the results due to potential overfitting. So here we consider
training ResNet-34 (which has more parameters than ResNet-18) on CIFAR-100 with label DP; the setup is exactly
the same as our previous experiments with ResNet-18. Please see the results and discussion in Table 4. In summary,
4In practice, we do not need full access to the validation set. Instead, the validation set can be stored by a secure agent which returns
us a private version of the validation accuracy and this will not be too far off from the true validation accuracy when the validation
set is large enough.
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Table 2: CIFAR-100. Test set accuracies (mean ± standard deviation). Overall, consensus-based RT is
significantly better than full RT which is somewhat better than the baseline.

ε Baseline Full RT Consensus-based RT
3 23.53 ± 1.01 24.42 ± 1.22 29.98 ± 1.11
4 44.53 ± 0.81 46.99 ± 0.66 51.30 ± 0.98
5 55.75 ± 0.36 56.98 ± 0.43 59.47 ± 0.26

Table 3: CIFAR-10 (Top) and CIFAR-100 (Bottom). Accuracies of predicted labels and given labels
over the entire (training) dataset and accuracies of predicted labels over the consensus set. Note that the
accuracy over the consensus set ≫ accuracy of over the entire dataset (with both predicted and given
labels). This gives us an idea of why consensus-based RT is much better than full RT and baseline, even
though the consensus set is smaller than the full dataset (∼ 31%, 55% and 76% of the full dataset for
ε = 1,2 and 3 in the case of CIFAR-10, and ∼ 11%, 34% and 56% of the full dataset for ε = 3,4 and 5 in
the case of CIFAR-100).

CIFAR-10

ε
Acc. of predicted labels

on full dataset
Acc. of given labels

on full dataset
Acc. of predicted labels

on consensus set
1 59.30 ± 0.74 32.61 ± 0.74 76.17 ± 0.15
2 81.62 ± 0.18 57.11 ± 0.05 92.65 ± 0.22
3 89.28 ± 0.35 76.73 ± 0.12 95.94 ± 0.23

CIFAR-100

ε
Acc. of predicted labels

on full dataset
Acc. of given labels

on full dataset
Acc. of predicted labels

on consensus set
3 24.90 ± 0.92 22.35 ± 0.41 76.09 ± 0.85
4 50.85 ± 0.82 46.32 ± 0.34 91.59 ± 1.24
5 66.51 ± 0.02 68.09 ± 0.33 94.83 ± 0.15

consensus-based RT is pretty effective even with ResNet-34 but the amount of improvement here is less compared to
ResNet-18 due to overfitting. Additionally, one may wonder if retraining is useful when a label noise-robust technique
is used during initial training, i.e., in the baseline (the method of Ghazi et al. (2021)). To that end, we once again train
ResNet-34 on CIFAR-100 but with the popular noise-correcting technique of “forward correction” (Patrini et al., 2017)
applied to the first stage of our baseline (it is not clear how to apply it to the second stage).5 Please see the result and
discussion for ε = 5 in Table 5. In summary, retraining can offer gains even after noise-robust training.

Table 4: CIFAR-100 w/ ResNet-34. Test set accuracies (mean ± standard deviation). Just like Table 2
(ResNet-18), consensus-based RT is the clear winner here. However, note that the performance and
amount of improvement with ResNet-34 is worse than ResNet-18 due to more overfitting because of
more parameters; this is expected.

ε Baseline Full RT Consensus-based RT
3 17.53 ± 0.05 18.20 ± 0.29 21.63 ± 0.31
4 37.53 ± 1.58 39.33 ± 1.37 43.87 ± 1.62
5 51.13 ± 0.69 52.33 ± 0.38 55.43 ± 0.42

Table 5: Noise-robust “forward correction” (Patrini et al., 2017) applied to baseline (CIFAR-100
w/ ResNet-34). Test set accuracies (mean ± standard deviation). We see that retraining can yield
improvement even after noise-robust training, although the amount of improvement is less compared to
Table 4 (no noise-correction).

ε Baseline Full RT Consensus-based RT
5 53.83 ± 0.83 54.43 ± 0.48 56.60 ± 0.43

5Forward correction worked the best among other popular noise-robust techniques such as backward correction (Patrini et al., 2017)
and noise-robust loss functions (Wang et al., 2019; Zhang & Sabuncu, 2018).
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AG News Subset (https://www.tensorflow.org/datasets/catalog/ag_news_subset). This is a
news article classification dataset consisting of 4 categories – world, sports, business or sci/tech. We reserve 10% of
the given training set for validation and we use the rest for training with label DP. Just like the CIFAR experiments,
we assume that the validation set comes with clean labels. We use the small BERT model available in TensorFlow
and the BERT English uncased preprocessor; links to both of these are in Appendix G. We pool the output of the
BERT encoder, add a dropout layer with probability = 0.2, followed by a softmax layer. We fine-tune the full model.
Here, label DP training is done with randomized response. We list the test accuracies of the baseline (i.e., randomized
response), full RT and consensus-based RT in Table 6 for three different values of ε. Even here, consensus-based RT is
the clear winner. For the three values of ε in Table 6, the size of the consensus set (used in consensus-based RT) is
∼ 28%, 32% and 38%, respectively, of the entire training set. So here, consensus-based RT appreciably outperforms
full RT and baseline with less than two-fifths of the entire training set. Finally, in Table 7, we list the accuracies of
predicted labels and given labels over the entire dataset and accuracies of predicted labels (= given labels) over the
consensus set. Even here, the accuracy of predicted labels over the consensus set is significantly more than the accuracy
of predicted and given labels over the entire dataset. This explains why consensus-based RT performs the best, even
though the consensus set is much smaller than the full dataset.

Table 6: AG News Subset. Test set accuracies (mean ± standard deviation). Consensus-based RT is
better than full RT which is better than the baseline.

ε Baseline Full RT Consensus-based RT
0.3 54.54 ± 0.97 60.03 ± 2.90 65.91 ± 1.93
0.5 69.21 ± 0.31 75.63 ± 1.08 80.95 ± 1.47
0.8 79.10 ± 1.43 82.19 ± 1.54 84.26 ± 1.03

Table 7: AG News Subset. Accuracies over the entire dataset and over the consensus set. Conclusions
are the same as Table 3.

ε
Acc. of predicted labels

on full dataset
Acc. of given labels

on full dataset
Acc. of predicted labels

on consensus set
0.3 53.20 ± 2.82 32.52 ± 2.05 61.81 ± 2.66
0.5 66.78 ± 1.31 35.5 ± 0.14 76.48 ± 0.93
0.8 79.98 ± 0.80 42.53 ± 0.13 89.59 ± 0.43

So in summary, consensus-based RT significantly improves model accuracy.

Additional Empirical Results in the Appendix. In Appendix H, we show that consensus-based RT also outperforms
retraining on samples for which the model is the most confident; this is similar to self-training’s method of sample
selection in the semi-supervised setting. In Appendix I, we show that RT is beneficial even without a clean validation
set. Furthermore, going beyond label DP, we show that consensus-based RT is also beneficial in the presence of human
annotation errors which can be thought of as “real” label noise in Appendix J.

6 CONCLUSION

In this work, we provided the first theoretical result showing retraining with hard labels can provably increase model
accuracy in the presence of label noise. We also showed the efficacy of consensus-based retraining (i.e., retraining on
only those samples for which the predicted label matches the given noisy label) in improving label DP training at no
extra privacy cost. We will conclude by discussing some future directions of work. Our theoretical results in this work
focus on the full retraining scheme. Given that consensus-based retraining worked very well empirically, we would
like to analyze it theoretically as a future work. Another potential extension of our work is to analyze retraining under
non-uniform label noise models. We also hope to test our ideas on larger scale models and datasets in the future.
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A PROBLEM SETTING OF FIGURE 1

The setting is exactly the same as the problem setting in Section 4 with µ = γe1, Σ = I − e1e
T
1 , d = 50 and p = 0.4. In

the direction of µ, we have ⟨x,µ⟩ = y(1 + u) ∥µ∥
2
`2
= y(1 + u)γ2. We consider balanced classes (i.e., π+ = π− = 1

2
)

and choose u ∼ Unif[0,4], the uniform distribution over the interval [0,4]. In Figure 1a, γ2 = 0.5 (large separation)
and in Figure 1b, γ2 = 0.3 (small separation). The number of training samples in each case is 300 and the retraining
is done on the same training set on which the model is initially trained. The learned classifiers from vanilla training
and retraining are the same as in Section 4 (i.e., eq. (4.3) and eq. (4.7), respectively). Finally, the test accuracy of both
vanilla training and retraining in Figure 1b is 68%.

