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Abstract

Prompt tuning introduces additional learnable001
tokens, known as soft prompts, to frozen pre-002
trained language models for parameter-efficient003
tuning. Unlike fine-tuning, only these soft004
prompts are trained on downstream tasks rather005
than all model parameters. While recent006
prompt tuning approaches that introduce a repa-007
rameterization network have shown compara-008
ble performance to fine-tuning, they still re-009
quire a large number of parameters for the soft010
prompts. In this paper, we empirically show011
the characteristics of the recent prompt tuning012
methods, such as the large norms of trained soft013
prompts and their significant similarity to each014
other. Inspired by these observations, we pro-015
pose simple yet effective modifications to the016
reparameterization network for efficient prompt017
tuning, which involves inducing large norm, re-018
placing overparameterization with underparam-019
eterization, and focusing on a single prompt.020
This approach preserves the advantageous char-021
acteristics of the soft prompts while signifi-022
cantly reducing the number of parameters. Our023
comprehensive experiments across 21 diverse024
NLP datasets show that our method called EPT:025
EXPLOSIVE PROMPT TUNING, significantly026
outperforms prompt tuning and achieves com-027
parable performance full fine-tuning or other028
parameter-efficient tuning, with only 2.3K pa-029
rameters during training on T5-base.030

1 Introduction031

Pre-trained Language Models (PLMs) (Devlin032

et al., 2019; Radford et al., 2019; Raffel et al.,033

2020) have demonstrated remarkable performance034

in various natural language processing (NLP) tasks,035

typically using the pretrain-then-finetune paradigm036

(Liu et al., 2019). However, fine-tuning all the037

model parameters for individual downstream tasks038

requires a substantial memory footprint and train-039

ing time, making it inefficient for large-scale040

PLMs.041
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Figure 1: EPT and its variant EPT* outperform Prompt-
Tuning (PT; Lester et al., 2021) and ResPrompt (Razdai-
biedina et al., 2023), and reduce the gap with P-Tuning
(Liu et al., 2021) and Fine-tuning (FT) on SuperGLUE
tasks by using a single soft prompt in T5-series models
(Top). In terms of parameter efficiency, using an under-
parameterized MLP allows for a significantly reduced
the number of training parameters (Bottom).

To address the computational expense of fine- 042

tuning, researchers have explored prompt-tuning 043

(PT) in large-scale PLMs. PT is an efficient method 044

that prepends learnable prompt vectors (referred to 045

as soft prompts or continuous prompts) to the input 046

embeddings of the model. It updates only the soft 047

prompts while freezing the rest of the model param- 048

eters. These learned soft prompts provide PLMs 049

with task-specific information for each downstream 050

task. 051

Recently, some studies have introduced repa- 052

rameterization networks to soft prompts to reduce 053

the performance gap between vanilla PT (Lester 054

et al., 2021) and fine-tuning in moderate-scale mod- 055

els (less than 11 billion parameters). P-tuning 056

(Liu et al., 2021) employs a long short-term mem- 057
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ory (LSTM) network and a multi-layer perception058