B PROOF OF THEOREM 4.1

We first prove the upper bound α0(x) and then prove the lowr bound α̃0(x).

B.1 UPPER BOUND α0(x)

Let ξi = yiŷi. So ξi = 1 with probability 1 − p and ξi = −1 with probability p. Under our data model, for each sample
we can write xi = yi(1 + ui)µ +Σ1/2zi with zi ∼ N(0,Id). Hence,

θ̂0 = ∑
i∈[n]

ŷixi = ( ∑
i∈[n]

ξi(1 + ui))µ + ∑
i∈[n]

ŷiΣ
1/2zi .

We also note that

P(sign(⟨x, θ̂0⟩) ≠ y) = P(y⟨x, θ̂0⟩ ≤ 0) = P
⎛

⎝
( ∑
i∈[n]

ξi(1 + ui))⟨yx,µ⟩ + ⟨x, ∑
i∈[n]

yŷiΣ
1/2zi⟩ ≤ 0

⎞

⎠

Define z̃ ∶= ∑i∈[n] yŷiΣ
1/2zi. Conditioning on {ŷi}i∈[n] we have z̃ ∼ N(0, nΣ), and so ⟨x, z̃⟩ ∼ N(0, n ∥Σ1/2x∥

2

`2
).

We write

P
⎛

⎝
( ∑
i∈[n]

ξi(1 + ui))⟨yx,µ⟩ + ⟨x, z̃⟩ ≤ 0 ∣ {ξi, yi, ui}i∈[n]
⎞

⎠
= Φ

⎛

⎝
−
(∑i∈[n] ξi(1 + ui))⟨yx,µ⟩

√
n ∥Σ1/2x∥

`2

⎞

⎠
,

where Φ(t) = 1√
2π ∫

t
−∞ e−s

2/2ds denotes the cdf of standard normal distribution.

Combining the previous two equations, we arrive at

P(sign(⟨x, θ̂0⟩) ≠ y) = E
⎡
⎢
⎢
⎢
⎢
⎣

Φ
⎛

⎝
−
(∑i∈[n] ξi(1 + ui))⟨yx,µ⟩

√
n ∥Σ1/2x∥

`2

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(B.1)

≥ E
⎡
⎢
⎢
⎢
⎢
⎣

Φ
⎛

⎝
−
∣∑i∈[n] ξi(1 + ui)∣ ∣⟨x,µ⟩∣

√
n ∥Σ1/2x∥

`2

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≥ Φ
⎛

⎝
−

E[∣∑i∈[n] ξi(1 + ui)∣] ∣⟨x,µ⟩∣
√
n ∥Σ1/2x∥

`2

⎞

⎠

where the expectation is with respect to {ξi, i ∈ [n]} and the last step follows by Jensen’s inequality and the fact that
Φ(t) is a convex function for t ≤ 0.
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We next note that by Cauchy–Schwarz inequality,

E [∣∑
i

ξi(1 + ui)∣] ≤
√

E[(∑
i

ξi(1 + ui))2]

=

√

∑
i,j

E[ξiξj(1 + ui)(1 + uj)]

=

√

∑
i

E[(1 + ui)2] +∑
i≠j

E[ξi]E[ξj]E[1 + ui]E[1 + uj]

=
√

5n + 4n(n − 1)(1 − 2p)2 ≤
√

5n +
√

5n(1 − 2p) ,

where we used that ξi, ξj are independent for i ≠ j, and independent from ui’s. In addition, E[ui] ≤ 1 and E[u2
i ] ≤ 2,

since ui has unit sub-gaussian norm. Hence, we get

P(sign(⟨x, θ̂0⟩) ≠ y) ≥ Φ
⎛

⎝
−

√
5(1 +

√
n(1 − 2p)) ∣⟨x,µ⟩∣

∥Σ1/2x∥
`2

⎞

⎠
(B.2)

We next use a classical lower bound on Φ. Let Φc(t) = 1 − Φ(t) = Φ(−t). Using (Abramowitz & Stegun, 1968,
Equation (7.1.13)), we have for any t > 0:

Φc
(t) >

√
2

π

⎛

⎝

e−
t2

2

t +
√
t2 + 4

⎞

⎠
.

Since t +
√
t2 + 4 < 2(t + 1) for t > 0 , we get:

Φc
(t) >

1
√

2π

⎛

⎝

e−
t2

2

t + 1

⎞

⎠
>

1

2
√

2π
exp(−t2), (B.3)

where we used that t + 1 ≤ t2 + 2 ≤ 2et
2/2. Combining (B.3) and (B.2) we get

P(sign(⟨x, θ̂0⟩) ≠ y) ≥
1

2
√

2π
exp

⎛
⎜
⎝
−

5(1 +
√
n(1 − 2p))2⟨x,µ⟩2

∥Σ1/2x∥
2

`2

⎞
⎟
⎠
,

which completes the derivation of α0(x).

B.2 LOWER BOUND α̃0(x)

We continue from (B.1), which reads

P(sign(⟨x, θ̂0⟩) ≠ y) = E
⎡
⎢
⎢
⎢
⎢
⎣

Φ
⎛

⎝
−
(∑i∈[n] ξi(1 + ui))⟨yx,µ⟩

√
n ∥Σ1/2x∥

`2

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

, (B.4)

where the expectation is with respect to the randomness in training data, namely ui and ξ0 for i ∈ [n], while the test
point (x, y) is fixed.

Note that under our data model, ⟨yx,µ⟩ = (1 + u) ∥µ∥
2
`2
= (1 + u)γ2 > 0 since u is a non-negative random variables.

We next the following event:

E0 ∶=

⎧⎪⎪
⎨
⎪⎪⎩

∑
i∈[n]

ξi(1 + ui) ≥ n(1 − 2p)/2

⎫⎪⎪
⎬
⎪⎪⎭

. (B.5)

Note that by Hoeffding-type inequality for sub-gaussian random variables,

P(∣∑
i

ξi(1 + ui) − n(1 − 2p)(1 + E[ui])∣ ≥ t) ≤ e exp(−
ct2

n
) ,
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for an absolute constant c > 0. (Note that ∥ξi(1 + ui)∥ψ2 ≤ 1 + ∥ui∥ψ2 = 2 which is absorbed in the constant c.) By
choosing t = n(1 − 2p)/2, and using the fact that ui > 0 for all i we get

P(∑
i

ξi(1 + ui) < n(1 − 2p)/2) ≤ e exp (−cn(1 − 2p)2) .

Hence, P(Ec0) ≤ e exp (−cn(1 − 2p)2).