(MLP) as the reparameterization network to pro-059

mote the discreteness of the soft prompts in con-060

tinuous space. ResPrompt (Razdaibiedina et al.,061

2023) applies layer normalization (Ba et al., 2016)062

and a residual connection (He et al., 2016) to the063

reparameterization network to alleviate poor perfor-064

mance with shorter prompt lengths and sensitivity065

to hyper-parameters. While the reparameterization-066

based PT (Liu et al., 2021; Razdaibiedina et al.,067

2023) has successfully improved the performance068

of vanilla PT, their reparameterization networks069

generally require overparameterization compared070

to vanilla PT. Additionally, we find that the repa-071

rameterization networks lead to redundancy prob-072

lems in the soft prompts.073

In this paper, we analyze the trained soft prompts074

of both vanilla PT and reparameterization-based075

PT models through pilot experiments to gain key076

insights for designing more efficient soft prompts.077

We find that (1) reparameterized soft prompts have078

large norms. (2) After discovering high cosine079

similarities indicating redundancy among these080

prompts, we find that using a broadcast prompt081

initialized from a subset can achieve the origi-082

nal performance level as using full soft prompts.083

Reflecting on this, (3) focusing on a single large084

norm prompt shows insensitivity to network size.085

Based on these observations, We propose EPT:086

EXPLOSIVE PROMPT TUNING which modifies the087

reparameterization-based PT network to induce088

large norms with gradient exploding. This allows089

us to replace the overparameterized network with090

an underparameterized network, improving param-091

eter efficiency while eliminating the redundancy092

of highly similar soft prompts. It also enables093

the use of a single prompt or a broadcast prompts,094

while maintaining the advantages of reparameter-095

ized prompts.096

To verify the effectiveness of EPT, we con-097

duct comprehensive experiments on GLUE, Su-098

perGLUE, MRQA, and Others benchmark of Asai099

et al., 2022 with T5-small, T5-base, and T5-Large100

models (Raffel et al., 2020). As shown in Figure 1101

and Table 1, EPT and its variant EPT* outperform102

ResPrompt and Prompt-Tuning and achieve compa-103

rable or outperforming performance with P-Tuning104

and fine-tuning, despite using a single prompt and105

tuning significantly fewer parameters, 2.3K for T5-106

base and 3K for T5-Large. Our approach is also107

effective on few-shot settings (i.e. 4-32 shots) (Ta-108

ble 3). 109

2 Related Works 110

2.1 Parameter-Efficient Tuning Methods 111

Pre-trained Language Models (PLMs) have demon- 112

strated remarkable performance across various Nat- 113

ural Language Processing (NLP) tasks, leading 114

to widespread adoption. Since the emergence of 115

Transformer-based model (Vaswani et al., 2017) 116

such as BERT (Devlin et al., 2019), GPT-2 (Rad- 117

ford et al., 2019), T5 (Raffel et al., 2020), recently 118

advancements have introduced large-scale PLMs 119

(Brown et al., 2020; Chowdhery et al., 2022). How- 120

ever, fine-tuning has become parameter-inefficient 121

as it requires updating all model parameters due 122

to the exponential increase in the parameters of 123

PLMs. Moreover, it is computationally expensive 124

in terms of time and memory to store and deploy 125

all model parameters of adapted PLMs for each 126

task. In response to the challenges of fine-tuning, 127

Parameter-Efficient Tuning (PEFT) methods have 128

emerged as promising alternatives. It updates only 129

a subset of model parameters while adapting to var- 130

ious downstream tasks, demonstrating competitive 131

performance to full fine-tuning. 132

We divide PEFT methods into parameter com- 133

position, extra module, and input composition. Pa- 134

rameter composition methods involve simply com- 135

bining task-specific parameters with model param- 136

eters, as shown in approaches like BitFiT (Ben Za- 137

ken et al., 2022) and LoRA (Hu et al., 2021). Ex- 138

tra module methods introduce task-specific mod- 139

ules, such as Adapters (Houlsby et al., 2019) and 140

IA3 (Liu et al., 2022). Input composition meth- 141

ods prepend task-specific learnable prompt to the 142

model’s input, as demonstrated in approaches like 143

Prefix-Tuning (Li and Liang, 2021), P-Tuning (Liu 144

et al., 2021), and Prompt-Tuning (Lester et al., 145

2021). 146

2.2 Prompt Tuning 147

Lester et al. (2021) achieved competitive perfor- 148

mance by simply prepending soft prompt into the 149

input sequence of PLMs without modifying the 150

model parameters. The tuned prompt consists of 151

less than 0.1% of the total parameters, making it 152

reduces the cost of copying, storing, and deploy- 153

ing. However, comparable performance to full 154

fine-tuning is typically achieved only with large- 155

scale PLMs or by using long soft prompts, which 156

can lead to increased training and inference times. 157
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Recently, there exist methods using a reparame-158

terization network with soft prompts (Liu et al.,159

2021; Razdaibiedina et al., 2023). Liu et al., 2021160

employs the reparameterization network consist-161

ing of LSTM or MLP layer to promote the dis-162

creteness of continuous prompts, aiming to address163

the underperformance of decoder-only models on164

NLU tasks. In the case of Razdaibiedina et al.,165

2023, a residual connection is employed in the166

reparameterization network (i.e., MLP) to enhance167

the performance robustness to the hyper-parameter168

associated with prompt tuning using shorter soft169

prompts. However, these reparameterization-based170

prompt tuning require tens or hundreds more pa-171

rameters. More recently, SPoT (Vu et al., 2022),172

ATTEMPT (Asai et al., 2022), and MPT (Wang173

et al., 2023) propose a prompt-based transfer learn-174

ing. SPoT improves the performance of prompt175

tuning by initializing soft prompts for the target176

task after training prompts on one or more source177

tasks. ATTEMPT trains an attention module to in-178

terpolate between the source prompts and the target179

prompts. MPT distills knowledge from multiple180

task source prompts into target prompts. These181

methods require pre-training on any source tasks182

to obtain a collection of source prompts.183

3 Method184

3.1 Preliminaries185

Vanilla Prompt Tuning Lester et al. (2021) pro-186

posed prompt tuning that defines a length m se-187

quence of soft prompts P = {P1, . . . , Pm} ∈188

Rm×e, which is prepended to the input embeddings189

X , and learn only them for adaptation to down-190

stream tasks. The model parameters θ are frozen,191

and only soft prompt parameters θP are stored after192

training. The training objective of prompt tuning is193

as follows:194

argmax
θP

log pθ(Y | [P ;X]), (1)195

Reparameterization-based Prompt Tuning Liu196

et al., 2021; Razdaibiedina et al., 2023 proposed197

that use a reparameterization network ϕO (see Fig-198

ure 6 (a)). Before prepending the soft prompts to199

the input embeddings, they project it into reparam-200

eterized soft prompts P ′ as follows.201

P ′ = [P ′
1, . . . , P

′
m] = ΦO(P ), (2)202

where ΦO(·) is a reparameterization function com-203

posed of the network ϕO with overparameteriza-204

tion. P-Tuning (Liu et al., 2021) configures ϕO 205

using LSTM or MLP, and ResPrompt constructs 206

ϕO by adding residual connection and layer norm 207

to a bottleneck-structured MLP. They train only 208

the soft prompt parameters θP and the reparame- 209

terization network parameters θϕO . The training 210

objective of reparameterization-based prompt tun- 211

ing is as follows: 212

argmax
θP ,θϕO

log pθ(Y | [P ′;X]), (3) 213

After training, they discard the reparameterization 214

network and use the projected prompt P ′ during 215

inference. 216

3.2 Reparameterized Soft Prompt 217

In this section, we observe the l2 norm and 218

similarity of soft prompts for the vanilla PT 219

and reparameterization-based PT methods. One 220

important aspect of the comparison is dis- 221

cussing the characteristics of the soft prompts in 222

reparameterization-based PT that contribute to per- 223

formance improvement over vanilla PT. 224

Reparameterized soft prompts show a growing 225

large norms during training. We take the per- 226

spective of understanding the differences in the 227

dynamics of gradient descent between vanilla PT 228

and reparameterization-based PT for soft prompts. 229

We observe the trend of l2 norm over time steps 230

t for each method during the training as potential 231

empirical observation. To measure this trend for 232

soft prompts norm at each time step t, we calculate 233

the average norm of each prompt. 234

µt =
1

n

∑
i

∥θP t
i
∥2 (4) 235

where µt denotes the average norm of the soft 236

prompts at time step t, n is the prompt length, and 237

θP t
i

represents the parameter of the i-th prompt at 238

t-th step. 239

As shown in Figure 2, reparameterization-based 240

PT shows an increasing trend in µt and evaluation 241

accuracy for Boolq and RTE tasks as the training 242

step t progresses. In contrast, vanilla PT shows no 243

noticeable increase in either metric. This suggests 244

that training to increase the norm of the soft prompt 245

can lead to better performance compared to vanilla 246

PT. 247

Reparameterized soft prompts contain redun- 248

dant representations. To identify the represen- 249

tation of the trained soft prompt, we estimate the 250
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Figure 2: Illustration depicting the growth trends of the
average norm µt in Eq. (4) (a) and evaluation accuracy
on the validation set (b) during 30K training steps t for
PT, ResPrompt, and P-Tuning on Boolq and RTE tasks
using T5-base. The norm was measured at every step,
while the accuracy was measured every 1K steps.

similarity between each prompt by measuring the251

cosine similarities. Figure 3 shows a correlation252

heatmap of the cosine similarities. We observe253

distinct trends between vanilla PT, which exhibits254

diverse representations, and reparameterization-255

based PT, which shows significantly high simi-256

larity1. This suggests that the reparameterized257

soft prompt serves as a representation that guides258

the model towards output labels, exhibiting redun-259

dancy. See Appendix C for additional results.260

PT

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

PT

1 2 3 4 5 6 7 8 9 10

ResPrompt

1 2 3 4 5 6 7 8 9 10

P-Tuning

0.00

0.25

0.50

0.75

1.00

Figure 3: Illustration of correlation heatmap between
learned soft prompts of length 10 for PT, ResPrompt
and P-Tuning on Boolq task with T5-base. Each score
represents the cosine similarities between each token.

The subset of reparameterized soft prompts261

achieves comparable performance to the origi-262

nal soft prompts. We identify the potential for263

eliminating redundant representations by initializ-264

ing subsets of reparameterized soft prompts, and265

compare their performance. As shown in Figure266

1The dual representation of P-Tuning and the same repre-
sentation of ResPrompt are discussed in Appendix A.1

4, we observe the performance based on the con- 267

catenation length l by selecting one Pi from orig- 268

inal soft prompts P and concatenating it to form 269

Pc = [Pi, Pi, ..., Pi] ∈ Rl×e. For P-Tuning, which 270

exhibits the largest norm, reaches the original per- 271

formance level with a shorter prompt length com- 272

pared to ResPrompt – Initializing with a length of 3 273

achieves 95.1% of the original accuracy on Boolq 274

and 93.0% on RTE. For ResPrompt, initializing 275

with a length of 4 achieves 90.0% on Boolq, while 276

a length of 7 surpasses the original accuracy on 277

RTE. In contrast, vanilla PT shows no performance 278

improvement. This suggests that an optimal prompt 279

can be achieved using a single instance from repa- 280

rameterizing, allowing for a single or broadcast 281

prompt. 282
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Figure 4: The performance comparison of PT, Re-
sPrompt, and P-Tuning with T5-base on Boolq and RTE
tasks using the concatenated soft prompts Pc chosen one
from the original soft prompts. The solid lines represent
the performance based on the concatenated length of
Pc. The dotted lines indicate the original accuracy when
using the full soft prompts.

Overparameterization. We apply the above ob- 283

servations to induce large norms with gradient ex- 284

ploding and eliminate redundancy, focusing on a 285

single prompt (see Figure 6 (c)), and show the per- 286

formance on Boolq and RTE tasks for various di- 287

mensions {1, 5, 10, 50, 100, 500, 1000} of the repa- 288

rameterization network in Figure 5. In contrast to 289

the trend observed in Razdaibiedina et al., 2023, 290

where performance declined with smaller prompt 291

lengths while improved with increasing MLP di- 292

mension, the single prompt with large norm does 293

not exhibit significant performance improvement or 294

decline across various dimensions. This indicates 295

that performance enhancement through reparame- 296

terization networks inducing norm growth does not 297

scale proportionally with the parameter size of the 298

network. See Appendix D for additional results. 299
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Figure 5: The performance of EPT with T5-base for
Boolq and RTE tasks based on MLP hidden size. The
blue line and shadow represent the average and standard
devidations respectively over 3 runs.