We then have

E
⎡
⎢
⎢
⎢
⎢
⎣

Φ
⎛

⎝
−
(∑i∈[n] ξi(1 + ui))⟨yx,µ⟩

√
n ∥Σ1/2x∥

`2

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= E
⎡
⎢
⎢
⎢
⎢
⎣

Φ
⎛

⎝
−
(∑i∈[n] ξi(1 + ui))⟨yx,µ⟩

√
n ∥Σ1/2x∥

`2

⎞

⎠
(1E0 + 1Ec0 )

⎤
⎥
⎥
⎥
⎥
⎦

≤ E
⎡
⎢
⎢
⎢
⎢
⎣

Φ
⎛

⎝
−
n(1 − 2p)⟨yx,µ⟩

2
√
n ∥Σ1/2x∥

`2

⎞

⎠
1E0

⎤
⎥
⎥
⎥
⎥
⎦

+ P(E
c
0)

= Φ
⎛

⎝
−
n(1 − 2p)⟨yx,µ⟩

2
√
n ∥Σ1/2x∥

`2

⎞

⎠
P(E0) + P(E

c
0)

≤ Φ
⎛

⎝
−
n(1 − 2p)⟨yx,µ⟩

2
√
n ∥Σ1/2x∥

`2

⎞

⎠
+ P(E

c
0) ,

where in the first inequality we used the observation that ⟨yx,µ⟩ ≥ 0 as explained above, the definition of E0 and that
Φ(−z) is a decreasing function in z.

We next recall the tail bound of normal distribution (Abramowitz & Stegun, 1968, Equation (7.1.13)):

Φc(t) ≤

√
2

π

e−t
2/2

t +
√
t2 + 8

π

≤
1

2
e−t

2/2 ,

for all t ≥ 0, where Φc(t) = 1 −Φ(t) is the complementary CDF of normal variables. Using this bound and the bound
we derived on P(Ec0) we get

E
⎡
⎢
⎢
⎢
⎢
⎣

Φ
⎛

⎝
−
(∑i∈[n] ξi(1 + ui))⟨yx,µ⟩

√
n ∥Σ1/2x∥

`2

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≤
1

2
exp

⎛
⎜
⎝
−
n(1 − 2p)2⟨yx,µ⟩2

4 ∥Σ1/2x∥
2

`2

⎞
⎟
⎠
+ e exp (−cn(1 − 2p)2) .

By invoking (B.4) we obtain

P(sign(⟨x, θ̂0⟩) = y) ≥ 1 −
1

2
exp

⎛
⎜
⎝
−
n(1 − 2p)2⟨x,µ⟩2

4 ∥Σ1/2x∥
2

`2

⎞
⎟
⎠
− e exp (−cn(1 − 2p)2) ,

which completed the derivation of α̃0(x).

C PROOF OF THEOREM 4.2

Using Theorem 4.1 we have:

acc(θ̂0) ≤ E[α0(x)]

= 1 −
1

2
√

2π
E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−

5(1 +
√
n(1 − 2p))2⟨x,µ⟩2

∥Σ1/2x∥
2

`2

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤ 1 −
1

2
√

2π
E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−

5(1 +
√
n(1 − 2p))2⟨x,µ⟩2

∥Σ1/2x∥
2

`2

⎞
⎟
⎠
∣

⟨x,µ⟩2

∥Σ1/2x∥
2

`2

≤ v2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

P
⎛
⎜
⎝

⟨x,µ⟩2

∥Σ1/2x∥
2

`2

≤ v2
⎞
⎟
⎠

≤ 1 −
1

2
√

2π
exp (−5(1 +

√
n(1 − 2p))2v2)P

⎛
⎜
⎝

⟨x,µ⟩2

∥Σ1/2x∥
2

`2

≤ v2
⎞
⎟
⎠
, (C.1)
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for any value of v > 0. We next lower bound the probability on the right-hand side.

We write

P
⎛

⎝

∣⟨x,µ⟩∣

∥Σ1/2x∥
`2

≤ v
⎞

⎠
= P(

∣y(1 + u)γ2∣

∥Σz∥`2
≤ v)

≥ P
⎛

⎝

(1 + u)γ2

λmin ∥P⊥µz∥`2

≤ v
⎞

⎠

= P
⎛

⎝

(1 + u)γ2

∥P⊥µz∥`2

≤ vλmin

⎞

⎠
, (C.2)

where the first step holds since under our data model we have ⟨x,µ⟩ = y(1 + u) ∥µ∥
2
`2

and Σ1/2x = y(1 + u)Σ1/2µ +

Σz = Σz, given that Σ1/2µ = 0. Continuing from (C.2) we write

P
⎛

⎝

(1 + u)γ2

∥P⊥µz∥`2

≤ vλmin

⎞

⎠
≥ P ((1 + u)γ2

≤ vλmin

√
d/2, ∥P⊥µz∥`2

≥
√
d/2)

= P ((1 + u)γ2
≤ vλmin

√
d/2)P (∥P

⊥
µz∥`2

≥
√
d/2) , (C.3)

given that z and u are independent. Next note that P⊥µ(z) is distributed as a Gaussian vector in a (d − 1)-dimensional

space, and therefore ∥P⊥µz∥
2

`2
is χ2 distribution with (d − 1)-degree of freedom. We next use the following result about

the tail bound of χ2 distribution to control ∥P⊥µz∥`2 .

Lemma C.1 (Ghosh, 2021, Theorem 4) Suppose X ∼ χ2
d(λ). Then for 0 < η < d + λ, we have

P(X < d + λ − η) ≤ exp [−
dη2

4(d + 2λ)2
] .

As a corollary of Lemma C.1, by choosing η = λ + d/2, we obtain P(X < d/2) ≤ e−d/16 for any λ ≥ 0. Using this we
have

P (∥P
⊥
µz∥

2

`2
< d/2) ≤ e−d/16 . (C.4)

We next lower bound the other term on the right-hand side of (C.2). By Markov’s inequality for any non-negative
random variable X , we have P(X ≤ 2 E[X]) ≥ 1/2. Also E[(1 + u)γ2] ≤ 2γ2, since E[u] ≤ 1 and therefore, by
choosing v = 4

√
2γ2

λmin

√
d

, we get

P ((1 + u)γ2
≤ uλmin

√
d/2) ≥ 1/2 . (C.5)

Combining (C.4), (C.5) and (C.2) with the bound (C.1) we arrive at

acc(θ̂0) ≤ 1 −
1

4
√

2π
exp(−160(1 +

√
n(1 − 2p))2 γ4

λ2
mind

)(1 − e−d/16) .

To derive the lower bound on acc(θ̂0) note that by using Theorem 4.1 we have

acc(θ̂0) ≥ E[α̃0(x)]

= 1 −
1

2
E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−
n(1 − 2p)2⟨x,µ⟩2

4 ∥Σ1/2x∥
2

`2

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

− e exp (−cn(1 − 2p)2) .
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Under our data model, x = y(1 + u)µ +Σ1/2z. Consider the probabilistic event E2 ∶= {z ∶ ∥z∥
2
`2
≤ 2d}. For every

η > 0, we have

E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−
η⟨x,µ⟩2

∥Σ1/2x∥
2

`2

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−
η⟨x,µ⟩2

∥Σ1/2x∥
2

`2

⎞
⎟
⎠
(1E2 + 1Ec2 )

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤ exp(−
ηγ4

2λmaxd
) + P(E

c
2) ,

where the inequality holds because ⟨x,µ⟩ = y(1 + u)γ2 and so ∣⟨x,µ⟩∣ ≥ γ2 (given that u is a non-negative random
variable). In addition,

∥Σ1/2x∥
2

`2
= ∥Σz∥

2
`2
≤ λ2

max ∥z∥
2
`2
≤ 2λ2

maxd

on the event E2. Further, ∥z∥2
`2
∼ χ2

d and so using tail bounds for χ2
d, see e.g., (Ghosh, 2021, Theorem 3), we have

P(Ec2) ≤ e
−d/8. Putting things together, we obtain

E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−
η⟨x,µ⟩2

∥Σ1/2x∥
2

`2

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤ exp(−
ηγ4

2λ2
maxd

) + e−d/8 .

Setting η = n(1 − 2p)2/4, this implies that

acc(θ̂0) ≥ 1 −
1

2
exp(−

n(1 − 2p)2γ4

8λ2
maxd

) − e−d/8 − e exp (−cn(1 − 2p)2) .

D PROOF OF THEOREM 4.6

Proof Since we are interested with dependence of sample size with respect to d and p, we assume γ ∶= ∥µ∥`2 = 1 and
Σ = I −µµT the projection onto the orthogonal space of µ. Also note that without loss of generality, we can assume
that our estimator θ̂ has unit norm, because its norm does not affect the sign of ⟨x, θ̂⟩. This way, µ and θ̂ both belong
to Sd−1.

We first follow a standard argument to “reduce” the classification problem to a multi-way hypothesis testing problem.
Let ρ ∈ (0,1) be an arbitrary but fixed value which we can choose. We define a ρ-packing of Sd−1 as a set M =

{µ1, . . . ,µM} ⊂ Sd−1 such that ⟨µl,µk⟩ ≤ ρ for l ≠ k. Also define the ρ-packing number of Sd−1 as

M(ρ,Sd−1
) ∶= sup{M ∈ N ∶ there exists a ρ-packingM of Sd−1 with size M} . (D.1)

For convenience, we define the misclassification error of a classifier θ̂ ∈ Sd−1 as err(θ̂;µ) = 1 − acc(θ̂;µ). By our
assumption,

δ ≥ sup
µ∈Sd−1

err(θ̂;µ) ≥ sup
µ∈M

err(θ̂;µ) . (D.2)

In order to further lower bound the right hand side, we let I be a random variable uniformly distributed on the
hypothesis set {1,2, . . . ,M} and consider the case of µ = µI . We also define Î as the index of the element in
M with maximum inner product with θ̂ (it does not matter how we break ties). Under our data model we have
⟨x,µI⟩ = y(1 + u) ∥µI∥

2
`2
= y(1 + u) and since u is a non-negative random variable, y = sign(⟨x,µI⟩). We then have

sup
µ∈M

err(θ̂;µ) ≥ max
i∈[M]

P (sign(⟨x,µI⟩) ≠ sign(⟨x, θ̂⟩)∣I = i)

≥
1

M

M

∑
i=1

P (sign(⟨x,µI⟩) ≠ sign(⟨x, θ̂⟩)∣I = i)

≥ Φ
⎛

⎝
− 2

√
1 + ρ

1 − ρ

⎞

⎠

1

M

M

∑
i=1

P(Î ≠ i∣I = i) (D.3)

= Φ
⎛

⎝
− 2

√
1 + ρ

1 − ρ

⎞

⎠
P(Î ≠ I) , (D.4)
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with Φ denoting the CDF of a standard normal variable. Equation (D.3) above follows from the lemma below.

Lemma D.1 For any i ∈ [M], we have

P (sign(⟨x,µI⟩) ≠ sign(⟨x, θ̂⟩)∣I = i) ≥ Φ
⎛

⎝
− 2

√
1 + ρ

1 − ρ

⎞

⎠
P(Î ≠ i∣I = i) .

Combining (D.2) and (D.4), we obtain that

δ0 ∶=
δ

Φ( − 2
√

1+ρ
1−ρ)

≥ P(Î ≠ I) . (D.5)

Next recall the set T ∶= {(xj , ŷj)}j∈[n], and letX = [xT1 , . . . ,x
T
n ]
T ∈ Rn×d and ŷ = [ŷ1, . . . , ŷn]

T . By an application
of Fano’s inequality, with conditioning on X (see e.g. (Scarlett & Cevher, 2019, Section 2.3)) we have

I(I; Î ∣X) ≥ (1 − δ0) log(M(ρ,Sd−1
)) − log 2 , (D.6)

where I(I; Î ∣X) represents the conditional mutual information between I and Î . Using the fact that I → ŷ → Î forms
a Markov chain conditioned on X, and by an application of the data processing inequality we have:

I(I; Î ∣X) ≤ I(I; ŷ∣X) (D.7)

We will now upper bound I(I; ŷ∣X). Let wj ∶= 1
2
(sign(⟨xj ,µI⟩) + 1) be the 0-1 version of the actual label

of xj , viz., sign(⟨xj ,µI⟩). As per our setting, we have ŷj = 2(wj ⊕ zj) − 1 where zj ∼ Bernoulli(p) and ⊕

denotes modulo-2 addition. Since the noise variables zj are independent and ŷj depends on (I,X) only through
wj =

1
2
(sign(⟨xj ,µI⟩)+ 1), by using the tensorization property of the mutual information (see e.g. (Scarlett & Cevher,

2019, Lemma 2, part (iii))), we have

I(I;y∣X) ≤
n

∑
j=1

I(wj ; ŷj) ≤ n(log 2 −H2(p)) , (D.8)

where the second inequality follows since ŷj is generated by passing wj through a binary symmetric channel, which
has capacity log 2 −H2(p) with H2(p) ∶= −p log p − (1 − p) log(1 − p) denoting the binary entropy function.

We next use the lemma below to further upper bound the right-hand side of (D.8).

Lemma D.2 For a discrete probability distribution, consider the entropy function given by

H(p1, . . . , pk) =
k

∑
i=1

pk log(1/pk) .

We have the following bound:

H(p1, . . . , pk) ≥ log k − k
k

∑
i=1

(pi − 1/k)2 .

Using Lemma D.2 with k = 2 we obtain log 2 −H2(p) ≤ 4(p − 1/2)2 = (1 − 2p)2, which along with (D.8), (D.7) and
(D.6) gives

n(1 − 2p)2 + log 2

1 − δ0
≥ log(M(ρ,Sd−1

)) . (D.9)

In our next lemma, we lower bound M(ρ,Sd−1).

Lemma D.3 Recall the definition of ρ-packing number of Sd−1 given by (D.1). We have the following bound:

M(ρ,Sd−1
) ≥ exp (

dρ2

2
) .
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Using Lemma D.3 along with (D.9), we obtain the following lower bound on the sample complexity:

n ≥

ρ2

2
(1 − δ0)d − log 2

(1 − 2p)2
, with δ0 =

δ

Φ( − 2
√

1+ρ
1−ρ)

.

Note that ρ ∈ (0,1) can be set arbitrarily. Since our claim is on the order of sample size, the specific value of ρ does not
matter.

We now prove Lemmas D.1, D.2 and D.3.

Proof of Lemma D.1. Let us consider the event Î ≠ i, given that I = i. We note that if Î ≠ I , then ⟨θ̂,µI⟩ ≤
√

1+ρ
2

or equivalently, the angle between θ̂ and µI is ≥ b ∶= cos−1 (

√
1+ρ
2

). Otherwise, by definition of Î we have ⟨θ̂,µÎ⟩ ≥

⟨θ̂,µI⟩ >
√

1+ρ
2

, and therefore the angle between µÎ and µI is < 2b. Noting that cos(2b) = 2 cos2(b) − 1 = ρ, we
would then have ⟨µÎ ,µI⟩ > ρ, which is a contradiction sinceM forms a ρ-packing. We proceed by writing

P (sign(⟨x,µI⟩) ≠ sign(⟨x, θ̂⟩)∣I = i) ≥ P (sign(⟨x,µI⟩) ≠ sign(⟨x, θ̂⟩)∣I = i, Î ≠ i)P(Î ≠ i∣I = i) .

As discussed above, on the event that I = i, Î ≠ i, we have θ ∶= ⟨θ̂,µi⟩ ≤

√
1+ρ
2

. Consider the decomposition
x = ⟨x,µi⟩µi +P

⊥
µi
x. We then have

P (sign(⟨x,µI⟩) ≠ sign(⟨x, θ̂⟩)∣I = i, Î ≠ i) = P (sign(⟨x,µi⟩) (⟨x,µi⟩θ + ⟨P
⊥
µi
x,P⊥µi θ̂⟩) ≤ 0∣I = i, Î ≠ i) .