3.3 EXPLOSIVE PROMPT TUNING300

Our approach includes modifying the reparameter-301

ization network as shown in Figure 6 while pre-302

serving the advantageous characteristics of the soft303

prompts observed in reparameterization-based PT304

on Section 3.2. First, we construct a simple lin-305

ear network using only the down-up feedforward306

layer, under the assumption that the layer norm and307

non-linearity in ResPrompt suppress the growth308

of norms, as shown in Figure 2. This assumption309

is important because ResPrompt does not reach310

the performance of P-Tuning, which exhibits ex-311

treme norm growth. Secondly, we focus on a single312

prompt based on the observations from Figure 3313

and Figure 4 showing the potential for eliminating314

redundancy in reparameterized soft prompts.315

We project the single prompt P1 into a reparam-316

eterized soft prompt P ′ through the modified net-317

work ϕU with underparameterization. The broad-318

cast prompts P ′
b is constructed by concatenating n319

reparameterized prompts [P ′
1, P

′
1, . . . , P

′
1] ∈ Rn×e,320

then is prependede to the input embeddings X . We321

train the single prompt parameters θP1 and the mod-322

ified MLP parameters θϕU . The training objective323

of EPT is as follows:324

argmax
θP1

θϕU

log pθ(Y |[ϕU (P
′
b);X] (5)325

4 Experiments326

4.1 Datasets327

To cover diverse NLP tasks in our comprehensive328

experiments, we evaluate our method EPT on 21329

tasks including linguistic acceptability, entailment,330

similarity and paraphrase detection, sentiment anal-331

ysis, question answering, commonsense reasoning,332

(a)

(b) (c)

Figure 6: (a) Illustration of prompt tuning with a repa-
rameterization network. (b) The reparameterization
network (i.e., MLP) used in ResPrompt. The structures
and flow in (c) related to reducing norm are removed. It
enables flexible broadcasting to extend the representa-
tion of a single prompt.

and natural language inference. More details are 333

provided in the Appendix B.1. 334

GLUE and SuperGLUE. We use 5 SuperGLUE 335

(Wang et al., 2019a) and 8 GLUE (Wang et al., 336

2018) tasks to test NLU ability: Boolq (Clark 337

et al., 2019), CB (de Marneffe et al., 2019), WiC 338

(Pilehvar and Camacho-Collados, 2018), WSC 339

(Levesque et al., 2012) and MutliRC (Khashabi 340

et al., 2018); CoLA (Warstadt et al., 2019), MRPC 341

(Dolan and Brockett, 2005), RTE (Giampiccolo 342

et al., 2007), STSB (Cer et al., 2017), MNLI 343

(Williams et al., 2018), QNLI (Demszky et al., 344

2018), QQP (Wang et al., 2019b), and SST-2 345

(Socher et al., 2013). 346

MRQA and Others. We use 4 MRQA 2019 347

tasks (Fisch et al., 2019) to test on large-scale 348

QA dataset: Natural Questions (NQ; Trischler 349

et al., 2017), NewsQA(News; Trischler et al., 350

2017), SearchQA(SQA; Dunn et al., 2017), and 351

HotpotQA(HQ; Yang et al., 2018). Additionally, 352

we experiment on 4 "Others" benchmark in Asai 353

et al., 2022: WinoGrande (WG; Sakaguchi et al., 354
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2021), Yelp-2 (Zhang et al., 2015), SciTail (Khot355