Note that x is a test data point, independent of the training data T and so it is independent of θ̂. In addition, under
our data model, ⟨x,µi⟩ is independent of P⊥µix. Hence, sign(⟨x,µi⟩)⟨P

⊥
µi
x,P⊥µi θ̂⟩ ∼ N(0, ∥P⊥µi θ̂∥

2

`2
). Given that

∥θ̂∥
`2
= 1 we also have ∥P⊥µi θ̂∥

2

`2
= 1 − ⟨θ̂,µi⟩

2 = 1 − θ2. In short, we can write

sign(⟨x,µi⟩)⟨P
⊥
µi
x,P⊥µi θ̂⟩ =

√
1 − θ2Z, Z ∼ N(0,1) .

Using this characterization, we proceed by writing

P (sign(⟨x,µI⟩) ≠ sign(⟨x, θ̂⟩)∣I = i, Î ≠ i) = P (sign(⟨x,µi⟩)⟨x,µi⟩θ +
√

1 − θ2Z ≤ 0)

= P(Z ≤ −
∣⟨x,µi⟩∣θ√

1 − θ2
)

= 1 − E
⎡
⎢
⎢
⎢
⎢
⎣

Φ(
θ

√
1 − θ2

∣⟨x,µi⟩∣)

⎤
⎥
⎥
⎥
⎥
⎦

(a)
≥ 1 − E

⎡
⎢
⎢
⎢
⎢
⎣

Φ
⎛

⎝

√
1 + ρ

1 − ρ
∣⟨x,µi⟩∣

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(b)
≥ 1 −Φ

⎛

⎝

√
1 + ρ

1 − ρ
E[∣⟨x,µi⟩∣]

⎞

⎠

(c)
≥ 1 −Φ

⎛

⎝
2

√
1 + ρ

1 − ρ

⎞

⎠
= Φ

⎛

⎝
− 2

√
1 + ρ

1 − ρ

⎞

⎠
,

where (a) follows from the fact that θ ≤
√

1+ρ
2

; (b) holds due to Jensen’s inequality and concavity of Φ(⋅) on the

positive values, and (c) holds because under our data model E[∣⟨x,µi⟩∣] = E[y(1 + u) ∥µi∥
2
`2
] = E[1 + u] ≤ 2 since

∥u∥ψ2 = 1. This completes the proof of claim.
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Proof of Lemma D.2. Define qi = pi − 1/k. Note that qi can be negative, and we have ∑ki=1 qi = 0. We write

H(p1, . . . , pk) = −
k

∑
i=1

pi log pi

= −
k

∑
i=1

(1/k + qi) log(1/k + qi)

= −
k

∑
i=1

(1/k + qi)[log(1/k) + log(1 + kqi)]

≥ log k −
k

∑
i=1

(1/k + qi)kqi (D.10)

= log k − k
k

∑
i=1

q2
i

= log k − k
k

∑
i=1

(pi − 1/k)2 .

Note that in eq. (D.10) we used the fact that 1 + kqi ≥ 0 and logx ≤ x − 1 for all x ≥ 0.

This completes the proof of the lemma.

Proof of Lemma D.3. Define a ρ-cover of Sd−1 as a set of V ∶= {v1, . . . ,vN} such that for any θ ∈ Sd−1, there exists
some vi such that ⟨θ,vi⟩ ≥ ρ. The ρ-covering number of Sd−1 is

N(ρ,Sd−1
) ∶= inf{N ∈ N ∶ there exists a ρ-cover V of Sd−1 with size N} .

By a simple argument we have M(ρ,Sd−1) ≥ N(ρ,Sd−1). Concretely, we construct a ρ-packing greedily by adding an
element at each step which has inner product at most ρ with all the previously selected elements, until it is no longer
possible. This means that any point on Sd−1 has inner product larger than ρ by some of the elements in the constructed
set (otherwise it contradicts its maximality). Hence, we have a set that is both a ρ-cover and a ρ-packing of Sd−1, and
by definition it results in M(ρ,Sd−1) ≥ N(ρ,Sd−1).

We next lower bound N(ρ,Sd−1) via a volumetric argument. Let V ∶= {v1, . . . ,vN} be a ρ-cover of Sd−1. For each
element vi ∈ V we consider the cone around it with apex angle cos−1(ρ). Its intersection with Sd−1 defines a spherical
cap which we denote by C(vi, ρ). Since V forms a ρ-cover of Sd−1, we have

Vol(Sd−1
) ≤ Vol(∪Ni=1C(vi, ρ)) ≤

N

∑
i=1

Vol(C(vi, ρ)) .

We next use Lemma 2.2 from Ball et al. (1997) by which we have C(vi,ρ)
Vol(Sd−1) ≤ e

−dρ2/2. Using this above, we get

1 ≤ Ne−dρ
2/2

for any ρ-cover V . Thus, we have N(ρ,Sd−1) ≥ exp(dρ
2

2
), which completes the proof of the lemma.

E PROOF OF THEOREM 4.8

We want to upper bound P(y⟨x, θ̂1⟩ < 0). Plugging in for θ̂1 from (4.7) we have

y⟨x, θ̂1⟩ =
y

n
⟨x,∑

i

ỹixi⟩ =
y

n
⟨x,∑

i

sign(⟨xi, θ̂0⟩)xi⟩

A major complication is that θ̂0 depends on all of the data points in the training set. Expanding θ̂0 we have

θ̂0 =
1

n
∑
i

ŷixi =
1

n
∑
i

ξiyixi =
1

n
((∑

i

ξi(1 + ui))µ +Σ1/2
∑
i

ξiyizi) (E.1)

Here is the outline of our proof:
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• For every ` ∈ [n] we define the label

ỹ′` = sign(⟨x`, (∑
i

ξi(1 + ui))µ +Σ1/2ξ`y`z`⟩) . (E.2)

• We define the event E ∶= {∀` ∶ ỹ′` = sign(⟨x`, θ̂0⟩)}.

• We write

P(y⟨x, θ̂1⟩ < 0) = P(y⟨x, θ̂1⟩ < 0;E) + P(y⟨x, θ̂1⟩ < 0;Ec)

≤ P(y⟨x, θ̂1⟩ < 0;E) + P(E
c
) . (E.3)

• We bound each of the term on the right-hand side separately. Note that on the event E , we have

y⟨x, θ̂1⟩ =
y

n
⟨x,∑

`

ỹ′`x`⟩

We will control the probability of this quantity being negative using sum of i.i.d subgaussian random variables.

Next we get into details of this proof sketch. We start by bounding P(Ec).

Lemma E.1 Fix ` ∈ [n]. Suppose that nd ≥ γ4

λ2
max

and define p′ ∶= (1 + 3γ4

8λ2
maxnd

)p. We then have

P (ỹ′`⟨x`, θ̂0⟩ < 0) ≤
1

2
(exp(−

γ4

8λ2
max

(1 − 2p′)
n

d
) + e−d/16

) ed/n .

Using Lemma E.1 along with union bounding over ` ∈ [n] (note that the events are dependent), we get

P(E
c
) ≤

n

2
(exp(−

γ4

8λ2
max

(1 − 2p′)
n

d
) + e−d/16

) ed/n . (E.4)

Next we note that on the event E we have

y⟨x, θ̂1⟩ =
y

n
⟨x,∑

`

ỹ′`x`⟩ =
1

n
∑
`∈[n]

ysign(⟨x`, (∑
i

ξi(1 + ui))µ +Σ1/2ξ`y`z`⟩) ⟨x,x`⟩ (E.5)

We define the shorthand β ∶= ∑i ξi(1 + ui) and condition on β. Then (E.5) will be sum of iid subgaussian variables

T` ∶= ysign (⟨x`, βµ +Σ1/2ξ`y`z`⟩) ⟨x,x`⟩ , ` ∈ [n] . (E.6)

We continue by first characterizing its expectation.

Lemma E.2 For ` ∈ [n] we have
E [T`∣β] ≥ (1 − 2q)⟨yx,µ⟩ > 0 ,

where

q = exp(−
βγ2

20λmax
) + 1(

βγ2

2λmaxd
< 1) .

Recall that x` = y`(1 + u`)µ +Σ1/2z` and therefore

∥T` − E[T`∣β]∥ψ2 ≤ 2∥T`∥ψ2 = 2∥⟨x,x`⟩∥ψ2

= 2∥⟨x, y`(1 + u`)µ +Σ1/2z`⟩∥ψ2

≤ 4∣⟨x,µ⟩∣ + 2 ∥Σ1/2x∥
`2
.

where we used the assumption ∥u`∥ψ2 = 1 and the fact that ∥z∥ψ2 = 1.
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Next by using Hoeffding-type inequality for sum of sub-gaussian random variables (see e.g (Vershynin, 2010, Proposi-
tion 5.1)) we have for every t ≥ 0,

P(∣∑
`

T` −∑
`

E[T`∣β]∣ ≥ t∣β) ≤ e exp
⎛
⎜
⎝
−

ct2

n(⟨x,µ⟩2 + ∥Σ1/2x∥
2

`2
)

⎞
⎟
⎠
,

where c > 0 is an absolute constant. Therefore,

P(∑
`

T` < 0 ∣β) ≤ P(∣∑
`

T` −∑
`

E[T`∣β]∣ ≥∑
`

E[T`∣β] ∣ β)

≤ e exp
⎛
⎜
⎝
−

cn(E[T`∣β])
2

⟨x,µ⟩2 + ∥Σ1/2x∥
2

`2

⎞
⎟
⎠

≤ e exp
⎛
⎜
⎝
−
cn(1 − 2q)2⟨yx,µ⟩2

⟨x,µ⟩2 + ∥Σ1/2x∥
2

`2

⎞
⎟
⎠
, (E.7)

where the last step follows from Lemma E.2.

Our next step is to take expectation of the above with respect to β. Before proceeding we define the following event:

E0 ∶= {β ≥ n(1 − 2p)/2} . (E.8)

Note that by Hoeffding-type inequality for sub-gaussian random variables,

P(∣∑
i

ξi(1 + ui) − n(1 − 2p)(1 + E[ui])∣ ≥ t) ≤ e exp(−
ct2

n
) ,

for an absolute constant c > 0. (Note that ∥ξi(1 + ui)∥ψ2 ≤ 1 + ∥ui∥ψ2 = 2 which is absorbed in the constant c.) By
choosing t = n(1 − 2p)/2, and using the fact that ui > 0 for all i we get

P(∑
i

ξi(1 + ui) < n(1 − 2p)/2) ≤ e exp (−cn(1 − 2p)2) .

Hence, P(Ec0) ≤ e exp (−cn(1 − 2p)2). We now continue by taking expectation of (E.7) with respect to β.

P(∑
`

T` < 0) ≤ eE

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−
cn(1 − 2q)2⟨yx,µ⟩2

⟨x,µ⟩2 + ∥Σ1/2x∥
2

`2

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= eE

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−
cn(1 − 2q)2⟨yx,µ⟩2

⟨x,µ⟩2 + ∥Σ1/2x∥
2

`2

⎞
⎟
⎠
(1E0 + 1Ec0 )

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤ E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−
cn(1 − 2q)2⟨yx,µ⟩2

⟨x,µ⟩2 + ∥Σ1/2x∥
2

`2

⎞
⎟
⎠

1E0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ P(E
c
0) . (E.9)

On the event E0 we have
βγ2

2λmaxd
≥
n(1 − 2p)γ2

4λmaxd
> 1,

by our assumption. Therefore,

q = exp(−
βγ2

20λmax
) ≤ exp(−

n(1 − 2p)γ2

40λmax
) ∶= q′ .
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Since 1 − 2q ≥ 1 − 2q′ > 0 this implies that

E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−
cn(1 − 2q)2⟨yx,µ⟩2

⟨x,µ⟩2 + ∥Σ1/2x∥
2

`2

⎞
⎟
⎠

1E0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤ E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−
cn(1 − 2q′)2⟨yx,µ⟩2

⟨x,µ⟩2 + ∥Σ1/2x∥
2

`2

⎞
⎟
⎠

1E0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤ exp
⎛
⎜
⎝
−
cn(1 − 2q′)2⟨yx,µ⟩2

⟨x,µ⟩2 + ∥Σ1/2x∥
2

`2

⎞
⎟
⎠
.

Using the above bound along with the bound on P(Ec0) into (E.9), we arrive at

P(∑
`

T` < 0) ≤ exp
⎛
⎜
⎝
−
cn(1 − 2q′)2⟨yx,µ⟩2

⟨x,µ⟩2 + ∥Σ1/2x∥
2

`2

⎞
⎟
⎠
+ e exp (−cn(1 − 2p)2) . (E.10)

Invoking (E.5) and the definition of T` given by (E.6) we obtain

P(y⟨x, θ̂1⟩ < 0;E) ≤ exp
⎛
⎜
⎝
−
cn(1 − 2q′)2⟨yx,µ⟩2

⟨x,µ⟩2 + ∥Σ1/2x∥
2

`2

⎞
⎟
⎠
+ e exp (−cn(1 − 2p)2) . (E.11)

For the final step we combine (E.11), (E.4) and (E.3) to get

P(y⟨x, θ̂1⟩ < 0) ≤ exp
⎛
⎜
⎝
−
cn(1 − 2q′)2⟨yx,µ⟩2

⟨x,µ⟩2 + ∥Σ1/2x∥
2

`2

⎞
⎟
⎠

+ e exp (−cn(1 − 2p)2) +
n

2
(exp(−

γ4

8λ2
max

(1 − 2p′)
n

d
) + e−d/16

) ed/n . (E.12)

E.1 PROOF OF LEMMA E.1

Define ξ̃i ∶= ξi(1 + ui) By invoking (E.1) we have

ỹ′`⟨x`, θ̂0⟩ =
ỹ′`
n

⟨x`, (∑
i

ξ̃i))µ +Σ1/2ξ`y`z` +Σ1/2
∑
i≠`
ξiyizi⟩

We have ∑i≠` ξiyizi ∼ N(0, (n − 1)Id) and so ⟨ỹ′`x`,Σ
1/2
∑i≠` ξiyizi⟩ is a zero mean Gaussian with variance

(n − 1) ∥Σ1/2x`∥
2

`2
. Let F` be the σ-algebra generated by (z`, y`,{ξi, ui}i∈[n]). Note that zi, for i ≠ `, is independent

of F` and ỹ′` is F`-measurable. Hence,

P (ỹ′`⟨x`, θ̂0⟩ < 0∣F`) = Φ
⎛

⎝
−
ỹ`⟨x`, (∑i ξ̃i)µ +Σ1/2ξ`y`z`⟩

√
n − 1 ∥Σ1/2x`∥`2

⎞

⎠

(a)
= Φ

⎛
⎜
⎜
⎝

−
∣⟨x`, (∑i ξ̃i)µ +Σ1/2ξ`y`z`⟩∣

√
n − 1 ∥Σ1/2x`∥`2

⎞
⎟
⎟
⎠

(b)
≤

1

2
exp

⎛
⎜
⎜
⎝

−
∣⟨x`, (∑i ξ̃i)µ +Σ1/2ξ`y`z`⟩∣

2

2n ∥Σ1/2x`∥
2

`2

⎞
⎟
⎟
⎠

(c)
≤

1

2
exp

⎛
⎜
⎝
−
⟨x`,µ⟩

2(∑i ξ̃i)
2

4n ∥Σ1/2x`∥
2

`2

⎞
⎟
⎠

exp
⎛
⎜
⎝

⟨x`,Σ
1/2z`⟩

2

2n ∥Σ1/2x`∥
2

`2

⎞
⎟
⎠

≤
1

2
exp

⎛
⎜
⎝
−
⟨x`,µ⟩

2(∑i ξ̃i)
2

4n ∥Σ1/2x`∥
2

`2

⎞
⎟
⎠

exp
⎛

⎝

∥z`∥
2
`2

2n

⎞

⎠
. (E.13)
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Here, (a) follows by the choice of ỹ′`; (b) holds by using (Abramowitz & Stegun, 1968, Equation (7.1.13)):

Φc(t) ≤

√
2

π

e−t
2/2

t +
√
t2 + 8

π

≤
1

2
e−t

2/2 ,

for all t ≥ 0. In addition (c) holds since (a + b)2 ≥ a2

2
− b2.