et al., 2018), and PAWS-Wiki (Zhang et al., 2019).356

4.2 Pre-trained Models357

We experiment using the publicly available pre-358

trained models on the HuggingFace (Wolf et al.,359

2020) of T5 (Raffel et al., 2020). We consider360

T5-small (60M), T5-Base (220M), and T5-Large361

(770M) to cover moderate scales.362

4.3 Baselines363

Fine-Tuning. Full Fine-Tuning is the standard364

approach (Raffel et al., 2020; Aribandi et al., 2022)365

of T5, where all the pre-trained parameters are366

updated on each downstream task.367

Prompt-Tuning. The vanilla prompt tuning of368

Lester et al., 2021 is an approach that prepends the369

soft prompts to the input sequence embeddings.370

P-Tuning. Liu et al., 2021 employs an encoder371

composed of LSTM or MLP as a reparameteriza-372

tion network. The soft prompts pass through the373

encoder to optimize the prompt in a continuous374

space.375

ResPrompt. Razdaibiedina et al., 2023 adds376

residual connection and layerNorm to the reparam-377

eterization network composed of bottleneck design378

to improve the performance and stability.379

4.4 Implementation380

In our study, we translate all datasets into a text-to-381

text format following (Raffel et al., 2020). Since382

most datasets do not publicly release their test set,383

we generate the test set by constructing or sam-384

pling from the validation set. In the main results,385

we use pre-trained T5 checkpoints across three386

scales: Small, Base, and Large with 60M, 220M,387

and 770M parameters, respectively, as the LMs388

for EPT and all of the baselines. For other experi-389

ments, we use T5-base as the base LM. Excluding390

the few-shot setting, we train for 30K steps with391

batch size of 16. We experiment on short prompt392

length 10 for vanilla prompt tuning (Lester et al.,393

2021) and reparameterization-based prompt tun-394

ing (Liu et al., 2021; Razdaibiedina et al., 2023),395

and single prompt for EPT to demonstrate our ap-396

proach. In the case of EPT*, this is a variant where397

a single prompt is concatenated to extend it to a398

length of 10. More detailed implementations and399

hyper-parameters are in Appendix B.2.400

5 Results 401

5.1 Main Results 402

EPT significantly improves the performance 403

of prompt tuning with fewer parameters. 404

We compare EPT with prompt tuning and 405

reparameterization-based prompt tuning. First, 406

Table 1 presents the results on SuperGLUE and 407

GLUE. Under the same model scale and short 408

prompt length settings, reparameterization-based 409

prompt tuning significantly outperforms prompt 410

tuning. Moreover, EPT surpasses ResPrompt us- 411

ing much fewer parameters except for T5-base and 412

T5-small on GLUE, and matches the performance 413

of P-Tuning for T5-Large on SuperGLUE, using 414

approximately a thousand times fewer parameters. 415

Second, Table 2 shows the results on MRQA and 416

Others. EPT achieves 66.3 average F1 on MRQA, 417

matching ResPrompt, and yields 77.3 average accu- 418

racy on Others, outperforming ResPrompt (76.7). 419

EPT* largely closes the gap with P-Tuning 420

and fine-tuning, maintaining fewer parameters. 421

EPT still does not improve the performance of 422

prompt tuning on several datasets such as CoLA 423

(0%), and MultiRC (59.7%) in T5-base. Based on 424

the observations in Figure 4, we introduce a variant 425

of EPT, named EPT*, which maintains efficiency 426

by concatenating a single soft prompt ten times into 427

broadcast prompts instead of using ten individual 428

soft prompts that exhibits redundant representa- 429

tions. Since it involves training a concatenation of 430

single soft prompts, the training and inference pa- 431

rameters remain unchanged. First, the performance 432

results of the broadcast prompts for all lengths on 433

CoLA and MultiRC are shown in Figure 7. We ob- 434

serve a significant performance improvement when 435

the broadcast prompts length exceeds 2. Second, 436

from the results in Table 1 and Table 2, EPT* out- 437

performs ResPrompt and Prompt-Tuning across 438

all tasks and model scales while maintaining effi- 439

ciency, and even surpasses P-Tuning for T5-Large 440

on SuperGLUE. 441

5.2 Few-shot Adaptations 442

We conduct additional experiments in few-shot 443

settings to measure the effectiveness of EPT in 444

low-resource scenarios and evaluate its general- 445

ization capabilities. The training data consists of k 446

(k = {4, 16, 32}) randomly selected sampled, with 447

the number of classes sampled consistently for 13 448

NLP tasks from SuperGLUE and GLUE. As shown 449
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GLUE SuperGLUE

Method Param CoLA MRPC RTE STS-B MNLI QNLI QQP SST-2 Avg Boolq CB WiC WSC Multi Avg
/task Matt Acc Acc Pearson Acc Acc Acc Acc - Acc F1/Acc Acc Acc F1 -

T5-Large

FT 770M 61.7 89.4 88.5 91.9 89.7 94.4 91.4 95.9 87.9 85.8 88.6 71.9 85.3 79.9 82.3
P-Tuning 3.1M 58.0 88.1 85.4 91.2 88.2 94.1 90.9 95.2 86.4 82.9 87.0 68.8 60.9 79.1 75.7

ResPrompt 832K 54.8 88.2 85.9 91.5 66.1 93.8 90.8 95.0 83.2 82.1 51.2 69.2 61.5 78.2 68.4
PT 10K 0.7 74.9 50.8 91.2 35.7 89.7 88.5 87.4 64.9 62.9 58.6 55.7 60.9 59.8 59.6

EPT 3K 56.8 87.9 85.1 91.1 84.4 93.6 91.0 95.4 85.7 82.2 89.1 67.2 61.5 78.7 75.7
EPT* 3K 54.3 87.9 85.4 91.2 87.2 93.8 91.0 95.3 85.8 82.4 95.4 69.1 62.2 79.1 77.6

T5-base

FT 220M 59.8 87.9 81.8 90.6 85.9 93.1 90.4 94.2 85.5 82.8 87.6 67.9 61.5 74.9 75.0
P-Tuning 1.7M 47.2 85.7 76.3 89.7 83.0 92.8 90.3 93.5 82.3 78.8 88.3 67.0 60.3 73.6 73.6

ResPrompt 624K 34.1 85.8 65.7 90.3 72.6 92.6 89.4 90.3 77.6 76.0 64.2 65.1 61.5 66.4 66.7
PT 7.6K 0.0 67.6 56.6 90.2 48.8 69.7 65.9 84.7 60.4 62.1 59.2 53.0 61.5 59.6 59.1

EPT 2.3K 0.0 82.9 68.8 89.7 69.3 92.7 90.2 93.0 73.3 75.5 73.1 65.6 62.2 59.7 67.2
EPT* 2.3K 41.0 85.0 75.8 89.7 76.1 92.6 90.4 93.8 80.5 77.0 82.7 65.3 58.3 72.4 71.1

T5-small

FT 60M 36.3 85.9 67.9 88.8 78.8 90.4 88.1 91.1 78.4 76.5 77.8 66.6 51.3 68.4 68.1
P-Tuning 793K 0.0 84.2 65.0 86.6 75.5 89.4 88.3 89.1 72.3 71.1 64.5 65.6 59.6 65.7 65.3

ResPrompt 416K 0.0 80.9 61.4 85.9 62.1 88.9 88.2 88.1 69.4 61.9 58.4 50.6 59.0 59.3 57.8
PT 5.1K 2.8 75.6 52.3 85.6 41.5 87.2 85.8 82.0 64.1 61.8 55.2 48.7 62.2 60.0 57.6

EPT 1.5K 0.8 78.0 57.6 85.6 62.7 87.7 87.8 83.4 68.0 61.9 59.1 51.8 59.6 63.7 59.2
EPT* 1.5K 0.0 82.8 65.9 86.3 68.7 89.0 88.2 88.8 71.2 68.0 59.2 60.4 60.3 65.5 62.7

Table 1: Main results on GLUE and SuperGLUE tasks, averaged over 3 runs. We use Pearson Correlation for
STS-B, Matthews Correlation for CoLA, F1 for MultiRC (Multi), the average score for tasks with two metrics,
and accuracy for other tasks as metrics. "param/task" represents the number of trainable parameters for each task.
Excluding fine-tuning, The best results are in bold with underline representing the second best ones.