We proceed by taking expectation of the right-hand side of (E.13) with respect to ξ̃1, . . . , ξ̃n. Define the shorthand
λ ∶= ⟨x`,µ⟩2

4n∥Σ1/2x`∥2`2
. Fix an arbitrary λ0 > 0 for now (we will determine its value later) and define truncated parameter

λ̄ = min(λ,λ0). We have

E [e−λ(∑i ξ̃i)
2

] ≤ E [e−λ̄(∑i ξ̃i)
2

] (E.14)

= E [e−λ̄∑i(1+ui)
2

e−λ̄∑i≠j ξiξj(1+ui)(1+uj)]

≤ e−λ̄n∏
i≠j

E[e−λ̄ξi(1+ui)]E[e−λ̄ξj(1+uj)]

= e−λ̄n(E[e−λ̄ξ(1+u)])n(n−1)

= e−λ̄n E[(1 − p)e−λ̄(1+u) + peλ̄(1+u)]n(n−1)

≤ e−λ̄n ((1 − p)e−λ̄ + peλ̄ E[eλ̄u])
n(n−1)

≤ e−λ̄n ((1 − p)e−λ̄ + peλ̄eλ̄
2/2

)
n(n−1)

= e−λ̄n
2

(1 − p + pe2λ̄+λ̄2/2
)
n(n−1)

. (E.15)

Here, the first and the second inequality follows from ui ≥ 0. The third inequality holds since u has unit sub-gaussian
norm and so it moment-generating function is bounded as E[eλu] ≤ eλ

2/2.

We next further upper bound the right-hand side of E.15 to get a simpler expression. In doing that we use the following
lemma.

Lemma E.3 For t ≤ 1/2 we have et − 1 ≤ t + t2.

By choosing λ0 ≤ 0.2 we have 2λ0 + λ
2
0/2 ≤ 1/2 and so 2λ̄ + λ̄2/2 ≤ 1/2. By virtue of the above lemma we have

e2λ̄+λ̄2/2
− 1 ≤ 2λ̄ + λ̄2

/2 + (2λ̄ + λ̄2
/2)

2

= 2λ̄ + λ̄2
/2 + 4λ̄2

+ λ̄4
/4 + 2λ̄3

≤ 2λ̄ + λ̄ (λ0/2 + 4λ0 + λ
3
0/4 + 2λ2

0)

≤ (2 + 6λ0)λ̄ ,

where we used that λ0 ≤ 0.2 in the last step. Next using the inequality 1 + x ≤ ex for x ≥ 0, we get

(e2λ̄+λ̄2/2
− 1)p + 1 ≤ (2 + 6λ0)pλ̄ + 1 ≤ e(2+6λ0)λ̄p .

By using this bound in (E.15) we obtain

E [e−λ(∑i ξ̃i)
2

] ≤ e−λ̄n
2

e(2+6λ0)λ̄pn2

= e−(1−2p′)λ̄n2

, (E.16)

with p′ ∶= (1 + 3λ0)p.
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Using (E.15) into (E.13) and then taking expectation with respect to z` we get

P (ỹ′`⟨x`, θ̂0⟩ < 0) ≤
1

2
E
⎡
⎢
⎢
⎢
⎢
⎣

exp (−(1 − 2p′)λ̄n2) exp
⎛

⎝

∥z`∥
2
`2

2n

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≤
1

2
E [exp (−2(1 − 2p′)λ̄n2)]

1/2
E
⎡
⎢
⎢
⎢
⎢
⎣

exp
⎛

⎝

∥z`∥
2
`2

n

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

1/2

, (E.17)

by applying Cauchy–Schwarz inequality.

Using the moment generating function of χ2
d distribution, we have

E
⎡
⎢
⎢
⎢
⎢
⎣

exp
⎛

⎝

∥z`∥
2
`2

n

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= (1 −
2

n
)

−d/2
≤ e2d/n , (E.18)

for n ≥ 4. Here, we use the inequality (1 − x)−1 ≤ e2x for x ∈ [0,1/2].

We continue by bounding the first term on the right-hand side of (E.17). Note that ∣⟨x`,µ⟩∣ = ∣y(1 + u`) ∥µ∥
2
`2

∣ ≥ γ2

because u` ≥ 0. Define the event E1 as follows:

E1 ∶= {∥Σ1/2x`∥`2
≤ λmax

√
2d} (E.19)

We then have

E [exp (−2(1 − 2p′)λ̄n2)] = E [exp (−2(1 − 2p′)λ̄n2) (1E1 + 1Ec1 )]

≤ E [exp (−2(1 − 2p′)λ̄n2)1E1] + E[1Ec1 ]

(a)
= E [exp(−

γ4

4λ2
maxd

(1 − 2p′)n)1E1] + P(E
c
1)

≤ exp(−
γ4

4λ2
max

(1 − 2p′)
n

d
) + P(E

c
1) (E.20)

Note that in step (a), we used the fact that on the event E1, we have λ ≥ γ4/(8λ2
maxnd) and we choose λ0 =

γ4/(8λ2
maxnd). This way, we have λ̄ = min(λ,λ0) = γ4/(8λ2

maxnd). Also note that by our assumption in the
statement of the lemma, we have λ0 ≤ 0.2 which is the condition assumed in deriving (E.16).

We next bound P(Ec1). Under our data model we have Σ1/2x = Σz and so ∥Σ1/2x∥
`2

≤ λmax ∥z∥`2 . Also since

z ∼ N(0,Id), ∥z∥2
`2

is χ2 distribution with d-degree of freedom using the tail bound of χ2 distribution (see e.g, (Ghosh,
2021, Theorem 3)) we have P(∥z∥

2
`2
≥ 2d) ≤ e−d/8 and so

P(E
c
1) ≤ P(∥z∥

2
`2
≥ 2d) ≤ e−d/8.

Using the above in (E.20) we obtain

E [exp (−2(1 − 2p′)λ̄n2)] ≤ exp(−
γ4

4λ2
max

(1 − 2p′)
n

d
) + e−d/8 (E.21)

By combining (E.21) and (E.18) with (E.17) we arrive at

P (ỹ′`⟨x`, θ̂0⟩ < 0) ≤
1

2
(exp(−

γ4

4λ2
max

(1 − 2p′)
n

d
) + e−d/8)

1/2

ed/n

≤
1

2
(exp(−

γ4

8λ2
max

(1 − 2p′)
n

d
) + e−d/16

) ed/n ,

which completes the proof of lemma.
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E.2 PROOF OF LEMMA E.2

Under our data model we have x` = y`(1 + u`)µ +Σ1/2z`. Substituting for x` in the expression of T`, we have

T` = sign (⟨y`(1 + u`)µ +Σ1/2z`, βµ + ξ`y`Σ
1/2z`⟩) ⟨yx, y`(1 + u`)µ +Σ1/2z`⟩

= sign(y`(1 + u`)βγ
2
+ ξ`y` ∥Σ

1/2z`∥
2

`2
) ⟨yx, y`(1 + u`)µ +Σ1/2z`⟩ ,

using the fact that Σ1/2µ = 0. Taking expectation we get

E[T`∣β] = E [sign(y`(1 + u`)βγ
2
+ ξ`y` ∥Σ

1/2z`∥
2

`2
) ⟨yx, y`(1 + u`)µ⟩ ∣β]

since the other term will be an odd function of z`. Letting

q0 ∶= P((1 + u`)βγ
2
+ ξ` ∥Σ

1/2z`∥
2

`2
< 0) ,

we get
E[T`∣β] = (1 − 2q0)⟨yx, (1 + u`)µ⟩ ≥ (1 − 2q0)⟨yx,µ⟩ ,

given that u` > 0 and ⟨yx,µ⟩ > 0 given the positive margin in our data model. So what remains is to show that q0 ≤ q.