MRQA Others

Method Param NQ HP SQA News Avg WG Yelp SciTail PAWS Avg
/task F1 F1 F1 F1 - Acc Acc Acc Acc -

FT 220M 75.0 78.7 80.2 66.7 75.1 59.1 97.0 94.9 94.2 86.3
P-Tuning 1.7M 66.1 72.9 71.3 61.8 68.0 48.6 95.8 91.3 89.0 81.2

ResPrompt 624K 64.9 72.7 67.5 60.3 66.3 48.9 95.1 88.4 74.6 76.7
PT 7.6K 64.7 71.6 66.7 60.4 65.8 48.5 93.7 68.0 55.7 66.5

EPT 2.3K 64.4 72.3 68.2 60.2 66.3 48.9 93.8 89.0 77.2 77.3
EPT* 2.3K 65.0 73.1 69.5 60.4 67.0 48.2 95.4 90.1 84.8 79.6

Table 2: Results on MRQA QA datasets, WinoGrande (WG), Yelp, Scitail, and PAWS, averaged over 3 runs. We
use F1 for MRQA and accuracy for others. "param/task" represents the number of trainable parameters for each
task. Excluding fine-tuning, The best results are in bold with underline representing the second best ones.
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Figure 7: Performance comparison for concatenated soft
prompt lengths from 1 to 10 on T5-base for MultiRC
and CoLA tasks.

in Table 3, we observe that ResPrompt and Prompt-450

Tuning underperform compared to fine-tuning, fac-451

ing difficulties in few-shot adaptation. P-Tuning,452

EPT, and EPT* are effective in few-shot settings,453

outperforming ResPrompt, Prompt-Tuning, and454

k-shot FT P-Tuning ResPrompt PT EPT EPT*

SuperGLUE
4 53.1 56.3 53.0 53.9 55.8 54.3
16 56.8 60.2 51.2 54.2 57.9 57.1
32 58.5 59.9 54.0 52.9 58.2 59.3

GLUE
4 57.2 63.9 46.8 48.9 60.7 60.8
16 59.0 64.2 49.8 50.6 65.3 65.7
32 61.8 69.1 56.2 52.9 69.6 69.0

Table 3: Few-shot (k = {4, 16, 32}) results on Super-
GLUE and GLUE tasks for T5-base model, averaged
over 6 runs.

fine-tuning except for EPT in 32-shot. Notably, 455

EPT and EPT* surpass P-Tuning in the 16-shot and 456

32-shot settings on SuperGLUE, while using still 457

only 2.3K parameters. 458

5.3 Robust learning rate selection 459

We compare the performance of EPT and EPT* 460

with Prompt-Tuning and ResPrompt across various 461

learning rates. We evaluate 5 SuperGLUE tasks 462

with learning rates {0.003, 0.01, 0.03, 0.1, 0.3}. As 463
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Figure 8: Performance on 5 SuperGLUE tasks with
different learning rates on T5-base.

shown in Figure 8, our experiments indicate that464

Prompt-Tuning does not achieve consistent per-465

formance improvement across different learning466

rates on both T5-base and T5-Large. In contrast,467

ResPrompt demonstrates progressively better per-468

formance with increasing learning rates. For EPT469

and EPT*, it can be observed that they are robust to470

the selection of learning rate, despite using fewer471

parameters.472

5.4 Other parameter-efficient fine-tuning473

methods474

Method Params Multi Bool WiC WSC CB Avg
Fine-tuning 220M/- 73.9 81.5 70.8 62.2 75.0 72.7
Adapter 1.9M/- 75.5 82.1 67.0 61.5 81.0 73.4
AdapterDrop 1.1M/- 75.3 82.3 67.7 62.2 73.8 72.3
BitFit 280K/- 74.7 79.9 68.2 54.5 72.6 70.0
ATTEMPT 232K/- 72.9 77.0 66.9 52.5 72.6 68.4
PT 77K/- 56.5 61.9 48.1 62.2 50 55.7
SPoT 77K/- 73.0 77.4 58.4 61.5 36.9 61.4
EPT 2.3K/768 67.9 70.3 55.8 61.5 61.9 63.5
EPT* 2.3K/768 73.3 76.7 65.2 62.2 67.9 69.1

Table 4: Results on 5 SuperGLUE tasks for T5-base
model with other PEFT methods, averaged over 3 runs
in Asai et al., 2022. Params column represents the train-
ing parameters/inference parameters for each method.
Params with "-" indicate equivalence with training pa-
rameters.

We compare EPT and EPT* with other PEFT475

methods in the experimental setup of Asai et al.,476

2022 on 5 SuperGLUE tasks with T5-Base. Follow-477

ing the ATTEMPT, prompt-based tuning is trained478

with the prompt length of 100, and EPT and EPT*479

are trained with a single prompt of the configura-480

tion as the main results. In this setup, considering481

that the training is conducted for 10 or 20 epochs482

depending on the dataset size, an additional MLP483

layer is stacked for EPT and EPT* due to the fewer484

steps. The results show that EPT outperforms PT485

by 7.8 points and SPoT by 2.1 points, and EPT*486

surpasses ATTEMPT by 0.7 points and closes Bit-487

Fit by 0.9 points difference. Notably, our approach 488

reaches the performances using significantly fewer 489

parameters and a single prompt, without requir- 490

ing pre-trained source prompts like SPoT and AT- 491

TEMPT. 492

5.5 Ablation Studies 493
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Figure 9: (Left) Performance of EPT with additional
structures across 5 SuperGLUE tasks with T5-base.
(Right) Comparison of additional structures in terms of
accuracy (x-axis) and norm (y-axis) in the Boolq task.

We compare the performance of EPT, which 494

does not add additional structures (None), with 495

layer norm, residual connection, and three types of 496

non-linearity across 5 SuperGLUE tasks. As shown 497

in Figure 9, we observe that not adding any struc- 498

tures contributes to norm growth and performance 499

improvement. All three types of non-linearity re- 500

sult in significant performance drops, particularly 501

with ReLU, in which dead neurons in the underpa- 502

rameterized MLP lead to persistent performance 503

degradation. Layer norm causes a decrease of 5.5 504

points. With the residual connections, the large 505

discrepancy between the soft prompt before and 506

after passing through the MLP results in no direct 507

performance gain. 508

6 Conclusion 509

This work first shows that reparameterized soft 510

prompts exhibit large norms and unnecessary re- 511

dundancy. Inspired by the observations, we pro- 512

posed EXPLOSIVE PROMPT TUNING (EPT), which 513

intentionally induces large norms and eliminate the 514

redundant prompts to significantly reduce the pa- 515

rameters of the reparameterization network and soft 516

prompts. Extensive experiments on 21 NLP tasks 517

demonstrate the comparable performance of our 518

method with much fewer parameters. 519

Limitations 520

We have discovered the advantageous character- 521

istics that contribute to the performance enhance- 522

8



ment of reparameterized soft prompts. Therefore,523

a key question that remains underexplored is under-524

standing the task-specific optimal representation525

of soft prompts having with those features. The526

interpretability of such soft prompts remains a limi-527

tation in the line of research work focusing prompt-528

based tuning. We believe that EPT offers a critial529

direction to enhance new interpretability of soft530

prompts. Moreover, we plan to explore scenarios531

such as multi-task learning (Wang et al., 2023) and532

transfer learning (Vu et al., 2022; Asai et al., 2022)533

with the reparameterized soft prompt. We leave534

these for future research targets.535
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Appendix845