We write

q0 ≤ P ((1 + u`)βγ
2
− λmax ∥z`∥

2
`2
< 0)

≤ P(
βγ2

λmax
< ∥z`∥

2
`2
) < exp(−

βγ2

20λmax
) ,

if βγ2

2dλmax
> 1, where the last step follows from the observation that ∥z`∥

2
`2
∼ χ2

d and using the tail bound of χ2
d ( (Ghosh,

2021, Theorem 3)). This can be alternatively written as

q0 ≤ q = exp(−
βγ2

20λmax
) + 1(

βγ2

2dλmax
< 1) ,

which completes the proof of lemma.

F PROOF OF THEOREM 4.9

Using Theorem 4.8, we have acc(θ̂1) ≥ E[α1(x)]. Based on our data model x = y(1 + u)µ +Σ1/2z. Consider the
probabilistic event E2 ∶= {z ∶ ∥z∥

2
`2
≤ 2d}. For every η > 0, we have

E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−

η⟨x,µ⟩2

⟨x,µ⟩2 + ∥Σ1/2x∥
2

`2

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−

η⟨x,µ⟩2

⟨x,µ⟩2 + ∥Σ1/2x∥
2

`2

⎞
⎟
⎠
(1E2 + 1Ec2 )

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤ exp(−
ηγ4

γ4 + 2λ2
maxd

) + P(E
c
2) ,

where the inequality holds because ⟨x,µ⟩ = y(1+u)γ2 and so ⟨x,µ⟩2 ≥ γ4 (since u is a non-negative random variable).
In addition,

∥Σ1/2x∥
2

`2
= ∥Σz∥

2
`2
≤ λ2

max ∥z∥
2
`2
≤ 2λ2

maxd

on the event E2. Further, ∥z∥2
`2
∼ χ2

d and so using tail bounds for χ2
d, see e.g., (Ghosh, 2021, Theorem 3), we have

P(Ec2) ≤ e
−d/8. Putting things together, we obtain

E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−

η⟨x,µ⟩2

⟨x,µ⟩2 + ∥Σ1/2x∥
2

`2

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤ exp(−
ηγ4

γ4 + 2λ2
maxd

) + e−d/8 .

The claim of theorem follows by setting η = cn(1 − 2q′)2.
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G REMAINING EXPERIMENTAL DETAILS

Here we provide the remaining details about the experiments in Section 5. Our experiments were done using
TensorFlow and JAX on one 40 GB A100 GPU (per run). In all the cases, we retrain starting from random initialization
rather than the previous checkpoint we converged to before RT; the former worked better than the latter. We list training
details for each individual dataset next.

CIFAR-10. Optimizer is SGD with momentum = 0.9, batch-size = 32, number of gradient steps in each
stage of training (i.e., both stages of baseline, full RT and consensus-based RT) = 21k. We use the cosine one-cycle
learning rate schedule with initial learning rate = 0.1 for each stage of training. The number of gradient steps and initial
learning rate were chosen based on the performance of the baseline method and not based on the performance of full or
consensus-based RT. Standard augmentations such as random cropping, flipping and brightness/contrast change were
used.

CIFAR-100. Details are the same as CIFAR-10 except that here the number of gradient steps in each stage
of training = 28k and initial learning rate = 0.005.

AG News Subset. Small BERT model link: https://www.kaggle.com/models/tensorflow/bert/
frameworks/tensorFlow2/variations/bert-en-uncased-l-4-h-512-a-8/versions/2?
tfhub-redirect=true, BERT English uncased preprocessor link: https://www.kaggle.com/models/
tensorflow/bert/frameworks/tensorFlow2/variations/en-uncased-preprocess/
versions/3?tfhub-redirect=true. Optimizer is Adam with fixed learning rate = 1e − 5, batch size
= 32, number of epochs in each training stage = 5.

The test accuracies without label DP for CIFAR-10, CIFAR-100 and AG News Subset are 94.13 ± 0.05%,
74.73 ± 0.34% and 91.01 ± 0.25%, respectively.

H CONSENSUS-BASED RETRAINING DOES BETTER THAN CONFIDENCE-BASED
RETRAINING

Here we compare full and consensus-based RT against another strategy for retraining which we call confidence-based
retraining (RT). Specifically, we propose to retrain with the predicted labels of the samples with the top 50% margin
(i.e., highest predicted probability - second highest predicted probability); margin is a measure of the model’s confidence.
This idea is similar to self-training’s method of sample selection in the semi-supervised setting (Amini et al., 2022).
In Tables 8 and 9, we show results for CIFAR-10 and CIFAR-100 (in the same setting as Section 5 and Appendix G)
with the smallest value of ε from Tables 1 and 2, respectively. Notice that consensus-based RT is clearly better than
confidence-based RT.

Table 8: CIFAR-10. Test set accuracies (mean ± standard deviation). Consensus-based RT performs the
best.

ε Baseline Full RT Consensus-based RT Confidence-based RT
1 57.78 ± 1.13 60.07 ± 0.63 63.84 ± 0.56 62.09 ± 0.55

Table 9: CIFAR-100. Test set accuracies (mean ± standard deviation). Again, consensus-based RT
performs the best.

ε Baseline Full RT Consensus-based RT Confidence-based RT
3 23.53 ± 1.01 24.42 ± 1.22 29.98 ± 1.11 24.99 ± 1.25
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I RETRAINING IS BENEFICIAL EVEN WITHOUT A VALIDATION SET

In all our previous experiments, we assumed access to a small clean validation set. Here we consider training ResNet-34
on CIFAR-100 when we do not have access to a validation set and keep training for a fixed number of epochs (100).
The point of these experiments is to show that retraining can offer gains even without a validation set, in which case we
can expect severe overfitting. Please see the the results and discussion in Table 10.

Table 10: No validation set (CIFAR-100 w/ ResNet-34). Test set accuracies (mean ± standard devia-
tion). Just like all our previous results in the presence of a small validation set, consensus-based RT is
the clear winner here. However, due to a higher degree of overfitting here, the performance and amount
of improvement obtained with retraining is worse than the corresponding experiment using a validation
set (Table 4). This is not surprising.

ε Baseline Full RT Consensus-based RT
3 14.53 ± 0.48 15.20 ± 0.71 17.30 ± 0.43
4 26.03 ± 1.75 28.33 ± 1.76 30.47 ± 1.31
5 42.50 ± 1.14 44.43 ± 1.27 46.27 ± 1.72

J BEYOND LABEL DP: EVALUATING RETRAINING IN THE PRESENCE OF HUMAN
ANNOTATION ERRORS

Even though our empirical focus in this paper has been label DP training, retraining (RT) can be employed for general
problems with label noise. Here we evaluate RT in a setting with “real” label noise due to human annotation. Specifically,
we focus on training a ResNet-18 model (without label DP to be clear) on the CIFAR-100N dataset introduced by Wei
et al. (2021) and available on the TensorFlow website. CIFAR-100N is just CIFAR-100 labeled by humans; thus, it has
real human annotation errors. The experimental setup and details are the same as CIFAR-100 (as stated in Section 5 and
Appendix G); the only difference is that here we use initial learning rate = 0.01.

In Table 11, we list the test accuracies of the baseline which is just vanilla training with the given labels, full RT and
consensus-based RT, respectively. Even here with human annotation errors, consensus-based RT is beneficial.

Table 11: CIFAR-100N. Test set accuracies (mean ± standard deviation). So even with real human
annotation errors, consensus-based RT improves performance.

Baseline Full RT Consensus-based RT
55.47 ± 0.18 56.88 ± 0.35 57.68 ± 0.35
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