A More Analysis of Trained Soft Prompts846

A.1 Interpretability847

Soft prompts operate in a continuous embedding848

space rather than a discrete token space which849

makes them challenging to interpret. By measur-850

ing their nearest vocabulary neighbors using co-851

sine similarity, Lester et al., 2021 observed the852

interpretability of learned soft prompts, often find-853

ing class labels. In our experiments, soft prompts854

learned by vanilla PT also often show close to class855

labels. Reparameterized soft prompts frequently856

show class labels. Specifically, in P-Tuning without857

layer Norm structure (Figure 3), two distinct direc-858

tions of prompt vectors were identified: one closely859

aligned with output labels (positive prompts con-860

tribute significantly to performance) and the other861

not closely aligned with output labels (negative862

prompts do not contribute to performance). This863

underscores the notion that prompts guide and fo-864

cus the model towards output labels. This feature865

is pronounced in reparameterization-based PT.866

A.2 Zero-shot generalization867

We conduct zero-shot transfer experiments across868

21 NLP tasks. In Figure 10, we measure the co-869

sine similarity between tasks using the soft prompts870

learned by EPT*. We then represent the zero-shot871

performance as a percentage of the original task872

performance, scaled from 0 to 1. As mentioned873

in Appendix A.1, we address the characteristics874

of prompts guiding the model towards output la-875

bels. This becomes more prominent when exam-876

ining task similarities. For instance, classification877

tasks predicting 0 or 1 (e.g., e.g., GLUE, Super-878

GLUE, excluding STS-B, Others bechmark), re-879

gression tasks predicting the similarity between880

two sentences (STS-B), and question-answering881

tasks (MRQA) exhibit low similarity due to differ-882

ing output labels.883

B Experimental Setup884

B.1 Dataset Details885

Table 5 shows detailed settings for SuperGLUE,886

GLUE, MRQA, and Others datasets. We utilize the887

HuggingFace dataset (Lhoest et al., 2021). Since888

most datasets do not provide a test set, we split the889

training set or validation set to use as the test set.890

For small-scale datasets that have less than 10K891

in the training set, we split the validation set in 892

half, using one half as the test set and the other as 893

the validation set. For moderate-scale datasets that 894

have less than 100K in the training set, we sample 895

1K from the training set to use as the validation set. 896

For large-scale datasets that have more than 100K 897

in the training set, we sample 10K from the training 898

set to use as the validation set. The validation set 899

is used as the test set in the moderate and large- 900

scale datasets. We translate all tasks in both the 901

SuperGLUE and GLUE datasets into text-to-text. 902

B.2 Implementation Details 903

Our code is implemented using HuggingFace 904

Transformers (Wolf et al., 2020) and PEFT (Man- 905

grulkar et al., 2022). We train the models on 10 906

NVIDIA RTX A6000 GPUs. We explore different 907

learning rates for robustness in SuperGLUE. For 908

the main results on SuperGLUE datasets, we search 909

the learning rate from {1e−5, 1e−4, 1e−3} for fine- 910

tuning, and {3e−3, 1e−2, 3e−2, 1e−1, 3e−1} for 911

prompt-based tuning. For the other experiments 912

except few-shot setting, we use a learning rate of 913

1e−5 for fine-tuning and 3e−1 for prompt-based 914

tuning. For the few-shot experiments, we use a 915

learning rate of 1e−3 for fine-tuning and 3e−1 for 916

prompt-based tuning. 917

For all experiments except the few-shot setting, 918

we train 30,000 steps, while for few-shot experi- 919

ments, we train 10,000 steps, and select the best 920

checkpoint based on the optimal performance on 921

the validation set every 1,000 steps. We set the 922

batch size to 16, and the input length to 256 for 923

all tasks, except MultiRC has input length of 348 924

and MRQA tasks have input length of 512. We use 925

AdamW (Loshchilov and Hutter, 2019) optimizer 926

with weight decay of 0.01. 927

B.3 Prompt-based Tuning 928

In all experiments, vanilla and reparameterization 929

based PT, used short soft prompts with 10 virtual 930

tokens, while EPT and EPT* used 1 virtual token. 931

For the encoder setup, P-Tuning employs an MLP 932

consisting of 3 linear layers of the embedding di- 933

mension from the default of HuggingFace PEFT. 934

ResPrompt stacked two encoders with a shared 935

MLP of 400 hidden size, following Razdaibiedina 936

et al., 2023. EPT utilizes a single hidden size for 937

the underparameterized MLP. 938
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Figure 10: (Left) Illustration of cosine similarity between learned for each task using EPT*. (Right) Illustration of
the ratio of the score achieved through zero-shot transfer for each task-specific soft prompt compared to the original
score. The task transfer is performed along the x-axis towards the right.

SuperGLUE
Dataset Text Sources Task Train Valid Test Metric
Boolq Google queries, Wikipedia QA 9,427 1,635 1,635 acc.
CB various NLI 250 28 28 F1, acc.
Multirc various QA 26,243 1,000 4,848 F1
WiC WordNet, VerbNet, Wiktionary WSD 5,428 319 319 acc.
WSC fiction books coref. 554 52 52 acc.

GLUE
CoLA misc. Acceptability 8,551 521 522 matt.
SST-2 movie reviews Sentiment 66,349 1,000 872 acc.
MRPC news Paraphrase 3,668 408 1,725 acc.
STS-B misc. Sentence Similarity 5,749 750 750 pearson
QQP social QA questions Paraphrase 353,846 10,000 40,430 acc.
MNLI misc. NLI 382,702 10,000 9,815 acc.
QNLI Wikipedia QA/NLI 94,743 10,000 5,463 acc.
RTE news, Wikipedia NLI 2,490 138 139 acc.

MRQA
NQ Wikipedia QA 94,071 10,000 12,836 F1
HotpotQA Wkipedia reviews QA 72,928 2,950 2,951 F1
SearchQA Search snippets QA 107,384 10,000 16,980 F1
NewsQA News article QA 74,160 2,106 2,106 F1

Others
WinoGrande WikiHow coref. / common. 40,398 633 634 acc.
Yelp Yelp reviews Sentiment 100,000 10,000 38,000 acc.
SciTail science exams NLI 23,596 652 652 acc.
PAWS-Wiki Wikipedia Paraphrase 49,401 4,000 4,000 acc.

Table 5: The details of 5 SuperGLUE tasks and 8 GLUE tasks in our experiments. NLI is natural language inference,
coref. is coreference resolution, common. is commonsense, QA is question answering, and WSC is word sense
disambiguation.

B.4 Prompt Initialization 939

In our experiments, we initialize the virtual em- 940

beddings by sampling uniformly from [-0.5, 0.5] 941
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following Lester et al., 2021. We also explore the942

different prompt initializations, and Table 6 com-943

pares the default uniform sampling with random944

vocabulary and class vocabulary initialization.945

Init. / Task Boolq CB RTE WSC Avg.
Random 75.7 72.5 70.5 65.4 71.0
Sample 75.4 77.6 69.8 63.5 71.6
Label 75.1 75.5 67.6 63.5 70.4

Table 6: We present results on three prompt initial-
izations for T5-base in EPT: random uniform within
the range of [-0.5, 0.5], sampled vocabulary, and label
vocabulary.

C More Results for Norms of Soft946

Prompts947

In Figure 11, we provide further observations on948

the norms of soft prompts in datasets with more949

than 1K training samples, focusing on the GLUE950

7 tasks and WiC task from the SuperGLUE. The951

score metrics for each task are consistent with the952

main results. Reparameterization-based PT sig-953

nificantly outperforms vanilla PT on all tasks ex-954

cept for STS-B. At the same time, P-Tuning shows955

significantly faster convergence of both score and956

norm than ResPrompt on all tasks except for STS-957

B.958

D More Results for959

Overparameterization960

We provide further observations on the perfor-961

mance of the reparameterization network based962

on parameter size for the SuperGLUE tasks. As963

shown in Figure 12, the reparameterization net-964

work does not exhibit performance improvements965

with increased parameters for low-resource datasets966

such as CB (250 samples) and WSC (554 samples).967

Additionally, for WiC (less than 10K samples),968

which has a similar number of training samples as969

Boolq and RTE, the underparameterized network970

does not show a performance gap compared to the971

overparameterized network, and also exhibits low972

variance.973
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Figure 11: The illustration depicts the trends of the average soft prompt norm µt in Eq. 4 (a) and the evaluation
score (b) during 30K training steps for PT, ResPrompt, and P-Tuning using T5-base. The norm was measured at
every step, while the scores was recorded every 1K steps.
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